JP2008541396A - イオンビーム通路中の局在静電界を用いたイオンビーム保持のためのシステム及び方法 - Google Patents

イオンビーム通路中の局在静電界を用いたイオンビーム保持のためのシステム及び方法 Download PDF

Info

Publication number
JP2008541396A
JP2008541396A JP2008512262A JP2008512262A JP2008541396A JP 2008541396 A JP2008541396 A JP 2008541396A JP 2008512262 A JP2008512262 A JP 2008512262A JP 2008512262 A JP2008512262 A JP 2008512262A JP 2008541396 A JP2008541396 A JP 2008541396A
Authority
JP
Japan
Prior art keywords
conductive member
ion beam
conductive
electrostatic field
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008512262A
Other languages
English (en)
Inventor
ホーリング アルフレッド
Original Assignee
アクセリス テクノロジーズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクセリス テクノロジーズ インコーポレーテッド filed Critical アクセリス テクノロジーズ インコーポレーテッド
Publication of JP2008541396A publication Critical patent/JP2008541396A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation

Abstract

ビーム通路の側壁への電子損失を抑制するためのイオン注入システム及びそれに関連するビーム閉込装置が開示される。このシステム及び装置は、側壁から離れるように電子を反発する静電界を発生するための負にバイアスされた導電部材、及び、通路のイオンビームから離れた領域に静電界を局在化し、それによって、イオンビームに対する有害な影響を回避又は軽減するための、側壁とイオンビームとの間の接地された導電部材を含む。イオンビーム輸送通路の側壁の電子損失を抑制するたもえの方法も開示される。この方法は、側壁から離れるように電子を反発するために、通路内に静電界を発生させるステップと、イオンビームに重大かつ有害な影響を及ぼすことなく、側壁から電子を反発するために、通路のイオンビームから離れた領域に静電界を局在化するステップを含む。

