JPS59232285A - Electrolytic refining method of nickel - Google Patents

Electrolytic refining method of nickel

Info

Publication number
JPS59232285A
JPS59232285A JP10740883A JP10740883A JPS59232285A JP S59232285 A JPS59232285 A JP S59232285A JP 10740883 A JP10740883 A JP 10740883A JP 10740883 A JP10740883 A JP 10740883A JP S59232285 A JPS59232285 A JP S59232285A
Authority
JP
Japan
Prior art keywords
nickel
cathode
exposed parts
bath
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10740883A
Other languages
Japanese (ja)
Inventor
Takeshi Nakagawa
武 中川
Masakatsu Okabayashi
岡林 正勝
Teruaki Shiraishi
白石 照明
Kazuyuki Takaishi
和幸 高石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10740883A priority Critical patent/JPS59232285A/en
Publication of JPS59232285A publication Critical patent/JPS59232285A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To deposit spherical metallic Ni having high quality in the stage of refining electrically Ni by covering the cathode to be deposited thereon with pure Ni with a non-conductive material to form partially exposed parts and regulating the pH and temp. of an electrolyte at specific values. CONSTITUTION:Electrolysis is performed by using a Watts bath as an electrolytic bath and a plate of Ni matte or crude metallic Ni as an anode to deposit electrolytically pure Ni on a cathode. The cathode plate in this case is formed by covering a rectangular strip-shaped conductive metal 1 with a non-conductive material 2 to form exposed parts 3 at a specified interval at the plural points in the longitudinal direction thereof. Electrolytic refining is performed by setting the pH of the Watts bath at 3.0-4.0 and the temp. thereof at >=50 deg.C, by which the nearly spherical pure Ni without having the gas holes existing therein owing to the hydrogen generated in the exposed parts 3 is deposited.

Description

【発明の詳細な説明】 更に詳しくは各種形状の電着用母板を陰極、硫化ニッケ
ル板(以下、ニッケルマットという)、粗金属ニッケル
板のうちの一つを陽極、硫酸ニッケル水溶液と塩化ニッ
ケル水溶液の混合浴(以下ワット浴と略する)を電解液
とし、表面にガスの発生跡に出来た穴(以下ガスホール
と略する)の殆んど見られない球状に近い金属ニッケル
を製造するニッケルの電舒精製法に関するものである。
[Detailed Description of the Invention] More specifically, various shapes of electrodepositing mother plates are used as the cathode, a nickel sulfide plate (hereinafter referred to as nickel matte), one of the crude metal nickel plates is used as the anode, and an aqueous solution of nickel sulfate and an aqueous solution of nickel chloride are used. A mixed bath (hereinafter referred to as Watt bath) is used as an electrolyte to produce metallic nickel that has a nearly spherical shape with almost no holes (hereinafter referred to as gas holes) created by gas generation on the surface. This paper relates to the electric refining method.

ニッケルの電解精製においては、周知の如く陰極側より
水素ガスが発生する。この水素ガスの発生は、電解液の
PHが低いときまた陰極電流密度が大きいときに発生が
著るしい。
In electrolytic refining of nickel, as is well known, hydrogen gas is generated from the cathode side. This generation of hydrogen gas is remarkable when the pH of the electrolytic solution is low or when the cathode current density is high.

本発明法では、球形状に近い電着物を得るために陰極の
有効面積が小さい。このため生産性を良くするために、
陰極電流密度(以下D. K A/dm  と略す)を
極力大きくする必要があるので特にこの水素ガス発生に
よるガスホールの生成が著るしくそのため商品価値を下
げるだけでなく、電流効率、電力原単位の面からも大き
な問題点となっていた。
In the method of the present invention, the effective area of the cathode is small in order to obtain an electrodeposit having a nearly spherical shape. Therefore, in order to improve productivity,
Since it is necessary to increase the cathode current density (hereinafter abbreviated as D.K A/dm) as much as possible, the generation of gas holes due to hydrogen gas generation is particularly significant, which not only lowers the commercial value but also reduces current efficiency and power consumption. There was also a big problem in terms of units.

そこで従来、この水素ガス発生を抑えるために初期D.
K(電極電導部ベース)を、2Q A/am以下に抑え
て電解し、電着物の表面積が大きくなった時点で2〜3
段階に電流を強くし最終段階ではD。
Therefore, in order to suppress this hydrogen gas generation, the initial D.
Electrolysis is carried out by suppressing K (electrode conductive part base) to 2Q A/am or less, and when the surface area of the electrodeposit becomes large, 2 to 3
The current is made stronger in each stage, and the final stage is D.

