JP2008308744A - Copper electrolysis method in acidic chloride bath - Google Patents

Copper electrolysis method in acidic chloride bath Download PDF

Info

Publication number
JP2008308744A
JP2008308744A JP2007158943A JP2007158943A JP2008308744A JP 2008308744 A JP2008308744 A JP 2008308744A JP 2007158943 A JP2007158943 A JP 2007158943A JP 2007158943 A JP2007158943 A JP 2007158943A JP 2008308744 A JP2008308744 A JP 2008308744A
Authority
JP
Japan
Prior art keywords
copper
cathode
energization
acidic
electrolysis method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007158943A
Other languages
Japanese (ja)
Inventor
Koji Ando
孝治 安藤
Takashi Kudo
敬司 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007158943A priority Critical patent/JP2008308744A/en
Publication of JP2008308744A publication Critical patent/JP2008308744A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper electrolysis method which can provide an electrodeposit having superior smoothness by using an electrolytic solution of an acidic chloride bath containing copper and is superior in safety and economy. <P>SOLUTION: This copper electrolysis method for providing the electrodeposit having superior smoothness by using the electrolytic solution of the acidic chloride bath containing copper includes: supplying the electrolytic solution to an electrolytic tank provided with a cathode and an anode; continuously passing an electric current to the electrolytic tank; and controlling an effective energization rate to 50 to 90%, which is determined by dividing a current-passing period by the total period of time of the current-passing period and the current-stopping period in one cycle. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、酸性塩化浴での銅電解方法に関し、さらに詳しくは、銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を得ることができる安全性と経済性に優れた銅電解方法に関する。   The present invention relates to a copper electrolysis method in an acidic chloride bath. More specifically, the present invention is excellent in safety and economical efficiency in which an electrodeposit excellent in smoothness can be obtained from an electrolytic solution comprising an acidic chloride bath containing copper. The present invention relates to a copper electrolysis method.

従来、銅電解方法は、鉱石から熔錬などの乾式銅製錬法により得られた粗銅を精製する際に、不純物元素を分離して高純な銅を得る方法として用いられてきた。また、最近では、乾式銅製錬法によるエネルギーや環境面への配慮から湿式法による製錬も試みられている。ここで、湿式製錬法では、鉱石から硫酸や塩酸を用いて銅分を浸出し、浸出液から電解採取法によって銅を回収している。   Conventionally, the copper electrolysis method has been used as a method for obtaining high-purity copper by separating impurity elements when refining crude copper obtained from ore by a dry copper smelting method such as smelting. In addition, recently, smelting by a wet method has been attempted in consideration of energy and environmental aspects by a dry copper smelting method. Here, in the hydrometallurgical method, copper is leached from ore using sulfuric acid or hydrochloric acid, and copper is recovered from the leachate by electrolytic collection.

このような湿式製錬法の浸出液としては、通常硫酸をベースとする硫酸浴と、塩酸や塩化物をベースとする塩化浴が用いられている。ここで、硫酸浴で浸出した場合、浸出液中の銅イオンは2価の形態である。一方、塩化浴の場合は、浸出液中の銅イオンは、1価と2価の両方の形態をとることができる。ところで、電解においては、1価銅イオンは、2価銅イオンの場合の半分の電力で金属化することができることから、省エネルギー効果は著しく大きい。しかしながら、その反面、硫酸浴での電解析出の場合は、適量の添加剤の使用により平滑な電着面を有する電着物が得られるのに対し、塩化浴からの電解析出は、針状や粒状の電着物となり、特に生産性を上げるため高電流密度での電解を行なう際には、平滑な電着面を有する電着物は得られないという問題点があることが知られている。   As a leachate for such a hydrometallurgical process, a sulfuric acid bath based on sulfuric acid and a chloride bath based on hydrochloric acid or chloride are usually used. Here, when leaching in a sulfuric acid bath, the copper ions in the leaching solution are in a divalent form. On the other hand, in the case of a chloride bath, the copper ions in the leachate can take both monovalent and divalent forms. By the way, in electrolysis, since monovalent copper ions can be metallized with half the electric power of divalent copper ions, the energy saving effect is remarkably large. However, in the case of electrolytic deposition in a sulfuric acid bath, an electrodeposit having a smooth electrodeposition surface can be obtained by using an appropriate amount of additive, whereas electrolytic deposition from a chloride bath is acicular. It is known that there is a problem that an electrodeposit having a smooth electrodeposition surface cannot be obtained, particularly when electrolysis is performed at a high current density in order to increase productivity.

このため、デントライト上の電着物を製造する方法(例えば、特許文献1参照。)が開示されているが、このような針状や粒状の電着物の電解析出は、電解中にショートを生じやすく電力ロスをもたらし、また検槽作業の手間を増すことになる。また、このような電着物はカソードから落下して槽底に沈積するため、槽底からの回収設備が必要となり、また取り扱い時に手に刺さる可能性があることなど、安全管理上も問題となる。さらに、現在、電気銅は、市場ではカソードの形状で取引されることが一般的であるので、針状や粒状の電気銅では、ケースに収納する、又は再熔解する等の手間が必要となり、コスト上も有利とはいえなくなる。   For this reason, a method for producing an electrodeposit on a dentite (see, for example, Patent Document 1) has been disclosed. Electrodeposition of such needle-like or granular electrodeposits causes a short circuit during electrolysis. Electricity loss is likely to occur, and the labor of the inspection tank is increased. In addition, since such electrodeposit falls from the cathode and deposits on the bottom of the tank, a recovery facility from the bottom of the tank is necessary, and there is a possibility of sticking into the hand during handling, which is also a problem in terms of safety management. . Furthermore, at present, electrolytic copper is generally traded in the form of a cathode in the market. Therefore, in the case of acicular or granular electrolytic copper, troubles such as storing in a case or remelting are required. This is not advantageous in terms of cost.

一般的に、平滑な電着面を有する電着物を得るためには、電解液中に添加剤を使用することがおこなわれるが、電解採取法、特に塩化浴の電解液の場合には、有機物添加剤はアノードから発生する塩素ガスなどによる酸性雰囲気下で速やかに分解されるため、有機物添加剤の使用は効果的でないとされてきた。しかも、分解された有機物と塩素ガスの反応により有害物が生成する可能性も完全には否定できず、また分解された有機物が不溶性電極の表面を覆うことによる特性の低下などの懸念もある。ところで、一般的に硫酸浴で用いられるニカワなどの添加剤は、数mg/Lレベルの微量で効果があるものの、その過不足に敏感であり、その管理は難しかった。しかも、添加剤以外にも電着状態に及ぼす要因は多くあるので、添加剤の使用には、分析等による有効性の確認と管理に多くの課題が残されていた。   In general, in order to obtain an electrodeposit having a smooth electrodeposition surface, an additive is used in the electrolytic solution. Since additives are rapidly decomposed in an acidic atmosphere such as by chlorine gas generated from the anode, it has been considered that the use of organic additives is not effective. Moreover, the possibility that harmful substances are generated by the reaction between the decomposed organic substance and chlorine gas cannot be completely denied, and there is a concern that the characteristics of the decomposed organic substance deteriorate due to covering the surface of the insoluble electrode. By the way, although additives such as glue generally used in a sulfuric acid bath are effective in a trace amount of several mg / L, they are sensitive to their excess and deficiency and difficult to manage. Moreover, since there are many factors that affect the electrodeposition state in addition to the additive, many problems remain in the use and confirmation of effectiveness by analysis and the like.

