JP2010133840A - Shape measuring apparatus and shape measuring method - Google Patents

Shape measuring apparatus and shape measuring method Download PDF

Info

Publication number
JP2010133840A
JP2010133840A JP2008310497A JP2008310497A JP2010133840A JP 2010133840 A JP2010133840 A JP 2010133840A JP 2008310497 A JP2008310497 A JP 2008310497A JP 2008310497 A JP2008310497 A JP 2008310497A JP 2010133840 A JP2010133840 A JP 2010133840A
Authority
JP
Japan
Prior art keywords
beam splitter
imaging unit
light
shape measuring
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008310497A
Other languages
Japanese (ja)
Inventor
Yukitoshi Otani
幸利 大谷
Fumio Kobayashi
富美男 小林
Manabu Harada
学 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2008310497A priority Critical patent/JP2010133840A/en
Publication of JP2010133840A publication Critical patent/JP2010133840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape measuring apparatus and a shape measuring method capable of removing stray light for accurate shape measurement. <P>SOLUTION: The apparatus includes a pattern element 30 having a grid pattern, a projection for projecting the grid pattern to an object 60 to be measured via the pattern element 30 and a beam splitter 40, an imaging part 70 for imaging the grid pattern projected o the object 60 via the beam splitter 40, and a measuring part 82 for measuring a shape of the object 60 based on a contrast value of an image picked up by the imaging part 70. A 1/4 wavelength plate 50 is provided between the beam splitter 40 and the object 60. Projection light incident to the 1/4 wavelength plate 50 has linear polarization. The apparatus is constituted to cause only the linear polarization with its polarization direction orthogonal to the projection light to be incident to the imaging part 70. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、測定対象の形状を測定する形状測定装置及び形状測定方法に関する。   The present invention relates to a shape measuring apparatus and a shape measuring method for measuring the shape of a measurement target.

従来から、格子パターンを被測定対象に投影し、被測定対象上に投影された格子パターンにかかる画像のコントラストを検出して、基準位置から被測定対象までの距離を測定する形状測定装置が知られている。かかる技術として、例えば特開2007−155379号公報に開示される従来技術がある。
特開2007−155379号公報
2. Description of the Related Art Conventionally, a shape measuring device that measures a distance from a reference position to a measurement target by projecting a grid pattern onto the measurement target, detecting the contrast of the image applied to the grid pattern projected on the measurement target is known. It has been. As such a technique, for example, there is a conventional technique disclosed in Japanese Patent Application Laid-Open No. 2007-155379.
JP 2007-155379 A

しかしながら従来の形状測定装置では、光軸上又は光軸外の迷光によってノイズが発生し、形状測定の精度が低くなるといった問題点があった。   However, the conventional shape measuring apparatus has a problem that noise is generated by stray light on or off the optical axis, and the accuracy of the shape measurement is lowered.

本発明は、以上のような課題に鑑みてなされたものであり、その目的とするところは、迷光を除去して、精度の高い形状測定を行うことが可能な形状測定装置、及び形状測定方法を提供することにある。   The present invention has been made in view of the problems as described above, and an object of the present invention is to provide a shape measuring apparatus and a shape measuring method capable of performing highly accurate shape measurement by removing stray light. Is to provide.

(1)本発明の形状測定装置は、
格子パターンを有するパターン素子と、
前記パターン素子とビームスプリッタとを介して前記格子パターンを測定対象物に投影する投影部と、
前記測定対象物に投影された格子パターンを前記ビームスプリッタを介して撮像する撮像部と、
前記撮像部によって撮像された画像のコントラスト値に基づき前記測定対象物の形状を測定する測定部とを有し、
前記ビームスプリッタと前記測定対象物との間に1/4波長板を備え、
前記1/4波長板に入射させる投影光が直線偏光であり、前記投影光と偏光方向が直交する直線偏光のみを前記撮像部に入射させるように構成されることを特徴とする。
(1) The shape measuring apparatus of the present invention
A pattern element having a lattice pattern;
A projection unit that projects the grating pattern onto a measurement object via the pattern element and a beam splitter;
An imaging unit that images the grating pattern projected onto the measurement object via the beam splitter;
A measurement unit that measures the shape of the measurement object based on a contrast value of an image captured by the imaging unit;
A quarter wave plate is provided between the beam splitter and the measurement object,
The projection light incident on the quarter wavelength plate is linearly polarized light, and only linearly polarized light whose polarization direction is orthogonal to the projection light is incident on the imaging unit.

本発明において、直線偏光である投影光は、1/4波長板により円偏光になり測定対象物に投影される。そして測定対象物に反射した光(円偏光)は1/4波長板により投影光と偏光方向が直交する直線偏光になる。そして本発明では、投影光と偏光方向が直交する直線偏光のみを撮像部に入射させるように構成している。   In the present invention, the projection light that is linearly polarized light becomes circularly polarized light by the quarter wavelength plate and is projected onto the measurement object. Then, the light (circularly polarized light) reflected on the measurement object becomes linearly polarized light whose polarization direction is orthogonal to the projection light by the quarter wavelength plate. In the present invention, only linearly polarized light whose polarization direction is orthogonal to the projected light is configured to enter the imaging unit.

