JP2008309551A - Method and apparatus for shape measurement and storage medium - Google Patents

Method and apparatus for shape measurement and storage medium Download PDF

Info

Publication number
JP2008309551A
JP2008309551A JP2007156246A JP2007156246A JP2008309551A JP 2008309551 A JP2008309551 A JP 2008309551A JP 2007156246 A JP2007156246 A JP 2007156246A JP 2007156246 A JP2007156246 A JP 2007156246A JP 2008309551 A JP2008309551 A JP 2008309551A
Authority
JP
Japan
Prior art keywords
pattern
test object
projection
projection pattern
projected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007156246A
Other languages
Japanese (ja)
Inventor
Tomoaki Yamada
智明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007156246A priority Critical patent/JP2008309551A/en
Publication of JP2008309551A publication Critical patent/JP2008309551A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape measuring method capable of improving measurement accuracy by reducing the effects of multiple reflection. <P>SOLUTION: The shape measuring method comprises steps (S101-S103) for setting the reduction or quenching of part of a projection pattern multiply reflected at a surface of an object to be inspected and imaged and steps (S104-S105) for projecting the projection pattern reduced or quenched by the pattern projection part in the last steps to the object to be inspected, imaging, at an imaging part, the object to be inspected to which the projection pattern is projected, and measuring the three-dimensional shape of the object to be inspected on the basis of images of the object to be inspected to which the projection pattern reduced or quenched in the last steps is projected. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、工業製品等の表面形状(三次元形状)を測定する形状測定方法および、これが記憶された記憶媒体並びに形状測定装置に関する。   The present invention relates to a shape measuring method for measuring a surface shape (three-dimensional shape) of an industrial product, etc., a storage medium storing the shape measuring method, and a shape measuring apparatus.

工業製品等の物体の表面形状を測定する技術は従来から種々提案されており、その一つに光学式の三次元形状測定装置がある。光学式三次元形状測定装置も種々の方式、構成のものがあるが、被検物に所定の投影パターン(縞模様や、格子模様)を投影して被検物を撮像し、その撮像画像から各画像位置(各画素)での縞の位相を求めて各画像位置の高さを算出し、被検物の三次元形状を測定するものがある(例えば、特許文献1を参照)。   Various techniques for measuring the surface shape of an object such as an industrial product have been proposed, and one of them is an optical three-dimensional shape measuring apparatus. There are various types of optical three-dimensional shape measurement devices and configurations, but a predetermined projection pattern (striped pattern or lattice pattern) is projected onto the test object, and the test object is imaged. There is a technique that calculates the height of each image position by calculating the fringe phase at each image position (each pixel) and measures the three-dimensional shape of the test object (see, for example, Patent Document 1).

このような装置においては、例えば、被検物(測定対象物)の表面に縞パターンからなる投影パターンを投影し、投影方向と異なる角度から被検物に投影された縞パターンを撮像し、三角測量の原理等を用いて縞パターンの位相分布を算出し、被検物表面の三次元形状を求めるように構成されている。   In such an apparatus, for example, a projection pattern consisting of a fringe pattern is projected onto the surface of a test object (measuring object), and a fringe pattern projected onto the test object from an angle different from the projection direction is imaged. The phase distribution of the fringe pattern is calculated using the surveying principle or the like, and the three-dimensional shape of the surface of the test object is obtained.

その構成例を図6に示しており、光源51からの光が縞模様の投影パターンマスク52および投影レンズ53を通して被検物54の表面に投影される。被検物54の表面に投影された投影パターンマスク52の縞模様は、被検物54の表面三次元形状に応じて変形され、このように変形された被検物54の表面のパターンを、投影方向と異なる角度から撮像レンズ55を介して撮像装置(例えば、CCDセンサ)により撮像されて、演算処理装置57に送られ、ここで撮像画像データの演算処理が行われる。演算処理装置57においては、このように撮像された被検物表面の撮像画像データを三角測量の原理等を用いて縞パターンの位相分布を算出し、被検物表面の三次元形状を求める演算処理が行われる。
特開2000−9444号公報
An example of the configuration is shown in FIG. 6, and the light from the light source 51 is projected onto the surface of the test object 54 through the projection pattern mask 52 and the projection lens 53 having a stripe pattern. The stripe pattern of the projection pattern mask 52 projected on the surface of the test object 54 is deformed according to the three-dimensional shape of the surface of the test object 54, and the pattern of the surface of the test object 54 thus deformed An image is picked up by an image pickup device (for example, a CCD sensor) through an image pickup lens 55 from an angle different from the projection direction, and sent to the arithmetic processing device 57, where the picked-up image data is processed. In the arithmetic processing unit 57, the phase distribution of the fringe pattern is calculated using the imaged image data of the surface of the object thus imaged using the principle of triangulation, etc., and the three-dimensional shape of the surface of the object is calculated. Processing is performed.
JP 2000-9444 A

しかしながら、このような形状測定方法においては、被検物の表面が金属表面等の光沢面である場合、被検物の形状によっては、他の面に投影されたパターン像が多重反射を起こして、本来測定される面のパターン像に映りこみ、測定精度が低下するおそれがあった。   However, in such a shape measurement method, when the surface of the test object is a glossy surface such as a metal surface, the pattern image projected on the other surface may cause multiple reflections depending on the shape of the test object. However, there is a possibility that the measurement accuracy is lowered due to reflection in the pattern image of the surface to be originally measured.

本発明は、このような問題に鑑みてなされたものであり、多重反射の影響を低減して測定精度を向上させた形状測定方法および、これが記憶された記憶媒体並びに形状測定装置を提供することを目的とする。   The present invention has been made in view of such problems, and provides a shape measuring method in which the influence of multiple reflections is reduced and measurement accuracy is improved, and a storage medium storing the shape and a shape measuring apparatus. With the goal.