例えば、ハロゲン系銅電解液からの銅電解採取工程において、ハロゲン系電解液に平滑化添加剤としてポリエチレングリコールを添加し、かつカソード面近傍のハロゲン系電解液をガス又は機械攪拌しながら電解することにより、緻密な板状の電気銅を製造する方法(例えば、特許文献2参照。)においては、ポリエチレングリコールの使用や攪拌の強化により塩化浴からでも板状の銅を製造することができることが開示されている。しかしながら、ポリエチレングリコールは分子量が安定な反面、それがかえって災いして、過剰に入った時には現状に復旧し難いなど、液状態の制御が困難となる短所もあるため、硫酸浴での銅電解では工業的には使用されていないものである。また、この方法では、電極近傍の電解液を1m/秒もの大流量で攪拌しているが、工業的な電解槽の構造と槽内の電極数などを考慮すると、そのような大流量に要する動力コストが無視できなくなり、1価電解による電力コスト削減の効果が減少するなどの課題があった。   For example, in a copper electrowinning process from a halogen-based copper electrolyte, polyethylene glycol is added to the halogen-based electrolyte as a smoothing additive, and the halogen-based electrolyte near the cathode surface is electrolyzed with gas or mechanical stirring. Thus, in a method for producing dense plate-shaped electrolytic copper (see, for example, Patent Document 2), it is disclosed that plate-like copper can be produced even from a chloride bath by using polyethylene glycol or strengthening stirring. Has been. However, polyethylene glycol has a stable molecular weight, but on the other hand, it is difficult to control the liquid state, such as it is difficult to restore the current state when it is damaged and it enters excessively, so in copper electrolysis in a sulfuric acid bath, It is not used industrially. In this method, the electrolyte solution in the vicinity of the electrode is stirred at a large flow rate of 1 m / sec. However, considering the structure of the industrial electrolytic cell and the number of electrodes in the cell, such a large flow rate is required. There is a problem that the power cost cannot be ignored and the effect of reducing the power cost by monovalent electrolysis is reduced.

以上のような状況から、塩化浴から平滑な電着面を有する電着物を得ることは、未だに実用化されておらず、銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を安全性と経済性に優れた方法で製造することが求められていた。   From the above situation, obtaining an electrodeposit having a smooth electrodeposition surface from a chloride bath has not yet been put into practical use, and an electrode having excellent smoothness is obtained from an electrolytic solution comprising an acidic chloride bath containing copper. It has been demanded to manufacture a kimono by a method excellent in safety and economy.

特開2005−105351号公報(第1頁、第2頁)Japanese Patent Laying-Open No. 2005-105351 (first page, second page) 特開2006−97128号公報(第1頁、第2頁)JP 2006-97128 A (first page, second page)

本発明の目的は、上記の従来技術の問題点に鑑み、銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を得ることができる安全性と経済性に優れた銅電解方法を提供することにある。   In view of the above-mentioned problems of the prior art, an object of the present invention is to provide an electrodeposit excellent in smoothness from an electrolytic solution comprising an acidic chloride bath containing copper, and to provide a copper electrolysis excellent in safety and economy. It is to provide a method.

本発明者らは、上記目的を達成するために、銅を含有する酸性塩化浴からなる電解液からの銅電解方法について、鋭意研究を重ねた結果、電解槽への通電を特定の有効通電率に制御した断続通電としたところ、銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を安全上の問題もなく、低コストで製造することができることを見出し、本発明を完成した。なお、前記断続通電とは、定期的に停電しながら、通電と停電を各所定時間毎に周期的に行なうもので、これにより所謂パルス電解が行なわれる。   In order to achieve the above object, the present inventors have conducted extensive research on a copper electrolysis method from an electrolytic solution comprising an acidic chloride bath containing copper. As a result of controlling the intermittent energization to the above, it has been found that an electrodeposit excellent in smoothness can be produced from an electrolytic solution composed of an acidic chloride bath containing copper at a low cost without safety problems. completed. The intermittent energization refers to periodically energizing and powering out every predetermined time while periodically interrupting power, thereby performing so-called pulse electrolysis.

すなわち、本発明の第1の発明によれば、銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を得る銅電解方法であって、
前記電解液をカソードとアノードを備えた電解槽へ給液し、電解槽への通電を断続通電とするとともに、1周期での通電時間と停電時間の合計時間で通電時間を除して求めた有効通電率が50〜90%であることを特徴とする銅電解方法が提供される。
That is, according to the first aspect of the present invention, there is provided a copper electrolysis method for obtaining an electrodeposit excellent in smoothness from an electrolytic solution comprising an acidic chloride bath containing copper,
The electrolytic solution was supplied to an electrolytic cell equipped with a cathode and an anode, and energization of the electrolytic cell was made intermittent, and the energization time was divided by the total time of the energization time and power outage time in one cycle. There is provided a copper electrolysis method characterized in that an effective energization rate is 50 to 90%.

また、本発明の第2の発明によれば、第1の発明において、前記断続通電に用いる停電時間は30秒〜1分であることを特徴とする銅電解方法が提供される。   According to a second aspect of the present invention, there is provided the copper electrolysis method according to the first aspect, wherein the power failure time used for the intermittent energization is 30 seconds to 1 minute.

また、本発明の第3の発明によれば、第1又は2の発明において、前記電解液は、銅濃度が40g/L以上、溶解限度以下である酸性塩化銅水溶液(A)であることを特徴とする銅電解方法が提供される。   According to a third invention of the present invention, in the first or second invention, the electrolytic solution is an acidic copper chloride aqueous solution (A) having a copper concentration of 40 g / L or more and a solubility limit or less. A featured copper electrolysis method is provided.

また、本発明の第4の発明によれば、第1又は2の発明において、前記電解液は、前記電解液は、銅濃度が40g/L以上、溶解限度以下であり、かつ重量平均分子量(Mw)が4万以下であるニカワ又はゼラチンを0.1〜1g/Lの濃度で含有する酸性塩化銅水溶液(B)であることを特徴とする銅電解方法が提供される。   According to a fourth invention of the present invention, in the first or second invention, the electrolyte solution has a copper concentration of 40 g / L or more and a solubility limit or less, and a weight average molecular weight ( A copper electrolysis method is provided which is an acidic copper chloride aqueous solution (B) containing glue or gelatin having a Mw) of 40,000 or less at a concentration of 0.1 to 1 g / L.

また、本発明の第5の発明によれば、第1〜4いずれかの発明において、前記電解槽は、カソードとアノードを濾布製の隔膜で仕切ったカソード室とアノード室から構成されることを特徴とする銅電解方法が提供される。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the electrolytic cell comprises a cathode chamber and an anode chamber in which the cathode and the anode are separated by a filter cloth diaphragm. A featured copper electrolysis method is provided.

また、本発明の第6の発明によれば、第5の発明において、前記アノード室への給液は、酸性塩化銅水溶液(A)であり、一方カソード室への給液は、酸性塩化銅水溶液(B)であることを特徴とする銅電解方法が提供される。   According to a sixth aspect of the present invention, in the fifth aspect, the liquid supply to the anode chamber is an acidic copper chloride aqueous solution (A), while the liquid supply to the cathode chamber is acidic copper chloride. A copper electrolysis method is provided which is an aqueous solution (B).