すなわち本発明によれば、投射光が測定対象物に反射した光のみを撮像することができ、投影レンズ表面を反射した光等の迷光を除去して、精度の高い形状測定を行うことができる。   That is, according to the present invention, it is possible to image only the light reflected from the measurement object by the projection light, and to remove the stray light such as the light reflected from the surface of the projection lens to perform highly accurate shape measurement. .

(2)また本発明に係る形状測定装置では、
前記ビームスプリッタが、偏光ビームスプリッタであることを特徴とする。
(2) In the shape measuring apparatus according to the present invention,
The beam splitter is a polarization beam splitter.

本発明によれば、投影光を直線偏光にすることができ、且つ投影光と偏光方向が直交する直線偏光のみを撮像部に入射させることができる。   According to the present invention, the projection light can be made into linearly polarized light, and only the linearly polarized light whose polarization direction is orthogonal to the projection light can be incident on the imaging unit.

(3)また本発明に係る形状測定装置では、
前記パターン素子が、液晶格子であることを特徴とする。
(3) In the shape measuring apparatus according to the present invention,
The pattern element is a liquid crystal lattice.

本発明によれば、格子パターンの格子ピッチや位相、強度分布を簡単に制御することができる。また本発明によれば、投射光を直線偏光にすることができる。   According to the present invention, the grating pitch, phase, and intensity distribution of the grating pattern can be easily controlled. According to the present invention, the projection light can be linearly polarized light.

(4)また本発明に係る形状測定装置では、
前記ビームスプリッタと前記撮像部との間に、前記投射光と偏光方向が直交する偏光板を備えることを特徴とする。
(4) In the shape measuring apparatus according to the present invention,
A polarizing plate having a polarization direction orthogonal to the projection light is provided between the beam splitter and the imaging unit.

本発明によれば、投影光と偏光方向が直交する直線偏光のみを撮像部に入射させることができる。   According to the present invention, only linearly polarized light whose polarization direction is orthogonal to the projection light can be incident on the imaging unit.

(5)また本発明に係る形状測定装置では、
前記パターン素子と前記ビームスプリッタとの間に第1の偏光板を備え、
前記ビームスプリッタと前記撮像部との間に、前記第1の偏光板と偏光方向が直交する第2の偏光板を備えることを特徴とする。
(5) In the shape measuring apparatus according to the present invention,
A first polarizing plate is provided between the pattern element and the beam splitter,
A second polarizing plate having a polarization direction orthogonal to the first polarizing plate is provided between the beam splitter and the imaging unit.

本発明によれば、投影光を直線偏光にすることができ、且つ投影光と偏光方向が直交する直線偏光のみを撮像部に入射させることができる。   According to the present invention, the projection light can be made into linearly polarized light, and only the linearly polarized light whose polarization direction is orthogonal to the projection light can be incident on the imaging unit.

(6)また本発明に係る形状測定装置では、
光源と前記パターン素子との間にコンデンサレンズを備え、
前記パターン素子と前記ビームスプリッタとの間に第1の投影レンズを備え、
前記ビームスプリッタと前記1/4波長板との間に第2の投影レンズを備え、
前記ビームスプリッタと前記撮像部との間に撮影レンズを備えることを特徴とする。
(6) In the shape measuring apparatus according to the present invention,
A condenser lens is provided between the light source and the pattern element,
A first projection lens provided between the pattern element and the beam splitter;
A second projection lens is provided between the beam splitter and the quarter-wave plate;
An imaging lens is provided between the beam splitter and the imaging unit.

(7)本発明の形状測定方法は、
格子パターンを有するパターン素子とビームスプリッタと1/4波長板とを介して前記格子パターンを測定対象物に投影するステップと、
前記測定対象物に投影された格子パターンを前記1/4波長板と前記ビームスプリッタとを介して撮像部によって撮像するステップと、
前記撮像部によって撮像された画像のコントラスト値に基づき前記測定対象物の形状を測定するステップとを含み、
前記1/4波長板に入射させる投影光が直線偏光であり、前記投影光と偏光方向が直交する直線偏光のみを前記撮像部に入射させることを特徴とする。
(7) The shape measuring method of the present invention includes:
Projecting the grating pattern onto a measurement object via a pattern element having a grating pattern, a beam splitter, and a quarter-wave plate;
Imaging the grating pattern projected on the measurement object by the imaging unit via the quarter-wave plate and the beam splitter;
Measuring the shape of the measurement object based on the contrast value of the image captured by the imaging unit,
Projection light incident on the quarter-wave plate is linearly polarized light, and only linearly polarized light whose polarization direction is orthogonal to the projection light is incident on the imaging unit.

