JP2008518208A - コインシデンスデータの多様な処理 - Google Patents
コインシデンスデータの多様な処理 Download PDFInfo
- Publication number
- JP2008518208A JP2008518208A JP2007538072A JP2007538072A JP2008518208A JP 2008518208 A JP2008518208 A JP 2008518208A JP 2007538072 A JP2007538072 A JP 2007538072A JP 2007538072 A JP2007538072 A JP 2007538072A JP 2008518208 A JP2008518208 A JP 2008518208A
- Authority
- JP
- Japan
- Prior art keywords
- coincidence
- event
- characteristic
- true
- selecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/29—Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
- G01T1/2914—Measurement of spatial distribution of radiation
- G01T1/2985—In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Nuclear Medicine (AREA)
- Image Analysis (AREA)
Abstract
PETスキャナにおけるコインシデンスデータを処理する方法であって、前記コインシデンスデータの選択された一部を、コインシデンス空間の複数のサブ空間の1つに関連づける工程と、サブ空間に関連するコインシデンスデータから、画像を形成する際に使用される特性を得る工程と、前記サブ空間に関連するコインシデンスデータが真(trues)を示すデータを含む可能性に依存する量によって、前記特性を重み付けする工程とを備える方法。
Description
発明の分野
発明は、PETスキャナに関し、特に、PETスキャナからのコインシデンスデータの処理に関する。
発明は、PETスキャナに関し、特に、PETスキャナからのコインシデンスデータの処理に関する。
背景
PETスキャナは、γ線を検出するための環状の検出器を含む。正反対に配置された検出器により検出された各ペアのイベントに対して、患者の体内から直接受けたγ線のペアからそのようなイベントが生じた確率が存在する。しかし、受けたγ線のうちの少なくとも1つが検出器への途中で散乱されたか、γ線が同じ消滅イベントから生じなかった確率も存在する。
PETスキャナは、γ線を検出するための環状の検出器を含む。正反対に配置された検出器により検出された各ペアのイベントに対して、患者の体内から直接受けたγ線のペアからそのようなイベントが生じた確率が存在する。しかし、受けたγ線のうちの少なくとも1つが検出器への途中で散乱されたか、γ線が同じ消滅イベントから生じなかった確率も存在する。
画像提供をする際、後者の2つのタイプのイベントペアは、ノイズに寄与する。従って、画像を生成する時には、このようなノイズを抑制することが望ましい。
要旨
1つの局面において、発明は、コインシデンスデータの選択された一部が、コインシデンス空間の複数のサブ空間の1つに関連づけられているコインシデンスデータを処理する方法を含む。サブ空間に関連づけられたコインシデンスデータから、画像を形成する際に使用される特性が得られる。次いで、そのサブ空間に関連づけられたコインシデンスデータが真を示すデータを含む可能性に依存する量によって、この特性は、重み付けられる。
1つの局面において、発明は、コインシデンスデータの選択された一部が、コインシデンス空間の複数のサブ空間の1つに関連づけられているコインシデンスデータを処理する方法を含む。サブ空間に関連づけられたコインシデンスデータから、画像を形成する際に使用される特性が得られる。次いで、そのサブ空間に関連づけられたコインシデンスデータが真を示すデータを含む可能性に依存する量によって、この特性は、重み付けられる。
実施の形態によっては、コインシデンス空間が、コインシデンスを構成するイベントの選択された特性を含むものもある。代表的な特性には、イベントの空間的位置、イベントの発生の時間(times)、そのイベントに伴うエネルギー、イベントを示すフォトンの時間的分布、イベントを示すフォトンの空間的分布、イベントを示すフォトンのエネルギー分布が含まれる。
別の実施の形態には、選択された特性に基づいて、特定のサブ空間においてコインシデンスが真(trues)である確率を決定する工程を含む。
さらに別の実施の形態は、特性の重み付けが真である確率密度の平均を推定する工程を含むものである。そのようにする代表的な方法には、イベントの空間的位置に関連づけられた空間的に依存する誤差関数および空間的に独立した誤差関数を決定する工程と、空間的に依存する誤差関数および空間的に独立する誤差関数を重畳する工程とが含まれる。
別の局面において、発明は、先述のいかなる方法をも実施するように構成されたPETスキャナを含む。さらに発明の別の局面において、先述のいかなる方法をも実施するための符号化されたソフトウェアを有するコンピュータ読み取り可能な媒体を含む。
発明のこのような特徴や別の特徴は、次の説明と添付の図から明らかとなろう。
