JP2008311368A - 被処理体の処理方法及び処理システム - Google Patents

被処理体の処理方法及び処理システム Download PDF

Info

Publication number
JP2008311368A
JP2008311368A JP2007156783A JP2007156783A JP2008311368A JP 2008311368 A JP2008311368 A JP 2008311368A JP 2007156783 A JP2007156783 A JP 2007156783A JP 2007156783 A JP2007156783 A JP 2007156783A JP 2008311368 A JP2008311368 A JP 2008311368A
Authority
JP
Japan
Prior art keywords
film
chamber
oxide film
metal oxide
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007156783A
Other languages
English (en)
Inventor
Katsuyuki Nasu
勝行 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007156783A priority Critical patent/JP2008311368A/ja
Publication of JP2008311368A publication Critical patent/JP2008311368A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

【課題】結晶性や配向性が良好な多元系金属酸化物膜を得ることが可能な被処理体の処理方法を提供する。
【解決手段】表面に酸化対象となる金属膜が形成されている被処理体Wの表面に、複数の有機金属原料を用いて多元系金属酸化物膜を形成するようにした被処理体の処理方法において、前記金属膜が形成されている前記被処理体に対して第1のチャンバ4a内で酸化処理を施すことにより前記金属膜を酸化して金属酸化膜100を形成する酸化工程と、前記金属酸化膜が形成された前記被処理体に対して前記第1のチャンバ4aとは異なる第2のチャンバ4b、4c内で成膜処理を施すことにより前記金属酸化膜上に前記多元系金属酸化物膜を形成する成膜工程と、を有する。
【選択図】図5