Description

本出願は、2003年5月13日に出願され、「イオンビーム通路中の局在静電界を用いたイオンビーム保持のためのシステム及び方法」と題された米国特許仮出願第60/470,009号の優先権及び利益を主張するものである。
本発明は、一般的には、イオン注入システムに関し、より詳しくは、イオン注入システムにおける、局在静電界を用いたイオンビーム格納のための改善された方法及び装置に関する。
半導体デバイスの製造において、イオン注入は、半導体に不純物をドーピングするために使用される。イオンビーム注入装置又はイオンビーム注入システムは、集積回路の製造の間に、ドーピングによりn型またはp型の半導体材料を製造したり、又はパッシベーション層を形成することを目的として、イオンビームを用いてシリコンウエハを処理するために使用される。イオンビーム注入装置を半導体のドーピングに使用する場合、所望の半導体材料を製造するために選択されたイオン種が注入される。アンチモン、ヒ素、リン等のイオン源材料から発生するイオンを注入すると、「n型」の不純物材料のウエハが生成され、一方、「p型」の不純物材料のウエハを所望の場合には、ホウ素、ガリウム、インジウム等のイオン源材料から発生するイオンが注入される。
一般的なイオンビーム注入装置は、このようなイオン化可能な材料から正イオンを発生させるためのイオン源を有している。発生したイオンがイオン源から引き出され、イオンビームが形成されて、ビームライン・アセンブリー中の所定のビーム経路に沿って注入ステーション(エンドステーションと呼ばれる場合もある)に導かれる。イオンビーム注入装置は、イオン源とエンドステーションとの間に延在するビーム形成/整形構造体を含んでいる。この構造体は、イオンビームを維持するものであり、ビームがエンドステーション中の1つ又は複数のウエハ又は加工物に至る途中で通る、細長い内部空洞又は通路の境界を定めている。このイオンビーム輸送通路は、イオンが空気分子と衝突した結果として所定のビーム経路から逸れる確率を低減するために、通常、排気されている。
静電界や磁界によって軸方向及び横断方向の両方向にイオンが加速される度合は、イオンの電荷対質量比に依存する。イオン注入システムは、通常、ビームライン・アセンブリー中のイオン源の下流に質量分析装置を含んでおり、質量分析装置は、通路中のビーム経路を横切る双極子磁界を発生する質量分析磁石を有している。この双極子磁界は、通路のアーチ状の部分においてイオンビーム中の種々のイオンを偏向させるように機能し、それによって、異なる電荷対質量比を有効に分離する。所望の電荷対質量比と不要の電荷対質量比を選択的に分離するプロセスは、質量分析と呼ばれる。これによって、不要な分子量を有するイオンは、ビーム経路から離れた位置に偏向されるため、ウエハ上に到達するビームを非常に純度の高いものにすることが可能となり、所望の材料以外の材料の注入を回避することができる。
半導体ウエハへの高深度の注入のためには、通常、高エネルギーイオン注入が使用される。逆に、低深度のイオン注入のためには、通常、高電流、低エネルギーのイオンが使用される。特に、高電流、低エネルギーのイオンビームには、通常、高濃度の同種荷電(正)イオンが含まれている。このようなイオンは、相互斥力によって発散する性質を有しており、この空間電荷効果は、ビームのブローアップと呼ばれる場合もある。ビームのブローアップは、特に、高電流、低エネルギーの場合に問題となる。それは、ビーム中のイオンが高濃度(高電流ビーム)であることによりイオンの相互斥力が増大し、一方、イオンの伝播速度が低速(低エネルギービーム)であることにより、これらのイオンに相互斥力が作用する時間が高エネルギーの場合よりも増大するためである。空間電荷中性化(Space Charge Neutralization)は、ビームプラズマの供給及び/又は発生によって、イオン注入装置における空間電荷効果を低減する方法である。ビームプラズマは、中性粒子とともに正荷電粒子と負荷電粒子を含み、ビームが占める空間内での正荷電粒子と負荷電粒子の電荷密度が略等しいものである。例えば、ビームプラズマは、正荷電イオンビームが、バックグラウンドの残留ガス原子と相互作用し、それによって、ビーム輸送の間の電離衝突によりイオン−電子対が発生する際に発生する。その結果、イオンビームは、ビーム経路中のバックグラウンド残留ガスとの相互作用により部分的に中性化される。
高エネルギーイオン注入の場合、イオンビームは、通常、残留ガス又はバックグランドガスとのビーム相互作用の副産物である弱電離プラズマを通じて伝播する。このプラズマは、通路中のビーム経路に沿って負電荷を有する電子を供給し、それによって、ビームを分散又はブローアップさせる横電界の大部分を消去することにより、イオンビームによって生ずる空間電荷を中性化する性質を有する。しかし、イオンビームのエネルギーが低い場合、バックグランドガスとの電離衝突の確率は非常に低い。また、質量分析装置の双極子磁界中では、磁力線を横切るようなプラズマの拡散は大幅に低減する一方、磁界の方向に沿った拡散には制限がない。したがって、質量分析装置内での低エネルギーイオンビームの保持を改善するために追加のプラズマを導入することは、導入されたプラズマが双極子磁界の磁力線に沿って通路の側壁へと流れてしまうため、殆ど効果がない。更に、低エネルギーイオン注入システムは、通常、ビームライン・アセンブリーに沿った側壁への電子の吸収損失という問題を有しており、これによって、空間電荷中性化のために使用可能な電子数が低減する。このように、空間電荷中性化の改善を達成するには、ビーム通路中への低エネルギー電子の導入と、電子の側壁への離脱又は吸収の可能性及びその数の低減の両方を達成する必要がある。したがって、特に、高電流、低エネルギーのイオンビームに使用するために、イオンビーム保持を改善し、それによって、電子損失を軽減して空間電荷中性化を改善し、ビームのブローアップを防止又は低減することが可能な、改善されたイオン注入システム及び装置に対する要望がある。
以下の記載は、本発明のいくつかの態様の基本的な理解のために、本発明の簡単な要約を呈示するものである。この要約は、本発明の全範囲に亘る概要ではない。また、この要約は、本発明の主要なまたは決定的な概念を明示するものでも、本発明の範囲を定めるものでもなく、後述するより詳細な説明の導入として、本発明のいくつかの概念を簡単に呈示することを目的とするものである。
本発明は、改善されたイオン注入システム及びイオン注入システムのためのビーム保持装置、並びに、注入用のイオンビームの通路に沿った輸送における改善されたビーム保持の方法に関する。本発明によれば、局在化された電界を使用して空間電荷中性化を促進することによって、通路の1つ又は複数の側壁への中性化電子の損失が低減する。改善された空間電荷中性化により、エンドステーションに向けてシステムを通過する間に、イオンビームのブローアップが生じるおそれが低減する。本発明は、任意のタイプのイオン注入システム、特に、低エネルギーイオン注入への応用において有用なものである。
本発明の1つの態様により、イオン注入システム及びイオン注入システムのためのビーム保持装置が提供される。このビーム保持装置は、例えば質量分析装置内又は質量分析装置の下流といった、ビームライン・アセンブリー通路内に配置されるものであってもよい。ビーム保持装置は、ビーム経路の少なくとも一部に沿った通路の側壁への電子損失を抑制する。ビーム保持装置は、第1電圧に保持される導電構造体又は部材を含み、第1電圧は、側壁から離れるように電子を反発するために十分な強さを有する静電界を発生させるものである。又、ビーム保持装置は、側壁とイオンビームとの間に第2電圧に保持される別の導電構造体又は部材を含み、第2電圧は、イオンビームに対する有害な影響を回避又は軽減するために、通路のイオンビームから離れた領域に電界を局在化させるものである。
本発明の一実施形態において、ビーム保持装置は、側壁の内面とイオンビームとの間の、内面から離れてイオンビームに向かって内方のイオンビームから離れた位置に配置された第1導電部材を含む。通路の第1導電部材とイオンビームとの間の部分には第2導電部材が配置され、この第2導電部材は、第1導電部材の1つ又は複数の部分を覆い、かつ、他の部分をイオンビームに対して露出させるものである。第1及び第2導電部材の一方は、例えば負電圧によって、バイアスされ、第1及び第2導電部材の他方は接地されて、通路のイオンビームから離れた領域に実質的に局在化された静電界を発生させる。ビーム保持装置によって発生された局在静電界は、イオンビームに重大かつ有害な影響を及ぼすことなく、側壁から離れるように電子を反発するように機能する。別の実施形態では、側壁は接地され、第1導電部材は負にバイアスされ、第2導電部材は正にバイアスされる。
本発明の別の態様により、イオンビームが輸送される通路の側壁への電子損失を抑制するための方法であって、通路内に側壁から離れるように電子を反発する静電界を発生するステップと、イオンビームに重大かつ有害な影響を及ぼすことなく、側壁から離れるように電子を反発するために、通路のイオンビームから離れた領域に静電界を局在化するステップとを含む方法が提供される。本発明の種々の態様は、ビームプラズマの品質を改善し、それによって、イオンビーム伝播を改善するために使用される。
上述した目的および関連する目的を達成するため、本発明には、本明細書で詳述され、また、請求項において特に指摘された特徴が含まれる。以下の記載および添付された図面において、本発明の特定の例示的な態様を詳細に説明しているが、これらの態様は、本発明の原理を使用できる様々な方法のうちの僅かな例を示すものに過ぎない。本発明の他の態様、利点、および新規な特徴については、以下の詳細な説明を図面との関連において検討することによって、明らかになるであろう。