このような目的達成のため、本発明に係る形状測定方法は、所定の投影パターンを被検物に投影するパターン投影部と、前記パターン投影部により前記投影パターンが投影された前記被検物を撮像する撮像部とを備え、前記撮像部により撮像された前記被検物の画像に基づいて前記被検物の三次元形状を測定する形状測定装置を用いた形状測定方法であって、前記被検物の表面で多重反射して前記撮像される前記投影パターンの一部を減光もしくは消光させる設定を行う第1のステップと、前記パターン投影部により前記第1のステップで前記減光もしくは消光させた前記投影パターンを前記被検物に投影するとともに、前記減光もしくは消光させた前記投影パターンが投影された前記被検物を前記撮像部により撮像し、前記減光もしくは消光させた前記投影パターンが投影された前記被検物の画像に基づいて、前記被検物の三次元形状を測定する第2のステップとを有している。   In order to achieve such an object, a shape measuring method according to the present invention includes a pattern projecting unit that projects a predetermined projection pattern onto a test object, and the test object on which the projection pattern is projected by the pattern projecting unit. A shape measuring method using a shape measuring device that measures a three-dimensional shape of the test object based on an image of the test object imaged by the imaging unit, A first step of performing a setting for dimming or extinguishing a part of the projected pattern to be imaged by multiple reflection on the surface of the specimen; and the dimming or extinction in the first step by the pattern projection unit The projected pattern is projected onto the test object, and the test object on which the projection pattern that has been dimmed or extinguished is imaged by the imaging unit, and the dimming or extinction is performed. Wherein the projection pattern is is projected based on the image of the object, and a second step of measuring the three-dimensional shape of the test object.

なお、上述の発明において、前記投影パターンは周期的な縞模様を有しており、前記第1のステップが、前記パターン投影部により、前記縞模様の周期が互いに異なる複数種の前記投影パターンを投影する第1のサブステップと、前記撮像部により、前記投影パターンが投影された前記被検物を前記複数種の前記投影パターン毎に撮像する第2のサブステップと、前記第2のサブステップで前記複数種の前記投影パターン毎に撮像した前記被検物の画像情報に基づいて、前記被検物の表面において前記多重反射が生じる位置を算出する第3のサブステップと、前記第3のサブステップで算出した前記多重反射が生じる位置に基づいて、前記投影パターンの一部を減光もしくは消光させる設定を行う第4のサブステップとを有していることが好ましい。   In the above-described invention, the projection pattern has a periodic striped pattern, and the first step generates a plurality of types of the projected patterns having different periods of the striped pattern by the pattern projection unit. A first sub-step of projecting, a second sub-step of imaging the test object onto which the projection pattern is projected, for each of the plurality of types of projection patterns by the imaging unit; and the second sub-step A third sub-step for calculating a position at which the multiple reflection occurs on the surface of the test object based on image information of the test object imaged for each of the plurality of types of the projection patterns; And a fourth substep for performing a setting for dimming or extinguishing a part of the projection pattern based on the position where the multiple reflection occurs calculated in the substep. Arbitrariness.

また、上述の発明では、前記第4のサブステップにおいて、前記多重反射が生じる位置から光線追跡を行うことにより、前記投影パターンにおける前記減光もしくは消光させる位置を特定することが好ましい。   In the above-described invention, it is preferable that in the fourth sub-step, the position where the light is reduced or extinguished in the projection pattern is specified by performing ray tracing from the position where the multiple reflection occurs.

また、本発明に係る記憶媒体は、上述の発明に係る形状測定方法が記憶されていることを特徴とする。   A storage medium according to the present invention stores the shape measuring method according to the above-described invention.

また、本発明に係る形状測定装置は、上述の発明に係る記憶媒体を備えることを特徴とする。   The shape measuring apparatus according to the present invention includes the storage medium according to the above-described invention.

本発明によれば、多重反射の影響を低減して測定精度を向上させることができる。   According to the present invention, it is possible to improve the measurement accuracy by reducing the influence of multiple reflection.

以下、本発明の好ましい実施形態について説明する。本実施形態に係る形状測定方法が用いられる三次元形状測定装置の概略構成を図1に示しており、まず、この形状測定装置について、図1を参照しながら説明する。なお、図1において、図1(a)および図1(b)にそれぞれ形状測定装置Mを示しているが、これは同一のものであり、説明の便宜上、投影パターンマスク2に等間隔の縞模様を有する投影パターンPT1が形成されたものを図1(a)に示し、投影パターンマスク2に縞模様(投影パターンPT1)の一部を消光(もしくは減光)させた投影パターンPT2が形成されたものを図1(b)に示している。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 shows a schematic configuration of a three-dimensional shape measuring apparatus in which the shape measuring method according to the present embodiment is used. First, the shape measuring apparatus will be described with reference to FIG. In FIG. 1, the shape measuring apparatus M is shown in FIGS. 1 (a) and 1 (b). However, this is the same, and for the sake of convenience of description, the projection pattern mask 2 is striped at equal intervals. A projection pattern PT1 having a pattern is shown in FIG. 1A, and a projection pattern PT2 is formed by quenching (or dimming) a part of a striped pattern (projection pattern PT1) on the projection pattern mask 2. This is shown in FIG.

この形状測定装置Mは、光源1と、光源1からの光に縞模様を与えるための投影パターンマスク2と、投影パターンマスク2を通過した光源1からの光を被検物10の表面に投影させる投影レンズ3とからなるパターン投影部MAと、被検物10からの反射光を撮像レンズ6を介して撮像する撮像装置7からなる撮像光学系MBとを有して構成される。   The shape measuring device M projects a light source 1, a projection pattern mask 2 for giving a stripe pattern to the light from the light source 1, and light from the light source 1 that has passed through the projection pattern mask 2 onto the surface of the test object 10. The pattern projection unit MA including the projection lens 3 to be imaged and the imaging optical system MB including the imaging device 7 that captures the reflected light from the test object 10 via the imaging lens 6 are configured.