また、本発明の第7の発明によれば、第1〜6いずれかの発明において、前記カソードの材質は、銅であり、かつその表面粗さは、5点標準粗さ(Rz)で表した値で5〜20μmであることを特徴とする銅電解方法が提供される。   According to the seventh invention of the present invention, in any one of the first to sixth inventions, the material of the cathode is copper, and the surface roughness is represented by a five-point standard roughness (Rz). A copper electrolysis method is provided in which the measured value is 5 to 20 μm.

また、本発明の第8の発明によれば、第1〜7いずれかの発明において、前記カソードの幅は、アノードの幅に対して10〜30%の割合で増加させることを特徴とする銅電解方法が提供される。   According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the width of the cathode is increased at a rate of 10 to 30% with respect to the width of the anode. An electrolysis method is provided.

本発明の酸性塩化浴での銅電解方法は、電解槽への通電を特定の有効通電率に制御した断続通電とすることにより、銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を得ることができる安全性と経済性に優れた銅電解方法であるので、その工業的価値は極めて大きい。また、上記断続通電とともに、添加剤として特定の重量平均分子量であるニカワ又はゼラチンの特定量を添加することを併用すれば、さらに有利である。   The copper electrolysis method in the acidic chloride bath of the present invention is excellent in smoothness from an electrolytic solution composed of an acidic chloride bath containing copper by making the energization to the electrolytic cell intermittently controlled to a specific effective current rate. Therefore, the industrial value of the copper electrolysis method is extremely high. Further, it is more advantageous to use a combination of the above-mentioned intermittent energization and the addition of a specific amount of glue or gelatin having a specific weight average molecular weight as an additive.

以下、本発明の酸性塩化浴での銅電解方法を詳細に説明する。
本発明の酸性塩化浴での銅電解方法は、銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を得る銅電解方法であって、前記電解液をカソードとアノードを備えた電解槽へ給液し、電解槽への通電を断続通電とするとともに、1周期での通電時間と停電時間の合計時間で通電時間を除して求めた有効通電率が50〜90%であることを特徴とする。
Hereinafter, the copper electrolysis method in the acidic chloride bath of the present invention will be described in detail.
The copper electrolysis method in the acidic chloride bath of the present invention is a copper electrolysis method for obtaining an electrodeposit excellent in smoothness from an electrolyte solution comprising an acidic chloride bath containing copper, the electrolyte solution comprising a cathode and an anode. The electrolysis cell was supplied and the electrolysis cell was energized intermittently, and the effective energization rate obtained by dividing the energization time by the total time of energization time and power outage time in one cycle was 50 to 90%. It is characterized by being.

本発明において、銅を含有する酸性塩化浴からなる電解液からの銅電解方法において、電解槽への通電を特定の有効通電率に制御した断続通電とすることが重要である。これによって、銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を安全性と経済性に優れた方法で製造することができる。すなわち、通電を一般的に行われる連続通電ではなく、定期的に停電しながら行うパルス電解とすることで、通電によって生じた電着の突起部分を停電時に溶解することを繰り返すことにより、電析の成長速度を均一化し、全体として平滑な電着面を得ることができる。   In the present invention, in a copper electrolysis method from an electrolytic solution comprising an acidic chloride bath containing copper, it is important to conduct intermittent energization in which the energization to the electrolytic cell is controlled to a specific effective energization rate. As a result, an electrodeposit excellent in smoothness can be produced from an electrolytic solution comprising an acidic chloride bath containing copper by a method excellent in safety and economy. In other words, it is not continuous energization that is generally performed, but by pulse electrolysis that is performed periodically while power is interrupted, by repeating melting of electrodeposited protrusions caused by energization at the time of power failure, electrodeposition The growth rate can be made uniform, and a smooth electrodeposition surface can be obtained as a whole.

上記銅電解方法に用いる断続通電での有効通電率としては、50〜90%であり、60〜90%であることが好ましい。すなわち、有効通電率が小さい程、電着物の結晶粒が小さくなり、電着面の平滑性が向上し、さらにカソード周辺部の針状結晶の発生も抑えられるので望ましいが、有効通電率が50%未満では、電解槽の半分以上が休止しているのと同じであり、これでは電力は2倍以上かかるものの、平滑な電着の得られる一般的な硫酸浴による電着に比べて生産性での優位性がなくなってしまう。また有効通電率の60%と50%では平滑性にほとんど差が見られなかった。一方、有効通電率が高い方が生産性からは好ましいが、実際には90%を超えると、カソード周辺部に針状結晶の発生が見られ、中央部も粒による凹凸が目立つようになる。   As an effective energization rate in intermittent energization used for the above-mentioned copper electrolysis method, it is 50 to 90%, and it is preferred that it is 60 to 90%. That is, the smaller the effective energization rate, the smaller the crystal grains of the electrodeposit, the smoothness of the electrodeposited surface is improved, and the generation of needle-like crystals in the periphery of the cathode can be suppressed. If it is less than 50%, it is the same as more than half of the electrolytic cell is inactive, and this takes more than twice the power, but it is more productive than electrodeposition by a general sulfuric acid bath that can provide smooth electrodeposition. The superiority in is lost. In addition, there was almost no difference in smoothness between 60% and 50% of the effective energization rate. On the other hand, a higher effective energization rate is preferable from the viewpoint of productivity. However, when it exceeds 90%, needle-like crystals are generated in the periphery of the cathode, and irregularities due to grains become conspicuous in the center.

上記断続通電に用いる停電時間としては、特に限定されるものではないが、30秒〜1分であることが好ましい。すなわち、停電時間が30秒未満では、電極表面での液流れの解消などの初期化が充分に終了できず、平滑化の効果が不十分である。一方、停電時間が1分を超えても平滑化への効果がなく無駄な停電となるなど生産性が低下してしまう。   The power failure time used for the intermittent energization is not particularly limited, but is preferably 30 seconds to 1 minute. That is, when the power failure time is less than 30 seconds, initialization such as elimination of the liquid flow on the electrode surface cannot be completed sufficiently, and the smoothing effect is insufficient. On the other hand, even if the power failure time exceeds 1 minute, the productivity is lowered, for example, there is no smoothing effect and the power failure occurs.

上記銅電解方法に用いる電解液としては、特に限定されるものではないが、銅濃度が好ましくは40g/L以上、溶解限度以下の範囲であり、より好ましくは60g/L以上、溶解限度以下の範囲である塩酸を含有する酸性塩化銅水溶液(A)が用いられる。すなわち、銅濃度が40g/L未満では、平滑な電着面を得ることが困難であり、一方、銅濃度が溶解限度を超えると、電解液中に析出物が発生したりカソード表面で塩として析出し電解できなくなる。なお、銅濃度と平滑性の関係については、下記のハルセル試験においても説明する。   Although it does not specifically limit as electrolyte solution used for the said copper electrolysis method, Preferably copper concentration is 40 g / L or more and the range below a solubility limit, More preferably, it is 60 g / L or more and below a solubility limit. An acidic copper chloride aqueous solution (A) containing hydrochloric acid in a range is used. That is, when the copper concentration is less than 40 g / L, it is difficult to obtain a smooth electrodeposition surface. On the other hand, when the copper concentration exceeds the solubility limit, precipitates are generated in the electrolytic solution or as a salt on the cathode surface. It is deposited and cannot be electrolyzed. The relationship between the copper concentration and the smoothness will also be described in the following hull cell test.

