JP2008305812A - Production apparatus of radial anisotropic ring magnet - Google Patents

Production apparatus of radial anisotropic ring magnet Download PDF

Info

Publication number
JP2008305812A
JP2008305812A JP2007148706A JP2007148706A JP2008305812A JP 2008305812 A JP2008305812 A JP 2008305812A JP 2007148706 A JP2007148706 A JP 2007148706A JP 2007148706 A JP2007148706 A JP 2007148706A JP 2008305812 A JP2008305812 A JP 2008305812A
Authority
JP
Japan
Prior art keywords
cavity
core
axial direction
ring magnet
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007148706A
Other languages
Japanese (ja)
Other versions
JP4926834B2 (en
Inventor
Kimiyasu Furusawa
公康 古澤
Taizo Iwami
泰造 石見
Yuji Nakahara
裕治 中原
Giichi Ukai
義一 鵜飼
Hiroyuki Sasai
浩之 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007148706A priority Critical patent/JP4926834B2/en
Publication of JP2008305812A publication Critical patent/JP2008305812A/en
Application granted granted Critical
Publication of JP4926834B2 publication Critical patent/JP4926834B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production apparatus of radial anisotropic ring magnet in which deflection of magnetic powder is reduced during orientation by reducing the slope of magnetic field in the axial direction of a cavity. <P>SOLUTION: The production apparatus of radial anisotropic ring magnet has a pair of coils 10A and 10B generating magnetic fields facing each other toward the axial direction, and a metal mold 20 arranged between the pair of coils 10A and 10B with a core 22 and a die 21 arranged around the core 22 and forming a cavity 28 to which magnetic powder is supplied between the core 22 and the die 21. The core 22 includes such a portion 22A as the magnetic reluctance from the center of core to a part corresponding to the central portion of the cavity 28 in the axial direction is lower than the magnetic reluctance at the parts corresponding to the opposite ends of the cavity 28 in the axial direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、ラジアル異方性リング磁石の製造装置に関し、例えばブラシレスDCモータの回転子に用いられる形状精度が良好でかつ高配向率のラジアル異方性リング磁石を製造する製造装置に関するものである。   The present invention relates to a manufacturing apparatus for a radial anisotropic ring magnet, for example, a manufacturing apparatus for manufacturing a radial anisotropic ring magnet having a good shape accuracy and a high orientation ratio used for a rotor of a brushless DC motor. .

従来、ラジアル異方性リング磁石は、同極を対向させた一対の電磁石間に、強磁性及び非磁性からなるヨークで磁気回路を構成し、磁性粉末が充填されたリング状のキャビティ内にラジアル方向の磁界を発生させることで、磁性粉末を配向させ、上下パンチにより圧縮成形し、焼結等を行うことで製造される。キャビティ内に発生させる磁界は、定常磁界を利用する方法とパルス的な瞬間磁界(パルス磁界)を利用する方法がある。   Conventionally, a radial anisotropic ring magnet has a magnetic circuit composed of a ferromagnetic and non-magnetic yoke between a pair of electromagnets with the same pole facing each other, and the radial anisotropic ring magnet is radially contained in a ring-shaped cavity filled with magnetic powder. By producing a magnetic field in the direction, the magnetic powder is oriented, compression-molded by upper and lower punches, and sintered. The magnetic field generated in the cavity includes a method using a stationary magnetic field and a method using a pulsed instantaneous magnetic field (pulse magnetic field).

小径のラジアル異方性リング磁石は、製造工程において、リング状のキャビティの内周側に挿入されるヨークの強磁性体の断面積が不足し、強磁性部材が磁気飽和してしまい、磁性粉末を配向するための磁場が低下する。そのため、磁場方向に磁性粉末を配向しにくくなり、焼結後のラジアル異方性リング磁石の配向率が低下し、ラジアル方向に発生する磁力が小さくなってしまう。そこで、例えば特許文献1では、一対のコイルと絶縁体の型を用いてパルス電流を通電し、大きな磁界により型内の磁性粉末を配向させ、高い配向率のラジアル異方性リング磁石を実現している。   A small-diameter radial anisotropic ring magnet has a cross-sectional area of the ferromagnetic material of the yoke that is inserted into the inner periphery of the ring-shaped cavity in the manufacturing process, and the ferromagnetic member is magnetically saturated. The magnetic field for orienting decreases. Therefore, it becomes difficult to orient the magnetic powder in the magnetic field direction, the orientation rate of the radial anisotropic ring magnet after sintering is reduced, and the magnetic force generated in the radial direction is reduced. Therefore, in Patent Document 1, for example, a pulse current is applied using a pair of coils and an insulator mold, and magnetic powder in the mold is oriented by a large magnetic field, thereby realizing a radial anisotropic ring magnet with a high orientation ratio. ing.