K 100 A/am 以上とする方法を行なっていた
。この間の電解液のPHは摺電圧を抑え電解電力が高く
ならないようにPH2.6〜3.0に保持していた。
A method of increasing K 100 A/am or more was used. During this time, the pH of the electrolytic solution was maintained at 2.6 to 3.0 to suppress the sliding voltage and prevent the electrolysis power from becoming high.

しかしながら、この方法では通常の平板ニッケルを採取
する電解法と比較して生産性が著るしく劣るという欠点
があった。
However, this method has the disadvantage that productivity is significantly lower than that of the usual electrolytic method for collecting flat nickel.

本発明の目的は、上記の欠点を解消し従来の電解方法と
同等の生産性で、ガスホールが無く表面の滑かな球形状
に近い電着物を得る電解方法を提供することにある。
An object of the present invention is to provide an electrolytic method that eliminates the above-mentioned drawbacks and obtains an electrodeposit having a smooth surface and a nearly spherical shape without gas holes, with productivity equivalent to that of conventional electrolytic methods.

この目的を達成するため、本発明者等はワット浴でのニ
ッケル電解精製の条件について鋭意研究した結果、ワッ
ト浴のPH及び温度を規制することにより電着物表面の
ガスホールを抑え併ぜて生産性を高め得ることを見出し
本発明に到達した。
In order to achieve this objective, the present inventors conducted extensive research on the conditions for electrolytic refining of nickel in a Watts bath, and found that by regulating the pH and temperature of the Watts bath, gas holes on the surface of the electrodeposit could be suppressed and production could be achieved. The present invention has been achieved by discovering that the properties of the present invention can be improved.

すなわち本発明の方法は、ニッケルマット板、粗金属ニ
ッケル板のうち一つを陽極、短冊状導電金属を非電導性
材料で被覆し、その長手方向の端縁に間隔を置いて導電
金属の露出部を形成した金属電着用母板を1!3極、ワ
ット浴を電解液とし、該電解液の温度を30C以上好ま
しくは60C以上、I)Bを3.0〜17−、o好まし
くは3.左〜り、0として電解精製を行なうというもの
である。。
That is, in the method of the present invention, one of a nickel matte plate and a coarse metal nickel plate is used as an anode, a strip-shaped conductive metal is coated with a non-conductive material, and the conductive metal is exposed at intervals along the longitudinal edges of the anode. The mother plate for metal electrodeposition formed with the part is 1!3 poles, the Watt bath is an electrolyte, the temperature of the electrolyte is 30C or more, preferably 60C or more, I)B is 3.0 to 17-, preferably 3 .. From left to right, electrolytic refining is performed with the temperature set to 0. .

この方法によれば初期り、 K 110 A/dmでl
Ig時間程度、以後はり、 K 1100vd以上で合
計−ライフ(g日間程度)で所望の形状の金属ニッケル
が効率よく得られる。
According to this method, initially, l at K 110 A/dm
Metallic nickel in a desired shape can be efficiently obtained with a total life (about g days) at about Ig time and K at 1100vd or more.

本発明の方法において、電解液の温度を50C以上好ま
しくは600以上とするのは、これ以下では、特に電解
の初期において、陰極に水酸化ニッケルが析出しガスホ
ールの原因となり且つ電流効率も低下するからである。
In the method of the present invention, the temperature of the electrolytic solution is set to 50C or more, preferably 600C or more, because if it is lower than this, nickel hydroxide will precipitate on the cathode, especially in the early stage of electrolysis, causing gas holes and reducing current efficiency. Because it does.

この温度は乙OC以上70C程度が好適である。This temperature is preferably about 70C or higher than OtsuOC.

また電解液のP Hを3.0〜弘、0好ましくは3.3
〜1、θの範囲とする理由は、これより低いと前述した
ように水素ガスの発生が著るしく、電着物の表面にガス
ホールが生成される。
In addition, the pH of the electrolyte should be 3.0 to 3.0, preferably 3.3.
The reason why the range is 1.0 to 1.0 is that if it is lower than this, hydrogen gas will be generated significantly as described above, and gas holes will be generated on the surface of the electrodeposited material.

また低PHでは電極電導部にニッケルの水酸化物の析出
も見られるからであり、PHがこれより高くなると陰極
電着物がニッケル水酸化物を含むようになり、摺電圧も
高くなるからである。
In addition, at low pH, nickel hydroxide can be deposited on the electrode conductive part, and when the pH is higher than this, the cathode electrodeposit will contain nickel hydroxide, and the sliding voltage will also increase. .