本発明によれば、投射光が測定対象物に反射した光のみを撮像することができ、投影レンズ表面を反射した光等の迷光を除去して、精度の高い形状測定を行うことができる。   According to the present invention, it is possible to image only the light reflected from the measurement object by the projection light, and it is possible to remove the stray light such as the light reflected from the surface of the projection lens and perform highly accurate shape measurement.

以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。   Hereinafter, this embodiment will be described. In addition, this embodiment demonstrated below does not unduly limit the content of this invention described in the claim. In addition, all the configurations described in the present embodiment are not necessarily essential configuration requirements of the present invention.

図1は、本実施形態の形状測定装置の構成の一例を示す図である。   FIG. 1 is a diagram illustrating an example of the configuration of the shape measuring apparatus according to the present embodiment.

形状測定装置1は、投影系(投影部)を構成する光源10、コンデンサレンズ20、液晶格子30(パターン素子の一例)、第1の投影レンズ22、偏光ビームスプリッタ40(ビームスプリッタの一例)、第2の投影レンズ24、1/4波長板50と、観察系を構成する観察レンズ26、撮像部70と、制御装置80とを備える。   The shape measuring apparatus 1 includes a light source 10 constituting a projection system (projection unit), a condenser lens 20, a liquid crystal grating 30 (an example of a pattern element), a first projection lens 22, a polarization beam splitter 40 (an example of a beam splitter), A second projection lens 24, a quarter-wave plate 50, an observation lens 26 constituting an observation system, an imaging unit 70, and a control device 80 are provided.

投影系を構成する各光学素子は、光軸AX1上に配置され、観察系を構成する各光学素子は、偏光ビームスプリッタ40において光軸AX1から直角に分岐する光軸AX2上に配置されている。   Each optical element constituting the projection system is arranged on the optical axis AX1, and each optical element constituting the observation system is arranged on the optical axis AX2 branched at right angles from the optical axis AX1 in the polarization beam splitter 40. .

コンデンサレンズ20はハロゲンランプ等の光源10からの光を液晶格子30に照射するレンズである。   The condenser lens 20 is a lens that irradiates the liquid crystal lattice 30 with light from the light source 10 such as a halogen lamp.

液晶格子30は、格子パターンを液晶により形成するパターン素子である。本実施形態の液晶格子30は、画素が縦方向に連続し、横方向に分離したパターン(横方向にピッチを持つパターン)で構成されている。また液晶格子30の両面には、互いに透過軸方向が平行な2枚の偏光板が設けられている。また液晶格子30は、液晶ドライバを備え、外部からの制御信号により格子ピッチを変化させる制御、格子パターンの位相を変化させる制御、格子パターンの強度分布を変化させる制御を行うことができる。本実施形態では、図2に示すように、液晶格子30の格子パターンLPを、正弦波状の光強度分布をもつ格子パターンとしている。   The liquid crystal lattice 30 is a pattern element that forms a lattice pattern with liquid crystal. The liquid crystal lattice 30 of the present embodiment is configured by a pattern in which pixels are continuous in the vertical direction and separated in the horizontal direction (pattern having a pitch in the horizontal direction). In addition, two polarizing plates whose transmission axis directions are parallel to each other are provided on both surfaces of the liquid crystal lattice 30. The liquid crystal lattice 30 includes a liquid crystal driver, and can perform control to change the lattice pitch, control to change the phase of the lattice pattern, and control to change the intensity distribution of the lattice pattern by an external control signal. In the present embodiment, as shown in FIG. 2, the lattice pattern LP of the liquid crystal lattice 30 is a lattice pattern having a sinusoidal light intensity distribution.

第1の投影レンズ22、第2の投影レンズ24は、液晶格子30の格子パターンを測定対象物60に投影するためのレンズである。   The first projection lens 22 and the second projection lens 24 are lenses for projecting the lattice pattern of the liquid crystal lattice 30 onto the measurement object 60.

偏光ビームスプリッタ40は、入射ビームの偏光成分を分離し、90°の角度をなす2つのビームとして出射するものであり、観察光を透過光の光軸AX1から分離するものである。偏光ビームスプリッタ40を透過するビームは、入射面に対して平行な電場ベクトルをもつP偏光成分であり、入射ビームに対して直角に出射されるビームは、入射面に直交する電場ベクトルをもつS偏光成分である。   The polarization beam splitter 40 separates the polarization component of the incident beam and emits it as two beams having an angle of 90 °, and separates the observation light from the optical axis AX1 of the transmitted light. The beam passing through the polarization beam splitter 40 is a P-polarized component having an electric field vector parallel to the incident surface, and the beam emitted perpendicular to the incident beam is S having an electric field vector orthogonal to the incident surface. It is a polarization component.