パターン投影部MAにおいて、投影パターンマスク2は、液晶素子等により構成され、液晶素子と電気的に接続された表示制御部8からの制御信号を受けて、任意の形状、透過率、およびピッチのパターン(例えば、輝度分布が正弦波関数となる周期的な縞模様パターンPT1)を形成することができるようになっている。これにより、光源1からの光をこの投影パターンマスク2に通過させ、投影レンズ3により集光させることで、投影パターンマスク2により形成された所望の投影パターンPT1を被検物10の表面に投影させることができる。   In the pattern projection unit MA, the projection pattern mask 2 is composed of a liquid crystal element or the like, receives a control signal from the display control unit 8 electrically connected to the liquid crystal element, and has an arbitrary shape, transmittance, and pitch. A pattern (for example, a periodic striped pattern PT1 whose luminance distribution is a sine wave function) can be formed. As a result, the light from the light source 1 passes through the projection pattern mask 2 and is condensed by the projection lens 3, thereby projecting a desired projection pattern PT1 formed by the projection pattern mask 2 onto the surface of the test object 10. Can be made.

撮像光学系MBにおいて、撮像装置7は、被検物10からの光を受けて被検物10を撮像するCCDカメラ等から構成され、被検物10で反射した投影パターンPT1の像を撮像できるようになっている。また、撮像装置7により撮像された被検物10の画像データは、演算処理装置9に送られ、ここで所定の画像演算処理がなされて被検物10の表面の高さが算出され、被検物10の三次元形状(表面形状)が求められる。   In the imaging optical system MB, the imaging device 7 is composed of a CCD camera or the like that receives light from the test object 10 and images the test object 10, and can capture an image of the projection pattern PT1 reflected by the test object 10. It is like that. Further, the image data of the test object 10 imaged by the imaging device 7 is sent to the arithmetic processing device 9, where predetermined image calculation processing is performed to calculate the height of the surface of the test object 10, and The three-dimensional shape (surface shape) of the specimen 10 is obtained.

次に、以上のように構成された形状測定装置Mによる被検物10の形状測定方法について、図2に示すフローチャートを参照しながら以下に説明する。なお、本形状測定方法(プログラム)は、演算処理装置9内の記憶媒体に記憶されている。まず、ステップS101において、図1(a)に示すように、パターン投影部MAにより縞模様の投影パターンPT1(正弦波状の縞模様パターン)を被検物10に投影し、投影パターンPT1が投影された被検物10を撮像部MBにより撮像する。このとき、光源1からの光が投影パターンマスク2および投影レンズ3を介して被検物10に照射され、被検物10からの反射光が撮像レンズ6を介して撮像素子7で結像し、撮像素子7により投影パターンPT1が投影された被検物10の像が撮像されて被検物10の測定画像が取得される。   Next, the shape measuring method of the test object 10 by the shape measuring apparatus M configured as described above will be described below with reference to the flowchart shown in FIG. The shape measuring method (program) is stored in a storage medium in the arithmetic processing unit 9. First, in step S101, as shown in FIG. 1A, the pattern projection unit MA projects a striped projection pattern PT1 (sinusoidal striped pattern) onto the test object 10, and the projection pattern PT1 is projected. The detected object 10 is imaged by the imaging unit MB. At this time, the light from the light source 1 is irradiated onto the test object 10 via the projection pattern mask 2 and the projection lens 3, and the reflected light from the test object 10 forms an image on the image sensor 7 via the imaging lens 6. The image of the test object 10 onto which the projection pattern PT1 is projected is picked up by the image sensor 7 and a measurement image of the test object 10 is acquired.

このようにして得られた被検物10の測定画像データは、撮像素子7から演算処理装置9に送られる。なお、本実施形態においては、表示制御部8および投影パターンマスク2により、縞模様の周期(ピッチ)が互いに異なる2種類の投影パターンPT1を投影し、各周期(ピッチ)の投影パターンPT1毎に、パターン投影された被検物10の像を撮像部MBにより撮像する。   The measurement image data of the test object 10 obtained in this way is sent from the image sensor 7 to the arithmetic processing device 9. In the present embodiment, the display control unit 8 and the projection pattern mask 2 project two types of projection patterns PT1 having different fringe periods (pitch), and each projection pattern PT1 in each period (pitch). Then, the image of the test object 10 on which the pattern is projected is captured by the imaging unit MB.

また、本実施形態では、位相シフト法により被検物10に投影されたパターンの位相を求めるため、表示制御部8および投影パターンマスク2により、位相を変えた3種類の投影パターンPT1について、パターン投影された被検物10の像を撮像する。このとき、位相接続のため、撮像部MBによる各位相での投影パターンPT1の撮像は、表示制御部8および投影パターンマスク2により必要に応じて、さらに縞模様の周期(ピッチ)を変えて複数回行われ、一組の測定画像データ群が取得される。   Further, in this embodiment, in order to obtain the phase of the pattern projected on the test object 10 by the phase shift method, the pattern of three types of projection patterns PT1 whose phases are changed by the display control unit 8 and the projection pattern mask 2 are used. An image of the projected object 10 is captured. At this time, due to the phase connection, the image pickup unit MB can pick up the projection pattern PT1 at each phase by changing the period (pitch) of the striped pattern as required by the display control unit 8 and the projection pattern mask 2. It is performed once, and a set of measurement image data groups is acquired.