Description

本発明は、半導体ウエハ等に形成された例えば下部電極上に多元系金属酸化物膜よりなる薄膜を施すための被処理体の処理方法及び処理システムに関する。
一般に、強誘電体メモリ素子は、主としてICカード向けの次世代不揮発メモリとして注目を集め、活発に研究開発がなされている。この強誘電体メモリ素子は、2つの電極の間に強誘電体膜を介在させた強誘電体キャパシタをメモリセルに用いた半導体素子である。強誘電体は[自発分極]、つまり、一度電圧を加えると、電圧をゼロにしても電荷が残っているという特性(ヒステリシス)を持っており、強誘電体メモリ素子はこれを利用した不揮発性メモリである。このような強誘電体メモリ素子のキャパシタ材料となる強誘電体膜としては、複数の金属元素の酸化物よりなる多元系金属酸化物が知られており、この多元系金属酸化物膜の一例としてPb(Zr ,Ti1−x )O (以下、「PZT」ともいう)膜が広く用いられている。
このPZT膜は、例えばPb(dibm) (=Lead bis(diisobutyrylmethanate):Pb(C15 )(以下、「Pb原料」とも称す)、Zr(dibm) (=Zirconium tetrakis(diisobutyrylmetanate):Zr(C15 (以下、「Zr原料」とも称す)及びTi(OiPr) (DPM) (=Titanium DI(i―Propoxy)Bis(Dipivaloylmethanate):Ti(Oipr) (DPM) )(以下、「Ti原料」とも称す)よりなる有機金属原料と、酸化剤として例えばO とを用いてCVD(Chemical Vapor Deposition)装置により、Pb(Zr Ti1−x )O のペロブスカイト構造の結晶膜を形成することにより得られる(例えば特許文献1,2,3,4,5参照)。尚、Pbは鉛、Zrはジルコニウム、Tiはチタンをそれぞれ示す。
このPZT膜を形成する場合には、まず下部電極となる金属膜として、例えばイリジウム(Ir)膜を予めウエハ上に形成しておき、この上に形成されるPZT膜との馴染み性を向上させ、且つPZT膜の配向性を向上させる等の目的で上記金属膜の表面部分のみを処理容器内で酸化して金属酸化膜を表面部分に形成する。次に、上記した各原料ガスと酸化ガスとをシャワーヘッド部により処理容器内へ個別に導入する。これら各原料ガスと酸化ガスとは、シャワーヘッド部内では、個別の拡散室内で拡散されて別々のガス噴射孔より処理容器内に噴射され、この処理容器内にて初めて混合し、処理容器内に置かれた半導体ウエハに供給される。この半導体ウエハは、PZT膜の成長に最適な温度になされているので、供給された原料ガスは酸化ガスとCVD反応を起こし、その結果、半導体ウエハの上記金属酸化膜上にPZT膜が堆積する。尚、上述したような原料ガスと酸化ガスとを処理容器内にて初めて混合するガス供給方法を、いわゆるポストミックスと称する。
特開平7−201951号公報 特開平9−143674号公報 特開平10−189488号公報 特開2002−9062号公報 特開2006−222318号公報
ところで、上述したように半導体ウエハを処理する場合に、製品の生産性を向上させることを目的としてイリジウム膜よりなる金属膜の表面酸化処理と、この上にPZT膜を形成する成膜処理とが同一の処理チャンバ内で連続的に行うことが一般的になっている。
しかしながら、上述のように金属膜の表面部分を酸化しているにもかかわらず、この上に形成されるPZT膜の結晶性や配向性が十分に良好ではなく、膜質特性が良好なPZT膜を得るのが困難である、といった問題があった。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、結晶性や配向性が良好な多元系金属酸化物膜を得ることが可能な被処理体の処理方法及び処理システムを提供することにある。
本発明者は、PZT膜の成膜処理に関して鋭意研究した結果、下部電極となるイリジウム膜である金属膜の表面酸化処理とPZT膜の成膜処理とを同一チャンバ内で繰り返し行うと、上記PZT膜の成膜時に用いる金属のうちの一種、この場合には例えばPb(鉛)がチャンバ内に残留し、この残留したPbが金属膜の表面の酸化を阻害している、という知見を得ることにより本発明に至ったものである。この場合、チャンバ内をクリーニングガスによりドライクリーニングすることも検討したが、上記したPb等を有効に除去できるクリーニングガスが存在しないのが現状である。
請求項1に係る発明は、表面に酸化対象となる金属膜が形成されている被処理体の表面に、複数の有機金属原料を用いて多元系金属酸化物膜を形成するようにした被処理体の処理方法において、前記金属膜が形成されている前記被処理体に対して第1のチャンバ内で酸化処理を施すことにより前記金属膜を酸化して金属酸化膜を形成する酸化工程と、前記金属酸化膜が形成された前記被処理体に対して前記第1のチャンバとは異なる第2のチャンバ内で成膜処理を施すことにより前記金属酸化膜上に前記多元系金属酸化物膜を形成する成膜工程と、を有することを特徴とする被処理体の処理方法である。
このように、金属膜が形成されている被処理体に対して第1のチャンバ内で酸化処理を施すことにより金属膜を酸化して金属酸化膜を形成する酸化工程と、金属酸化膜が形成された被処理体に対して第1のチャンバとは異なる第2のチャンバ内で成膜処理を施すことにより金属酸化膜上に多元系金属酸化物膜を形成する成膜工程とを有するようにしたので、第1のチャンバと第2のチャンバとがそれぞれ専用のチャンバとなって金属膜の表面酸化処理時にこの表面酸化処理が多元系金属酸化物膜の成膜時に用いた原料ガスの残留金属により阻害されることがなくなって前記金属膜の表面を十分に酸化することができ、この結果、結晶性や配向性が良好な多元系金属酸化物膜を得ることができる。
この場合、例えば請求項2に記載したように、前記酸化工程における前記被処理体の温度は、前記被処理体を前記第1のチャンバから前記第2のチャンバへ搬送中に低下する低下温度に相当する温度だけ前記成膜工程における温度よりも高く設定されている。
これによれば、多元系金属酸化物膜の成膜時における被処理体に対する温度制御に要する時間がほとんど不要になり、その分、処理時間が短くなってスループットを向上させることができる。
また、例えば請求項3に記載したように、前記第1のチャンバと前記第2のチャンバとの間は、前記被処理体を大気に晒すことなく搬送される。
また、例えば請求項4に記載したように、前記金属酸化膜は、イリジウム酸化膜、ルテニウム酸化膜、白金酸化膜、酸化ストロンチウムルテニウム(SrRuO )、酸化ランタンニッケル(LaNiO )、チタン酸ストロンチウム(SrTiO )よりなる群から選択される1の膜である。
また、例えば請求項5に記載したように、前記多元系金属酸化物膜は、PbとZrとTiとを含むPZT膜と、BaとSrとTiとを含むBST膜と、SrとBiとTaとを含むSBT膜と、BiとLaとTiとを含むBLT膜とよりなる群から選択される1の膜よりなる。