形状測定装置1の投影系は、液晶格子30、第1の投影レンズ22、偏光ビームスプリッタ40、第2の投影レンズ24、1/4波長板50とを介して、図2に示すような格子パターンLPを測定対象物60に投影する。図1に示すように、第2の投影レンズ24からは平行光が出射され、測定対象物60の位置に関わらず倍率は一定である。このようにすると、コントラストの検出を容易に行うことができる。   The projection system of the shape measuring apparatus 1 includes a grating as shown in FIG. 2 via a liquid crystal grating 30, a first projection lens 22, a polarization beam splitter 40, a second projection lens 24, and a quarter wavelength plate 50. The pattern LP is projected onto the measurement object 60. As shown in FIG. 1, parallel light is emitted from the second projection lens 24, and the magnification is constant regardless of the position of the measurement object 60. In this way, it is possible to easily detect contrast.

撮像部70は、測定対象物60上に投影された格子パターンLPを1/4波長板50、第2の投影レンズ24、偏光ビームスプリッタ40、撮影レンズ26とを介して撮像し、格子パターンLPにかかる画像を取得する。撮像部70の機能は、CCDカメラ等により実現できる。   The imaging unit 70 images the grating pattern LP projected on the measurement object 60 via the quarter-wave plate 50, the second projection lens 24, the polarization beam splitter 40, and the photographing lens 26, and the grating pattern LP. Get the image that takes. The function of the imaging unit 70 can be realized by a CCD camera or the like.

制御装置80は、測定部82、制御部84、記憶部86を含む。測定部82や制御部84の機能は、各種プロセッサ(CPU、DSP等)のハードウェアや、記憶部86に格納されたプログラムにより実現できる。記憶部86は、測定部82や制御部84のワーク領域となるものであり、その機能は、RAMやROMなどにより実現できる。   The control device 80 includes a measurement unit 82, a control unit 84, and a storage unit 86. The functions of the measurement unit 82 and the control unit 84 can be realized by hardware of various processors (CPU, DSP, etc.) and a program stored in the storage unit 86. The storage unit 86 serves as a work area for the measurement unit 82 and the control unit 84, and its function can be realized by a RAM, a ROM, or the like.

測定部82は、撮像部70によって撮像された画像の各画素のコントラスト値を位相シフト法、フーリエ変換等により検出する。具体的には、液晶格子30の格子パターンの位相をπ/2(1/4ピッチ)ずつシフトさせて撮像した4枚の画像の各画素の4つの輝度により各画素のコントラスト値を求めることができる。ここで、位相シフト量を0、π/2、π、3π/2としたときの1点(1画素)における輝度をそれぞれI、I、I、Iとすると、任意の画素(x,y)におけるコントラスト値γ(x,y)は、次式により求めることができる。 The measuring unit 82 detects the contrast value of each pixel of the image captured by the imaging unit 70 by a phase shift method, Fourier transform, or the like. Specifically, the contrast value of each pixel is obtained from the four luminances of each pixel of four images captured by shifting the phase of the lattice pattern of the liquid crystal lattice 30 by π / 2 (¼ pitch). it can. Here, if the luminance at one point (one pixel) when the phase shift amount is 0, π / 2, π, 3π / 2 is I 0 , I 1 , I 2 , I 3 , an arbitrary pixel ( The contrast value γ (x, y) at x, y) can be obtained by the following equation.

また測定部82は、検出したコントラスト値に基づき基準位置SPから測定対象物60までの距離Dを各画素について測定し、測定対象物の3次元形状を測定する。なお、基準位置SPは、投影される格子パターンLPが結像する位置である。具体的には、図3に示すような、コントラストと基準位置SPからの距離Dとの関係を、テーブル情報として記憶部86に格納しておき、当該テーブルを参照して、検出したコントラスト値に対応する距離Dを求めることができる。また、図3に示す曲線をガウス関数にフィッテングすることによりコントラスト値から距離Dを求めるようにしてもよい。   The measurement unit 82 measures the distance D from the reference position SP to the measurement object 60 for each pixel based on the detected contrast value, and measures the three-dimensional shape of the measurement object. The reference position SP is a position where the projected lattice pattern LP is imaged. Specifically, as shown in FIG. 3, the relationship between the contrast and the distance D from the reference position SP is stored in the storage unit 86 as table information, and the detected contrast value is obtained by referring to the table. A corresponding distance D can be determined. Alternatively, the distance D may be obtained from the contrast value by fitting the curve shown in FIG. 3 to a Gaussian function.

制御部84は、液晶格子30の格子パターンを制御する。すなわち格子パターンを制御するための制御信号を生成して、生成した制御信号を液晶格子30の液晶ドライバに対して送信する処理を行う。また制御部84は、撮像部70を制御する処理を行う。   The control unit 84 controls the lattice pattern of the liquid crystal lattice 30. That is, a process for generating a control signal for controlling the lattice pattern and transmitting the generated control signal to the liquid crystal driver of the liquid crystal lattice 30 is performed. The control unit 84 performs processing for controlling the imaging unit 70.

図4は、本実施形態における迷光の除去について説明するための図である。   FIG. 4 is a diagram for explaining the removal of stray light in the present embodiment.