このようにして測定画像データが送られると、ステップS102において、演算処理装置9で所定の演算処理を行うことにより、ステップS101で撮像された画像データに基づいて、三角測量の原理を用いて被検物10の表面の高さを算出し、被検物10の三次元形状(表面形状)を測定する。このとき、縞模様の周期(ピッチ)が互いに異なる2種類の投影パターンPT1に基づいてそれぞれ、(2種類の)被検物10の表面の高さを算出し、被検物10の三次元形状を測定する。   When the measurement image data is sent in this way, in step S102, the arithmetic processing unit 9 performs a predetermined arithmetic process, and based on the image data picked up in step S101, the target is measured using the principle of triangulation. The height of the surface of the specimen 10 is calculated, and the three-dimensional shape (surface shape) of the specimen 10 is measured. At this time, the height of the surface of the test object 10 (two types) is calculated based on two types of projection patterns PT1 having different stripe pattern periods (pitch), and the three-dimensional shape of the test object 10 is calculated. Measure.

次に、ステップS103において、2種類の投影パターンPT1に基づいてそれぞれ算出した被検物10の表面高さより、被検物10の表面において多重反射が生じる位置を算出し推定する。   Next, in step S103, a position where multiple reflection occurs on the surface of the test object 10 is calculated and estimated from the surface height of the test object 10 calculated based on the two types of projection patterns PT1.

ここで、被検物10からの反射光が乱反射等により多重反射を起こす場合を考える。被検物10の表面が光沢面であると、図1(a)に示すように、多重反射を起こした投影パターンの一部PTaが被検物10の像に映りこむことがある。被検物10表面の反射率を考慮すると、撮像部MBで検出される多重反射光は、せいぜい二重反射光までであり、撮像部MBで二重反射光を検出するものと仮定する。パターン投影部MAからの光が被検物10で二重反射を起こして撮像部MBに達する様子を、図3の破線で示しており、多重反射(二重反射)による映りこみが生じる場合とは、パターン投影部MAからの光が被検物10表面の点P2で反射した後、さらに点P1で反射して撮像部MBに達する場合と考えることができる。なお、パターン投影部MAからの光が被検物10で二重反射を起こして映りこみが生じる一例を、図4に示す。このような映りこみが生じる点の輝度Iは、測定すべき点P1からの反射光の輝度の振幅をaとし、多重反射(二重反射)を生じさせる点P2からの反射光の輝度の振幅をbとすると、次の条件式(1)で表すことができる。   Here, consider a case where the reflected light from the test object 10 causes multiple reflection due to irregular reflection or the like. When the surface of the test object 10 is a glossy surface, as shown in FIG. 1A, a part PTa of the projection pattern that causes multiple reflection may be reflected in the image of the test object 10. Considering the reflectance of the surface of the test object 10, it is assumed that the multiple reflected light detected by the imaging unit MB is at most up to double reflected light, and the double reflected light is detected by the imaging unit MB. The manner in which light from the pattern projection unit MA causes double reflection in the test object 10 and reaches the imaging unit MB is indicated by a broken line in FIG. 3, and a case where reflection due to multiple reflection (double reflection) occurs. Can be considered as a case where the light from the pattern projection unit MA is reflected at the point P2 on the surface of the test object 10 and then reflected at the point P1 to reach the imaging unit MB. FIG. 4 shows an example in which the light from the pattern projection unit MA causes double reflection at the test object 10 to cause reflection. The luminance I at the point where such reflection occurs is the amplitude of the luminance of the reflected light from the point P1 to be measured, and the amplitude of the luminance of the reflected light from the point P2 causing multiple reflection (double reflection). Can be expressed by the following conditional expression (1).

I=a×sin(θ0+θs+θp1)+b×sin(θ0+θs+θp2) …(1)   I = a × sin (θ0 + θs + θp1) + b × sin (θ0 + θs + θp2) (1)

ここで、条件式(1)の第1項は点P1の投影パターンPT1による輝度を、第2項は点P2から点P1への映りこみによる輝度をそれぞれ示している。また、θ0は初期位相、θsは位相シフト法のための位相、θp1は点P1の三次元座標による位相であり、条件式(1)の第1項、すなわち点P1での位相は、θ0、θs、およびθp1の和で表すことができる。さらに、θp2は点P2の三次元座標による位相であり、条件式(1)の第2項、すなわち点P2での位相は、θ0、θs、およびθp2の和で表すことができる。   Here, the first term of the conditional expression (1) represents the luminance due to the projection pattern PT1 at the point P1, and the second term represents the luminance due to the reflection from the point P2 to the point P1. Further, θ0 is an initial phase, θs is a phase for the phase shift method, θp1 is a phase based on the three-dimensional coordinates of the point P1, and the first term of the conditional expression (1), that is, the phase at the point P1 is θ0, It can be expressed as the sum of θs and θp1. Furthermore, θp2 is the phase of the point P2 in three-dimensional coordinates, and the second term of the conditional expression (1), that is, the phase at the point P2 can be expressed by the sum of θ0, θs, and θp2.

これからわかるように、点P1と点P2との位相差は、θp1−θp2であり、このθp1−θp2が変化すれば、形状測定結果が変化することになる。θp1−θp2の値は、縞模様の周期(ピッチ)によって変化するので、これを利用して映りこみの有無を判断することができる。但し、上式はパターンの位相変化方向にのみ成立するため、映りこみの方向が位相変化方向に対して直交している場合には映りこみを検出できない。従って、望ましくは、互いに直交する2方向の位相変化方向について確認することが好ましい。   As can be seen, the phase difference between the point P1 and the point P2 is θp1−θp2, and when this θp1−θp2 changes, the shape measurement result changes. Since the value of θp1−θp2 varies depending on the period (pitch) of the striped pattern, the presence or absence of reflection can be determined using this. However, since the above formula is established only in the phase change direction of the pattern, the reflection cannot be detected when the direction of the reflection is orthogonal to the phase change direction. Therefore, it is preferable to confirm the two phase change directions orthogonal to each other.