本発明の方法に使用される陰極の形状としては特定され
ないが、球形状のものを得る場合には例えば第1図及び
第3図に示したようなものが使用される。図中/は短冊
状導電金属、2はその表面を被覆する非導電性被覆材料
、3は導電金属の長手方向端縁に間隔を置いて形成した
非導電性被び材料コからの導電金属の露出部で金属ニッ
ケル電着部である。7は導電金属/をブスバーに吊る吊
手である。
Although the shape of the cathode used in the method of the present invention is not specified, when obtaining a spherical cathode, for example, those shown in FIGS. 1 and 3 are used. In the figure, / is a strip-shaped conductive metal, 2 is a non-conductive coating material that covers the surface of the conductive metal, and 3 is a conductive metal from a non-conductive covering material formed at intervals on the longitudinal edge of the conductive metal. The exposed part is the metal nickel electrodeposited part. Reference numeral 7 denotes a hanging hand for hanging the conductive metal on the bus bar.

第2図はその電着状態を示したものである。FIG. 2 shows the state of electrodeposition.

本発明法によれば、実施例に示すように製品の表面にガ
スホールが殆んどなく、表面が平滑で大きさも揃った所
望形状の金属ニッケルが効率良く得られる。
According to the method of the present invention, as shown in the examples, there are almost no gas holes on the surface of the product, and metallic nickel having a desired shape with a smooth surface and uniform size can be efficiently obtained.

以下実施例について説明する。Examples will be described below.

実施例 縦//、5′横//6深さiso各關、容量aノの塩化
ビニール製の電解槽の両端にgox ioo ×10”
 (厚さ)の陽極を各7枚、陽極の中間部に、横幅、2
3 am長さ/QQuの第1図に示した短冊状導電金属
/として5US3/乙りを、また非伝導性被覆材料コと
して塩化ビニール板を用い露出部3(電導部lケ当りの
面積はλX#7m)を有する短冊を3枚−セラ)・とじ
たものを陰極として−セット配設し1これにHl、gO
,0、So  /3!r XCI  Ak、0、Ma’
l0−0.4            2 COO,002% (Iu O,00θ’71Feθ、
0θ/各gjlで所定のPH値とした電解液を満し、給
液量は/アンペア、7時間当り50m1に調整して所定
の温度に湯煎器で保持し、初期7g時間のD K ′f
i:lIOA/dm  %その後6日間のDKを/20
1J6m  とし−ライフg日間電解を行なった。
Example Vertical //, 5' horizontal // 6 depth iso for each column, gox ioo x 10" at both ends of a vinyl chloride electrolytic cell with a capacity of a
(Thickness) 7 anodes each, width 2, in the middle of the anode.
Using 5US3/2 as the strip-shaped conductive metal shown in Figure 1 with a length of 3 am/QQu and a vinyl chloride plate as the non-conductive covering material, the exposed part 3 (area per 1 conductive part is A set of three rectangular strips with λ
,0,So/3! r XCI Ak, 0, Ma'
l0-0.4 2 COO,002% (IuO,00θ'71Feθ,
0θ/Each gjl is filled with an electrolytic solution with a predetermined pH value, the amount of liquid supplied is /ampere, adjusted to 50ml per 7 hours, maintained at the predetermined temperature with a water bath, and D K ′f for the initial 7g hours.
i:lIOA/dm %DK for the next 6 days/20
Electrolysis was carried out for 1J6m-lifeg days.

尚、短冊の陰極電導部(N出部)は7枚当り7ケあり、
これに電着する球形状の金属ニッケルの大きさは平均し
て、l左rnmφ程度のものであったが1この電解操作
を同条件で各乙回行ない、得られた電着物からランダム
に各、20個試料を採取し、電着物表面のガスホールを
ノギスで測定した。その結果を/ケ当りの平均値として
下表に示す。
In addition, there are 7 cathode conductive parts (N output parts) for each 7 strips,
The average size of the spherical metallic nickel electrodeposited on this electrodeposited material was about 1 nmφ, but this electrolytic operation was repeated several times under the same conditions, and each electrodeposited material was randomly selected from the electrodeposited material. , 20 samples were taken, and gas holes on the surface of the electrodeposit were measured using calipers. The results are shown in the table below as average values per unit.

表註、※印は比較例を示す。Table notes: *marks indicate comparative examples.

表より明らかなように、本発明法によれば大きなガスホ
ールは全く無く、好適な条件A 6及び嵐gでは殆んど
ガスホールは認められなかった。
As is clear from the table, there were no large gas holes at all according to the method of the present invention, and almost no gas holes were observed under suitable conditions A6 and Arashi g.