ここで、図面を参照して本発明を説明するが、以下の説明を通じて同様の構成要素を参照する際には同様の参照符号を使用する。本発明は、ビーム輸送通路中の電子の保持性を増大することにより空間電荷中性化を促進し、イオンビームの保持を改善又は促進するための方法及び装置を提供するものである。電子の保持性は、通路側壁の1つ又は複数の内面から離れて内方に配置された1つ又は複数の導電構造体又は部材を使用して静電界を発生し、その電界の作用を通路の周辺部分に局在化することによって改善される。これによって、通路の周辺部分にカスプ電界強度が形成され、電極により発生する電界のイオンビームに対する通路の中央部における作用が最小化される一方、大部分の電子は、通路の側壁から離れるように反発される。
種々の例示的な実施形態は、ビームライン・アセンブリー中の質量分析装置の下流に存在する分解ハウジング内に配置されたビーム保持装置を用いて、図示及び説明される。但し、本発明は、本明細書において説明される応用とは他の応用に対しても、有利に適用することができる。例えば、ビーム保持装置は、イオン源とエンドステーションとの間のビーム経路に沿った任意の場所に配置することができる。加えて、以下では、本発明を、低エネルギーイオン注入システムと関連させて説明するが、本発明の種々の態様は、例えば線形加速デバイスを含むような、高エネルギーイオン注入装置に関連させて実施することも可能であり、ビーム保持装置は、そのようなデバイス内又はその付近、質量分析デバイス内、及び/又は、ビームライン・アセンブリー中又は注入装置のビーム輸送経路に沿ったドリフト領域中の他のデバイス内に配置することができる。
先ず、図1を参照すると、低エネルギーイオン注入システム10が簡略化された模式図として示されており、この低エネルギーイオン注入システムは、ターミナル12、ビームライン・アセンブリー14、及びエンドステーション16を有している。ターミナル12は、イオン源20を含み、このイオン源には、高電圧電源22から電力が供給される。イオン源20は、ビームライン・アセンブリー14に導かれるイオンビーム24を発生する。イオンビーム24は、ビームライン・アセンブリー14中の質量分析装置26によって調整される。質量分析装置26内には、適切な電荷対質量比を有するイオンのみをエンドステーション16に通過させるための双極子磁界が設定される。エンドステーション16は、例えば、単一のウエハ加工物30を支持するように動作する順次式エンドステーション、又は、一回の注入に対して複数のウエハ30を支持するように構成されたバッチ式エンドステーションのような、どのような種類のエンドステーションであってもよく、調整されたイオンビーム24が、エンドステーション16内のターゲットウエハ30に向けて導かれるものである。
また、システム10は、本発明に従って、ビームライン・アセンブリー14内に、イオンビーム閉込(保持)装置70及び/又は72も含んでおり、これによって、イオンビームの空間電荷中性化を促進し、ひいては、イオンビーム24がシステム10を通じて伝播する間のブローアップの可能性を低減するものである。図示の例では、システム10は、質量分析装置26内に閉込装置70を有し、及び/又は、イオンビーム24の経路に沿って質量分析装置26の下流に閉込装置72を有している。これらの閉込装置70、72は、電源74に結合している。但し、ビーム閉込装置は、本発明に従って、イオン注入装置10のイオンビーム輸送通路の側壁への電子損失を抑制するために、イオンビーム24の経路に沿う任意の場所に設けることができる。閉込装置70、72は、図示及び後述する他のビーム保持装置とともに、ビーム24自体に重大かつ有害な影響を与えることなく、ビーム経路に沿った周辺領域に局在する静電界を発生させるように動作する。静電界は、負にバイアスされた導電部材によって発生し、静電界の局在性は、他の導電部材を接地することにより生じる。
図2A及び図2Bは、本発明の1つ又は複数の態様に従って、別の例示的なイオン注入システム100が、より詳細に示されている。システム100は、イオン源112、質量分析装置126を備えたビームライン・アセンブリー114、分解装置115、ビーム中性化装置124、及び、ターゲットステーション又はエンドステーション116を含み、エンドステーション116は、展開可能なベローズ・アセンブリー118により、ビームライン・アセンブリー114に対して移動可能なように結合している。図2Aには、低エネルギー型バッチ式イオン注入装置100が図示されているが、本発明は、順次式又はバッチ式のエンドステーション、及び/又は、線形加速装置(図示は省略する)を有する高エネルギー型及び他の型の注入装置に適用することもできる。例示したイオン源112は、プラズマチャンバー120及びイオン引出アセンブリー122を含む。イオン性ドーパントガスにエネルギーを付与することにより、プラズマチャンバー120内にイオンが発生する。一般的には正イオンが発生するが、本発明は、イオン源112により負イオンが発生するシステムに対して適用することもできる。正イオンは、複数の引出電極127を含むイオン引出アセンブリー122により、プラズマチャンバー127のスリットを通じて引き出される。このようにして、イオン引出アセンブリー122は、プラズマチャンバー120から正イオンのビーム128を引き出し、引き出されたイオンを、ビームライン・アセンブリー114中の質量分析装置126に向けて、ビーム経路に沿って加速する。
質量分析装置126は、適切な電界対質量比を有するイオンのみを、分解ハウジング123を有する分解装置115、及び、その後段のビーム中性化装置124に向けて通過させる。質量分析装置126は、側壁130を有するアルミニウム製ビームガイドによって形成される通路139内に、曲線状のビーム経路129を形成するものであり、通路139は、真空ポンプ131により排気されている。経路129に沿って伝播するイオンビーム128中の不適切な電荷対質量比を有するイオンは、質量分析装置の磁石126によって発生する双極子磁界の作用により除去される。この双極子磁界の強さ及び方向は、磁石コネクタ133を通じて磁石126の界磁巻線を流れる電流を調整する制御用電子装置132によって制御される。この双極子磁界により、イオンビーム128は、イオン源112付近の第1軌道又は入口軌道134から、分解ハウジング123付近の第2軌道又は出口軌道135へ、曲線状のビーム経路129に沿って移動する。イオンビーム128の不適切な又は不要な電荷対質量比を有するイオンからなる部分128’及び128”は、曲線状の軌道129から、通路の側壁130に向けて偏向される。このようにして、磁石126は、ビーム128中の所望の電荷対質量比を有するイオンのみを、分解装置115に向けて通過させる。
ビームライン・アセンブリー114は、更に、質量分析装置126中に配置された第1ビーム閉込(保持)装置170、及び/又は、質量分析装置126の下流の分解装置115中に配置された第2ビーム閉込(保持)装置172を含む。第1及び第2の閉込装置には、DC電源174から電力が供給され、これによって、後述するように、ビーム輸送通路内に静電界を発生させる。以下の説明及び図では、閉込装置172を例として説明するが、本発明の範囲には、分解装置115中の例示的な閉込装置172とは異なる構造を有し、異なる位置に配置された他のビーム閉込装置も含まれるものである。例示した分解ハウジング123は、端子電極137、イオンビーム128を集束するための静電レンズ138、及びフラッグ・ファラデー142等の線量インジケーターを含んでいる。ビーム中性化装置124は、正電荷を中性化するためのプラズマシャワー145を含んでおり、このプラズマシャワーを用いない場合、正に帯電したイオンビーム128による注入の結果として、エンドステーション116内のターゲットウエハW上に正電荷が集積される。ビーム中性化装置124及び分解装置115は、真空ポンプに143により排気されている。
エンドステーション116は、ビーム中性化装置124の下流に配置され、ディスク形のウエハ支持体144を含んでいる。ウエハ支持体上には、注入処理のためにウエハWが取り付けられる。ウエハ支持体144は、注入ビームの方向に略直交するターゲット平面内に存在し、モーター146によって回転する。イオンビーム128は、支持体144に取り付けられたウエハWが、円状の経路に沿ってイオンビームの経路の最終的な略直線状の部分164とウエハWとの交差点162に移動したときに、ウエハW上に付与される。ターゲット平面は、この交差点162回りに調整可能である。例としてバッチ式エンドステーション116が示されているが、本発明は、例えば、1度に1枚のウエハWに対して注入処理を実施する順次式注入装置のような、他の種類のエンドステーションを有するシステムに実装することもできる。
図3A〜図3Dに、分解装置115中のイオンビーム閉込装置172のいくつかの例示的な実施形態が、図2Bの3−3線に沿って示されている。本発明に従って、閉込装置172の第1(外部)導電部材201は負にバイアスされており、第2(内部)導電部材202は接地されている。そして、分解ハウジングの側壁123は、接地されている。図7A〜図7Dには、閉込装置172の別の可能な実施形態が示されており、それらの例では、第1導電部材201に負電圧が印加され、第2導電部材201に正電圧が印加され、ハウジングは接地されている。図9A〜図9Cには、更に別の可能な実施形態が示されており、それらの例では、第1導電部材は使用されておらず、側壁は接地され、第2導電部材は負にバイアスされている。図4A〜図4Dには、第2導電部材のいくつかの例示的な実施形態が示されているが、他の形式又は形状の導電部材を使用することも可能であり、本発明の範囲内において、閉込装置172の任意の様々な構成中で、任意の第2導電部材202を使用することができる。これらの図は、ビームガイドの側壁付近に非常に鋭い「カスプ」電界を形成するために使用可能な多くの方法のいくつかを例示するために、用いられるものである。本発明には、ビーム領域中に有意な強度を有することなく側壁付近に局在する電界を発生させるための任意の方法及び/又は装置が含まれる。図に例示された後述する実施形態では、側壁付近に「カスプ」形の電界を形成し、側壁付近の電子によって感受される電界は、交互反転特性を有している。この交互反転の尖点(カスプ)同士は、任意の適切な距離をおいて、例えば機械的に作製可能な限り近くに、配置されている。