ところで、例えば、基準となる被測定面で縞模様の周期(ピッチ)が5mm(0.2本/mm)となる投影パターンPT1を投影したとき、映りこみの位相が丁度1本分(5mm)だけずれているとすれば、この点の三次元座標(被検物10の表面の高さ)を騙されることなく算出することができる。次に、縞模様の周期(ピッチ)が3.3mm(0.3本/mm)となる投影パターンPT1を投影すると、映りこみの位相が約1.5本分(≒5mm/3.3mm)だけずれて重なることになるので、3位相間の輝度のバランスが崩れ、その分だけ三次元座標が騙されて算出されてしまう。   By the way, for example, when a projection pattern PT1 having a stripe pattern period (pitch) of 5 mm (0.2 lines / mm) is projected on the reference measurement surface, the phase of the reflection is exactly one line (5 mm). If it is deviated only by this, the three-dimensional coordinates of this point (the height of the surface of the test object 10) can be calculated without being deceived. Next, when a projection pattern PT1 having a stripe pattern period (pitch) of 3.3 mm (0.3 lines / mm) is projected, the phase of the reflection is about 1.5 lines (≈5 mm / 3.3 mm). Therefore, the luminance balance between the three phases is lost, and the three-dimensional coordinates are deviated and calculated accordingly.

点P1と点P2との位相差が2π(360°)となるような縞模様のピッチを1とし、正規の投影パターンに対する映りこみの割合を0.1として、被検物10の表面高さの測定誤差であるZ検出ずれを試算したのが図5であり、縞模様のピッチ(周期)を変化させたときの形状データ(表面高さ)を比較することにより、データの乖離の大きい部分から、映りこみが生じる部分、すなわち被検物10の表面において多重反射が生じる位置を推定(算出)することができる。なお、図5において、Z検出ずれは、点P2−点P1間の距離(位相差)に対する割合(%)で示している。   The surface height of the test object 10 is set such that the pitch of the stripe pattern in which the phase difference between the point P1 and the point P2 is 2π (360 °) is 1, and the ratio of reflection to the normal projection pattern is 0.1. FIG. 5 is a trial calculation of the Z detection deviation, which is a measurement error of FIG. 5, and a portion with a large data divergence is obtained by comparing shape data (surface height) when the pitch (period) of the striped pattern is changed. From this, it is possible to estimate (calculate) a position where reflection occurs, that is, a position where multiple reflection occurs on the surface of the test object 10. In FIG. 5, the Z detection deviation is shown as a ratio (%) to the distance (phase difference) between the points P2 and P1.

このように多重反射が生じる位置を推定すると、次のステップS104において、多重反射が生じる位置から光線追跡を行うにより、投影パターンPT1における映りこみ(多重反射)の原因となる部分を特定(推定)し、その部分を減光(もしくは消光)させる設定を行う。そして、図1(b)に示すように、パターン投影部MAにより、映りこみの原因となる部分を減光(もしくは消光)させた投影パターンPT2を被検物10に投影し、投影パターンPT2が投影された被検物10を撮像部MBにより撮像する。   When the position at which multiple reflection occurs is estimated in this way, in the next step S104, the part that causes reflection (multiple reflection) in the projection pattern PT1 is identified (estimated) by performing ray tracing from the position at which multiple reflection occurs. Then, a setting is made to dimm (or extinguish) that portion. Then, as shown in FIG. 1B, the pattern projection unit MA projects the projection pattern PT2 in which the portion causing the reflection is dimmed (or quenched) onto the test object 10, and the projection pattern PT2 is obtained. The projected object 10 is imaged by the imaging unit MB.

このとき、光源1からの光が投影パターンマスク2および投影レンズ3を介して被検物10に照射され、被検物10からの反射光が撮像レンズ6を介して撮像素子7で結像し、撮像素子7により投影パターンPT2が投影された被検物10の像が撮像されて被検物10の測定画像が取得される。投影パターンPT2が投影された被検物10の像は、映りこみのない、多重反射の影響が排除されたものとなる。   At this time, the light from the light source 1 is irradiated onto the test object 10 via the projection pattern mask 2 and the projection lens 3, and the reflected light from the test object 10 forms an image on the image sensor 7 via the imaging lens 6. The image of the test object 10 onto which the projection pattern PT2 is projected is picked up by the image sensor 7 and a measurement image of the test object 10 is acquired. The image of the test object 10 onto which the projection pattern PT2 has been projected is one that is not reflected and that is not affected by multiple reflections.

このようにして得られた被検物10の測定画像データは、撮像素子7から演算処理装置9に送られる。なお、位相接続のため、撮像部MBによる投影パターンPT2の撮像は、表示制御部8および投影パターンマスク2により縞模様の周期(ピッチ)を変えて複数回行われ、一組の測定画像データ群が取得される。   The measurement image data of the test object 10 obtained in this way is sent from the image sensor 7 to the arithmetic processing device 9. Note that because of the phase connection, the imaging of the projection pattern PT2 by the imaging unit MB is performed a plurality of times by changing the period (pitch) of the striped pattern by the display control unit 8 and the projection pattern mask 2, and a set of measurement image data groups Is acquired.

このようにして測定画像データが送られると、ステップS105において、演算処理装置9で所定の演算処理を行うことにより、ステップS104で撮像された画像データに基づいて、三角測量の原理を用いて被検物10の表面の高さを算出し、被検物10の三次元形状(表面形状)を測定する。なおこのとき、投影パターンPT2において減光(もしくは消光)させた部分(すなわち、映りこみの原因となる部分)については、被検物10の三次元形状を測定することができないが、ステップS102において当該部分の三次元形状を測定しているため、ステップS102で算出した当該部分の三次元形状データを用いて補完を行う。   When the measurement image data is sent in this way, in step S105, the arithmetic processing unit 9 performs a predetermined arithmetic process, and based on the image data picked up in step S104, the object is measured using the principle of triangulation. The height of the surface of the specimen 10 is calculated, and the three-dimensional shape (surface shape) of the specimen 10 is measured. At this time, it is not possible to measure the three-dimensional shape of the test object 10 for the portion of the projection pattern PT2 that is dimmed (or extinguished) (that is, the portion that causes reflection), but in step S102 Since the three-dimensional shape of the part is measured, complementation is performed using the three-dimensional shape data of the part calculated in step S102.