上記銅電解方法に用いる電解液としては、酸性塩化銅水溶液(A)中に、さらに、平滑剤を添加した酸性塩化銅水溶液、例えば重量平均分子量(Mw)が4万以下であるニカワ又はゼラチンを0.1〜1g/Lの濃度で含有する酸性塩化銅水溶液(B)を用いることができる。これによって、前記平滑剤、例えばニカワ又はゼラチンの平滑効果により、酸性塩化銅水溶液(A)を用いた場合に比べて平滑性が向上する。すなわち、上記断続通電とともに、添加剤としてこのようなニカワ又はゼラチンの特定量を添加することを併用すれば、さらに平滑性が向上する。   As an electrolytic solution used in the copper electrolysis method, an acidic copper chloride aqueous solution in which a smoothing agent is further added to the acidic copper chloride aqueous solution (A), for example, glue or gelatin having a weight average molecular weight (Mw) of 40,000 or less. An acidic copper chloride aqueous solution (B) contained at a concentration of 0.1 to 1 g / L can be used. Thereby, smoothness improves compared with the case where acidic copper chloride aqueous solution (A) is used by the smoothing effect of the said smoothing agent, for example, glue or gelatin. That is, smoothness can be further improved by combining the intermittent energization with the addition of a specific amount of such glue or gelatin as an additive.

ここで、上記平滑剤の効果について、ハルセル試験を用いて説明する。
前述のように、塩化浴での添加剤の使用には、分析等による有効性の確認と管理に多くの課題が残されており、その液管理は硫酸浴の場合に比べて著しく困難とされ、適切な手法がなかった。ところで、硫酸浴での電解精製では、電着状態を管理する方法のひとつとしてハルセル試験を用いた方法、例えば、特許第3148115号が開示されており、それによると電着銅の表面状態とハルセル表面粗さには良い相関が見られることが示されている。これを応用し、ハルセル試験を用いて、カソード上の表面状態の粗さを測定し、幅広い電流密度範囲で表面粗さがもっとも小さくなる電解条件を見出すことにより、それが平滑な電着面を得るために適した条件であると考え、それに基づいて、平滑な電着面を得るために必要な電解要因を検討した。
Here, the effect of the smoothing agent will be described using a Hull cell test.
As described above, the use of additives in the chloride bath still has many problems in confirming and managing its effectiveness by analysis, etc., and its liquid management is significantly more difficult than in the case of a sulfuric acid bath. There was no proper technique. By the way, in electrolytic refining in a sulfuric acid bath, a method using a hull cell test, for example, Japanese Patent No. 3148115, is disclosed as one of the methods for controlling the electrodeposition state. It is shown that there is a good correlation with the surface roughness. By applying this, the hull cell test is used to measure the roughness of the surface condition on the cathode, and by finding the electrolysis conditions that minimize the surface roughness over a wide current density range, It was considered that the conditions were suitable for obtaining, and based on this, the electrolysis factors necessary for obtaining a smooth electrodeposition surface were examined.

その結果、平滑剤を適切な濃度で含有させれば、例えば、重量平均分子量(Mw)が4万以下であるニカワ又はゼラチンを0.1〜1g/Lの濃度で含有するように電解液に添加することにより、塩化浴中でも、平滑剤としての効果が発揮できることを見出した。以下に、その詳細を次の[塩化浴の電解液でのハルセル試験]で説明する。   As a result, if the smoothing agent is contained at an appropriate concentration, for example, the electrolyte solution may contain glue or gelatin having a weight average molecular weight (Mw) of 40,000 or less at a concentration of 0.1 to 1 g / L. It has been found that, by adding, the effect as a smoothing agent can be exhibited even in a chloride bath. The details will be described in the following [Hull Cell Test with Chloride Bath Electrolyte].

[塩化浴の電解液でのハルセル試験]
試験液として、試薬1級の塩化第1銅を用いて銅濃度が20〜60g/Lに、塩化ナトリウムにより塩化物濃度が100g/Lに、さらにpHが1になるように塩酸で調整した塩酸酸性塩化銅水溶液を用いた。これに、試験条件に応じて、所定の濃度にニカワ等の添加剤を溶解しよく攪拌してからハルセル槽(電解槽)に入れた。ハルセル槽としては、市販の267mL容量の槽を使用した。アノードには、厚さ0.6mmの銅板を65×65mmの大きさに切断したものを使用した。カソードには、市販のハルセル試験用の銅板を使用した。
試験では、液温を60℃に維持しながら、2Aの電流で1時間通電した。通電中は攪拌を行わなかった。通電後カソードを引き揚げ、表面を純水とエチルアルコールで洗浄し、カソード上の電流密度が20〜800A/mに相当する位置の表面粗さを、触針式表面粗さ計(最大測定粗さ30μm)で測定し、ハルセル粗さと電流密度の関係を求めた。
[Hull cell test with electrolyte in chloride bath]
Hydrochloric acid adjusted with hydrochloric acid so that the copper concentration is 20-60 g / L using sodium chloride of reagent grade 1 as the test solution, the chloride concentration is 100 g / L with sodium chloride, and the pH is 1 An acidic copper chloride aqueous solution was used. In accordance with the test conditions, an additive such as glue was dissolved in a predetermined concentration and stirred well, and then placed in a hull cell tank (electrolysis tank). A commercially available 267 mL tank was used as the hull cell tank. As the anode, a copper plate having a thickness of 0.6 mm cut into a size of 65 × 65 mm was used. As the cathode, a commercially available copper plate for Hull Cell test was used.
In the test, a current of 2 A was applied for 1 hour while maintaining the liquid temperature at 60 ° C. No stirring was performed during energization. After energization, the cathode is lifted, the surface is washed with pure water and ethyl alcohol, and the surface roughness at a position where the current density on the cathode corresponds to 20 to 800 A / m 2 is measured with a stylus type surface roughness meter (maximum measured roughness). 30 μm), and the relationship between the hull cell roughness and the current density was determined.

図1は、工業用ニカワが無添加とニカワ濃度1g/Lの電解液を用いた場合のカソードの表面粗さと電流密度の関係を示す。ここで、銅濃度は、20、40、60g/Lとし、参考のために硫酸浴の結果も示した。なお、工業用ニカワは、硫酸浴の銅電解精製で通常使用するものである。また、図1より、ニカワが無添加では、銅濃度が20g/Lでは、表面粗さを測れないほどの粗い電着状態となった。これに対して、銅濃度が40〜60g/Lでは、工業的な操業で使われる電流密度がおおむね100〜400A/m付近での表面粗さが低下し、銅濃度の上昇が平滑な電着を得るために不可欠であること分かる。また、ニカワ1g/Lを添加した場合では、表面粗さが顕著に低下し、硫酸浴での表面粗さと同程度の平滑さが得られた。特に、銅濃度を60g/Lと高くすると、400A/mを超える高電流密度側でも平滑性が保たれ、硫酸浴の場合とまったく同等の外観が得られた。なお、60g/Lを超える銅濃度では、さらなる平滑性の向上も期待できるが、上限は、銅の溶解度や槽電圧の上昇を考慮して選ばれる。 FIG. 1 shows the relationship between the surface roughness of the cathode and the current density when no industrial glue is used and an electrolytic solution having a glue concentration of 1 g / L is used. Here, the copper concentration was 20, 40, and 60 g / L, and the result of the sulfuric acid bath was also shown for reference. In addition, industrial glue is normally used in copper electrolytic purification of a sulfuric acid bath. Further, as shown in FIG. 1, when no glue was added, the electrode was in a rough electrodeposition state where the surface roughness could not be measured when the copper concentration was 20 g / L. On the other hand, when the copper concentration is 40 to 60 g / L, the current density used in the industrial operation is approximately 100 to 400 A / m 2 , and the surface roughness decreases, and the increase in the copper concentration is smooth. It turns out to be essential to get dressed. In addition, when 1 g / L of glue was added, the surface roughness was remarkably reduced, and smoothness comparable to the surface roughness in the sulfuric acid bath was obtained. In particular, when the copper concentration was increased to 60 g / L, smoothness was maintained even on the high current density side exceeding 400 A / m 2 , and an appearance completely equivalent to that of the sulfuric acid bath was obtained. In addition, when the copper concentration exceeds 60 g / L, further improvement in smoothness can be expected. However, the upper limit is selected in consideration of the solubility of copper and the increase in cell voltage.