請求項6に係る発明は、表面に酸化対象となる金属膜が形成されている被処理体の表面に、複数の有機金属原料を用いて多元系金属酸化物膜を形成するようにした被処理体の処理システムにおいて、前記金属膜が形成されている前記被処理体に対して酸化処理を施すことにより前記金属膜を酸化して金属酸化膜を形成する第1のチャンバと、前記金属酸化膜が形成されている前記被処理体に対して成膜処理を施すことにより前記多元系金属酸化物膜を形成する第2のチャンバと、前記第1のチャンバと前記第2のチャンバとが連結された共通搬送室と、前記共通搬送室内に設けられて前記被処理体を前記第1のチャンバから前記第2のチャンバへ搬送するために屈伸及び旋回可能になされた搬送機構と、処理システム全体の動作を制御する制御部と、を有することを特徴とする処理システムである。
この場合、例えば請求項7に記載したように、前記共通搬送室内は、不活性ガスの雰囲気になされている。
また、例えば請求項8に記載したように、前記第1のチャンバの設置台数と前記第2のチャンバの設定台数との比は、前記酸化処理に要する酸化時間と前記成膜処理に要する成膜時間の比に対応するように設定される。
また、例えば請求項9に記載したように、前記金属酸化膜は、イリジウム酸化膜、ルテニウム酸化膜、白金酸化膜、酸化ストロンチウムルテニウム(SrRuO )、酸化ランタンニッケル(LaNiO )、チタン酸ストロンチウム(SrTiO )よりなる群から選択される1の膜である。
また、例えば請求項10に記載したように、前記多元系金属酸化物膜は、PbとZrとTiとを含むPZT膜と、BaとSrとTiとを含むBST膜と、SrとBiとTaとを含むSBT膜と、BiとLaとTiとを含むBLT膜とよりなる群から選択される1の膜よりなる。
本発明に係る被処理体の処理方法及び処理システムによれば、次のように優れた作用効果を発揮することができる。
金属膜が形成されている被処理体の表面に多元系金属酸化物膜を形成するに際して、金属膜を酸化して金属酸化膜を形成する酸化工程と、金属酸化膜が形成された被処理体に対して第1のチャンバとは異なる第2のチャンバ内で成膜処理を施すことにより金属酸化膜上に多元系金属酸化物膜を形成する成膜工程とを有するようにしたので、第1のチャンバと第2のチャンバとがそれぞれ専用のチャンバとなって金属膜の表面酸化処理時にこの表面酸化処理が多元系金属酸化物膜の成膜時に用いた原料ガスの残留金属により阻害されることがなくなって前記金属膜の表面を十分に酸化することができ、この結果、結晶性や配向性が良好な多元系金属酸化物膜を得ることができる。
特に請求項2に係る発明によれば、酸化工程における前記被処理体の温度は、被処理体を第1のチャンバから第2のチャンバへ搬送中に低下する低下温度に相当する温度だけ成膜工程における温度よりも高く設定しているので、多元系金属酸化物膜の成膜時における被処理体に対する温度制御に要する時間がほとんど不要になり、その分、処理時間が短くなってスループットを向上させることができる。
以下に、本発明に係る被処理体の処理方法及び処理システムの好適な一実施例を添付図面に基づいて詳述する。
図1は本発明に係る被処理体の処理システムの一例を示す概略構成図、図2は第1のチャンバの一例を示す概略構成図、図3は第2のチャンバの一例を示す概略構成図である。
<処理システムの説明>
まず、上記被処理体の処理システムについて説明する。図1に示すように、この処理システム2は、複数、例えば3つのチャンバ4a、4b、4cと、略六角形状の共通搬送室6と、ロードロック機能を有する第1及び第2ロードロック室8a、8bと、細長い導入側搬送室10とを主に有している。
ここでは、上記3つのチャンバ4a、4b、4cの内、1つのチャンバ4aが被処理体である半導体ウエハに対して酸化処理を施す第1のチャンバとして構成され、他の2つのチャンバ4b、4cが後述する多元系金属酸化物膜、例えばPZT膜を形成する第2のチャンバとして互いに全く同じように構成されている。これら第1のチャンバ4aと第2のチャンバ4b、4cの設置台数比は、後述するように酸化処理と成膜処理にそれぞれ要する時間比に対応するように設定されている。尚、上記「第1」及び「第2」とは、チャンバーの台数を示すものではなく、チャンバーの種類を示すものである。
具体的には、略六角形状の上記共通搬送室6の3辺に上記各チャンバ4a〜4cが接合され、他側の2つの辺に、上記第1及び第2ロードロック室8a、8bがそれぞれ接合される。そして、この第1及び第2ロードロック室8a、8bに、上記導入側搬送室10が共通に接続される。尚、上記共通搬送室6の残りの一辺には必要に応じて処理チャンバが連結される。
上記共通搬送室6と上記3つの各チャンバ4a、4b、4cとの間及び上記共通搬送室6と上記第1及び第2ロードロック室8a、8bとの間は、それぞれ気密に開閉可能になされたゲートバルブGが介在して接合されて、クラスタツール化されており、必要に応じて共通搬送室6内と連通可能になされている。ここで、この共通搬送室6内は真空引きされている。また、上記第1及び第2各ロードロック室8a、8bと上記導入側搬送室10との間にも、それぞれ気密に開閉可能になされたゲートバルブGが介在されている。この第1及び第2のロードロック室8a、8bは真空引き、及び大気圧復帰がウエハの搬出入に伴って繰り返される。
そして、この共通搬送室6内においては、上記2つの各ロードロック室8a、8b及び3つの各チャンバ4a〜4cにアクセスできる位置に、屈伸及び旋回可能になされた多関節アームよりなる第1の搬送機構12が設けられており、これは、互いに反対方向へ独立して屈伸できる2つのピック14a、14bを有しており、一度に2枚のウエハを取り扱うことができるようになっている。尚、上記第1の搬送機構12として1つのみのピックを有しているものも用いることができる。
上記導入側搬送室10は、横長の箱体により形成されており、この横長の一側には、被処理体である半導体ウエハを導入するための1つ乃至複数の、図示例では3つの搬入口が設けられ、各搬入口には、開閉可能になされた開閉ドア16が設けられる。そして、この各搬入口に対応させて、導入ポート18がそれぞれ設けられ、ここにそれぞれ1つずつカセット容器20を載置できるようになっている。各カセット容器20には、複数枚、例えば25枚のウエハWを等ピッチで多段に載置して収容できるようになっている。このカセット容器20内は、例えば密閉状態になされており、内部にはN ガス等の不活性ガスの雰囲気に満たされている。
この導入側搬送室10内には、ウエハWをその長手方向に沿って搬送するための導入側搬送機構である第2の搬送機構22が設けられる。この第2の搬送機構22は、屈伸及び旋回可能になされた2つのピック24a、24bを有しており、一度に2枚のウエハWを取り扱い得るようになっている。この第2の搬送機構22は、導入側搬送室10内に、その長さ方向に沿って延びるように設けた案内レール26上にスライド移動可能に支持されている。
また、導入側搬送室10の一方の端部には、ウエハの位置合わせを行なうオリエンタ28が設けられる。上記オリエンタ28は、駆動モータによって回転される回転台28aを有しており、この上にウエハWを載置した状態で回転するようになっている。この回転台28aの外周には、ウエハWの周縁部を検出するための光学センサ28bが設けられ、これによりウエハWの位置決め切り欠き、例えばノッチやオリエンテーションフラットの位置方向やウエハWの中心の位置ずれ量を検出できるようになっている。