このように、本実施形態の形状測定方法によれば、映りこみ(多重反射)の原因となる部分を減光(もしくは消光)させた投影パターンPT2が投影された被検物10の画像に基づいて、被検物10の三次元形状を測定するステップ(S105)を有しているため、多重反射の影響を低減して測定精度を向上させることが可能になる。   Thus, according to the shape measurement method of the present embodiment, based on the image of the test object 10 on which the projection pattern PT2 in which the portion causing the reflection (multiple reflection) is dimmed (or quenched) is projected. In addition, since it includes the step (S105) of measuring the three-dimensional shape of the test object 10, it is possible to reduce the influence of multiple reflections and improve the measurement accuracy.

また、縞模様の周期(ピッチ)が互いに異なる2種類の投影パターン毎に撮像した被検物10の画像情報に基づいて、被検物10の表面において多重反射が生じる位置を算出することで、比較的容易に多重反射が生じる位置を推定することができる。   Further, by calculating the position at which multiple reflection occurs on the surface of the test object 10 based on the image information of the test object 10 captured for each of two types of projection patterns having different stripe pattern periods (pitch), It is possible to estimate the position where multiple reflection occurs relatively easily.

またこのとき、多重反射が生じる位置から光線追跡を行うことにより、投影パターンにおける減光(もしくは消光)させる位置を特定することで、映りこみ(多重反射)の原因となる部分を減光(もしくは消光)させた投影パターンPT2をより確実に形成することができる。   At this time, by performing ray tracing from the position where multiple reflection occurs, by specifying the position to be dimmed (or extinguished) in the projection pattern, the portion causing reflection (multiple reflection) is dimmed (or The projection pattern PT2 that has been extinguished can be more reliably formed.

なお、上述の実施形態において、縞模様の周期(ピッチ)が互いに異なる2種類の投影パターン毎に撮像した被検物10の画像情報に基づいて、被検物10の表面において多重反射が生じる位置を算出し、多重反射が生じる位置から光線追跡を行うことにより、投影パターンにおける減光(もしくは消光)させる位置を特定しているが、これに限られるものではなく、被検物の設計データから光線追跡を試算することにより、投影パターンにおける減光(もしくは消光)させる位置を特定するようにしてもよい。このようにすれば、2種類の投影パターンを被検物に投影する必要がなくなるため、測定時間を短縮することが可能になる。   In the above-described embodiment, a position where multiple reflection occurs on the surface of the test object 10 based on the image information of the test object 10 captured for each of two types of projection patterns having different stripe pattern periods (pitch). The position to be dimmed (or extinguished) in the projection pattern is specified by performing ray tracing from the position where multiple reflection occurs, but is not limited to this, and from the design data of the test object A position to be dimmed (or extinguished) in the projection pattern may be specified by calculating the ray tracing. In this way, it is not necessary to project two types of projection patterns onto the test object, so that the measurement time can be shortened.

また、本実施形態ではプログラムを演算処理装置9内に記憶したが、演算処理装置9とは別にRAM等の書き換え可能な記憶媒体に記憶してもよい。   In the present embodiment, the program is stored in the arithmetic processing unit 9, but may be stored in a rewritable storage medium such as a RAM separately from the arithmetic processing unit 9.

本発明に係る形状測定方法に用いられる形状測定装置の概略構成図である。It is a schematic block diagram of the shape measuring apparatus used for the shape measuring method which concerns on this invention. 本発明に係る形状測定方法を示すフローチャートである。It is a flowchart which shows the shape measuring method which concerns on this invention. 多重反射の様子を示す模式図である。It is a schematic diagram which shows the mode of multiple reflection. 映りこみの一例を示す模式図である。It is a schematic diagram which shows an example of reflection. 縞模様のピッチとZ検出ずれとの関係を示すグラフである。It is a graph which shows the relationship between the pitch of a striped pattern, and Z detection shift. 従来における形状測定装置の概略構成図である。It is a schematic block diagram of the conventional shape measuring apparatus.

符号の説明Explanation of symbols

M 形状測定装置
MA パターン投影部 MB 撮像部
PT1 投影パターン PT2 投影パターン
10 被検物
M shape measuring device MA pattern projection unit MB imaging unit PT1 projection pattern PT2 projection pattern 10 test object

Claims (5)