図2は、工業用ニカワが無添加とニカワ濃度1、0.1、0.01g/Lの電解液を用いた場合のカソードの表面粗さと電流密度の関係を示す。なお、銅濃度は60g/Lとし、参考のために硫酸浴の結果も示した。図2より、ニカワ濃度0.1〜1g/Lでは、平滑性は低下しないが、0.01g/Lでは、高電流密度から中電流密度領域での平滑性が低下することが分かる。なお、硫酸浴の場合での適切なニカワ濃度は、0.001〜0.002g/Lと推定されているので、塩化浴で効果を得るためには、かなり高濃度での使用が不可欠であることが分かる。   FIG. 2 shows the relationship between the surface roughness of the cathode and the current density when no industrial glue is used and when an electrolytic solution having a glue concentration of 1, 0.1, 0.01 g / L is used. The copper concentration was 60 g / L, and the result of the sulfuric acid bath was also shown for reference. From FIG. 2, it can be seen that the smoothness does not decrease at a glue concentration of 0.1 to 1 g / L, but the smoothness from a high current density to a medium current density region decreases at 0.01 g / L. In addition, since the appropriate glue concentration in the case of a sulfuric acid bath is estimated to be 0.001 to 0.002 g / L, it is indispensable to use a considerably high concentration in order to obtain an effect in a chlorination bath. I understand that.

図3は、工業用ニカワが無添加と濃度1g/Lでゼラチン、ニカワ、粗ニカワを含む電解液を用いた場合のカソードの表面粗さと電流密度の関係を示す。なお、銅濃度は40g/Lとし、参考のために硫酸浴の結果も示した。ここで、表1に、用いたニカワとゼラチンの重量平均分子量(Mw)を示す。なお、ニカワでは精製の度合いに応じた分子量があるが、その影響を評価したものである。ここで、ニカワの用語として、硫酸浴の銅電解精製で使用する粉状ニカワを工業用ニカワと称し、粒状の粗ニカワと区別して用いている。
図3より、重量平均分子量(Mw)が4万以下であるゼラチンでは、工業用ニカワのよりも高電流密度での平滑性が向上するが、通常の操業に用いられる電流密度の範囲では差が小さい。一方、重量平均分子量(Mw)がこれらより大きな粗ニカワでは、高電流密度側での平滑効果が低下することが分かる。また、重量平均分子量が概ね4万以下のニカワであれば高電流密度側でも平滑な電着が得られる。
FIG. 3 shows the relationship between the surface roughness of the cathode and the current density when no industrial glue is added and an electrolyte containing gelatin, glue and crude glue at a concentration of 1 g / L is used. The copper concentration was 40 g / L, and the result of the sulfuric acid bath was also shown for reference. Here, Table 1 shows the weight average molecular weight (Mw) of the glue and gelatin used. Nika has a molecular weight depending on the degree of purification, but its influence was evaluated. Here, as a term for glue, powdered glue used in copper electrolytic purification of a sulfuric acid bath is referred to as industrial glue and is used separately from granular crude glue.
From FIG. 3, gelatin having a weight average molecular weight (Mw) of 40,000 or less improves smoothness at a higher current density than that of industrial glue, but there is a difference in the range of current density used in normal operation. small. On the other hand, it can be seen that a rough glue with a weight average molecular weight (Mw) larger than these decreases the smoothing effect on the high current density side. Further, if the weight average molecular weight is about 40,000 or less, smooth electrodeposition can be obtained even on the high current density side.

Figure 2008308744
Figure 2008308744

上記銅電解方法に用いる電解槽としては、特に限定されるものではないが、カソードとアノードを濾布製の隔膜で仕切ったカソード室とアノード室から構成される隔膜電解槽を用いることができる。
この際、アノード室への給液としては、酸性塩化銅水溶液(A)であり、一方カソード室への給液は、酸性塩化銅水溶液(B)であることが好ましい。すなわち、アノード室は酸化性が強いので、酸性塩化銅水溶液(B)を供給すると、液中のニカワ、ゼラチン等の有機物が酸化分解されてロスとなるのみならず、有害成分の生成の危険性もあるからである。
The electrolytic cell used in the copper electrolysis method is not particularly limited, but a diaphragm electrolytic cell composed of a cathode chamber and an anode chamber in which a cathode and an anode are separated by a filter cloth diaphragm can be used.
At this time, the supply liquid to the anode chamber is preferably an acidic copper chloride aqueous solution (A), while the supply liquid to the cathode chamber is preferably an acidic copper chloride aqueous solution (B). That is, since the anode chamber is highly oxidative, supplying an acidic copper chloride aqueous solution (B) not only oxidizes and decomposes organic matter such as glue and gelatin in the liquid, but also causes a risk of generating harmful components. Because there is also.

上記銅電解方法に用いるカソードの材質としては、特に限定されるものではないが、銅が好ましい。すなわち、繰り返し利用することができるチタンからなるカソードの場合には、銅カソードに比べて均一な電着が得られにくい。ただし、チタンカソード上に、銅濃度40〜60g/L及び硫酸150〜200g/Lの液組成からなる硫酸浴を使用して、電流密度250A/mで1時間程度通電して銅メッキをつけたものは、塩化浴の電解採取に用いた際に、電着ムラの発生は防止できることを確認した。 The material of the cathode used in the copper electrolysis method is not particularly limited, but copper is preferable. That is, in the case of a cathode made of titanium that can be used repeatedly, uniform electrodeposition is difficult to obtain compared to a copper cathode. However, on the titanium cathode, using a sulfuric acid bath having a copper composition of 40 to 60 g / L and sulfuric acid of 150 to 200 g / L, a copper plating is applied by energizing at a current density of 250 A / m 2 for about 1 hour. It was confirmed that the occurrence of uneven electrodeposition can be prevented when the sample is used for electrowinning a chloride bath.

ここで、銅カソードの表面粗さとしては、特に限定されるものではないが、5点標準粗さ(Rz)で表した値で5〜20μmであることが好ましい。すなわち、表面粗さがこの範囲内では、電着物の平滑性が向上し、初期カソードの表面状態の影響も少ない。   Here, the surface roughness of the copper cathode is not particularly limited, but is preferably 5 to 20 μm in terms of a 5-point standard roughness (Rz). That is, when the surface roughness is within this range, the smoothness of the electrodeposit is improved and the influence of the surface state of the initial cathode is small.