図1を参照して、PET(「ポジション放射断層撮影)スキャナ10は、環状の検出器12を含み、それぞれが画像処理システム14に接続されている。患者が横たわるガントリー16は、環状の検出器12により規定された穴18を通って延びる。例示のPETスキャナは、公開された米国特許出願第10/190,741号に記載のものであり、その内容は、援用により本明細書中に一体化される。
米国特許出願第10/190,741号公報
画像を形成するため、患者に放射性トレーサを注入する。放射性トレーサが減衰すると、陽電子が放射される。陽電子が、患者の体内で電子に遭遇すると、2つは消滅する。消滅の間に放出されるエネルギーは、消滅部位から離れて反対方向に動く2つのガンマ線フォトン間で等しく分割される。
各検出器12は、患者に面する内面と光検出器(図示せず)に面する外面とを有するシンチレーション結晶(図示せず)を含む。ガンマ線フォトンは、結晶を通って移動するとき、結晶内で可視光フォトンの放射を生じる。この相互作用は、「イベント」と呼ばれる。
可視光フォトンは、最終的には光検出器に到達し、光検出器は、イベントの位置、イベントが生じた時間、およびイベントを生じさせたガンマ線フォトンに伴うエネルギーを示す情報を、画像処理システム14に提供する。
2つのイベントが、正反対に配置された検出器12でほぼ同時間に生じると、そのような2つのイベントは、同一の消滅を由来とする一対のガンマ線フォトンから生じた可能性が極めて高い。このようなイベントのペアは、「コインシデンス」と呼ばれる。
各コインシデンスは、7つの量を特徴とする。すなわち、第1のイベントの位置を特定する2つの座標、第2のイベントの位置を特定する2つの座標、第1および第2のイベントに伴うエネルギー、および第1のイベントの発生と第2のイベントの発生との間の時間差である。各コインシデンスは、7次元の「コインシデンス空間」における点を占有するとして、このように考えることができる。
3つのタイプのコインシデンスが存在する。第1に、真のコインシデンス、すなわち「真」であり、患者の体内で同一の消滅に由来し、消滅が生じた点(「消滅部位」)から直接に検出器12に到達する一対のガンマ線フォトンから得られる。次に、散乱コインシデンス、すなわち「散乱」が存在する。「真」と同様に、散乱からのフォトンは、患者の体内で同一の消滅から由来する。散乱と真との違いは、前者においては、ガンマ線フォトンの1つが、消滅部位から検出器への途中で散乱されたことにある。最後に、偶発コインシデンス、すなわち「偶発」が存在し、これは、異なる消滅から来るコインシデンス全体をイベントが構成するコインシデンスである。
座標空間におけるイベントペアを規定する7つの座標は、特定のコインシデンスが真、散乱、または偶発のいずれであるかの何らかの指標をまとめて提供する。例えば、真は、ほぼ正確に同一の時間で到着し、同一のエネルギー(各511keV)を有するガンマ線を特徴とする。散乱は、減少したエネルギーを有する1つまたは両方のガンマ線フォトンを特徴とする。これは、散乱ガンマ線フォトンが、散乱イベントの結果としてそのエネルギーのかなりの割合を捨てているからである。このときの散乱エネルギーロスの量は、周知のコンプトン式による散乱角度に関係している。
画像を構築するとき、PETスキャナ10の画像処理システム14は、正反対に配置された検出器12の各ペアからの特性を利用する。所与の対の検出器12からの特性は、測定期間中のそのペアの検出器12により検出された、選択されたコインシデンスを組み合わせることにより得られる。好ましくは、選択されたコインシデンスは、真のみを含み、散乱と偶発は除外される。
実際のところ、どのコインシデンスが真であり、どれが散乱または偶発であるか確実に知ることは可能ではない。しかし、7次元コインシデンス空間におけるコインシデンスを規定する座標は、特定のコインシデンスが真であるとする確率の何らかの表示を提供する。画像処理システム14は、この確率を使用して各コインシデンスの特性に重み付けする。7次元座標空間におけるこれらの位置決めの結果として、より真の可能性があると見られるコインシデンスが、より重く重み付けされる。さほど真とは見られそうもないものの重み付けはあまり重くはない。
コインシデンス空間は、他の軸を含む。例えば、イベントによって生成された、計時プロットしたときのフォトンの数は、場合によっては、1を越えるピークを示す。これが該当する場合は、イベントが実際に生じた時間は、1つのピークのみだった場合よりも大きな不確実性を被る。真として分類されたイベントは、このようにしてイベントから得られたフォトンの時間的分布に一致して重み付けがなされ得る。単一峰の分布を特徴とする真であれば、二峰性の分布を特徴とする真よりも、より重く重み付けがなされる。二峰性の分布がさらに分離すると、真に対して割り当てられた重み付けは、単一イベントというよりも、2つのイベントから生じたフォトンの分布である可能性が高くなるまで小さくなる。この場合、追加のコインシデンス空間軸は、時間的フォトン分布の二峰性を計測するものである。
同様に、シンチレータブロック内の空間的に二峰性のフォトン分布は、シンチレータブロック内でコンプトン散乱を経たγ線を指示する。従って、空間的に二峰性または多峰性の(multimodal)フォトン分布を特徴とする真は、空間的に単一峰を特徴とする真よりも信頼性が低い可能性がある。この場合、追加的なコインシデンス空間軸は、フォトン分布の空間的二峰性の測度を提供する。
従って、画像処理システム14は、測定期間中に検出されたコインシデンスの集合において全ての利用可能な情報を使用する。コインシデンスが真である確率が、任意に選択された閾値をわずかでも下回った場合でも、コインシデンスに伴う情報が破棄されるシステムにおいては、これは進歩である。真と見られる全コインシデンスに伴う情報が等しく重み付けされる画像処理システムにおいても、そのようなコインシデンスが本当に真であるかどうかは別として、これは進歩である。