図2A及び図2Bに例示した分解装置115は、イオン源112及び質量分析装置126の下流に配置されたビームライン・アセンブリー114の一部を構成し、イオンビーム輸送通路117の一部は、分解ハウジング123の側壁の内部又は内面123’により形成されている。内面123’は、イオンビーム128経路から離れた位置に存在する。図示した123’のような通路の内面は、通路の最も内側の面を含んでおり、本発明に係る第1及び第2の導電部材は、それらの内面の内側に配置され、側壁中に収納されていない。ビーム保持装置172は、通路117中に静電界を発生させ、局在化することにより、イオンビーム128に重大かつ有害な影響を与えることなく、分解装置115中の経路の少なくとも一部に沿って、分解ハウジングの1つ又は複数の側壁123への電子損失を抑制する。
図3Aは、図2Bの3−3線に沿って切断された分解装置115の簡略化された側断面図であり、分解装置115の4つの側壁123の全てから電子を反発するための保持装置172の例示的な実施形態が示されている。この例では、ビーム保持装置172は、通路117の少なくとも一部に沿って延在する第1導電部材201を含み、第1導電部材201は、側壁の内面123’とイオンビーム128との間、すなわち、ハウジング123の内面123’からイオンビーム128に向かって内方に離れた位置であって、かつ、イオンビーム128からも離れた位置に配置されている。保持装置172は、更に、通路117に沿って第1導電部材201とイオンビームとの間に配置された第2導電部材202を含んでおり、第2導電部材202は、第1導電部材201に近接している。図示の例では、第1及び第2の導電部材201、202は、グラファイトからなるものであるが、任意の他の導電性材料を使用することができる。このような導電性材料には、アルミニウムが含まれるが、これに限定されるものではない。グラファイトは、ウエハを汚染するおそれ、及び、動作の間に溶解するおそれの低いものである。
本発明に係る第2導電部材202は、第1導電部材201の少なくとも第1部分を、イオンビーム128が、覆われた部分の全電位の作用を感受しない(例えば、全電位の影響に曝されない)ようにして覆い、第1導電性部材201の少なくとも第2部分を、側壁付近の領域中に露出する任意の適切な導電性構造体とすることができる。この構造体によって、電界は分解装置115の側壁123付近に局在し、イオンビーム128に重大かつ有害な影響を及ぼすことなく、側壁123から離れるように電子を方向転換させるものである。本発明の1態様に従って、図3A〜図3Dに示す第1導電部材201は、電源174に結合されて負にバイアスされ、第2導電部材202は接地されており、それによって、通路117中に静電界が発生する。加えて、本発明の必須の構成要件ではないものの、これらの例では、ハウジングの側壁123は接地されている。
負にバイアスされた第1導電部材201によって発生する静電界によって、電子は、ハウジング123の側壁から離れるように反発され、それによって、イオンビームの空間電荷中性化が促進されるか又はその劣化が防止される。接地された第1導電部材201を第2導電部材202によって部分的に覆うことにより、静電界は、イオンビーム128から離れた通路領域に局在し、これによって、図5A〜図5Cに示すように、イオンビーム128に重大かつ有害な影響を及ぼすことなく、側壁から離れるように電子を反発するものである。この例及び他の例において、バイアスされた第1導電部材201を部分的に覆う(そして、部分的に露出する)ことは、第2導電部材202に、第1導電部材201の第2部分をイオンビーム128に対して露出する少なくとも1つの開口部を設けることによって、達成される。このような開口部のいくつかの例については、図4A〜図4Dを参照して後述する。
図3Aに例示されたビーム保持装置172は、分解装置115の4つの側壁から離れるように電子を反発するものであり、負にバイアスされた第1(例えば、外部)導電部材201は、通路117の側面周辺部周りにほぼ連続的に存在している。接地された第2(例えば、内部)導電部材202は、イオンビーム128によって感受される電界の作用を局在化するために、上記側面周辺部周りに、第1導電部材201から離れてその内側に延在している。図3Bに別の例が示されており、この例では、解装置115の上方及び下方の側壁から離れるように電子を反発するものである。図4A〜図4Cには、図3Bに示す保持装置172のいくつかの別の実施形態が示されており、図5A〜図5C及び図6A〜図6Bには、図4B及び図4Dに示す第2導電部材202を使用した場合の図3Bに示す保持装置172の実施形態に関連する静電界の例が、それぞれ示されている。図3Cは、更に別の可能なビーム保持装置172を示す側断面図であり、この例では、分解装置115の上方の側壁から離れるように電子を反発する。ビーム保持装置172の更に別の可能な実施形態が、図3Dに示されており、この例では、ビーム経路を環状に包囲することによって分解装置の4つの側壁から離れるように電子を反発する。
ここで、図2B、図3B、及び図4A〜図4Dを参照すると、第2導電部材202は、様々な方法で実現することができ、そのいくつかの例が、図3Bの4−4線に沿って示す上面図である図4A〜図4Dに示されている。図4Aに示す例では、第2導電部材202は、互いに間隔をおいて互いに平行に配置され、図の縦方向に延在する複数の導電ワイヤ202aからなる第1組と、同様に互いに間隔をおいて互いに平行に配置され、図の横方向に延在する複数の導電ワイヤ202bからなる第2組とを有するスクリーン構造体又はメッシュ構造体からなり、このメッシュ構造中の隣接する導電ワイヤの間に、第1導電部材201の一部を露出するほぼ矩形の複数の開口部が形成される。図4Aに示す個々のワイヤ202は、本発明の範囲内において、円形、矩形、又は任意の適切な形状とすることができる。図4Bには、第2導電部材202の別の可能な例が示されており、複数のスロット形開口部202dを備えた導電構造体202が示されている。図4Cに示すように、別の実施形態では、第2導電部材を貫通する略円形の複数の穴部202cが設けられ、個々の穴部202cが、第1導電部材201の一部をイオンビーム128に対して露出させるものである。図4Dには、別の可能の第2導電部材202が示されており、この例では、第2導電部材202は、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなり、隣接する導電ワイヤの間に、第1導電部材201の一部を露出する複数の間隔又は開口部が形成されている。図4Dに示す個々のワイヤ202は、本発明の範囲内において、円形、矩形、又は任意の適切な形状とすることができる。
図5A〜図5Dには、図4Bに示す第2導電部材202を使用した、図2B及び図3Bに示す保持装置172の実施形態が更に詳細に示されている。この例では、第2導電部材202は、複数のスロット形開口部202dを備えた導電構造体202からなり、第1導電部材201は、約2000ボルト(DC)で負にバイアスされ、第2導電部材202は接地され、側壁123は接地されている。図5A〜図5Dには、保持装置172によって発生された局在する静電界の例が、図5A〜図5Cには等電位線として、図5Dには静電界領域として示されている。この例では好ましくは、近接して配置され、第2導電部材202を貫通する複数の細長いスロット202dが設けられており、第1導電部材201の一部は、個々のスロットによりビーム128に対して露出する。図5Bに示すように、個々のスロット202dは、約5mmの幅210及びその幅よりも大きな長さを有し、スロット202dは、互いに略平行である。また、隣接するスロット202dは、約50mm以上のピッチ距離212(図示の実施形態では、約50mm)を隔てて配置されている。更に、第1導電部材201と第2導電部材202とは、互いに約1mmのギャップ距離214を隔てて配置されている。
これらの寸法及びバイアス値は、1つの実施形態における例に過ぎず、本発明及び添付請求項の範囲内で、他の寸法及び構成を有する構造も可能である。本発明の他の可能な実施形態では、第1及び第2導電部材201、202は、これらの図に示せない程に小さく、その完全な構造は、従来のモデリング・ソフトウェアでは正確なシミュレーションの結果が得られない程に複雑なものであってもよい。この点に関して、第2導電部材202の開口部202dは、任意の形状及び任意の寸法を有するものであってもよく、図示された形状は単なる一例である。更に、図示された構造は必ずしも実際の縮尺に従って描かれたものではない。
図3B及び図5Bに示すように、ビーム閉込装置172は、電源174を使用して第1導電部材201に負電圧を印加し、第2導電部材202を設置することによって動作し、その際、この例では、側壁123も接地されている。一例では、第1導電部材201に対して数百ボルト又はそれ以上(例えば、約−2000ボルト)の負のDCバイアス電圧が印加され、第2導電部材202及びハウジング123は、接地されている。図5A〜図5Cには、このバイアス条件における等電位線の例が示されており、図5Dには、電界領域の例が示されている。上方及び下方の第2導電部材202が互いに約400mmの間隔を隔てて配置されている分解装置115において、電界の振幅は、第2導電部材202からビーム128の中心に向かって急速に減衰し、電界強度は、ほぼスロット幅210(例えば、この例では約5mm)毎に半減する。