図4に示すように、光源からの光は液晶格子30を透過することにより直線偏光となる。この直線偏光(投影光)の偏光方向は、液晶格子30に設けられた偏光板の透過軸方向と平行であり、液晶格子30上の格子が延びる方向(上下方向)と直交する。次に、この直線偏光は偏光ビームスプリッタ40を透過して1/4波長板50に入射し、1/4波長板50を透過することにより円偏光となり測定対象物60に投影される。測定対象物60上で反射した光(観察光)は、1/4波長板50を透過することにより投影光と偏光方向が直交する直線偏光となる。この直線偏光は偏光ビームスプリッタ40により撮像部70の方向に反射され、撮像部70に入射する。すなわち、投影光と偏光方向が直交する直線偏光のみを撮像部70に入射させるように構成している。   As shown in FIG. 4, light from the light source passes through the liquid crystal lattice 30 and becomes linearly polarized light. The polarization direction of the linearly polarized light (projection light) is parallel to the transmission axis direction of the polarizing plate provided in the liquid crystal lattice 30 and is orthogonal to the direction (vertical direction) in which the lattice on the liquid crystal lattice 30 extends. Next, the linearly polarized light passes through the polarizing beam splitter 40 and enters the quarter wavelength plate 50, and passes through the quarter wavelength plate 50 to become circularly polarized light and is projected onto the measurement object 60. The light reflected on the measurement object 60 (observation light) is transmitted through the quarter-wave plate 50 and becomes linearly polarized light whose polarization direction is orthogonal to the projection light. The linearly polarized light is reflected by the polarization beam splitter 40 in the direction of the imaging unit 70 and enters the imaging unit 70. That is, only linearly polarized light whose polarization direction is orthogonal to the projection light is configured to enter the imaging unit 70.

例えば、偏光ビームスプリッタ40と1/4波長板50の間に設置された第2の投影レンズ24(図1参照)の表面を投影光の一部が反射した場合、当該反射光(迷光)は、投影光と偏光方向が平行な直線偏光であり、偏光ビームスプリッタ40を透過するため、撮像部70に入射されることはない。   For example, when a part of the projection light is reflected on the surface of the second projection lens 24 (see FIG. 1) installed between the polarization beam splitter 40 and the quarter wavelength plate 50, the reflected light (stray light) is The linearly polarized light whose polarization direction is parallel to the projection light is transmitted through the polarization beam splitter 40 and is not incident on the imaging unit 70.

このように、偏光ビームスプリッタ40と1/4波長板50とを備えることで、光軸上或いは光軸外の迷光が撮像部70に入射することによるノイズの発生を防止し、精度の高い形状測定を行うことができる。   As described above, the polarization beam splitter 40 and the quarter-wave plate 50 are provided to prevent generation of noise due to stray light on the optical axis or off the optical axis entering the imaging unit 70, and a highly accurate shape. Measurements can be made.

なお、本発明は、上述の実施の形態に限定されるものではなく、種々の変形が可能である。本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。   In addition, this invention is not limited to the above-mentioned embodiment, A various deformation | transformation is possible. The present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects). In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object. Further, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

例えば本実施形態では、パターン素子の一例として、液晶格子30を用いる場合について説明したが(図1参照)、パターン素子として、フィルム基板或いはガラス基板上に格子パターンが形成された格子を用いるようにしてもよい。   For example, in the present embodiment, the case where the liquid crystal lattice 30 is used as an example of the pattern element has been described (see FIG. 1). However, as the pattern element, a lattice in which a lattice pattern is formed on a film substrate or a glass substrate is used. May be.

また本実施形態では、ビームスプリッタの一例として、偏光ビームスプリッタ40を用いる場合について説明したが(図1参照)、ビームスプリッタとして、偏光特性のない無偏光ビームスプリッタやハーフミラーを用いるようにしてもよい。この場合には、ビームスプリッタと撮像部との間に、投影光と偏光方向が直交する偏光板を備える必要がある。また、パターン素子として液晶格子を用いない場合には、パターン素子とビームスプリッタとの間にも、偏光板を備える必要がある。   Further, in the present embodiment, the case where the polarization beam splitter 40 is used as an example of the beam splitter has been described (see FIG. 1). Good. In this case, it is necessary to provide a polarizing plate having a polarization direction orthogonal to the projection light between the beam splitter and the imaging unit. When a liquid crystal lattice is not used as the pattern element, it is necessary to provide a polarizing plate between the pattern element and the beam splitter.

図5に、パターン素子として、フィルム基板等に格子パターンが形成された格子32を用い、ビームスプリッタとして、偏光特性のないビームスプリッタ42を用いた場合の形状測定装置の構成を示す。なお図5中、図1において示した構成と共通する構成には同符号を付し、その説明を省略する。   FIG. 5 shows a configuration of a shape measuring apparatus in which a grating 32 having a grating pattern formed on a film substrate or the like is used as a pattern element, and a beam splitter 42 having no polarization characteristic is used as a beam splitter. 5 that are the same as those shown in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.