この処理システム全体の動作を制御するために、例えばコンピュータ等よりなる制御部30を有している。そして、この処理システム全体の動作制御に必要なプログラムはフロッピやCD(Compact Disc)やハードディスクやフラッシュメモリ等の記憶媒体32に記憶されている。具体的には、この制御部30からの指令により、各ガスの供給の開始、停止や流量制御、プロセス温度(ウエハ温度)やプロセス圧力(チャンバ内圧力)の制御等が行われる。尚、各チャンバ4a〜4c内へは、He、Ar等の希ガスやN ガス等の不活性ガスも供給できるようになっている。
このように、構成された処理システム2における概略的な動作について説明する。まず、導入ポート18に設置されたカセット容器20からは、未処理の半導体ウエハWが第2の搬送機構22により導入側搬送室10内に取り込まれ、この取り込まれたウエハWは導入側搬送室10の一端に設けたオリエンタ28へ搬送されて、ここで位置決めがなされる。上記ウエハWは例えばシリコン基板よりなり、この表面には下部電極として例えばイリジウム膜よりなる金属膜が予め形成されている。
位置決めがなされたウエハWは、上記第2の搬送機構22により再度搬送され、第1或いは第2のロードロック室8a、8bの内のいずれか一方のロードロック室内へ搬入される。このロードロック室内が真空引きされた後に、予め真空引きされた共通搬送室6内の第1の搬送機構12を用いて、上記ロードロック室内のウエハWが共通搬送室6内に取り込まれる。
そして、この共通搬送室6内へ取り込まれた未処理のウエハは、次に第1のチャンバ4a内へ搬入されて金属膜の表面を酸化して金属膜の表面に薄く金属酸化膜を形成する。この酸化処理が完了したならば、次にこのウエハWは共通搬送室6内の第1の搬送機構12により2つの第2のチャンバ4b、4cの内のいずれか一方の第2のチャンバ、例えば第2のチャンバ4b内へ搬入されて多元系金属酸化物膜として例えばPZT膜を形成する。ここで第2のチャンバ4bに代えて他方の第2のチャンバ4cを用いてもよい。
このように、上記各チャンバ4a、4b或いは4a、4c内にて順次行われる酸化処理及びPZT膜の成膜処理が完了したならば、この処理済みのウエハWは、いずれか一方のロードロック室8a又は8b、導入側搬送室10を経由して導入ポート18の処理済みウエハ用のカセット容器20内へ収容されることになる。尚、共通搬送室6内は、ArやHe等の希ガスやドライN 等の不活性ガスの雰囲気で減圧状態になされている。
<第1のチャンバの説明>
次に、上記第1のチャンバ4aについて図2を参照して説明する。図2は第1のチャンバ4aを示す概略構成図である。図2に示すように、この第1のチャンバ4aは、例えばアルミニウム合金等により筒体状に成形された処理容器40を有している。この処理容器40の底部には、円筒体状の支柱42が設けられており、この支柱42の上端部に複数本の支持ロッド43を介して薄い例えば窒化アルミ等のセラミックよりなる載置台44が設けられており、この上面側にウエハWを載置できるようになっている。
また処理容器40の底部には大口径の開口が形成されると共に、この開口にはOリング等のシール部材45を介して例えば石英ガラスよりなる透過窓47が気密に設けられる。そして、この透過窓47の下方に例えば加熱ランプよりなる加熱手段46が、反射板を兼ねる回転台49に取り付けられており、上記加熱ランプよりなる加熱手段46から放射される熱線が透過窓47を透過して上記載置台44の裏面に当たり、これによりウエハWを加熱するようになっている。尚、上記加熱手段46としては、加熱ランプに代えて、厚く成形した載置台44内に例えばカーボンワイヤを設けるようにしてもよい。またこの載置台44の下方には、ウエハWを搬出入する際に昇降してウエハWを下側より突き上げて支持するリフタピン(図示せず)が設けられる。
そして、この処理容器40の底部には排気口48が形成されると共に、この排気口48には真空ポンプや圧力調整弁等を含む排気系50が接続されており、上記処理容器40内を真空引きして所定の圧力に維持できるようになっている。
また処理容器40の側壁には、ウエハWを搬出入できる大きさの開口52が形成されており、この開口52に前述したゲートバルブGが設けられている。更に、処理容器40の天井部は開口されており、この開口部分にシール部材54を介してガス導入手段として例えばシャワーヘッド56が気密に設けられている。このシャワーヘッド56は、例えばアルミニウム合金等よりなっている。このシャワーヘッド56内には、拡散室58が形成される。またシャワーヘッド56の下面には、上記拡散室58に連通された多数のガス噴射孔60が形成されており、処理容器40内へ所望のガスを導入できるようになっている。
またシャワーヘッド56の上部にはガス導入口62が形成されており、このガス導入口62から所望のガス、ここでは例えばO などの酸化ガスを流量制御しつつ導入できるようになっている。従って、この酸化ガスは、シャワーヘッド56内の拡散室58内を順次拡散されて、ガス噴射孔60からウエハWの上方の空間に面内方向に均一な状態で噴射供給されることになる。これにより、ウエハWを加熱手段46により所定の温度に加熱し、ウエハWの表面に形成されている金属膜の表面を酸化できるようになっている。
<第2のチャンバの説明>
次に、上記第2のチャンバ4bについて図3を参照して説明する。尚、他方の第2のチャンバ4cは、この第2のチャンバ4bと同様に構成されているので、ここではその説明を省略する。図3は第2のチャンバ4bを示す概略構成図である。図3に示すように、この第2のチャンバ4bは、例えばアルミニウム合金等により筒体状に成形された処理容器70を有している。この処理容器70の底部には、円筒体状の支柱72が設けられており、この支柱72の上端部に複数本の支持ロッド73を介して薄い例えば窒化アルミ等のセラミックよりなる載置台74が設けられており、この上面側にウエハWを載置できるようになっている。
また処理容器70の底部には大口径の開口が形成されると共に、この開口にはOリング等のシール部材75を介して例えば石英ガラスよりなる透過窓77が気密に設けられる。そして、この透過窓77の下方に例えば加熱ランプよりなる加熱手段76が、反射板を兼ねる回転台79に取り付けられており、上記加熱ランプよりなる加熱手段76から放射される熱線が透過窓77を透過して上記載置台74の裏面に当たり、これによりウエハWを加熱するようになっている。尚、上記加熱手段76としては、加熱ランプに代えて、厚く成形した載置台74内に例えばカーボンワイヤを設けるようにしてもよい。またこの載置台74の下方には、ウエハWを搬出入する際に昇降してウエハWを下側より突き上げて支持するリフタピン(図示せず)が設けられる。
この処理容器70の底部には排気口78が形成されると共に、この排気口78には真空ポンプや圧力調整弁等を含む排気系80が接続されており、上記処理容器70内を真空引きして所定の圧力に維持できるようになっている。
また処理容器70の側壁には、ウエハWを搬出入できる大きさの開口82が形成されており、この開口82に前述したゲートバルブGが設けられている。更に、処理容器70の天井部は開口されており、この開口部分にシール部材83を介してガス導入手段として例えばシャワーヘッド84が気密に設けられている。このシャワーヘッド84は、例えばアルミニウム合金等により形成されている。