このように、本発明に係る閉込装置172は、巨視的な電極では不可能な程度にまで局在化された電子反発電界を形成するものである。更に、より広大な電極及び大きな電極間間隔を使用した場合、通路又はビームガイドの中央領域に存在するイオンに対する静電界の作用は最小化されず、むしろ、基本的に加速―減速―加速―減速カラムとして動作する。これは、ビーム輸送に対して有害な作用を有することが知られている。したがって、本発明は、双極子磁石通路中の通路壁に収納され、電圧を印加された大きな電極では達成できない顕著な性能上の利点を有するものである。本発明の実施形態には、側壁の内面123’から内方に間隔をおいて配置され、図4A及び図4Dに示すようなメッシュ又はワイヤ構成の比較的小さい電極、及び、図4B及び図4Cに示す開口部のような小さい開口部(例えば、スロット、穴、又は他の開口部)を使用することが含まれる。この点に関して、本発明に係る閉込装置により発生するカスプ電界は、電界の作用の通路117のイオンビーム128自体から離れた部分への局在化を促進するために、近接して配置されることが好ましい。
図5A〜図5Dに示すように、比較的強い反発静電界は、第2導電部材202付近に形成され、周囲の側壁面123’への電子損失を防止する。一方、電界強度は、イオンビーム128が伝播する通路117の最も内側の領域では、比較的小さい。本発明のこの態様によって、イオンビーム128の位置における静電界強度は、第2導電部材202付近の強度と比較して、約2桁以上小さい。静電界の局在性は、閉込装置172の入口端と出口端との間の通路117の中央部において、非常に高くなる。一実施形態では、イオンビーム128の経路における静電界は約0.1V/cm以下である。本発明の範囲内で、他のバイアス値及び種々の寸法が可能であり、これらのパラメータは、所定の通路のサイズ、又は、他の動作性能に応じて調整される。
図5Cには、本発明に係る局在静電界が存在する閉込装置172を通過する電子軌道250のいくつかの例が示されている。図5Cに示すように、ビーム128の縁部付近の領域から不規則な角度で発生した電子は、先ず、閉込装置172の局在電界に遭遇し、次いで、ビーム128を取り囲むプラズマ252に戻るように方向転換する。このように、閉込装置172の静電界を突き抜ける電子は存在するものの、大部分の電子は、側壁123から離れてビーム128に向けて戻るように偏向される。これは、通路117の空間電荷中性化に寄与するものであり、ひいては、ビームのブローアップが抑制される。図5A〜図5Cに示すように、静電界は、ビーム128に対して閉込装置172の入口端及び出口端において僅かな作用を及ぼすのみであり、更に、電界の局在性は、閉込装置の入口端と出口端との間の中央部分において、より強くなる。
図5Dには、更に、ビーム保持装置172内の静電界の局在の例が示されている。この例では、ビーム128は、保持装置172によりビーム経路に沿って0.1V/cmよりも小さい電界に遭遇する。したがて、通路117の中央領域では、荷電イオンビーム128及びビームプラズマに関連する電界が電子軌道の支配的な決定因子であり、中央領域中の電子は、保持装置172及びその電界によって殆ど影響を受けない。しかし、電子が側壁123に向かって外方に移動すると、ビーム保持装置172の電界は非常に大きくなり、電子の全てではないもののその大部分は、図5Cに示す電子軌道の例のように、ビームに向けて戻るように方向転換する。
図6A及び図6Bには、図2B及び図3Bに示す保持装置172及びそれに関連する静電界の別の例示的な実施形態が示されており、この例では、本発明に従って、図4Dに示すような複数の平行ワイヤ202からなる第2導電部材202及びそれに関連する例示的な局在静電界が使用されている。上述した例と同様に、図6A及び図6Bに示す保持装置172には、負にバイアスされた第1導電部材201と接地された第2導電部材202が使用され、ハウジング123は接地されている。第1導電部材201は、約20ボルト(DC)で負にバイアスされている。導電ワイヤ202は、互いに間隔をおいて配置され、ワイヤの組における隣接する導電ワイヤ202の間に複数の間隙が形成される。これによって、負にバイアスされた第1導電部材201の第1部分は覆われ、第1導電部材201の他の部分は、イオンビーム128に対して露出している。
図6Bに示すように、この例におけるワイヤ202は、約1mmの幅寸法220を有する略矩形状のものであり、ワイヤの中心は、接地された第1導電部材201から約1mmの距離222を隔てて配置されている。ワイヤの最近接部分は、接地された第1導電部材201から1ワイヤ分の幅寸法程度又はそれよりも小さい距離、例えば約1mm以下、好ましくは約0.5〜1mm、を隔てて配置されている。更に、ワイヤは、互いに距離221、例えば図示の例の場合には数ワイヤ幅分、をおいて配置されている。上述した例と同様に、これらの寸法は、1つの実施形態における例に過ぎず、本発明及び添付請求項の範囲内で、他の寸法及び構成を有する構造も可能である。例えば、ワイヤ202は円形のものであってもよい。図3B及び図6Aに示すように、この例におけるビーム閉込装置172は、第1導電部材201に負電圧を印加し、ワイヤ202を接地することによって、動作するものであってもよい。その際、ハウジング123は、接地してもよいが、必ずしもその必要はない。例えば、第1導電部材201に対して、約−20ボルトの負のDCバイアス電圧を印加することができる。
図6A及び図6Bには、この場合における等電位線の例が示されている。電界の振幅
は、特に閉込装置172の入口端と出口端との間の中央部分において、第2導電部材202からビーム128の中心に向かって急速に減衰する。図5A〜図5Cに示す例と同様に、電界強度は、第2導電部材202からビーム中心に向かう方向に、ほぼ距離224(例えば、この例では約0.5−1.0mm)毎に半減する。これによって、電子反発電界を、大きな間隔をおいて配置された電極では達成できない程度にまで局在化することができる。この点に関して、比較的強い反発静電界は、第2導電部材202付近に形成され、周囲の側壁面123’への電子損失を防止する。一方、電界強度は、イオンビーム128が伝播する通路117の領域では、比較的小さい。本発明は、負にバイアスされた第1導電部材202でビーム衝突事象が生じた場合、追加の電子が発生するという更なる利点も有している。発生した電子は、更に、空間電界中性化に寄与し、ビームのブローアップを防止又は抑制するものである。
上述した例と同様に、図6A及び図6Bの実施形態において、イオンビーム128の位置における静電界強度は、第2導電部材202付近の強度と比較して、非常に小さいものとなる。一実施形態では、イオンビーム128の経路における静電界は約0.1V/cm以下である。本発明の範囲内で、他のバイアス値及び種々の寸法が可能であり、これらの値は、所定の通路のサイズ、又は、他の動作性能に応じて調整される。更に、図6Aに示すように、閉込装置172に入るビームのイオンには約13ボルトの加速が生じる場合があり、閉込装置172を出る際に同様に減速される。有利なことに、図6A及び図6Bに示すビーム保持装置172は、小さな集束作用を備えるのみであり、これは、ビーム128にとって有利なものである。
図2B及び図7A〜図8Bには、本発明に従う他のビーム保持装置のいくつかの例が示されている。これらの例では、側壁123は接地され、第1導電部材201は負にバイアスされ(例えば、グランドに対して−10ボルト(DC))、第2導電部材202は正にバイアスされている(例えば、図示の例では+12ボルト)。上述した例と同様に、図7A〜図7Dに示す保持装置172は、側壁123付近に局在する静電界を形成する一方、イオンビーム128付近の通路117の中央における電界の作用を低減するものである。図7A〜図7Dには、4つの可能な例が示されており、第2導電部材202は任意の適切な形状とすることができる。例えば、図4A〜図4Cに示したようなものであってもよく、又は、第1導電部材201の少なくとも第1部分を覆い、かつ、第1導電部材201の少なくとも第2部分をイオンビーム128に対して露出する任意の導電構造体202としてもよい。
図7Aに示す保持装置172は、4つの側壁123から離れるように電子を反発するものであり、負にバイアスされた第1導電部材201は、通路117の側面周辺部周りにほぼ連続的に存在している。正にバイアスされた第2導電部材202は、イオンビーム128によって感受される電界の作用を局在化するために、上記側面周辺部周りに、第1導電部材201から離れてその内側に延在している。図7Bに示す保持装置172は、分解装置115の上方及び下方の側壁から離れるように電子を反発するものである。図8A及び図8Bには、複数の平行ワイヤ202(例えば、図4Dに示すものと同様)からなる第2導電部材202を使用した場合の、図7Bに示す保持装置172の実施形態及びそれに関連する静電界の例が、示されている。図7Cには、負にバイアスされた第1導電部材201と正にバイアスされた第2導電部材を備えたビーム保持装置172の更に別の可能な実施形態が示されており、この例では、ハウジングの上方の側壁から離れるように電子を反発する。図7Dには、ビーム経路を環状に包囲するビーム保持装置172の更に別の可能な実施形態が示されている。
図8A及び図8Bに示すように、この例では、保持装置172の長さの略全体に亘って通路117の側壁123付近の領域に局在する「カスプ」型の負電圧電界が形成され、入口端及び出口端付近の電界(図8A)は、図6A及び図6Bに示す例よりも、大変小さい。したがって、この例及び図5A〜図5Cに示す例では、保持装置172に入れるビームのイオンは、約3ボルトの小さな加速を受けるのみであり、次いで、保持装置172を出る際にも僅かに減速されるだけである。更に、上述した例と同様に、図7A〜図8Bに示す実施形態において、イオンビーム128の位置における静電界強度は、第2導電部材202付近の強度と比較して、非常に小さいものとなり、保持装置172の中央部分のイオンビーム128の位置における静電界は約0.1V/cm以下である。図7A〜図7Dに示す構造及びバイアス値は単なる例であり、本発明の範囲内で他のバイアス値及び寸法を使用することができ、これらの値は、所定の通路のサイズ、又は、他の動作性能に応じて調整される。