上記カソードの幅としては、特に限定されるものではないが、電解槽に用いるアノードの幅に対して10〜30%の割合で増加させることが好ましい。これによって、カソード端部に発生しやすい針状結晶の防止がさらに行なえる。すなわち、カソードの幅がアノードの幅に対して10%未満では、カソード端部での針状結晶の防止効果が小さい。一方、カソードの幅がアノードの幅に対して30%を超えると、針状結晶の発生は防止できるが、端部での電着が不足し、電着物が薄くなりすぎる。   The width of the cathode is not particularly limited, but is preferably increased at a rate of 10 to 30% with respect to the width of the anode used in the electrolytic cell. This further prevents needle-like crystals that are likely to occur at the cathode end. That is, when the width of the cathode is less than 10% of the width of the anode, the effect of preventing acicular crystals at the cathode end is small. On the other hand, when the width of the cathode exceeds 30% with respect to the width of the anode, the generation of acicular crystals can be prevented, but the electrodeposition at the end is insufficient, and the electrodeposit is too thin.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた金属の分析は、ICP発光分析法で行い、ニカワ又はゼラチンの濃度は添加物量から求めた。
また、実施例及び比較例で用いた電解槽は、次の通りである。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. The metal used in Examples and Comparative Examples was analyzed by ICP emission analysis, and the concentration of glue or gelatin was determined from the amount of additive.
Moreover, the electrolytic cell used by the Example and the comparative example is as follows.

[電解槽]
形状は、長さ60mm、横幅90mm、及び深さ160mmの箱型とし、塩化ビニールで製作した。ここで、電解槽の長さ方向のアノード側で20mm、カソード側で40mmとなる位置で、電解槽にテトロン製濾布による仕切りを設けた。また、排液口を、電解槽上部から15mmとなる位置に取り付けた。また、アノードには、ペルメレック電極(株)製の塩素発生型不溶性アノードを、電極面積が65×120mmとなるように、テープでマスキングしたものを使用した。また、カソードには、厚さ0.7mmの銅種板を、電極面積がアノードと同じようになるようにマスキングしたもの使用した。それらを、極間の距離が60mmとなるように電解槽に装入し固定した。両電極の裏面はいずれも全面をマスキングした。
[Electrolysis tank]
The shape was a box shape having a length of 60 mm, a width of 90 mm, and a depth of 160 mm, and was made of vinyl chloride. Here, a partition made of Tetoron filter cloth was provided in the electrolytic cell at a position of 20 mm on the anode side and 40 mm on the cathode side in the length direction of the electrolytic cell. Moreover, the drainage port was attached to the position which becomes 15 mm from the electrolytic cell upper part. The anode used was a chlorine-generating insoluble anode manufactured by Permerek Electrode Co., Ltd., masked with tape so that the electrode area was 65 × 120 mm. As the cathode, a copper seed plate having a thickness of 0.7 mm was used so that the electrode area was the same as that of the anode. They were charged and fixed in the electrolytic cell so that the distance between the electrodes was 60 mm. The back surfaces of both electrodes were masked on the entire surface.

(実施例1〜3、比較例1)
上記電解槽を用いて、パルス電解(実施例1〜3)と連続電解(比較例1)を行ない、得られた電着状態を比較した。
ここで、カソードに給液する電解液としては、試薬1級の塩化第1銅と塩化ナトリウムを、銅濃度が60g/L、及び塩化物濃度が100g/Lになるように純水に溶解し、pHが1になるように塩酸で調整したものを用いた。なお、添加剤は添加しなかった。また、電解液の給液温度は60℃とした。
通電は、電流密度が300A/mとなる電流2.34Aで行なった。この間、パルス電解(実施例1〜3)では、通電と停電を一定の周期で繰り返す断続(パルス)通電をしながら、通常の連続通電で12時間通電した場合に相当する28AHの電流量に達する時間まで電解を行なった。ここで、断続通電のパターンとしては、通電150秒/周期及び停電30秒/周期からなる有効通電率83%(実施例1)、通電45秒/周期及び停電30秒/周期からなる有効通電率60%(実施例2)、及び通電30秒/周期及び停電30秒/周期からなる有効通電率50%(実施例3)を用いた。なお、有効通電率は、通電時間/(通電+停電時間)×100%で算出される。また、このときのそれぞれの通電時間は、15、20、及び24時間であった。また、連続電解(比較例1)では、有効通電率は100%であり、12時間の通電とした。
(Examples 1 to 3, Comparative Example 1)
Using the electrolytic cell, pulse electrolysis (Examples 1 to 3) and continuous electrolysis (Comparative Example 1) were performed, and the obtained electrodeposition states were compared.
Here, as the electrolytic solution to be supplied to the cathode, first grade cuprous chloride and sodium chloride are dissolved in pure water so that the copper concentration is 60 g / L and the chloride concentration is 100 g / L. A solution adjusted with hydrochloric acid so that the pH is 1 was used. The additive was not added. The liquid supply temperature of the electrolytic solution was 60 ° C.
The energization was performed at a current of 2.34 A at a current density of 300 A / m 2 . During this time, in pulse electrolysis (Examples 1 to 3), a current amount of 28 AH corresponding to the case of energizing for 12 hours with normal continuous energization while performing intermittent (pulse) energization that repeats energization and power failure at a constant cycle is reached. Electrolysis was performed until time. Here, as a pattern of intermittent energization, an effective energization rate 83% (Example 1) consisting of energization 150 seconds / cycle and a power failure 30 seconds / cycle, an effective energization rate consisting of energization 45 seconds / cycle and a power failure 30 seconds / cycle. An effective energization rate of 50% (Example 3) consisting of 60% (Example 2) and energization 30 seconds / cycle and power failure 30 seconds / cycle was used. The effective energization rate is calculated by energization time / (energization + power failure time) × 100%. Moreover, each energization time at this time was 15, 20, and 24 hours. In continuous electrolysis (Comparative Example 1), the effective energization rate was 100%, and energization was performed for 12 hours.

電解終了後、得られたカソードの電着物の表面状態を観察したところ、外観上、パルス電解(実施例1〜3)では、連続電解(比較例1)に対し、カソード外周部での針状電着の発生が抑制され、かつ中心部の平滑性も向上することが分かった。結果の一例を、図4(比較例1)、図5(実施例1)又図6(実施例2)に示す。図4、5、6は、得られたカソードの電着物の表面状態を表す写真である。図5、6より、図4と比べて、断続通電することにより、カソード外周部での針状電着の発生が明らかに抑制され、中心部の平滑性も向上することが分かる。なお、図4では、カソード周辺部には多数の針状電着が発生し、中央部も粒による凹凸が目立つ。   After the completion of electrolysis, the surface state of the obtained electrodeposit on the cathode was observed. As a result, in the case of pulse electrolysis (Examples 1 to 3), the needle-like shape on the outer periphery of the cathode was compared with continuous electrolysis (Comparative Example 1). It was found that the occurrence of electrodeposition was suppressed and the smoothness of the central part was improved. An example of the results is shown in FIG. 4 (Comparative Example 1), FIG. 5 (Example 1) and FIG. 6 (Example 2). 4, 5 and 6 are photographs showing the surface state of the obtained cathode electrodeposit. 5 and 6, it can be seen that the intermittent electrode energization is clearly suppressed and the smoothness of the central portion is improved by intermittent energization as compared with FIG. In FIG. 4, a large number of needle electrodepositions occur around the cathode, and unevenness due to grains is conspicuous in the center.