具体的には、このシャワーヘッド84の上部には、第1のガス導入口86と第2のガス導入口88が設けられると共に、このシャワーヘッド84内には、上記第1のガス導入口86に連通される第1の拡散室90と上記第2のガス導入口88に連通される第2の拡散室92とがそれぞれ区画分離されて設けられている。そして、上記シャワーヘッド84の下面のガス噴射面には、上記第1の拡散室90に連通された複数の第1のガス噴射孔94と、上記第2の拡散室92に連通された複数の第2のガス噴射孔96とがそれぞれ設けられており、上記第1及び第2のガス噴射孔94、96から噴射された各ガスを、処理容器70内で初めて混合できるようになっている。
このようなガスの混合方式を、いわゆるポストミックスと称す。ここで上記第1のガス導入口86にはO 等の酸化ガスを流量制御しつつ供給できるようになっており、また第2のガス導入口88には多元系金属酸化物膜の有機金属原料ガスをキャリアガスと共に流量制御しつつ供給できるようになっている。ここでは原料ガスとして、液状の有機金属原料よりなるPb原料とZr原料とTi原料とを気化器にて気化しつつArやHe等のキャリアガスで搬送するようになっている。尚、上記3種の原料をそれぞれ個別に用いてもよいし、これらの混合原料を用いてもよい。
従って、この処理容器70内の処理空間では、上記原料ガスと酸化ガスとが面内方向に均一に供給されて、ウエハWを加熱手段76により所定の温度に加熱し、これにより熱CVDによりウエハWの表面にPZT膜を成膜できるようになっている。
<半導体ウエハの処理>
次に、上述のように形成された処理システム2を用いて行われる半導体ウエハの処理方法について図4及び図5も参照して説明する。図4は半導体ウエハの表面に形成される薄膜の形成行程を示す断面図、図5は半導体ウエハの処理方法を示すフローチャートである。
まず、前述したように、導入ポート18からこの処理システム2内へ取り込んだ処理すべき半導体ウエハWをオリエンタ28、いずれか一方のロードロック室8a或いは8b及び共通搬送室6を介して第1のチャンバ4a内に搬入する。この時の半導体ウエハWは、図4(A)に示すようにウエハ表面に下部電極となる金属膜100が所定の厚さで予め形成されている。この金属膜100としては、例えばIr膜を用いることができる。尚、この金属膜100を形成するための第2のチャンバを、図1に示す六角形の共通搬送室6の一辺に、一点鎖線で示すように第2のチャンバ4dとして設けるようにしてもよく、この場合には、この第2のチャンバ4dで上記金属膜100を形成した後に、このウエハWを上記第1のチャンバ4aに搬入することになる。
上述のように、第1のチャンバ4a内へウエハWを搬入したならば、この第1のチャンバ4aの処理容器40内へ酸化ガス、例えばO ガスを導入すると共に、ウエハWを加熱手段46で所定の温度に加熱し、これに酸化処理を所定の時間施すことになる(S1)。これにより、図4(B)に示すように上記金属膜100の表面部分が僅かに酸化されて金属酸化膜100a、すなわちイリジウム酸化膜が形成されることになる。
このようにして、酸化処理が終了したならば、このウエハWを、共通搬送室6内の第1の搬送機構12を用いてこの第1のチャンバ4aから搬出して共通搬送室6内を経由して2つの第2のチャンバ4b、4cの内のいずれか一方の第2のチャンバ、例えば第2のチャンバ4b内へ搬送する(S2)。
このように、ウエハWを第2のチャンバ4b内へ搬入したならば、この第2のチャンバ4bのシャワーヘッド84から処理容器70内へ原料ガス、すなわちPb原料ガスとZr原料ガスとTa原料ガスとをキャリアガスと共に導入し、同時に酸化ガス、例えばO ガスも処理容器70内へ導入し、それと共に加熱手段76によりウエハWを所定の温度に維持し、CVDにより所定の時間の成膜処理を施す(S3)。これにより、図4(C)に示すようにウエハWの表面に多元系金属酸化物膜102、すなわちPZT膜102が形成されることになる。
ここでのプロセス条件は、例えば以下の通りである。半導体ウエハWの直径サイズが例えば200mmの場合には、上記酸化処理では、酸化ガスの流量は、例えば500〜5000sccmの範囲内、プロセス圧力は例えば133〜1330Paの範囲内、プロセス温度(ウエハ温度)は例えば500〜700℃の範囲内であり、プロセス時間は形成する金属酸化膜100aの厚さにもよるが、例えば30〜300secの範囲内、例えば360secである。
また上記成膜処理では、Pb原料が0.15〜0.5ml/minの範囲内、例えば0.8sccm程度、Zr原料が0.15〜0.5ml/minの範囲内、例えば0.6ml/min程度、Ti原料が0.1〜0.5ml/minの範囲内、例えば1.2ml/min程度である。これらの各原料液は前述したように個別に供給してもよいし、或いは3原料の混合液として供給してもよい。また、プロセス圧力は例えば267〜1067Paの範囲内、プロセス温度(ウエハ温度)は例えば600〜700℃の範囲内であり、プロセス時間は形成する多元系金属酸化物膜102の厚さにもよるが、例えば450〜1200secの範囲内、例えば540secである。
このように、成膜処理を行っている間において、この成膜処理に要する時間に対して酸化処理に要する時間は短くて例えば上述のように1/2程度なので酸化処理は迅速に行われ、他方の第2のチャンバ4cでも成膜処理が行われることになり、結果的に、各チャンバ4a〜4cにおける待ち時間(アイドル時間)がほとんどなくなって効率的に処理を行うことができ、スループットを向上させることができる。
換言すれば、上記第1のチャンバ4aの設置台数と上記第2のチャンバ4b、4cの設定台数との比は、上記酸化処理に要する酸化時間と上記成膜処理に要する成膜時間の比に対応するように設定されているので、各チャンバ4a〜4cにおける待ち時間(アイドル時間)がほとんどなくなって効率的に処理を行うことができ、スループットを向上させることができる。尚、上記数値例は単に一例を示したに過ぎないのは勿論である。
そして、従来装置のように1台のチャンバで酸化処理と成膜処理との両方の処理を行った処理チャンバと異なって、酸化用の第1のチャンバ4aと成膜用の第2のチャンバ4b、4cとを区別して専用チャンバとして用いているので、第1のチャンバ4a内に、酸化処理を阻害する要因となるPZT膜の原料ガス成分の金属、例えばPbが侵入することがなく、上記酸化処理を確実に行うことができる。従って、この金属酸化膜(Ir酸化膜)100a上に形成されることになる多元系金属酸化物膜(PZT膜)102は結晶性が良好となり、且つその結晶の配向性も向上させることが可能となる。
このように、金属膜100が形成されている半導体ウエハWよりなる被処理体に対して第1のチャンバ4a内で酸化処理を施すことにより金属膜100を酸化して金属酸化膜100aを形成する酸化工程と、金属酸化膜100aが形成された被処理体に対して第1のチャンバ4aとは異なる第2のチャンバ4b又は4c内で成膜処理を施すことにより金属酸化膜100a上に多元系金属酸化物膜102を形成する成膜工程とを有するようにしたので、第1のチャンバ4aと第2のチャンバ4b、4cとがそれぞれ専用のチャンバとなって金属膜100の表面酸化処理時にこの表面酸化処理が多元系金属酸化物膜102の成膜時に用いた原料ガスの残留金属により阻害されることがなくなって上記金属膜100の表面を十分に酸化することができ、この結果、結晶性や配向性が良好な多元系金属酸化物膜102を得ることができる。