図5に示す形状測定装置1は、格子32と第1の投影レンズ22との間に、投影光を直線偏光にする第1の偏光板90を備え、ビームスプリッタ42と撮影レンズ26との間に、第1の偏光板90と偏光方向(偏光軸)が直交する第2の偏光板92(投影光と偏光方向が直交する偏光板)を備える。   The shape measuring apparatus 1 shown in FIG. 5 includes a first polarizing plate 90 that converts the projection light into linearly polarized light between the grating 32 and the first projection lens 22, and between the beam splitter 42 and the photographing lens 26. In addition, a first polarizing plate 90 and a second polarizing plate 92 whose polarizing direction (polarization axis) is orthogonal to each other (a polarizing plate whose polarization direction is orthogonal to the projection light) are provided.

格子32を透過した投影光は、第1の偏光板90を透過することにより直線偏光となり、ビームスプリッタ42を透過して1/4波長板50に入射し、1/4波長板50を透過することにより円偏光となり測定対象物60に投影される。測定対象物60上で反射した光(観察光)は、1/4波長板50を透過することにより投影光と偏光方向が直交する直線偏光となる。この直線偏光の一部はビームスプリッタ42により撮像部70の方向に反射され、第2の偏光板92を透過して撮像部70に入射する。すなわち図1に示す構成と同様に、投影光と偏光方向が直交する直線偏光のみを撮像部70に入射させるように構成している。   The projection light that has passed through the grating 32 becomes linearly polarized light by passing through the first polarizing plate 90, passes through the beam splitter 42, enters the quarter-wave plate 50, and passes through the quarter-wave plate 50. As a result, it becomes circularly polarized light and is projected onto the measurement object 60. The light (observation light) reflected on the measurement object 60 passes through the quarter-wave plate 50 and becomes linearly polarized light whose polarization direction is orthogonal to the projection light. A part of this linearly polarized light is reflected by the beam splitter 42 in the direction of the imaging unit 70, passes through the second polarizing plate 92, and enters the imaging unit 70. That is, similar to the configuration shown in FIG. 1, only linearly polarized light whose polarization direction is orthogonal to the projection light is configured to enter the imaging unit 70.

例えば、第2の投影レンズ24の表面を投影光の一部が反射した場合、当該反射光(迷光)の一部はビームスプリッタ42により撮像部70の方向に反射されるが、当該反射光は、投影光と偏光方向が平行な直線偏光であり、第2の偏光板92を透過しないため、撮像部70に入射されることはない。   For example, when a part of the projection light is reflected on the surface of the second projection lens 24, a part of the reflected light (stray light) is reflected in the direction of the imaging unit 70 by the beam splitter 42, but the reflected light is The linearly polarized light whose projection light and polarization direction are parallel and does not pass through the second polarizing plate 92, and therefore is not incident on the imaging unit 70.

このように、第1及び第2の偏光板90、92と1/4波長板50とを備えることで、光軸上或いは光軸外の迷光が撮像部70に入射することによるノイズの発生を防止し、精度の高い形状測定を行うことができる。   As described above, by providing the first and second polarizing plates 90 and 92 and the quarter-wave plate 50, generation of noise due to stray light on the optical axis or off the optical axis entering the imaging unit 70 is prevented. And shape measurement with high accuracy can be performed.

また、図1、図5に示す構成において、撮影レンズ26と撮像部70との間に、投影光と偏光方向が直交する偏光板を更に備えるようにしてもよい。このようにすると、より確実に迷光を遮断することができる。   In the configuration shown in FIGS. 1 and 5, a polarizing plate having a polarization direction orthogonal to the projection light may be further provided between the photographing lens 26 and the imaging unit 70. In this way, stray light can be blocked more reliably.

また、図1、5に示す構成において、1/4波長板50の反射光が撮像部70に入射されないようにするために、1/4波長板50を光軸AX1に対して僅かに傾けて設置するようにしてもよい。同様に、第2の偏光板92の反射光が撮像部70に入射されないようにするために、第2の偏光板92を光軸AX2に対して僅かに傾けて設置するようにしてもよい。   1 and 5, the quarter-wave plate 50 is slightly tilted with respect to the optical axis AX1 in order to prevent the reflected light of the quarter-wave plate 50 from entering the imaging unit 70. You may make it install. Similarly, in order to prevent the reflected light of the second polarizing plate 92 from entering the imaging unit 70, the second polarizing plate 92 may be installed slightly inclined with respect to the optical axis AX2.

本実施形態の形状測定装置の構成の一例を示す図。The figure which shows an example of a structure of the shape measuring apparatus of this embodiment. 液晶格子の格子パターンの一例を示す図。The figure which shows an example of the lattice pattern of a liquid crystal lattice. コントラストと基準位置からの距離との関係を示す図。The figure which shows the relationship between contrast and the distance from a reference position. 迷光の除去について説明するための図。The figure for demonstrating the removal of a stray light. 変形例について説明するための図。The figure for demonstrating a modification.