また、電着物を顕微鏡で観察し、電着結晶の大きさを読み取り、結晶粒の大きさに換算した結果を図7に示す。図7は、有効通電率と結晶粒の大きさ(mm)の関係を表す。図7より、有効通電率が減少するほど、結晶粒が小さい、すなわち平滑化されていることが分かる。 Moreover, the electrodeposit is observed with a microscope, the size of the electrodeposited crystal is read, and the result of conversion into the size of the crystal grain is shown in FIG. FIG. 7 shows the relationship between the effective energization rate and the crystal grain size (mm 3 ). From FIG. 7, it can be seen that the crystal grains are smaller, that is, smoothed as the effective current ratio decreases.

(実施例4)
工業用ニカワ(重量平均分子量(Mw):36053)を1g/Lの濃度で添加した電解液を用いたこと以外は実施例3と同様に行い、電解終了後、得られたカソードの電着物の表面状態を観察したところ、外観上、ニカワを添加した電解液のパルス電解では、連続電解に対し、カソード外周部での針状電着の発生が抑制され、かつ中心部の平滑性も向上することが分かった。結果を図8に示す。図8は、得られたカソードの電着物の表面状態を表す写真である。図8より、図4(比較例1)と比べて、断続通電とニカワの添加により、カソード外周部での針状電着の発生が明らかに抑制され、さらに中心部の平滑性も向上することが分かる。
Example 4
The same procedure as in Example 3 was carried out except that an electrolytic solution to which industrial glue (weight average molecular weight (Mw): 36053) was added at a concentration of 1 g / L was used. When the surface state was observed, in appearance, the pulse electrolysis of the electrolyte added with glue suppresses the occurrence of needle-like electrodeposition on the outer periphery of the cathode and improves the smoothness of the central portion compared to continuous electrolysis. I understood that. The results are shown in FIG. FIG. 8 is a photograph showing the surface state of the obtained electrodeposit on the cathode. From FIG. 8, compared with FIG. 4 (Comparative Example 1), the occurrence of acicular electrodeposition on the outer periphery of the cathode is clearly suppressed and the smoothness of the central part is improved by the intermittent energization and the addition of glue. I understand.

(実施例5)
カソードの寸法をアノードよりも10%増加し、幅75mm×長さ90mmとしたものを用いたこと、及び電解液の塩化物濃度を200g/Lに調整したこと以外は実施例1と同様に行い、電解終了後、得られたカソードの電着物の表面状態を観察したところ、断続通電とカソード面積の拡大により、カソード外周部での針状電着の発生が抑制されることが分かった。結果を、図9に示す。図9は、得られたカソードの電着物の表面状態を表す写真である。図9より、断続通電とカソード面積の拡大により、カソード外周部での針状電着の発生が抑制されることが分かる。
(Example 5)
The same procedure as in Example 1 was carried out except that the cathode size was increased by 10% from the anode, the width was 75 mm × the length was 90 mm, and the chloride concentration of the electrolyte was adjusted to 200 g / L. After the electrolysis, the surface state of the obtained electrodeposit on the cathode was observed, and it was found that the occurrence of needle electrodeposition on the outer periphery of the cathode was suppressed by intermittent energization and the enlargement of the cathode area. The results are shown in FIG. FIG. 9 is a photograph showing the surface state of the obtained electrodeposit on the cathode. From FIG. 9, it can be seen that the occurrence of needle electrodeposition on the outer periphery of the cathode is suppressed by intermittent energization and enlargement of the cathode area.

(実施例6)
カソードの寸法をアノードよりも10%増加し、幅75mm×長さ90mmとしたものを用いたこと、電解液の塩化物濃度を200g/Lに調整したこと、及び添加剤としてゼラチン(重量平均分子量(Mw):39166)を濃度1g/Lで添加した電解液を用いたこと以外は実施例1と同様に行い、電解終了後、得られたカソードの電着物の表面状態を観察したところ、断続通電、ゼラチLンの添加、及びカソード面積の拡大により、カソード外周部での針状電着の発生が抑制され、かつ中心部の平滑性も向上することが分かった。結果を、図10に示す。図10は、得られたカソードの電着物の表面状態を表す写真である。図10より、断続通電、ゼラチンの添加、及びカソード面積の拡大により、カソード外周部での針状電着の発生が抑制され、さらに中心部の平滑性も向上することが分かる。
(Example 6)
The cathode dimensions were increased by 10% from the anode, and the width 75 mm × length 90 mm were used, the chloride concentration of the electrolyte was adjusted to 200 g / L, and gelatin (weight average molecular weight as an additive) (Mw): 39166) was used in the same manner as in Example 1 except that an electrolytic solution added at a concentration of 1 g / L was used. After completion of electrolysis, the surface state of the obtained electrodeposit on the cathode was observed. It has been found that the occurrence of needle electrodeposition on the outer periphery of the cathode is suppressed and the smoothness of the central portion is improved by energization, addition of gelatin, and enlargement of the cathode area. The results are shown in FIG. FIG. 10 is a photograph showing the surface state of the obtained electrodeposit on the cathode. From FIG. 10, it can be seen that the intermittent energization, the addition of gelatin, and the enlargement of the cathode area suppress the occurrence of needle-like electrodeposition on the outer periphery of the cathode and further improve the smoothness of the central portion.

以上より明らかなように、実施例1〜6では、所定の有効通電率で断続通電したので、連続通電(比較例1)と比べて、平滑性に優れた電着物を得ることができることが分かる。   As is clear from the above, in Examples 1 to 6, since intermittent energization was performed at a predetermined effective energization rate, it can be seen that an electrodeposit excellent in smoothness can be obtained compared to continuous energization (Comparative Example 1). .

以上より明らかなように、本発明の酸性塩化浴での銅電解方法は、特に湿式銅製錬分野で利用される銅の電解採取法において、平滑性に優れたカソードを効率よくかつ安全に製造する方法として好適である。   As is clear from the above, the copper electrolysis method in the acidic chloride bath of the present invention efficiently and safely produces a cathode with excellent smoothness, particularly in the copper electrowinning method used in the field of wet copper smelting. It is suitable as a method.