また、上記酸化工程における上記被処理体Wの温度は、上記被処理体Wを上記第1のチャンバ4aから上記第2のチャンバ4b又は4cへ搬送中に低下する低下温度に相当する温度だけ上記成膜工程における温度よりも高く設定されているので、多元系金属酸化物膜102の成膜時における被処理体Wに対する温度制御に要する時間がほとんど不要になり、その分、処理時間が短くなってスループットを向上させることができる。
すなわち、例えば第2のチャンバ4bにおける成膜処理のプロセス温度を最適な620℃に設定し、第1のチャンバ4aから第2のチャンバ4bへウエハWへの搬送中における低下温度を80℃程度と仮定すると、上記第1のチャンバ4aにおける酸化処理のプロセス温度を700℃(=620℃+80℃)に設定することにより、ウエハWを第2のチャンバ4bへ搬入した時に、ウエハWの温度調整をほとんど行うことなく直ちに成膜処理を実行することができ、その分、スループットを向上させることができる。
また、上記共通搬送室6内は常にArやHe等の希ガスやドライ窒素等の不活性ガスにより減圧雰囲気になされているので、この共通搬送室6内にウエハWが通過する際、これに自然酸化膜等が付着することを防止することができる。
また、ウエハWをチャンバ間に亘って搬送する場合には、共通搬送室6内の圧力を開放されるチャンバ内の圧力よりも僅かに例えば70Pa程度だけ陽圧状態にしており、この結果、各チャンバ4a〜4c内から共通搬送室6内へ気体が流れ込むことを防止して共通搬送室6内が金属汚染等されることを阻止することができる。
尚、上記PZT膜を堆積させる原料として、Pb原料としてはPb(DPM) 、Pb(dibm) 等を用いることができる。またZr原料としてはZr(t−OC 、Zr(i−OC (DPM) 、Zr(DPM) 、Zr(i−OC 、Zr(C 、Zr(C HF 、Zr(dibm) 、Zr(IBPM) 、Zr(dmhd) 等のZr原料群より選択される1または2以上の原料を用いることができる。また、Ti原料としてはTi(i−OC またはTi(i−OC (DPM) 等を用いることができる。
<本発明方法の評価結果>
次に、上述したような本発明の処理方法を実際に行って、形成されたPZT膜薄の膜質について検討したので、その評価結果について図6を参照して説明する。
図6は本発明の処理方法を評価するためにPZT膜の積分反射強度とPZT膜の配向率とを示すグラフである。
ここでは、先に説明したように、本発明方法ではIr膜よりなる金属膜の酸化処理とPZT膜の成膜処理とをそれぞれ異なるチャンバで行っている。そして、本発明方法と比べるために比較例を併せて行っている。
比較例1は従来方法で説明したように、金属膜の酸化処理とPZT膜の成膜処理とを同一のチャンバで行っており、比較例2は金属膜の酸化処理とPZT膜の成膜処理とを同一のチャンバで行うと共に、金属膜の酸化処理後にウエハを一旦大気(清浄空気)に晒しており、比較例3は金属膜の酸化処理を行わないで高温アニール処理を行った後に別チャンバでPZT膜の成膜処理を行っている。
グラフ中において、白抜きの棒グラフはウエハ中心部の状態を示し、斜線の棒グラフはウエハ周辺部の状態を示している。測定にはX線回析装置を用いて結晶面”111”の状態を調べた。
まず、積分反射強度(結晶性)に関しては、図6(A)に示すように、従来方法である比較例1は、中心部の積分反射強度は240cps程度で大きいのに対して周辺部は150cps程度でかなり低くなっており、ウエハ周辺部における結晶性(結晶化)がかなり低い。この結晶性が低い理由は、前述したように、チャンバ内にPZT成膜時の残留Pb成分が存在するためであると考えられる。また比較例2では、ウエハ中心部では230cps程度であるのに対してウエハ周辺部では50cps程度まで極端に低くなっている。この理由は、金属酸化膜の酸化処理後にウエハを一旦大気に晒しているためにウエハ表面に水分等の不純物が付着するからであると考えられる。また比較例3では、ウエハ中心部ではほとんど結晶化しておらず、また、ウエハ周辺部における結晶性も非常に低い。
これに対して、本発明方法の場合には、積分反射強度に関してウエハ中心部は240cps程度であって従来方法である比較例1と略同じであり、ウエハ周辺部は190cps程度であって比較例1の150cpsよりも結晶性がかなり改善しており、良好な結果を示していることを確認することができた。
また結晶の配向性に関しては、図6(B)に示すように、従来方法である比較例1は、中心部の配向率は95%程度で大きいのに対して周辺部は40%程度でかなり低くなっており、ウエハ周辺部における配向率がかなり低い。この結晶性が低い理由は、前述したように、チャンバ内にPZT成膜時の残留Pb成分が存在するためであると考えられる。また比較例2では、ウエハ中心部では95%程度であるのに対してウエハ周辺部では40%程度まで極端に低くなっている。この理由は、金属酸化膜の酸化処理後にウエハを一旦大気に晒しているためにウエハ表面に水分等の不純物が付着するからである考えられる。また比較例3では、ウエハ中心部では配向率は2〜3%程であって非常に低く、また、ウエハ周辺部では配向率は略ゼロである。
これに対して、本発明方法の場合には、結晶の配向性に関してウエハ中心部は95%程度であって従来方法である比較例1と略同じであり、ウエハ周辺部は80%程度であって比較例1の40%よりも結晶性がかなり改善しており、良好な結果を示していることを確認することができた。
尚、以上の各実施例では、酸化処理や成膜処理における酸化ガスとしてO ガスを用いた場合を例にとって説明したが、これに限定されず、O ガス、N Oガス、NO ガス等を用いてもよい。
更に、上記各実施例では金属酸化膜としてイリジウム酸化膜を形成する場合を例にとって説明したが、これに限定されず、イリジウム酸化膜、ルテニウム酸化膜、白金酸化膜、酸化ストロンチウムルテニウム(SrRuO )、酸化ランタンニッケル(LaNiO )、チタン酸ストロンチウム(SrTiO )よりなる群から選択される1の膜を用いることができる。
また更に、ここでは多元系金属酸化物膜としてPZT膜を例にとって説明したが、これに限定されず、上記多元系金属酸化物膜は、PbとZrとTiとを含むPZT膜と、BaとSrとTiとを含むBST膜と、SrとBiとTaとを含むSBT膜と、BiとLaとTiとを含むBLT膜とよりなる群から選択される1の膜よりなる膜を用いることができる。
また、ここでは被処理体として半導体ウエハを例にとって説明したが、これに限定されず、ガラス基板、LCD基板、セラミック基板等にも本発明を適用することができる。
本発明に係る被処理体の処理システムの一例を示す概略構成図である。 第1のチャンバの一例を示す概略構成図である。 第2のチャンバの一例を示す概略構成図である。 半導体ウエハの表面に形成される薄膜の形成行程を示す断面図である。 半導体ウエハの処理方法を示すフローチャートである。 本発明の処理方法を評価するためにPZT膜の積分反射強度とPZT膜の配向率とを示すグラフである。
符号の説明
2 処理システム
4a 第1のチャンバ
4b,4c 第2のチャンバ
6 共通搬送室
10 導入側搬送室
12 第1の搬送機構
22 第2の搬送機構
30 制御部
40 処理容器
44 載置台
46 加熱手段
56 シャワーヘッド
70 処理容器
74 載置台
76 加熱手段
80 排気系
84 シャワーヘッド
100 金属膜(イリジウム膜)
100a 金属酸化膜(イリジウム酸化膜)
102 多元系金属酸化物膜
W 半導体ウエハ(被処理体)