符号の説明Explanation of symbols

1 形状測定装置、10 光源、20 コンデンサレンズ、22 第1の投影レンズ、24 第2の投影レンズ、26 撮影レンズ、30 液晶格子、32 格子、40 偏光ビームスプリッタ、42 ビームスプリッタ、50 1/4波長板、60 測定対象物、70 撮像部、80制御装置、82 測定部、84 制御部、86 記憶部、90 第1の偏光板、92 第2の偏光板 DESCRIPTION OF SYMBOLS 1 Shape measuring device 10 Light source 20 Condenser lens 22 First projection lens 24 Second projection lens 26 Shooting lens 30 Liquid crystal grating 32 Grating 40 Polarizing beam splitter 42 Beam splitter 50 1/4 Wavelength plate, 60 measurement object, 70 imaging unit, 80 control device, 82 measurement unit, 84 control unit, 86 storage unit, 90 first polarizing plate, 92 second polarizing plate

Claims (7)

格子パターンを有するパターン素子と、
前記パターン素子とビームスプリッタとを介して前記格子パターンを測定対象物に投影する投影部と、
前記測定対象物に投影された格子パターンを前記ビームスプリッタを介して撮像する撮像部と、
前記撮像部によって撮像された画像のコントラスト値に基づき前記測定対象物の形状を測定する測定部とを有し、
前記ビームスプリッタと前記測定対象物との間に1/4波長板を備え、
前記1/4波長板に入射させる投影光が直線偏光であり、前記投影光と偏光方向が直交する直線偏光のみを前記撮像部に入射させるように構成されることを特徴とする形状測定装置。
A pattern element having a lattice pattern;
A projection unit that projects the grating pattern onto a measurement object via the pattern element and a beam splitter;
An imaging unit that images the grating pattern projected onto the measurement object via the beam splitter;
A measurement unit that measures the shape of the measurement object based on a contrast value of an image captured by the imaging unit;
A quarter wave plate is provided between the beam splitter and the measurement object,
The shape measuring apparatus, wherein the projection light incident on the quarter-wave plate is linearly polarized light, and only linearly polarized light whose polarization direction is orthogonal to the projected light is incident on the imaging unit.
請求項1において、
前記ビームスプリッタが、偏光ビームスプリッタであることを特徴とする形状測定装置。
In claim 1,
The shape measuring apparatus, wherein the beam splitter is a polarization beam splitter.
請求項1又は2において、
前記パターン素子が、液晶格子であることを特徴とする形状測定装置。
In claim 1 or 2,
The shape measuring apparatus, wherein the pattern element is a liquid crystal lattice.
請求項1乃至3のいずれかにおいて、
前記ビームスプリッタと前記撮像部との間に、前記投射光と偏光方向が直交する偏光板を備えることを特徴とする形状測定装置。
In any one of Claims 1 thru | or 3,
A shape measuring apparatus comprising a polarizing plate having a polarization direction orthogonal to the projection light between the beam splitter and the imaging unit.
請求項1において、
前記パターン素子と前記ビームスプリッタとの間に第1の偏光板を備え、
前記ビームスプリッタと前記撮像部との間に、前記第1の偏光板と偏光方向が直交する第2の偏光板を備えることを特徴とする形状測定装置。
In claim 1,
A first polarizing plate is provided between the pattern element and the beam splitter,
A shape measuring apparatus comprising: a second polarizing plate having a polarization direction orthogonal to the first polarizing plate between the beam splitter and the imaging unit.
請求項1乃至5のいずれかにおいて、
光源と前記パターン素子との間にコンデンサレンズを備え、
前記パターン素子と前記ビームスプリッタとの間に第1の投影レンズを備え、
前記ビームスプリッタと前記1/4波長板との間に第2の投影レンズを備え、
前記ビームスプリッタと前記撮像部との間に撮影レンズを備えることを特徴とする形状測定装置。
In any one of Claims 1 thru | or 5,
A condenser lens is provided between the light source and the pattern element,
A first projection lens provided between the pattern element and the beam splitter;
A second projection lens is provided between the beam splitter and the quarter-wave plate;
A shape measuring apparatus comprising a photographic lens between the beam splitter and the imaging unit.
格子パターンを有するパターン素子とビームスプリッタと1/4波長板とを介して前記格子パターンを測定対象物に投影するステップと、
前記測定対象物に投影された格子パターンを前記1/4波長板と前記ビームスプリッタとを介して撮像部によって撮像するステップと、
前記撮像部によって撮像された画像のコントラスト値に基づき前記測定対象物の形状を測定するステップとを含み、
前記1/4波長板に入射させる投影光が直線偏光であり、前記投影光と偏光方向が直交する直線偏光のみを前記撮像部に入射させることを特徴とする形状測定方法。
Projecting the grating pattern onto a measurement object via a pattern element having a grating pattern, a beam splitter, and a quarter-wave plate;
Imaging the grating pattern projected on the measurement object by the imaging unit via the quarter-wave plate and the beam splitter;
Measuring the shape of the measurement object based on the contrast value of the image captured by the imaging unit,
The shape measuring method, wherein the projection light incident on the quarter-wave plate is linearly polarized light, and only linearly polarized light whose polarization direction is orthogonal to the projected light is incident on the imaging unit.
JP2008310497A 2008-12-05 2008-12-05 Shape measuring apparatus and shape measuring method Pending JP2010133840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310497A JP2010133840A (en) 2008-12-05 2008-12-05 Shape measuring apparatus and shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008310497A JP2010133840A (en) 2008-12-05 2008-12-05 Shape measuring apparatus and shape measuring method