図9A〜図9Cには、第1導電部材201が省略された場合の実施形態が示されており、この例では、電界は、ハウジング123を接地することによって局在化される。上述した実施形態と同様に、第2導電部材202は、第1導電部材201又はハウジング側壁の内面123’の少なくとも第1部分を覆い、第1導電部材201又はハウジング側壁の内面123’の少なくとも第2部分をイオンビーム128に対して露出させるものである。
図10には、本発明の別の態様に従って、イオンビーム輸送通路の側壁への電子損失を抑制するための方法が示されている。この方法は、本明細書に記載した構造及び/又は他のシステム及び装置に関連させて実施することができる。図10には、本発明に従って例示的な方法300がフローチャートに示されている。例示した方法300が一連の動作及び事象として図示及び説明されていても、本発明は、そのような動作又は事象の図示された順序によって限定されるものではない。例えば、本発明に従って、図示及び説明したものとは異なる順序で生じる動作、及び/又は、他の動作又は事象と同時に生じる動作があってもよい。加えて、本発明に従う方法を実施するために、必ずしも全てのステップが必要なわけではない。更に、本発明に従う方法は、図示及び説明したシステム及び装置に関連させて実施するだけでなく、図示されていない他のデバイスに関連させて実施することもできる。
ステップ302で開始する方法300は、ビーム通路に電界を発生させ、イオンビームと側壁との間の導電部材を負にバイアスすることによって、通路の側壁から離れるように電子を反発することを含む。ステップ306において、イオンビームに重大かつ有害な影響を及ぼすことなく、側壁から離れるように電子を反発するために、イオンビームと側壁との間の別の導電部材を接地し、通路のイオンビームから離れた領域に静電界を局在化する。一実施形態において、ステップ306における静電界の局在化は、イオンビームの位置における静電界を、バイアスされた導電部材付近と比較して約2桁以上小さくなるまで局在化することを含む。上述した例において、この局在化は、短距離で電界を消去するために、第1導電部材201に非常に近接させて配置された第2導電部材202を備えることによって達成される。この方法によれば、電界は、ビームに対する有害な影響を回避するか又は最小化しつつ、バイアスされた部材付近では、通路の側壁から離れるように電子を反発するために十分に強いものとなる。他の実施形態も可能であり、例えば、ステップ306における他の導電部材を、接地するのではなく、特定の電位に保持することもできる。
以上、本発明を特定の用途および態様に関連させて図示および説明してきたが、本明細書および添付された図面の読了と理解に基づいて、当業者が同等な変更および修正に想到し得ることは理解されるであろう。特に、上述した構成要素(アセンブリー、装置、回路、システム等)によって実行される種々の機能に関して、そのような構成要素を説明するために使用された用語(「手段」に対する参照を含む)は、特に明示されない限り、ここに示された本発明の例示的な実施形態において特定の機能を実行する説明された構成要素のその機能を実行する(すなわち、機能的に同等である)任意の構成要素に、たとえ開示された構成に構造的に同等でなくても、相当するものと意図されている。加えて、本発明の特定の特徴がいくつかの態様のうちの1つのみに関連して開示された場合であっても、任意の所定のまたは特定の用途のために望ましくかつ有利であるために、そのような特徴を他の態様の1つまたはそれ以上の特徴と組み合わせることもできる。さらに、用語「含む(include)」、「含んでいる(including)」、「有する(have)」、「有している(having)」、及びそれらの変化形が発明の詳細な説明または請求項で使用されている範囲に関して、これらの用語は、用語「含んでいる(comprising)」と同様な意味で包含的なものであることが意図されている。
図1は、本発明の一態様に従うビーム保持装置を有する例示的な低エネルギーイオン注入システムを示す簡略化された模式図である。 図2Aは、本発明の一態様に従うビーム保持装置を有する別の例示的な低エネルギーイオン注入システムを示す詳細側面図である。 図2Bは、本発明の一態様に従うビーム保持装置を有する図2Aに示す例示的なシステム中の分解装置を示す簡略化された側面図である。 図3Aは、図2Bの3−3線に沿って切断された側面図であり、本発明に従って、図2A及び図2Bに示す分解装置の4つの側壁から離れるように電子を反発するための例示的なビーム保持装置を示す。第1外部導電部材は負にバイアスされ、第2内部導電部材は接地されており、分解ハウジングの側壁は、接地されている。 図3Bは、図2Bの3−3線に沿って切断された側面図であり、本発明に従って、図2A及び図2Bに示す分解装置の上方及び下方の側壁から離れるように電子を反発するための別の例示的なビーム保持装置を示す。 図3Cは、図2Bの3−3線に沿って切断された側面図であり、本発明に従って、図2A及び図2Bに示す分解装置の上方の側壁から離れるように電子を反発するための更に別の例示的なビーム保持装置を示す。 図3Dは、図2Bの3−3線に沿って切断された側面図であり、本発明に従って、図2A及び図2Bに示す分解装置の4つの側壁から離れるように電子を反発するための更に別の例示的なビーム保持装置を示す。 図4Aは、図3Bの4−4線に沿って切断された上面図であり、図3Bに示すビーム保持装置の第1及び第2導電部材の例を示す。本発明に従って、第2導電部材は、メッシュ構造体からなる。 図4Bは、図3Bの4−4線に沿って切断された上面図であり、図3Bに示すビーム保持装置の第1及び第2導電部材の別の例を示す。本発明に従って、第2導電部材は、複数の細長いスロットを含む。 図4Cは、図3Bの4−4線に沿って切断された上面図であり、図3Bに示すビーム保持装置の第1及び第2導電部材の更に別の例を示す。本発明に従って、第2導電部材は、複数の略円形の穴部又は加工物を含む。 図4Dは、図3Bの4−4線に沿って切断された上面図であり、図3Bに示すビーム保持装置の第1及び第2導電部材の更に別の例を示す。本発明に従って、第2導電部材は、互いに平行に配置された複数の導電ワイヤを含む。 図5Aは、図4Bの5−5線に沿って切断された部分側面図であり、本発明に従って複数の細長いスロットを有する第2導電部材を使用した場合の図3Bに示す例示的なビーム閉込装置及びこの閉込装置に関連する局在静電界を示す。 図5Bは、図4Bの5−5線に沿って切断された部分側面図であり、本発明に従って複数の細長いスロットを有する第2導電部材を使用した場合の図3Bに示す例示的なビーム閉込装置及びその閉込装置に関連する局在静電界を示す。 図5Cは、図4Bの5−5線に沿って切断された部分側面図であり、本発明に従って複数の細長いスロットを有する第2導電部材を使用した場合の図3Bに示す例示的なビーム閉込装置における、例示的な電子軌道追跡の結果を示す。 図5Dは、図4Bの5−5線に沿って切断された部分側面図であり、本発明に従って複数の細長いスロットを有する第2導電部材を使用した場合の図3Bに示す例示的なビーム閉込装置における、例示的な電界の大きさを示す。 図6Aは、図4Dの6−6線に沿って切断された部分側面図であり、本発明に従って複数の平行ワイヤを含む第2導電部材を使用した場合の図3Bに示す例示的なビーム閉込装置及びその閉込装置に関連する局在静電界を示す。 図6Bは、図4Dの6−6線に沿って切断された部分側面図であり、本発明に従って複数の平行ワイヤを含む第2導電部材を使用した場合の図3Bに示す例示的なビーム閉込装置及びその閉込装置に関連する局在静電界を示す。 図7Aは、図2Bの3−3線に沿って切断された側面図であり、本発明に従って、図2A及び図2Bに示す分解装置の4つの側壁から離れるように電子を反発するための例示的なビーム保持装置を示す。第1外部導電部材は負にバイアスされ、第2内部導電部材は正にバイアスされ、分解ハウジングの側壁は接地されている。 図7Bは、図2Bの3−3線に沿って切断された側面図であり、本発明に従って、図2A及び図2Bに示す分解装置の上方及び下方の側壁から離れるように電子を反発するための別の例示的なビーム保持装置を示す。 図7Cは、図2Bの3−3線に沿って切断された側面図であり、本発明に従って、図2A及び図2Bに示す分解装置の上方の側壁から離れるように電子を反発するための更に別の例示的なビーム保持装置を示す。 図7Dは、図2Bの3−3線に沿って切断された側面図であり、本発明に従って、図2A及び図2Bに示す分解装置の4つの側壁から離れるように電子を反発するための更に別の例示的なビーム保持装置を示す。 図8Aは、図4Dの8−8線に沿って切断された部分側面図であり、本発明に従って、複数の平行ワイヤを含む第2導電部材を使用した場合の図7Bに示す例示的なビーム閉込装置及びその閉込装置に関連する局在静電界を示す。 図8Bは、図4Dの8−8線に沿って切断された部分側面図であり、本発明に従って、複数の平行ワイヤを含む第2導電部材を使用した場合の図7Bに示す例示的なビーム閉込装置及びその閉込装置に関連する局在静電界を示す。 図9Aは、図2Bの3−3線に沿って切断された側面図であり、本発明に従って、図2A及び図2Bに示す分解装置の1つ又は複数の接地された側壁から離れるように電子を反発するための他の例示的なビーム保持装置を示す。ハウジングは接地され、単一の第2導電部材は負にバイアスされる。 図9Bは、図2Bの3−3線に沿って切断された側面図であり、本発明に従って、図2A及び図2Bに示す分解装置の1つ又は複数の接地された側壁から離れるように電子を反発するための他の例示的なビーム保持装置を示す。ハウジングは接地され、単一の第2導電部材は負にバイアスされる。 図9Cは、図2Bの3−3線に沿って切断された側面図であり、本発明に従って、図2A及び図2Bに示す分解装置の1つ又は複数の接地された側壁から離れるように電子を反発するための他の例示的なビーム保持装置を示す。ハウジングは接地され、単一の第2導電部材は負にバイアスされる。 図10は、本発明の従って、イオンビーム輸送通路の側壁への電子損失を抑制するための例示的な方法を示すフローチャートである。