図2を参照して、各検出器ペアに対して、画像処理システム14は、7次元コインシデンス空間を、それぞれが特定のチャンネル22に対応するサブ空間20の集合へと仕切るものとして見ることができる。コインシデンス空間の特定のサブ空間20内に含まれるコインシデンスは、そのサブ空間に伴うチャンネル22に割り当てられる。
チャンネル22に含まれるコインシデンスは、ミキサ24において、そのチャンネルに伴うチャンネル重みによって重み付けされる。重み付けされたコインシデンス25は、次いで、総和ユニット26において、共に合計されて、そのペアの検出器に伴う特性28を得る。
好ましくは、サブ空間20は、コインシデンスの二重カウントを避けるため交わらないことである。しかし、コインシデンスの二重カウントは、そのコインシデンスにより大きな重みを割り当てる間接的な方法として評価することができる。画像処理システム14は、サブ空間の重なりを規定すべくこのように構成することができる。
重みは、重み付けされた総計28が、可能な限り高い信号対ノイズ比を有するように選択される。重み付けを選択するための技術は、D.G.Brennan,”Linear Diversity Combining Techniques,” Proc.IRE,vol.47,June 1959,pp.1075−1102 および JV.C. Beaulieu,”Introduction to Linear Diversity Combining Techniques,”Proc.IEEE,vol. 91,no.2,Feb.2003から既知であり、その内容は、本明細書中に援用により一体化される。
D.G.Brennan,"Linear Diversity Combining Techniques," Proc.IRE,vol.47,June 1959,pp.1075−1102 JV.C. Beaulieu,"Introduction to Linear Diversity Combining Techniques,"Proc.IEEE,vol. 91,no.2,Feb.2003
D.G.Brennan,"Linear Diversity Combining Techniques," Proc.IRE,vol.47,June 1959,pp.1075−1102 JV.C. Beaulieu,"Introduction to Linear Diversity Combining Techniques,"Proc.IEEE,vol. 91,no.2,Feb.2003
本発明による画像処理システム14において、特定のチャンネル22からのコインシデンスデータの特性は、そのチャンネルに伴う座標によって特徴付けられるコインシデンスが真である状態確率により、重み付けがなされる。特に重みが、
の比で与えられる。ここで、Tは、チャンネルの座標により特徴付けられたコインシデンスが真であるイベントに対する密度関数の平均であり、Sは、チャンネルの座標により特徴付けられたコインシデンスが散乱であるイベントに対する密度関数の平均であり、Tは、そのチャンネルの座標によって特徴付けられたコインシデンスが偶発であるイベントに対する密度関数の平均である。分母(T+S+R)は、しばしば触発密度関数(prompts density function)の平均Pと呼ばれる。触発密度関数の測定された平均を、以後P’とする。
平均値T、S、およびRは、実際の密度関数の平均であり、有限数のサンプルから得られたとする測定された分布の平均T’、S’、R’ではない。従って、画像処理システム14は、測定された平均T’、S’、R’から実際の平均値T、S、およびR(以後それぞれ、真のモデル、散乱モデル、および偶発モデルとする。)を推定する方法を実行する。
T’を決定してTを推定するため、コインシデンスが実際に真である場合、各γ線フォトンに伴うエネルギーが同一であるはずであり、ガンマ線フォトンが同一の時間に検出器12に到達するはずであることを認識することは、有益である。従って、測定エネルギー差や測定到達時間の差につながるいかなる誤差であっても、装置誤差単独によるものでなければならない。このような装置誤差は、コインシデンスを構成する2つのイベントの空間的位置を測定する際に一次的に独立であるべきものである。
このことを認識するため、真のモデルTは、イベントの測定された位置にのみ依存する第1の係数、および装置の測定精度に依存する第2の係数の積として評価することができる。すなわち、
T=T4(x1,y1,x2,y2)T3(E1,E2,Δt)
T=T4(x1,y1,x2,y2)T3(E1,E2,Δt)
従来技術において、P’から第1の係数T4を推定するための様々な方法が公知である。このような方法には、バックグラウンド除去法および散乱線除去法が含まれる。第2の係数、T3は、装置の較正によって容易に決定することができる。
分母Pは、測定したサンプルP’7を使用することで容易に推定することができる。しかし、所望であれば、P7は、SおよびRを決定し、そして前に決定したTに加えることで得ることができる。
Rを決定するため、偶発的なコインシデンスに対して、コインシデンスを構成する2つのイベント間の時間差が、少なくとも一次まで無相関であることを認識することは有益である。モデルR’は、従って、3つの係数
R=R3(x1,y1,E1)R3(x2,y2,E2)R1(Δt)
に分離可能である。
R=R3(x1,y1,E1)R3(x2,y2,E2)R1(Δt)