又実験1a s 、q程度のガスホールであれば製品の
商品価値を下げるという程ではなく、実用上支障はない
In addition, gas holes of the magnitude of Experiment 1a s and q do not reduce the commercial value of the product and pose no practical problem.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1実施例の一部斜視図、 第2図は電着状態を示した側面図、 第3図は第λ実施例の一部斜視図を夫々示したものであ
る。 /・・短冊状導電金属、λ・・電気の非伝導性被覆材料
、3・・露出部、弘・・吊手。 出願人  住友金属鉱山株式会社 代理人 弁理土中村勝成 第1図 児2図
FIG. 1 is a partial perspective view of the first embodiment, FIG. 2 is a side view showing the electrodeposition state, and FIG. 3 is a partial perspective view of the λth embodiment. /...Strip-shaped conductive metal, λ...Electric non-conductive coating material, 3...Exposed part, Hiroshi...Handle. Applicant Sumitomo Metal Mining Co., Ltd. Agent Katsunari Nakamura Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)  ニッケルマット又は粗ニッケルを陽極、短冊
状導電金属の表面を非電導性材料で被覆し、その長手方
向の端縁に間隔を置いて導電金属の露出部を形成した金
属電着用母板を陰極とし、硫酸ニッケル水溶液と塩化ニ
ッケル水溶液の混合浴であるワット浴を電解液として電
解し球形状に近い金属ニッケルを製造する方法において
、電解液のPHを3.0〜グ、0、温度を300以上と
することを特徴とするニッケルの電解精製方法。
(1) A base plate for metal electrodeposition, in which a nickel matte or coarse nickel is used as an anode, the surface of a conductive metal strip is coated with a non-conductive material, and exposed parts of the conductive metal are formed at intervals along the edges in the longitudinal direction. In the method of producing metallic nickel having a nearly spherical shape by electrolyzing a Watts bath, which is a mixed bath of a nickel sulfate aqueous solution and a nickel chloride aqueous solution, as a cathode and as an electrolyte, the pH of the electrolyte is 3.0 to 3.0 degrees, the temperature is 0. 300 or more.
JP10740883A 1983-06-15 1983-06-15 Electrolytic refining method of nickel Pending JPS59232285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10740883A JPS59232285A (en) 1983-06-15 1983-06-15 Electrolytic refining method of nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10740883A JPS59232285A (en) 1983-06-15 1983-06-15 Electrolytic refining method of nickel

Publications (1)

Publication Number Publication Date
JPS59232285A true JPS59232285A (en) 1984-12-27

Family

ID=14458387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10740883A Pending JPS59232285A (en) 1983-06-15 1983-06-15 Electrolytic refining method of nickel

Country Status (1)

Country Link
JP (1) JPS59232285A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503748C2 (en) * 2011-10-10 2014-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" (ФГБОУ ВПО ТГТУ) Method of producing ultramicrodispersed nickel oxide powder using ac
JP2017057452A (en) * 2015-09-16 2017-03-23 住友金属鉱山株式会社 Method for operating electrolytic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503748C2 (en) * 2011-10-10 2014-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" (ФГБОУ ВПО ТГТУ) Method of producing ultramicrodispersed nickel oxide powder using ac
JP2017057452A (en) * 2015-09-16 2017-03-23 住友金属鉱山株式会社 Method for operating electrolytic equipment

Similar Documents

Publication Publication Date Title
Saba et al. Continuous electrowinning of zinc
US4129494A (en) Electrolytic cell for electrowinning of metals
US4159231A (en) Method of producing a lead dioxide coated cathode
AU2002350349B2 (en) Method for the improvement of current efficiency in electrolysis
US3928153A (en) Electrowinning process
GB2071151A (en) Trivalent chromium electroplating
US3864227A (en) Method for the electrolytic refining of copper
US3855089A (en) Process for the electrolytic refining of heavy metals
Padhy et al. Microstructural aspects of manganese metal during its electrodeposition from sulphate solutions in the presence of quaternary amines
JPS59232285A (en) Electrolytic refining method of nickel
US4295943A (en) Process for the electrolytic production of manganese dioxide
US2358029A (en) Process of electrodepositing indium
Adcock et al. The importance of cathode zinc morphology as an indicator of industrial electrowinning performance
JPS6133918B2 (en)
Das et al. Electrowinning of cobalt from a sulphate bath containing H3BO3 and NaF
EP0058506B1 (en) Bipolar refining of lead
US2798038A (en) Electrodepositing manganese
US1951893A (en) Electrodeposition of metal alloys
US3755113A (en) Method for electrorefining of nickel
GB543294A (en) Electrolytic production of nickel
US3715286A (en) Electrorefined nickel of controlled size
JPH0665754B2 (en) Method for producing electrolytic manganese dioxide
JPH0375395A (en) Method and electrolytic cell for electrolytically plating metal surface
FI59124C (en) ELEKTROLYTISK PROSESS FOER ELEKTROLYTISK UTFAELLNING AV METALLER
JP2008308744A (en) Copper electrolysis method in acidic chloride bath