Claims (65)

  1. 経路に沿ってイオンビームが発生するように構成されたイオン源と、
    前記経路から離れた内面を有し、かつ、前記経路に沿って前記イオンビームが輸送される通路を形成する少なくとも1つの側壁を含み、前記イオン源の下流に配置されたビームライン・アセンブリーと、
    前記経路に沿って前記ビームライン・アセンブリーの下流に配置され、前記経路に沿って前記イオン源から前記イオンビームを受け入れた前記ビームライン・アセンブリーが、所望の電荷対質量比を有するイオンを前記経路に沿って導き、前記イオンビームを用いたイオン注入のために前記経路に沿ってウエハを支持するように構成されたエンドステーションと、
    前記経路の少なくとも一部に沿って、前記側壁への電子損失を抑制するビーム保持装置と、を含み、
    前記ビーム保持装置は、
    前記通路の少なくとも一部に沿って延在し、前記側壁の前記内面と前記イオンビームとの間の、前記内面から離れて前記イオンビームに向かって内方の前記イオンビームから離れた位置に配置された第1導電部材と、
    前記通路の前記第1導電部材と前記イオンビームとの間の部分に配置され、前記第1導電部材の少なくとも第1部分を覆うように近接し、かつ、前記第1導電部材の少なくとも第2部分を前記イオンビームに対して露出させる第2導電部材と、
    前記第1及び第2導電部材の一方に結合し、前記第1及び第2導電部材の一方に第1電圧を印加して前記通路内に静電界を発生させる電源と、を含んでおり、
    前記第1及び第2導電部材の他方は、前記静電界を前記通路の前記イオンビームから離れた領域に実質的に局在化し、前記イオンビームに重大かつ有害な影響を及ぼすことなく、前記側壁から離れるように前記電子を反発するために、前記第1電圧よりも大きな第2電圧に保持されることを特徴とするイオン注入システム。
  2. 前記第2導電部材は、前記第1導電部材の前記第2部分を前記イオンビームに対して露出させる少なくとも1つの開口部を含むことを特徴とする請求項1に記載のシステム。
  3. 前記ビームライン・アセンブリーは、前記イオン源から前記イオンビームを受け入れて、前記所望の電荷対質量比を有するイオンを前記経路に沿って前記エンドステーションへ導くように構成された質量分析装置を含み、前記第1及び第2導電部材は、前記質量分析装置内に配置されることを特徴とする請求項1に記載のシステム。
  4. 前記ビームライン・アセンブリーは、前記イオン源から前記イオンビームを受け入れて、前記所望の電荷対質量比を有するイオンを前記経路に沿って前記エンドステーションへ導くように構成された質量分析装置を含み、前記第1及び第1導電部材は、前記質量分析装置の下流に配置されることを特徴とする請求項1に記載のシステム。
  5. 前記ビームライン・アセンブリーは、更に、前記質量分析装置の下流に分解装置を含み、前記第1及び第2導電部材は、前記分解装置内に配置されることを特徴とする請求項4に記載のシステム
  6. 前記第1及び第2導電部材の少なくとも一方は、グラファイトからなることを特徴とする請求項1に記載のシステム。
  7. 前記電源は前記第1導電部材に結合し、前記第1導電部材に前記第1電圧を印加して前記通路内に前記静電界を発生させ、前記第2導電部材は、前記静電界を前記通路の前記イオンビームから離れた領域に実質的に局在化するために、前記第2電圧に保持されることを特徴とする請求項1に記載のシステム。
  8. 前記第2導電部材は、前記第1導電部材の前記第2部分を前記イオンビームに対して露出させる少なくとも1つの開口部を含むことを特徴とする請求項7に記載のシステム。
  9. 前記第2導電部材は、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなる第1組と、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなる第2組とを有するメッシュ構造体からなり、前記第1組の導電ワイヤと前記第2組の導電ワイヤは互いに略直交し、前記少なくとも1つの開口部は、前記メッシュ構造体中の隣接する導電ワイヤの間の、複数の略矩形の開口部からなることを特徴とする請求項8に記載のシステム。
  10. 前記少なくとも1つの開口部は、前記第2導電部材を貫通する複数の略円形の穴部からなり、前記穴部のそれぞれは、前記第1導電部材の一部を前記イオンビームに対して露出させることを特徴とする請求項8に記載のシステム。
  11. 前記少なくとも1つの開口部は、前記第2導電部材を貫通する複数の細長いスロットからなり、前記スロットのそれぞれは、前記第1導電部材の一部を前記イオンビームに対して露出させることを特徴とする請求項8に記載のシステム。
  12. 前記スロットのそれぞれは、約5mmの幅及び前記幅よりも大きな長さを有し、前記複数の細長いスロットは互いに略平行に配置され、隣接する前記スロットは、互いに約50mm以上隔てて配置されることを特徴とする請求項11に記載のシステム。
  13. 前記電源は前記第2導電部材に結合し、前記第2導電部材に前記第1電圧を印加して前記通路内に前記静電界を発生させ、前記第1導電部材は、前記静電界を前記通路の前記イオンビームから離れた領域に実質的に局在化するために、前記第2電圧に保持されることを特徴とする請求項1に記載のシステム。
  14. 前記第2導電部材は、前記第1導電部材の前記第2部分を前記イオンビームに対して露出させる少なくとも1つの開口部を含むことを特徴とする請求項13に記載のシステム。
  15. 前記第2導電部材は、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなる第1組と、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなる第2組とを有するメッシュ構造体からなり、前記第1組の導電ワイヤと前記第2組の導電ワイヤは互いに略直交し、前記少なくとも1つの開口部は、前記メッシュ構造体中の隣接する導電ワイヤの間の、複数の略矩形の開口部からなることを特徴とする請求項14に記載のシステム。
  16. 前記第2導電部材は、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤの組からなり、前記少なくとも1つの開口部は、前記組中の隣接する導電ワイヤの間の、複数の間隙からなることを特徴とする請求項14に記載のシステム。
  17. 前記導電ワイヤは、ワイヤ幅寸法を有し、前記導電ワイヤは、前記第1導電部材から1ワイヤ分の前記ワイヤ幅寸法程度又はそれよりも小さい距離を隔てて配置されることを特徴とする請求項16に記載のシステム。
  18. 前記ワイヤ幅寸法は約1mmであり、前記導電ワイヤは、前記第1導電部材から約1mm以下の距離を隔てて配置されることを特徴とする請求項16に記載のシステム。
  19. 前記イオンビームの位置における前記静電界は、約0.1V/cm又はそれよりも小さいことを特徴とする請求項1に記載のシステム。
  20. 前記第1電圧は負電圧であり、前記第2電圧は接地電圧であることを特徴とする請求項1に記載のシステム。
  21. 前記イオンビームの位置における前記静電界は、前記第2導電部材付近の静電界と比較して、約2桁以上小さいことを特徴とする請求項1に記載のシステム。
  22. 前記電源は、前記第1導電部材に結合し、前記第1導電部材に前記負電圧を印加することを特徴とする請求項1に記載のシステム。
  23. 前記第2導電部材に結合する第2電源を更に含み、前記第2電源は、前記第2導電部材に正電圧を印加することを特徴とする請求項22に記載のシステム。
  24. 前記少なくとも1つの側壁は、接地されることを特徴とする請求項23に記載のシステム。
  25. 前記第2導電部材は、前記第1導電部材の前記第2部分を前記イオンビームに対して露出させる少なくとも1つの開口部を含むことを特徴とする請求項23に記載のシステム。
  26. 前記第2導電部材は、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなる第1組と、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなる第2組とを有するメッシュ構造体からなり、前記第1組の導電ワイヤと前記第2組の導電ワイヤは互いに略直交し、前記少なくとも1つの開口部は、前記メッシュ構造体中の隣接する導電ワイヤの間の、複数の略矩形の開口部からなることを特徴とする請求項25に記載のシステム。
  27. 前記少なくとも1つの開口部は、前記第2導電部材を貫通する複数の略円形の穴部からなり、前記穴部のそれぞれは、前記第1導電部材の一部を前記イオンビームに対して露出させることを特徴とする請求項25に記載のシステム。
  28. 前記少なくとも1つの開口部は、前記第2導電部材を貫通する複数の細長いスロットからなり、前記スロットのそれぞれは、前記第1導電部材の一部を前記イオンビームに対して露出させることを特徴とする請求項25に記載のシステム。
  29. 前記スロットのそれぞれは、約5mmの幅及び前記幅よりも大きな長さを有し、前記複数の細長いスロットは互いに略平行に配置され、隣接する前記スロットは、互いに約50mm以上隔てて配置されることを特徴とする請求項28に記載のシステム。
  30. 前記少なくとも1つの側壁は、接地されることを特徴とする請求項22に記載のシステム。
  31. 前記第2導電部材は、接地されることを特徴とする請求項30に記載のシステム。
  32. 前記第2導電部材は、接地されることを特徴とする請求項22に記載のシステム。
  33. イオンビームが輸送される通路の側壁への電子損失を抑制するためのビーム閉込装置であって、
    前記通路の少なくとも一部に沿って延在し、前記側壁の内面と前記イオンビームとの間の、前記内面から離れて前記イオンビームに向かって内方の前記イオンビームから離れた位置に配置された第1導電部材と、
    前記通路の前記第1導電部材と前記イオンビームとの間の部分に配置され、前記第1導電部材の少なくとも第1部分を覆うように近接し、かつ、前記第1導電部材の少なくとも第2部分を前記イオンビームに対して露出させる第2導電部材と、を含み、
    前記イオンビームに重大かつ有害な影響を及ぼすことなく、前記側壁から離れるように前記電子を反発するために、前記第1及び第2導電部材の一方を、前記第1及び第2導電部材の他方に対して負にバイアスし、前記通路の前記イオンビームから離れた領域に実質的に局在化された静電界を発生させることを特徴とする装置。
  34. 前記負にバイアスされた導電部材に結合する電源を更に含み、前記電源は、前記負にバイアスされた導電部材に負電圧を印加して、前記通路内に前記静電界を発生させることを特徴とする請求項33に記載の装置。
  35. 前記第1及び第2の導電部材の少なくとも一方は、グラファイトからなることを特徴とする請求項33に記載の装置。
  36. 前記第1導電部材は、負にバイアスされて前記通路内に前記静電界を発生させ、前記第2導電部材は、接地されて前記静電界を前記通路の前記イオンビームから離れた領域に実質的に局在化することを特徴とする請求項33に記載の装置。
  37. 前記第2導電部材は、前記第1導電部材の前記第2部分を前記イオンビームに対して露出させる少なくとも1つの開口部を含むことを特徴とする請求項36に記載の装置。
  38. 前記第2導電部材は、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなる第1組と、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなる第2組とを有するメッシュ構造体からなり、前記第1組の導電ワイヤと前記第2組の導電ワイヤは互いに略直交し、前記少なくとも1つの開口部は、前記メッシュ構造体中の隣接する導電ワイヤの間の、複数の略矩形の開口部からなることを特徴とする請求項37に記載の装置。
  39. 前記少なくとも1つの開口部は、前記第2導電部材を貫通する複数の略円形の穴部からなり、前記穴部のそれぞれは、前記第1導電部材の一部を前記イオンビームに対して露出させることを特徴とする請求項37に記載の装置。
  40. 前記少なくとも1つの開口部は、前記第2導電部材を貫通する複数の細長いスロットからなり、前記スロットのそれぞれは、前記第1導電部材の一部を前記イオンビームに対して露出させることを特徴とする請求項37に記載の装置。
  41. 前記スロットのそれぞれは、約5mmの幅及び前記幅よりも大きな長さを有し、前記複数の細長いスロットは互いに略平行に配置され、隣接する前記スロットは、互いに約50mm以上隔てて配置されることを特徴とする請求項40に記載の装置。
  42. 前記第2導電部材は、負にバイアスされて前記通路内に前記静電界を発生させ、前記第1導電部材は、接地されて前記静電界を前記通路の前記イオンビームから離れた領域に実質的に局在化することを特徴とする請求項33に記載の装置。
  43. 前記第2導電部材は、前記第1導電部材の前記第2部分を前記イオンビームに対して露出させる少なくとも1つの開口部を含むことを特徴とする請求項42に記載の装置。
  44. 前記第2導電部材は、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなる第1組と、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなる第2組とを有するメッシュ構造体からなり、前記第1組の導電ワイヤと前記第2組の導電ワイヤは互いに略直交し、前記少なくとも1つの開口部は、前記メッシュ構造体中の隣接する導電ワイヤの間の、複数の略矩形の開口部からなることを特徴とする請求項43に記載の装置。
  45. 前記第2導電部材は、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤの組からなり、前記少なくとも1つの開口部は、前記組中の隣接する導電ワイヤの間の、複数の間隙からなることを特徴とする請求項43に記載の装置。
  46. 前記導電ワイヤは、ワイヤ幅寸法を有し、前記導電ワイヤは、前記第1導電部材から1ワイヤ分の前記ワイヤ幅寸法程度又はそれよりも小さい距離を隔てて配置されることを特徴とする請求項45に記載の装置。
  47. 前記ワイヤ幅寸法は約1mmであり、前記導電ワイヤは、前記第1導電部材から約1mm以下の距離を隔てて配置されることを特徴とする請求項46に記載の装置。
  48. 前記イオンビームの位置における前記静電界は、前記第2導電部材付近の静電界と比較して、約2桁以上小さいことを特徴とする請求項33に記載の装置。
  49. 前記第1導電部材に結合する電源を含み、前記第1導電部材に負電圧を印加することを特徴とする請求項33に記載の装置。
  50. 前記第2導電部材に結合する第2電源を更に含み、前記第2電源は、前記第2導電部材に正電圧を印加することを特徴とする請求項49に記載の装置。
  51. 少なくとも1つの前記側壁は、接地されることを特徴とする請求項50に記載の装置。
  52. 前記第2導電部材は、前記第1導電部材の前記第2部分を前記イオンビームに対して露出させる少なくとも1つの開口部を含むことを特徴とする請求項50に記載の装置。
  53. 前記第2導電部材は、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなる第1組と、互いに間隔をおいて互いに平行に配置された複数の導電ワイヤからなる第2組とを有するメッシュ構造体からなり、前記第1組の導電ワイヤと前記第2組の導電ワイヤは互いに略直交し、前記少なくとも1つの開口部は、前記メッシュ構造体中の隣接する導電ワイヤの間の、複数の略矩形の開口部からなることを特徴とする請求項52に記載の装置。
  54. 前記少なくとも1つの開口部は、前記第2導電部材を貫通する複数の略円形の穴部からなり、前記穴部のそれぞれは、前記第1導電部材の一部を前記イオンビームに対して露出させることを特徴とする請求項52に記載の装置。
  55. 前記少なくとも1つの開口部は、前記第2導電部材を貫通する複数の細長いスロットからなり、前記スロットのそれぞれは、前記第1導電部材の一部を前記イオンビームに対して露出させることを特徴とする請求項52に記載の装置。
  56. 前記スロットのそれぞれは、約5mmの幅及び前記幅よりも大きな長さを有し、前記複数の細長いスロットは互いに略平行に配置され、隣接する前記スロットは、互いに約50mm以上隔てて配置されることを特徴とする請求項55に記載の装置。
  57. 少なくとも1つの前記側壁は、接地されることを特徴とする請求項49に記載の装置。
  58. 前記第2導電部材は、接地されることを特徴とする請求項57に記載の装置。
  59. 前記第2導電部材は、接地されることを特徴とする請求項49に記載の装置。
  60. イオンビームが輸送される通路の側壁への電子損失を抑制するためのビーム閉込装置であって、
    前記通路の少なくとも一部に沿って延在し、前記側壁の内面と前記イオンビームとの間の、前記内面から離れて前記イオンビームに向かって内方の前記イオンビームから離れた位置に配置され、前記側壁の前記内面の少なくとも第1部分を覆うように近接し、かつ、前記側壁の前記内面の少なくとも第2部分を前記イオンビームに対して露出させる導電部材を含み、
    前記導電部材は、前記側壁とは異なる電圧でバイアスされていることを特徴とする装置。
  61. 前記導電部材は、前記側壁に対して負にバイアスされていることを特徴とする請求項60に記載の装置。
  62. イオンビームが輸送される通路の側壁への電子損失を抑制するための方法であって、
    前記通路内に前記側壁から離れるように電子を反発する静電界を発生するステップと、
    前記イオンビームに重大かつ有害な影響を及ぼすことなく、前記側壁から離れるように前記電子を反発するために、前記通路の前記イオンビームから離れた領域に前記静電界を局在化するステップと、を含むことを特徴とする方法。
  63. 前記静電界を発生するステップは、前記イオンビームと前記側壁との間の導電部材を負にバイアスすることを含み、前記静電界を局在化するステップは、前記イオンビームと前記側壁との間の別の導電部材を接地することを含んでいる請求項62に記載の方法。
  64. 前記静電界を局在化するステップは、前記イオンビームの位置における前記静電界を、前記バイアスされた導電部材付近の静電界と比較して、約2桁以上小さくなるように局在化することを含んでいる請求項63に記載の方法。
  65. 前記静電界を局在化するステップは、前記イオンビームの位置における前記静電界を、前記バイアスされた導電部材付近の静電界と比較して、約2桁以上小さくなるように局在化することを含んでいる請求項62に記載の方法。
JP2008512262A 2005-05-16 2005-05-16 イオンビーム通路中の局在静電界を用いたイオンビーム保持のためのシステム及び方法 Pending JP2008541396A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2005/047656 WO2006124075A2 (en) 2005-05-16 2005-05-16 System and methods for ion beam containment using localized electrostatic fields in an ion beam passageway