に分離可能である。
最初の2つの係数は、光検出器によって容易に測定される量に依存する。最後の係数は、既知であるか容易に測定される、偶発コインシデンスを構成するイベント間の測定時間差分布(すなわち、典型的には境界のある一様な分布)のみに依存する。
Sを決定するため、S’がサンプリングされる分布が、コインシデンス空間において、空間軸に沿っても、エネルギー軸に沿っても、滑らかに変化するものであることを認識することが有益である。これは、TとR’がサンプリングされる分布に対しては該当しない。従って、Sを推定するための有益な方法は、Pから始めて、前に推定されたTとRをこれから除去して、TとR分布から生じる急激な変化を排除するため結果を平滑化することである。平滑化工程は、特に重要である。これがなければ、Sに対して得られる推定が、かなりの統計変動を免れないであろうからである。
Sが決定される際の精度をさらに高めるため、最も高いエネルギー散乱、すなわち、最小の散乱角度を有するガンマ線フォトンに対応するものが、空間軸に沿って実質的に真と同様に変化するはずであることを認識することも有益である。従って、この制約に従う平滑化工程を実行することが有益である。
多くの有用なコインシデンスを除外する従来技術と違って、本画像処理システム14は、コインシデンスに対する、より広範な受容基準を使用し、その特性を考慮して、コインシデンスが真である確率に従って、各1に重み付けをする。このようにして、本明細書中に記載の方法は、情報全体に対する信号対ノイズを最大化するよう利用可能な情報の全てを使用する。
発明とその好適な実施形態を記載してきたが、新規なものとして、そして第2に特許証に主張されるのは特許請求の範囲である。
Claims (14)
- PETスキャナにおけるコインシデンスデータを処理する方法であって、前記方法は、以下、
前記コインシデンスデータの選択された一部を、コインシデンス空間の複数のサブ空間の1つに関連づける工程と、
サブ空間に関連するコインシデンスデータから、画像を形成する際に使用される特性を得る工程と、
前記サブ空間に関連するコインシデンスデータが真を示すデータを含む可能性に依存する量によって、前記特性を重み付けする工程と、
を備える方法。 - コインシデンスを構成するイベントの選択された特性を含むように、コインシデンス空間を規定する工程をさらに備える、請求項1に記載の方法。
- 前記イベントの空間的位置を含むように特性を選択する工程をさらに備える、請求項2に記載の方法。
- 前記イベントの発生の時間を含むように特性を選択する工程をさらに備える、請求項2に記載の方法。
- 前記イベントに伴うエネルギーを含むように特性を選択する工程をさらに備える、請求項2に記載の方法。
- イベントを示すフォトンの時間的分布を含むように特性を選択する工程をさらに備える、請求項2に記載の方法。
- イベントを示すフォトンの空間的分布を含むように特性を選択する工程をさらに備える、請求項2に記載の方法。
- イベントを示すフォトンのエネルギー分布を含む特性を選択する工程をさらに備える、請求項2に記載の方法。
- 前記特性を重み付ける工程が、前記選択された特性に基づいて、特定のサブ空間における前記コインシデンスが真である確率を決定する工程を備える、請求項1に記載の方法。
- 前記重み付けられた特性に少なくとも部分的に基づいて、画像を形成する工程をさらに備える、請求項1に記載の方法。
- 前記特性を重み付ける工程が、真である確率密度の平均を推定する工程を備える、請求項1に記載の方法。
- 真である確率の平均を推定する工程が、以下、
イベントの空間的位置に関連して、空間的に依存する誤差関数を決定する工程と、
空間的に独立する誤差関数を決定する工程と、
前記空間的に依存する誤差関数および前記空間的に独立する誤差関数を重畳する工程と、
を備える、請求項11に記載の方法。 - 請求項1に記載の方法を実行するように構成されているPETスキャナ。
- 請求項1に記載の方法を実行するための符号化されたソフトウェアを有するコンピュータ読み取り可能な記録媒体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/971,745 US7217927B2 (en) | 2004-10-22 | 2004-10-22 | Diversity processing of coincidence data |
PCT/US2005/037933 WO2006047303A2 (en) | 2004-10-22 | 2005-10-20 | Diversity processing of coincidence data |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008518208A true JP2008518208A (ja) | 2008-05-29 |
Family
ID=36205380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007538072A Pending JP2008518208A (ja) | 2004-10-22 | 2005-10-20 | コインシデンスデータの多様な処理 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7217927B2 (ja) |
EP (1) | EP1802999A4 (ja) |
JP (1) | JP2008518208A (ja) |
CN (1) | CN101052894A (ja) |