所定の投影パターンを被検物に投影するパターン投影部と、前記パターン投影部により前記投影パターンが投影された前記被検物を撮像する撮像部とを備え、前記撮像部により撮像された前記被検物の画像に基づいて前記被検物の三次元形状を測定する形状測定装置を用いた形状測定方法であって、
前記被検物の表面で多重反射して前記撮像される前記投影パターンの一部を減光もしくは消光させる設定を行う第1のステップと、
前記パターン投影部により前記第1のステップで前記減光もしくは消光させた前記投影パターンを前記被検物に投影するとともに、前記減光もしくは消光させた前記投影パターンが投影された前記被検物を前記撮像部により撮像し、前記減光もしくは消光させた前記投影パターンが投影された前記被検物の画像に基づいて、前記被検物の三次元形状を測定する第2のステップとを有していることを特徴とする形状測定方法。
A pattern projection unit that projects a predetermined projection pattern onto the test object; and an imaging unit that images the test object on which the projection pattern is projected by the pattern projection unit, and the image captured by the imaging unit. A shape measuring method using a shape measuring device for measuring a three-dimensional shape of the test object based on an image of the test object,
A first step of performing a setting for dimming or quenching a part of the projected pattern to be imaged by multiple reflection on the surface of the test object;
Projecting the projection pattern that has been dimmed or extinguished in the first step by the pattern projection unit onto the test object, and the test object on which the projection pattern that has been dimmed or quenched has been projected. A second step of measuring a three-dimensional shape of the test object on the basis of an image of the test object on which the projection pattern that has been imaged by the imaging unit and reduced or extinguished is projected. A shape measuring method characterized by comprising:
前記投影パターンは周期的な縞模様を有しており、
前記第1のステップが、
前記パターン投影部により、前記縞模様の周期が互いに異なる複数種の前記投影パターンを投影する第1のサブステップと、
前記撮像部により、前記投影パターンが投影された前記被検物を前記複数種の前記投影パターン毎に撮像する第2のサブステップと、
前記第2のサブステップで前記複数種の前記投影パターン毎に撮像した前記被検物の画像情報に基づいて、前記被検物の表面において前記多重反射が生じる位置を算出する第3のサブステップと、
前記第3のサブステップで算出した前記多重反射が生じる位置に基づいて、前記投影パターンの一部を減光もしくは消光させる設定を行う第4のサブステップとを有していることを特徴とする請求項1に記載の形状測定方法。
The projection pattern has a periodic stripe pattern,
The first step comprises:
A first sub-step of projecting a plurality of types of the projection patterns having different stripe periods from each other by the pattern projection unit;
A second sub-step of imaging the object on which the projection pattern is projected by the imaging unit for each of the plurality of types of the projection patterns;
A third sub-step for calculating a position where the multiple reflection occurs on the surface of the test object based on image information of the test object imaged for each of the plurality of types of projection patterns in the second sub-step. When,
And a fourth sub-step for performing a setting for dimming or extinguishing a part of the projection pattern based on the position where the multiple reflection occurs calculated in the third sub-step. The shape measuring method according to claim 1.
前記第4のサブステップにおいて、前記多重反射が生じる位置から光線追跡を行うことにより、前記投影パターンにおける前記減光もしくは消光させる位置を特定することを特徴とする請求項2に記載の形状測定方法。   3. The shape measuring method according to claim 2, wherein, in the fourth sub-step, a position to be dimmed or extinguished is specified in the projection pattern by performing ray tracing from a position where the multiple reflection occurs. . 請求項1から請求項3のうちいずれか一項に記載の形状測定方法が記憶されていることを特徴とする記憶媒体。   A storage medium in which the shape measuring method according to any one of claims 1 to 3 is stored. 請求項4に記載の記憶媒体を備えることを特徴とする形状測定装置。   A shape measuring apparatus comprising the storage medium according to claim 4.
JP2007156246A 2007-06-13 2007-06-13 Method and apparatus for shape measurement and storage medium Pending JP2008309551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156246A JP2008309551A (en) 2007-06-13 2007-06-13 Method and apparatus for shape measurement and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156246A JP2008309551A (en) 2007-06-13 2007-06-13 Method and apparatus for shape measurement and storage medium

Publications (1)

Publication Number Publication Date
JP2008309551A true JP2008309551A (en) 2008-12-25

Family

ID=40237294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156246A Pending JP2008309551A (en) 2007-06-13 2007-06-13 Method and apparatus for shape measurement and storage medium

Country Status (1)

Country Link
JP (1) JP2008309551A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236917A (en) * 2008-03-25 2009-10-15 Steinbichler Optotechnik Gmbh Method and apparatus for determining 3d coordinates of object
CN103673925A (en) * 2012-09-19 2014-03-26 佳能株式会社 Information processing apparatus and method for measuring target object
JP2014059261A (en) * 2012-09-19 2014-04-03 Canon Inc Distance measuring device and method
JP2014115109A (en) * 2012-12-06 2014-06-26 Canon Inc Device and method for measuring distance
CN105783784A (en) * 2015-01-13 2016-07-20 欧姆龙株式会社 Inspection device and control method of the same
WO2018163530A1 (en) 2017-03-07 2018-09-13 オムロン株式会社 Three-dimensional shape measurement device, three-dimensional shape measurement method, and program
WO2018163537A1 (en) 2017-03-08 2018-09-13 オムロン株式会社 Interreflection detection device, interreflection detection method, and program
WO2018163529A1 (en) 2017-03-08 2018-09-13 オムロン株式会社 Three-dimensional-shape measurement device, three-dimensional-shape measurement method, and program
CN109099860A (en) * 2017-06-20 2018-12-28 株式会社三丰 3 dimensional coil geometry measuring device and 3 dimensional coil geometry measurement method
JP2019073283A (en) * 2014-02-28 2019-05-16 アイシーエム エアポート テクニクス オーストラリア プロプライエタリー リミテッドICM Airport Technics Australia Pty Ltd Baggage processing station and system thereof
JP2020046229A (en) * 2018-09-14 2020-03-26 株式会社ミツトヨ Three-dimensional measuring device and three-dimensional measuring method
JP2021039131A (en) * 2014-06-11 2021-03-11 ソニー デプスセンシング ソリューションズ エスエー エヌブイ Tof camera system and method for measuring distance by system