Publications (1)

Publication Number Publication Date
JP2008541396A true JP2008541396A (ja) 2008-11-20

Family

ID=37431711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008512262A Pending JP2008541396A (ja) 2005-05-16 2005-05-16 イオンビーム通路中の局在静電界を用いたイオンビーム保持のためのシステム及び方法

Country Status (2)

Country Link
JP (1) JP2008541396A (ja)
WO (1) WO2006124075A2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106877A (ja) * 1994-10-05 1996-04-23 Nissin Electric Co Ltd イオン注入装置
JPH11312487A (ja) * 1997-12-01 1999-11-09 Ebara Corp 処理装置及びイオンビームの中性化方法
JP2003257356A (ja) * 2002-02-27 2003-09-12 Nissin Electric Co Ltd イオンビーム照射装置
US20040227106A1 (en) * 2003-05-13 2004-11-18 Halling Alfred M. System and methods for ion beam containment using localized electrostatic fields in an ion beam passageway
JP2007524962A (ja) * 2003-06-20 2007-08-30 アクセリス テクノロジーズ インコーポレーテッド イオン注入システムにおいてプラズマを発生させるための薄膜形成用マグネトロン構造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525326B1 (en) * 2000-09-01 2003-02-25 Axcelis Technologies, Inc. System and method for removing particles entrained in an ion beam
US6762423B2 (en) * 2002-11-05 2004-07-13 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for ion beam neutralization in magnets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106877A (ja) * 1994-10-05 1996-04-23 Nissin Electric Co Ltd イオン注入装置
JPH11312487A (ja) * 1997-12-01 1999-11-09 Ebara Corp 処理装置及びイオンビームの中性化方法
JP2003257356A (ja) * 2002-02-27 2003-09-12 Nissin Electric Co Ltd イオンビーム照射装置
US20040227106A1 (en) * 2003-05-13 2004-11-18 Halling Alfred M. System and methods for ion beam containment using localized electrostatic fields in an ion beam passageway
JP2007524962A (ja) * 2003-06-20 2007-08-30 アクセリス テクノロジーズ インコーポレーテッド イオン注入システムにおいてプラズマを発生させるための薄膜形成用マグネトロン構造

Also Published As

Publication number Publication date
WO2006124075A3 (en) 2007-04-19
WO2006124075A2 (en) 2006-11-23

Similar Documents

Publication Publication Date Title
US5703375A (en) Method and apparatus for ion beam neutralization
JP4793696B2 (ja) イオン注入システムにおいて引き出されたイオンビームの選択的プレディスパージョンのための方法及び装置
JP5120598B2 (ja) 偏向用の加速/減速ギャップ
TWI442442B (zh) 離子植入系統、磁性掃描器以及操作該離子植入系統的方法
TWI442441B (zh) 離子植入系統以及在離子植入系統中將離子植入至工作件之中的方法
EP0428319B1 (en) Elliptical ion beam distribution method and apparatus
TWI486992B (zh) 離子佈植系統、用於其中的一束線中的電氣偏折裝置及佈植離子之方法
JP5333708B2 (ja) イオンビームの流れに乗った粒子の静電捕捉システム
KR101110997B1 (ko) 이온 주입 시스템에서의 플라스마 발생용 마그네트론구조체
US20090321630A1 (en) Post-decel magnetic energy filter for ion implantation systems
KR20170101884A (ko) 이온 주입을 위해 결합된 정전 렌즈 시스템
KR100855134B1 (ko) 이온 빔내로 끌려오는 입자들을 제거하기 위한 장치 및 방법
JP5224014B2 (ja) イオンビームに対して汚染粒子を除去するためのシステム及び方法
KR20050072469A (ko) 자석의 이온 빔 중성화를 위한 방법 및 장치
US6891174B2 (en) Method and system for ion beam containment using photoelectrons in an ion beam guide
JP5517016B2 (ja) ウインドウフレーム磁石アッセンブリ及びイオンビームを質量分析する方法
US20040227106A1 (en) System and methods for ion beam containment using localized electrostatic fields in an ion beam passageway
JP2008541396A (ja) イオンビーム通路中の局在静電界を用いたイオンビーム保持のためのシステム及び方法
JP2008010282A (ja) イオンビーム発生装置、イオンドーピング装置、イオンビーム発生方法および質量分離方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120516