WO (1) | WO2006047303A2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1817612A1 (en) * | 2004-12-01 | 2007-08-15 | Triumf, operating as a joint venture by the Governors of the Universities of Alberta, | System for selecting true coincidence events in positron emission tomography |
US20090060105A1 (en) * | 2007-08-31 | 2009-03-05 | Oguz Tanrikulu | Interference level estimation of path monitoring in w-cdma using the order statistics of beaulieu series |
WO2017019554A1 (en) | 2015-07-24 | 2017-02-02 | Photo Diagnostic Systems, Inc. | Method and apparatus for performing multi-energy (including dual energy) computed tomography (ct) imaging |
US10573030B2 (en) | 2017-04-07 | 2020-02-25 | Photo Diagnostic Systems, Inc. | Method for artifact reduction using monoenergetic data in computed tomography |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0385482A (ja) * | 1989-08-30 | 1991-04-10 | Shimadzu Corp | シンチレーションカメラ |
JPH08136655A (ja) * | 1994-11-08 | 1996-05-31 | Hitachi Medical Corp | エミッションct装置用データ収集回路 |
JPH1152059A (ja) * | 1997-02-21 | 1999-02-26 | Picker Internatl Inc | 核像形成方法及び装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4864140A (en) * | 1987-08-31 | 1989-09-05 | The University Of Michigan | Coincidence detection system for positron emission tomography |
US6294788B1 (en) * | 1999-08-18 | 2001-09-25 | Marconi Medical Systems, Inc. | Randoms correction in positron imaging |
US6490476B1 (en) | 1999-10-14 | 2002-12-03 | Cti Pet Systems, Inc. | Combined PET and X-ray CT tomograph and method for using same |
US7155047B2 (en) | 2002-12-20 | 2006-12-26 | General Electric Company | Methods and apparatus for assessing image quality |
US7359535B2 (en) * | 2003-06-20 | 2008-04-15 | Ge Medical Systems Global Technology Company, Llc | Systems and methods for retrospective internal gating |
-
2004
- 2004-10-22 US US10/971,745 patent/US7217927B2/en active Active
-
2005
- 2005-10-20 WO PCT/US2005/037933 patent/WO2006047303A2/en active Application Filing
- 2005-10-20 EP EP05815871A patent/EP1802999A4/en not_active Withdrawn
- 2005-10-20 CN CNA2005800363362A patent/CN101052894A/zh active Pending
- 2005-10-20 JP JP2007538072A patent/JP2008518208A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0385482A (ja) * | 1989-08-30 | 1991-04-10 | Shimadzu Corp | シンチレーションカメラ |
JPH08136655A (ja) * | 1994-11-08 | 1996-05-31 | Hitachi Medical Corp | エミッションct装置用データ収集回路 |