Claims (11)

  1. 表面に酸化対象となる金属膜が形成されている被処理体の表面に、複数の有機金属原料を用いて多元系金属酸化物膜を形成するようにした被処理体の処理方法において、
    前記金属膜が形成されている前記被処理体に対して第1のチャンバ内で酸化処理を施すことにより前記金属膜を酸化して金属酸化膜を形成する酸化工程と、
    前記金属酸化膜が形成された前記被処理体に対して前記第1のチャンバとは異なる第2のチャンバ内で成膜処理を施すことにより前記金属酸化膜上に前記多元系金属酸化物膜を形成する成膜工程と、
    を有することを特徴とする被処理体の処理方法。
  2. 前記酸化工程における前記被処理体の温度は、前記被処理体を前記第1のチャンバから前記第2のチャンバへ搬送中に低下する低下温度に相当する温度だけ前記成膜工程における温度よりも高く設定されていることを特徴とする請求項1記載の被処理体の処理方法。
  3. 前記第1のチャンバと前記第2のチャンバとの間は、前記被処理体を大気に晒すことなく搬送されることを特徴とする請求項1又は2記載の被処理体の処理方法。
  4. 前記金属酸化膜は、イリジウム酸化膜、ルテニウム酸化膜、白金酸化膜、酸化ストロンチウムルテニウム(SrRuO )、酸化ランタンニッケル(LaNiO )、チタン酸ストロンチウム(SrTiO )よりなる群から選択される1の膜であることを特徴とする請求項1乃至3のいずれかに記載の被処理体の処理方法。
  5. 前記多元系金属酸化物膜は、PbとZrとTiとを含むPZT膜と、BaとSrとTiとを含むBST膜と、SrとBiとTaとを含むSBT膜と、BiとLaとTiとを含むBLT膜とよりなる群から選択される1の膜よりなることを特徴とする請求項1乃至4のいずれかに記載の被処理体の処理方法。
  6. 表面に酸化対象となる金属膜が形成されている被処理体の表面に、複数の有機金属原料を用いて多元系金属酸化物膜を形成するようにした被処理体の処理システムにおいて、
    前記金属膜が形成されている前記被処理体に対して酸化処理を施すことにより前記金属膜を酸化して金属酸化膜を形成する第1のチャンバと、
    前記金属酸化膜が形成されている前記被処理体に対して成膜処理を施すことにより前記多元系金属酸化物膜を形成する第2のチャンバと、
    前記第1のチャンバと前記第2のチャンバとが連結された共通搬送室と、
    前記共通搬送室内に設けられて前記被処理体を前記第1のチャンバから前記第2のチャンバへ搬送するために屈伸及び旋回可能になされた搬送機構と、
    処理システム全体の動作を制御する制御部と、
    を有することを特徴とする処理システム。
  7. 前記共通搬送室内は、不活性ガスの雰囲気になされていることを特徴とする請求項6記載の処理システム。
  8. 前記第1のチャンバの設置台数と前記第2のチャンバの設定台数との比は、前記酸化処理に要する酸化時間と前記成膜処理に要する成膜時間の比に対応するように設定されることを特徴とする請求項6又は7記載の処理システム。
  9. 前記金属酸化膜は、イリジウム酸化膜、ルテニウム酸化膜、白金酸化膜、酸化ストロンチウムルテニウム(SrRuO )、酸化ランタンニッケル(LaNiO )、チタン酸ストロンチウム(SrTiO )よりなる群から選択される1の膜であることを特徴とする請求項6乃至8のいずれかに記載の処理システム。
  10. 前記多元系金属酸化物膜は、PbとZrとTiとを含むPZT膜と、BaとSrとTiとを含むBST膜と、SrとBiとTaとを含むSBT膜と、BiとLaとTiとを含むBLT膜とよりなる群から選択される1の膜よりなることを特徴とする請求項6乃至9のいずれかに記載の処理システム。
  11. 金属膜が形成されている前記被処理体に対して酸化処理を施すことにより前記金属膜を酸化して金属酸化膜を形成する第1のチャンバと、
    前記金属酸化膜が形成されている前記被処理体に対して成膜処理を施すことにより前記多元系金属酸化物膜を形成する第2のチャンバと、
    前記第1のチャンバと前記第2のチャンバとが連結された共通搬送室と、
    前記共通搬送室内に設けられて前記被処理体を前記第1のチャンバから前記第2のチャンバへ搬送するために屈伸及び旋回可能になされた搬送機構と、
    処理システム全体の動作を制御する制御部と、
    を有する処理システムを用いて前記被処理体に対して処理を施すに際して、
    請求項1乃至5のいずれかに記載の処理方法を実行するようなコンピュータ読み取り可能なプログラムを記憶することを特徴とする記憶媒体。
JP2007156783A 2007-06-13 2007-06-13 被処理体の処理方法及び処理システム Pending JP2008311368A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156783A JP2008311368A (ja) 2007-06-13 2007-06-13 被処理体の処理方法及び処理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156783A JP2008311368A (ja) 2007-06-13 2007-06-13 被処理体の処理方法及び処理システム