工業用ニカワが無添加とニカワ濃度1g/Lの電解液を用いた場合のカソードの表面粗さと電流密度の関係を示す図である。It is a figure which shows the relationship between the surface roughness of a cathode, and an electric current density at the time of using the electrolytic solution of additive-free industrial glue and an electrolyte concentration of 1 g / L. 工業用ニカワが無添加とニカワ濃度1、0.1、0.01g/Lの電解液を用いた場合のカソードの表面粗さと電流密度の関係を示す図である。It is a figure which shows the relationship between the surface roughness of a cathode, and an electric current density at the time of using no electrolyte for industrial use, and using electrolyte solution with a nickel concentration of 1, 0.1, and 0.01 g / L. 工業用ニカワが無添加と濃度1g/Lでゼラチン、ニカワ、粗ニカワを含む電解液を用いた場合のカソードの表面粗さと電流密度の関係を示す図である。It is a figure which shows the relationship between the surface roughness of a cathode, and current density at the time of using the electrolyte solution which contains gelatin, glue, and rough glue at the density | concentration of 1 g / L without industrial glue. 電解で得られたカソードの電着物の表面状態を表す写真である。(比較例1)It is the photograph showing the surface state of the electrodeposit of the cathode obtained by electrolysis. (Comparative Example 1) 電解で得られたカソードの電着物の表面状態を表す写真である。(実施例1)It is the photograph showing the surface state of the electrodeposit of the cathode obtained by electrolysis. Example 1 電解で得られたカソードの電着物の表面状態を表す写真である。(実施例2)It is the photograph showing the surface state of the electrodeposit of the cathode obtained by electrolysis. (Example 2) 有効通電率と結晶粒の大きさ(mm)の関係を表す図である。It is a figure showing the relationship between an effective electricity supply rate and the magnitude | size (mm < 3 >) of a crystal grain. 電解で得られたカソードの電着物の表面状態を表す写真である。(実施例4)It is the photograph showing the surface state of the electrodeposit of the cathode obtained by electrolysis. Example 4 電解で得られたカソードの電着物の表面状態を表す写真である。(実施例5)It is the photograph showing the surface state of the electrodeposit of the cathode obtained by electrolysis. (Example 5) 電解で得られたカソードの電着物の表面状態を表す写真である。(実施例6)It is the photograph showing the surface state of the electrodeposit of the cathode obtained by electrolysis. (Example 6)

Claims (8)

銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を得る銅電解方法であって、
前記電解液をカソードとアノードを備えた電解槽へ給液し、電解槽への通電を断続通電とするとともに、1周期での通電時間と停電時間の合計時間で通電時間を除して求めた有効通電率が50〜90%であることを特徴とする銅電解方法。
A copper electrolysis method for obtaining an electrodeposit excellent in smoothness from an electrolytic solution comprising an acidic chloride bath containing copper,
The electrolytic solution was supplied to an electrolytic cell equipped with a cathode and an anode, and energization of the electrolytic cell was made intermittent, and the energization time was divided by the total time of the energization time and power outage time in one cycle. A copper electrolysis method characterized in that an effective energization rate is 50 to 90%.
前記断続通電に用いる停電時間は30秒〜1分であることを特徴とする請求項1に記載の銅電解方法。   The copper electrolysis method according to claim 1, wherein a power failure time used for the intermittent energization is 30 seconds to 1 minute. 前記電解液は、銅濃度が40g/L以上、溶解限度以下である酸性塩化銅水溶液(A)であることを特徴とする請求項1又は2に記載の銅電解方法。   3. The copper electrolysis method according to claim 1, wherein the electrolytic solution is an acidic copper chloride aqueous solution (A) having a copper concentration of 40 g / L or more and a solubility limit or less. 前記電解液は、銅濃度が40g/L以上、溶解限度以下であり、かつ重量平均分子量(Mw)が4万以下であるニカワ又はゼラチンを0.1〜1g/Lの濃度で含有する酸性塩化銅水溶液(B)であることを特徴とする請求項1又は2に記載の銅電解方法。   The electrolytic solution is an acidic chloride containing nickel or gelatin having a copper concentration of 40 g / L or more and a solubility limit or less and a weight average molecular weight (Mw) of 40,000 or less at a concentration of 0.1 to 1 g / L. It is a copper aqueous solution (B), The copper electrolysis method of Claim 1 or 2 characterized by the above-mentioned. 前記電解槽は、濾布製の隔膜で仕切ったカソード室とアノード室から構成されることを特徴とする請求項1〜4のいずれかに記載の銅電解方法。   The said electrolytic cell is comprised from the cathode chamber and anode chamber which were partitioned off with the filter cloth-made diaphragm, The copper electrolysis method in any one of Claims 1-4 characterized by the above-mentioned. 前記アノード室への給液は、酸性塩化銅水溶液(A)であり、一方カソード室への給液は、酸性塩化銅水溶液(B)であることを特徴とする請求項5に記載の銅電解方法。   6. The copper electrolysis according to claim 5, wherein the supply liquid to the anode chamber is an acidic copper chloride aqueous solution (A), while the supply liquid to the cathode chamber is an acidic copper chloride aqueous solution (B). Method. 前記カソードの材質は、銅であり、かつその表面粗さは、5点標準粗さ(Rz)で表した値で5〜20μmであることを特徴とする請求項1〜6に記載の銅電解方法。   The material of the said cathode is copper, and the surface roughness is 5-20 micrometers in the value represented by 5-point standard roughness (Rz), The copper electrolysis of Claims 1-6 characterized by the above-mentioned. Method. 前記カソードの幅は、アノードの幅に対して10〜30%の割合で増加させることを特徴とする請求項1〜7に記載の銅電解方法。   The copper electrolysis method according to claim 1, wherein the width of the cathode is increased at a rate of 10 to 30% with respect to the width of the anode.
JP2007158943A 2007-06-15 2007-06-15 Copper electrolysis method in acidic chloride bath Pending JP2008308744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158943A JP2008308744A (en) 2007-06-15 2007-06-15 Copper electrolysis method in acidic chloride bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158943A JP2008308744A (en) 2007-06-15 2007-06-15 Copper electrolysis method in acidic chloride bath

Publications (1)

Publication Number Publication Date
JP2008308744A true JP2008308744A (en) 2008-12-25

Family

ID=40236600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158943A Pending JP2008308744A (en) 2007-06-15 2007-06-15 Copper electrolysis method in acidic chloride bath

Country Status (1)

Country Link
JP (1) JP2008308744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072458A (en) * 2010-09-29 2012-04-12 Pan Pacific Copper Co Ltd Glue supply device and glue supply method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072458A (en) * 2010-09-29 2012-04-12 Pan Pacific Copper Co Ltd Glue supply device and glue supply method

Similar Documents

Publication Publication Date Title
EP2757179B1 (en) Chlorine-generating positive electrode
EP2535443B1 (en) Nickel electrowinning method
JP2006316328A (en) Method for manufacturing two-layer flexible copper-clad laminate
JP2008266766A (en) Method for producing sheet-form electrolytic copper from halide solution
JP2008308744A (en) Copper electrolysis method in acidic chloride bath
CA2592199C (en) Method for producing sheet-form electrolytic copper from halide solution
JP2003096585A (en) Method of producing cobalt sulfate solution
JPS591691A (en) Electrolytic production of lead
CN103108995B (en) Nickel pH adjustment method and equipment
JP2009203487A (en) Metal electrowinning method by diaphragm electrolysis
JP6990130B2 (en) Electrolytic aluminum foil manufacturing method and manufacturing equipment
JP5561201B2 (en) Method for producing electric cobalt or electric nickel
JPS6133918B2 (en)
JP5344278B2 (en) Indium metal production method and apparatus
JPH11200099A (en) Plating method and plating apparatus using insoluble anode
JP4831408B2 (en) Method for producing plate-like electrolytic copper
US20170218531A1 (en) Metal electrowinning anode and electrowinning method
JP2012092447A (en) Electrolytic extracting method of cobalt
JP2006097128A (en) Method for producing sheet-form electrolytic copper
FI59124B (en) ELEKTROLYTISK PROCESS FOER ELEKTROLYTISK UTFAELLNING AV METALLER
Wilcox et al. The kinetics of electrode reactions III practical aspects
JP6473102B2 (en) Cobalt electrowinning method
JP4280593B2 (en) Copper electrolytic purification method
JPS59232285A (en) Electrolytic refining method of nickel
Toth et al. Polarization characteristics of tin electrorefining in chloride solutions