JPH1152059A (ja) * | 1997-02-21 | 1999-02-26 | Picker Internatl Inc | 核像形成方法及び装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2006047303A3 (en) | 2007-01-18 |
US20060086904A1 (en) | 2006-04-27 |
CN101052894A (zh) | 2007-10-10 |
EP1802999A4 (en) | 2011-01-19 |
EP1802999A2 (en) | 2007-07-04 |
WO2006047303A2 (en) | 2006-05-04 |
US7217927B2 (en) | 2007-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7397035B2 (en) | Scatter correction for time-of-flight positron emission tomography data | |
EP2748641B1 (en) | Data-driven optimization of event acceptance/rejection logic | |
US8847166B2 (en) | Imaging device using gamma rays, image signal processor, and image processing method for gamma ray measurement data | |
JP6685302B2 (ja) | 陽電子断層撮像法のデータの処理方法および装置 | |
JP3532942B2 (ja) | 放射線位置検出装置 | |
US20120153165A1 (en) | Positron emission detection and imaging | |
US8384036B2 (en) | Positron emission tomography (PET) imaging using scattered and unscattered photons | |
US7138634B2 (en) | Nuclear medical diagnostic apparatus | |
Lage et al. | Recovery and normalization of triple coincidences in PET | |
JP7317586B2 (ja) | 医用画像処理装置、方法及びプログラム | |
JP7286383B2 (ja) | 陽電子放出撮像装置及び方法 | |
US20110142367A1 (en) | Methods and systems for correcting image scatter | |
US11324472B2 (en) | Energy-based scatter correction for PET sinograms | |
JP2008518208A (ja) | コインシデンスデータの多様な処理 | |
MacDonald et al. | Measured count-rate performance of the Discovery STE PET/CT scanner in 2D, 3D and partial collimation acquisition modes | |
CN110664423A (zh) | 成像方法、装置、探测器、终端设备和pet系统 | |
US10088581B2 (en) | Method and a system for determining parameters of reactions of gamma quanta within scintillation detectors of PET scanners | |
Guérin et al. | Realistic PET Monte Carlo simulation with pixelated block detectors, light sharing, random coincidences and dead-time modeling | |
Teimoorisichani et al. | Geometry optimization of a dual-layer offset detector for use in simultaneous PET/MR neuroimaging | |
JPH071309B2 (ja) | 多重コンプトン散乱を利用したx線又はガンマ線測定方法及び装置 | |
Ghosh et al. | Feasibility study of imaging with tissue-scattered triple-γ coincidence events in Compton-PET | |
Klann et al. | Treatment of shielding in real-time source tracking software | |
Rechka et al. | Development and validation of a GATE simulation model for the LabPET scanner | |
GB2487017A (en) | Positron emission detection and imaging | |
Stearns et al. | Incorporating count-rate dependence into model-based PET scatter estimation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120321 |