Publications (1)

Publication Number Publication Date
JP2008311368A true JP2008311368A (ja) 2008-12-25

Family

ID=40238732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156783A Pending JP2008311368A (ja) 2007-06-13 2007-06-13 被処理体の処理方法及び処理システム

Country Status (1)

Country Link
JP (1) JP2008311368A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503490A (ja) * 2009-08-27 2013-01-31 アプライド マテリアルズ インコーポレイテッド ガス分配シャワーヘッドおよび洗浄方法
JPWO2013094171A1 (ja) * 2011-12-22 2015-04-27 キヤノンアネルバ株式会社 SrRuO3膜の成膜方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503490A (ja) * 2009-08-27 2013-01-31 アプライド マテリアルズ インコーポレイテッド ガス分配シャワーヘッドおよび洗浄方法
JPWO2013094171A1 (ja) * 2011-12-22 2015-04-27 キヤノンアネルバ株式会社 SrRuO3膜の成膜方法

Similar Documents

Publication Publication Date Title
KR100417893B1 (ko) 원자층 적층을 이용한 박막 형성 방법
JP5097554B2 (ja) 半導体装置の製造方法、基板処理方法および基板処理装置
KR101139369B1 (ko) 반도체 디바이스의 제조 방법, 반도체 디바이스 및 기판 처리 장치
KR101107096B1 (ko) 반도체 디바이스의 제조 방법 및 기판 처리 장치
KR101146512B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 시스템
KR101177366B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
US8592294B2 (en) High temperature atomic layer deposition of dielectric oxides
JP5721952B2 (ja) 半導体装置、半導体装置の製造方法および基板処理装置
TWI576916B (zh) Semiconductor device manufacturing method and substrate processing system
JP2011052319A (ja) 半導体装置の製造方法、基板処理装置及び半導体装置
JP2011168881A (ja) 半導体装置の製造方法及び基板処理装置
US20100000673A1 (en) Film forming method and film forming apparatus
JP2002035572A (ja) 真空処理装置と多室型真空処理装置
US10927453B2 (en) TiN-based film and TiN-based film forming method
JP2008311368A (ja) 被処理体の処理方法及び処理システム
KR100771799B1 (ko) 피처리 기판을 처리하는 반도체 처리 방법 및 장치
JP2012104569A (ja) 半導体装置の製造方法及び基板処理装置
US6841489B2 (en) Method of manufacturing a semiconductor device and method of forming a film
JP2011134909A (ja) 半導体装置の製造方法及び基板処理システム
JP3111994B2 (ja) 金属酸化物誘電体材料の気相成長装置
JP5944549B2 (ja) 半導体装置の製造方法、基板処理装置および半導体装置
JP2011066345A (ja) 半導体装置の製造方法及び基板処理システム
JP2012064857A (ja) 半導体装置の製造方法及び基板処理装置
KR101211821B1 (ko) Sr-Ti-O계 막의 성막 방법 및 기억 매체
WO2002037548A1 (fr) Procede et dispositif permettant la formation d'un film mince d'oxyde de metal a composants multiples