Publications (1)

Publication Number Publication Date
JP2010133840A true JP2010133840A (en) 2010-06-17

Family

ID=42345272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310497A Pending JP2010133840A (en) 2008-12-05 2008-12-05 Shape measuring apparatus and shape measuring method

Country Status (1)

Country Link
JP (1) JP2010133840A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101017382B1 (en) 2009-03-27 2011-02-28 세크론 주식회사 Vision inspection system for semiconductor device and method for inspecting semiconductor device using the same
JP2012083233A (en) * 2010-10-12 2012-04-26 Canon Inc Three-dimensional shape measurement apparatus, three-dimensional shape measurement method and computer program
US11169452B2 (en) 2019-01-31 2021-11-09 Canon Kabushiki Kaisha Measurement apparatus, exposure apparatus, and method of manufacturing article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167197A (en) * 2001-12-04 2003-06-13 Lasertec Corp Confocal microscope
JP2007155379A (en) * 2005-12-01 2007-06-21 Tokyo Univ Of Agriculture & Technology Three-dimensional shape measuring device and three-dimensional shape measuring method
WO2008062651A1 (en) * 2006-11-22 2008-05-29 Nikon Corporation Image measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167197A (en) * 2001-12-04 2003-06-13 Lasertec Corp Confocal microscope
JP2007155379A (en) * 2005-12-01 2007-06-21 Tokyo Univ Of Agriculture & Technology Three-dimensional shape measuring device and three-dimensional shape measuring method
WO2008062651A1 (en) * 2006-11-22 2008-05-29 Nikon Corporation Image measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101017382B1 (en) 2009-03-27 2011-02-28 세크론 주식회사 Vision inspection system for semiconductor device and method for inspecting semiconductor device using the same
JP2012083233A (en) * 2010-10-12 2012-04-26 Canon Inc Three-dimensional shape measurement apparatus, three-dimensional shape measurement method and computer program
US11169452B2 (en) 2019-01-31 2021-11-09 Canon Kabushiki Kaisha Measurement apparatus, exposure apparatus, and method of manufacturing article

Similar Documents

Publication Publication Date Title
KR101639227B1 (en) Three dimensional shape measurment apparatus
TWI592654B (en) Inspection equipment and inspection methods
US20120092657A1 (en) Method of defect inspection and device of defect inspection
JP2009019941A (en) Shape measuring method
JP2007071769A (en) Method for detecting deviation, pattern rotation, distortion, and positional deviation by using moire fringe
JP2008309551A (en) Method and apparatus for shape measurement and storage medium
JP2017020873A (en) Measurement device for measuring shape of measurement object
US11385436B2 (en) Method for determining a deviation on a displacement path of an optical zoom lens and method for correction and image recording device
JP2010181247A (en) Shape measurement apparatus and shape measurement method
US20100309309A1 (en) Method for precisely detecting crack width
KR101941581B1 (en) Apparatus for optically measuring distance
JP2011185767A (en) Apparatus and method of shape measurement
JP2008076962A (en) Optical inspection apparatus
JP2010133840A (en) Shape measuring apparatus and shape measuring method
KR100982051B1 (en) moire measurement device using digital micromirror device
JP2014010089A (en) Range finder
US20080279458A1 (en) Imaging system for shape measurement of partially-specular object and method thereof
JP2009222625A (en) Device and method for inspecting pattern
JP2018116032A (en) Measurement device for measuring shape of target measurement object
KR101436572B1 (en) 3d shape measuring apparatus using optical triangulation method
JP2016015371A (en) Thickness measurement apparatus, thickness measurement method and exposure apparatus
JP5825622B2 (en) Displacement / strain distribution measurement optical system and measurement method
JP2014106222A (en) Interference measurement device, wavefront aberration measurement device, shape measurement device, exposure device, interference measurement method, projection optical system manufacturing method and exposure device manufacturing method
JP5648937B2 (en) Evaluation device
JP2017026494A (en) Device for measuring shape using white interferometer

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A02 Decision of refusal

Effective date: 20111214

Free format text: JAPANESE INTERMEDIATE CODE: A02