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236917A (en) * 2008-03-25 2009-10-15 Steinbichler Optotechnik Gmbh Method and apparatus for determining 3d coordinates of object
CN103673925A (en) * 2012-09-19 2014-03-26 佳能株式会社 Information processing apparatus and method for measuring target object
JP2014059261A (en) * 2012-09-19 2014-04-03 Canon Inc Distance measuring device and method
US9857166B2 (en) 2012-09-19 2018-01-02 Canon Kabushiki Kaisha Information processing apparatus and method for measuring a target object
JP2014115109A (en) * 2012-12-06 2014-06-26 Canon Inc Device and method for measuring distance
US9835438B2 (en) 2012-12-06 2017-12-05 Canon Kabushiki Kaisha Distance measuring apparatus and method
JP2019073283A (en) * 2014-02-28 2019-05-16 アイシーエム エアポート テクニクス オーストラリア プロプライエタリー リミテッドICM Airport Technics Australia Pty Ltd Baggage processing station and system thereof
JP2021039131A (en) * 2014-06-11 2021-03-11 ソニー デプスセンシング ソリューションズ エスエー エヌブイ Tof camera system and method for measuring distance by system
JP7191921B2 (en) 2014-06-11 2022-12-19 ソニー デプスセンシング ソリューションズ エスエー エヌブイ TOF camera system and method for measuring distance with same
CN105783784A (en) * 2015-01-13 2016-07-20 欧姆龙株式会社 Inspection device and control method of the same
CN105783784B (en) * 2015-01-13 2019-12-13 欧姆龙株式会社 Inspection apparatus and control method of inspection apparatus
WO2018163530A1 (en) 2017-03-07 2018-09-13 オムロン株式会社 Three-dimensional shape measurement device, three-dimensional shape measurement method, and program
US11055863B2 (en) 2017-03-07 2021-07-06 Omron Corporation Three-dimensional shape measurement device, three-dimensional shape measurement method, and program
JP2018146449A (en) * 2017-03-07 2018-09-20 オムロン株式会社 Device and method for measuring three-dimensional shape
KR20190104367A (en) 2017-03-07 2019-09-09 오므론 가부시키가이샤 3D shape measuring device, 3D shape measuring method and program
CN110268223B (en) * 2017-03-07 2021-02-09 欧姆龙株式会社 Three-dimensional shape measurement device, three-dimensional shape measurement method, and non-transitory storage medium
CN110268223A (en) * 2017-03-07 2019-09-20 欧姆龙株式会社 Three-dimensional shape measuring device, three-dimensional shape measuring method and program
WO2018163537A1 (en) 2017-03-08 2018-09-13 オムロン株式会社 Interreflection detection device, interreflection detection method, and program
JP2018146476A (en) * 2017-03-08 2018-09-20 オムロン株式会社 Interreflection detection device, interreflection detection method, and program
CN110268222A (en) * 2017-03-08 2019-09-20 欧姆龙株式会社 Three-dimensional shape measuring device, three-dimensional shape measuring method and program
KR20190103271A (en) 2017-03-08 2019-09-04 오므론 가부시키가이샤 Cross reflection detection apparatus, cross reflection detection method and program
KR20190103270A (en) 2017-03-08 2019-09-04 오므론 가부시키가이샤 3D shape measuring device, 3D shape measuring method and program
WO2018163529A1 (en) 2017-03-08 2018-09-13 オムロン株式会社 Three-dimensional-shape measurement device, three-dimensional-shape measurement method, and program
CN110268222B (en) * 2017-03-08 2021-02-09 欧姆龙株式会社 Three-dimensional shape measuring device, three-dimensional shape measuring method, and storage medium
US11441896B2 (en) 2017-03-08 2022-09-13 Omron Corporation Inter-reflection detection apparatus and inter-reflection detection method
JP2018146477A (en) * 2017-03-08 2018-09-20 オムロン株式会社 Device and method for measuring three-dimensional shape
US10997738B2 (en) 2017-03-08 2021-05-04 Omron Corporation Three-dimensional-shape measurement device, three-dimensional-shape measurement method, and program
CN110234954A (en) * 2017-03-08 2019-09-13 欧姆龙株式会社 It is mutually reflected detection device, is mutually reflected detection method and program
CN109099860B (en) * 2017-06-20 2021-12-07 株式会社三丰 Three-dimensional geometry measuring device and three-dimensional geometry measuring method
CN109099860A (en) * 2017-06-20 2018-12-28 株式会社三丰 3 dimensional coil geometry measuring device and 3 dimensional coil geometry measurement method
JP2020046229A (en) * 2018-09-14 2020-03-26 株式会社ミツトヨ Three-dimensional measuring device and three-dimensional measuring method
JP7219034B2 (en) 2018-09-14 2023-02-07 株式会社ミツトヨ Three-dimensional shape measuring device and three-dimensional shape measuring method

Similar Documents

Publication Publication Date Title
JP2008309551A (en) Method and apparatus for shape measurement and storage medium
JP5055191B2 (en) Three-dimensional shape measuring method and apparatus
JP2009019941A (en) Shape measuring method
US10346963B2 (en) Point cloud merging from multiple cameras and sources in three-dimensional profilometry
JP5576726B2 (en) Three-dimensional measuring apparatus, three-dimensional measuring method, and program
JP5123522B2 (en) 3D measurement method and 3D shape measurement apparatus using the same
JP5016520B2 (en) Three-dimensional shape measuring method and apparatus
US9891043B2 (en) Profile measuring apparatus, structure manufacturing system, method for measuring profile, method for manufacturing structure, and non-transitory computer readable medium
JP6507653B2 (en) Inspection apparatus and control method of inspection apparatus
CN110268223B (en) Three-dimensional shape measurement device, three-dimensional shape measurement method, and non-transitory storage medium
US20150198716A1 (en) Sub-resolution optical detection
JPWO2020213101A1 (en) Defect inspection equipment and defect inspection method
JP2014115108A (en) Distance measuring device
JP4962852B2 (en) Shape measuring method and shape measuring apparatus
TW201641914A (en) Full-range image detecting system and method thereof
JP2012068176A (en) Three-dimensional shape measuring apparatus
WO2020012707A1 (en) Three-dimensional measurement device and method
JP2018116032A (en) Measurement device for measuring shape of target measurement object
JP7219034B2 (en) Three-dimensional shape measuring device and three-dimensional shape measuring method
JP2008170282A (en) Shape measuring device
JP2010133840A (en) Shape measuring apparatus and shape measuring method
JP2014194436A (en) Three-dimensional measurement device, three-dimensional measurement method and program
KR20200016991A (en) Amplitude and Phase Asymmetry Estimation in Imaging Technologies to Achieve High Accuracy in Overlay Metrology
JP7390239B2 (en) Three-dimensional shape measuring device and three-dimensional shape measuring method
CN109827607A (en) The scaling method and device of line-structured light weld seam tracking sensor