特許第2916879号公報Japanese Patent No. 2916879

上述の特許文献1では、複数の強磁性体を互いに電気的に絶縁した円柱状の積層体を金型のコアの芯に設けることで、大きなパルス磁界を発生させ、高配向率のリング磁石を製造している。しかしながら、このような構成では、キャビティ内に発生させる磁界が軸方向で勾配を持ち、軸方向中心部では弱く、軸方向端部では強くなる。軸方向で勾配を持つ磁界により、キャビティ内に充填された磁性粉末は磁場の強い軸方向端部に偏り、圧縮成形後に軸方向で密度差ができてしまう。軸方向で密度が異なると、焼結後の収縮率が変わるため、密度の大きい軸方向端部は径方向にあまり収縮せず、密度の小さい軸方向中心部は径方向によく収縮する。そのため、焼結後のリング磁石はその軸方向の形状が歪み、逆太鼓のような形状となってしまう。リング磁石は一般的に焼結後に形状仕上げの機械加工を行うが、形状精度が悪いと、削り代が多くなり、製品と成らずに廃却する磁石が多くなり、また加工時間も長くなり、歩留りが悪くなるという問題があった。   In the above-mentioned Patent Document 1, a cylindrical laminated body in which a plurality of ferromagnetic bodies are electrically insulated from each other is provided at the core of a mold core, thereby generating a large pulse magnetic field, and a ring magnet having a high orientation ratio. Manufacture. However, in such a configuration, the magnetic field generated in the cavity has a gradient in the axial direction, and is weak at the axial center and strong at the axial end. Due to the magnetic field having a gradient in the axial direction, the magnetic powder filled in the cavity is biased toward the end in the axial direction where the magnetic field is strong, resulting in a density difference in the axial direction after compression molding. When the density is different in the axial direction, the shrinkage rate after sintering is changed, so that the axial end portion having a high density does not shrink much in the radial direction, and the axial center portion having a low density shrinks well in the radial direction. Therefore, the ring magnet after sintering is distorted in the shape of its axis and becomes like an inverted drum. Ring magnets are generally machined for shape finishing after sintering, but if the shape accuracy is poor, the machining allowance increases, more magnets are discarded without becoming a product, and the processing time also increases. There was a problem of poor yield.

この発明は上記のような課題を解消するためになされたものであり、キャビティの軸方向での磁場勾配を軽減し、配向時の磁性粉末の偏りを少なくするラジアル異方性リング磁石の製造装置を提供する。   The present invention has been made in order to solve the above-described problems, and reduces the magnetic field gradient in the axial direction of the cavity, thereby reducing the bias of the magnetic powder during orientation, and an apparatus for manufacturing a radial anisotropic ring magnet I will provide a.

この発明によるラジアル異方性リング磁石の製造装置は、軸方向に向けて相互に対向する磁界を発生する一対のコイルと、一対のコイル間に配置され、コア及びコアの周囲に配置されたダイを有し、コアとダイの間に磁性粉末が供給されるキャビティが形成される金型とを備え、当該コアにおいて、その芯部からキャビティの軸方向中央部に対応する箇所の磁気抵抗が、キャビティの軸方向両端部に対応する箇所の磁気抵抗に比して小なる部分を設けたものである。   A manufacturing apparatus for a radial anisotropic ring magnet according to the present invention includes a pair of coils that generate magnetic fields facing each other in the axial direction, and a die disposed between the pair of coils and around the core. And a die in which a cavity to which magnetic powder is supplied is formed between the core and the die, and in the core, the magnetoresistance of the portion corresponding to the axial central portion of the cavity from the core portion, A portion that is smaller than the magnetic resistance of the portion corresponding to both ends in the axial direction of the cavity is provided.

この発明のラジアル異方性リング磁石の製造装置によれば、コアの芯部からキャビティの軸方向中央部に対応する箇所の磁気抵抗が、キャビティの軸方向両端部に対応する箇所の磁気抵抗に比して小なる部分を設けたので、キャビティ内に発生する磁界について、キャビティの軸方向の磁場勾配を軽減することができ、配向時の磁性粉末の偏りが少なくなり、成形後のリング成形体の軸方向の密度分布差が少なくなる。そのため、リング成形体の焼結後の形状精度が良好となり、形状仕上げのための機械加工の歩留りのよいラジアル異方性リング磁石を提供することができる。   According to the radial anisotropic ring magnet manufacturing apparatus of the present invention, the magnetoresistance of the portion corresponding to the axial center portion of the cavity from the core portion of the core is changed to the magnetoresistance of the portion corresponding to both axial end portions of the cavity. Compared with the magnetic field generated in the cavity, the gradient of the magnetic field in the axial direction of the cavity can be reduced, the bias of the magnetic powder during orientation is reduced, and the ring molded body after molding The difference in density distribution in the axial direction is reduced. Therefore, the shape accuracy after sintering of the ring molded body is improved, and a radial anisotropic ring magnet having a good machining yield for shape finishing can be provided.

以下、本発明を実施するための最良の形態を図に基づいて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

実施の形態1.
図1はこの発明の実施の形態1によるラジアル異方性リング磁石の製造装置を示す断面図である。本実施の形態の製造装置は、一対の空芯状のコイル10A及び10Bと、コイル10Aとコイル10Bの間に配置される金型20を備えている。一対のコイル10A及び10Bは直列に結線され、4000μF、3000Vのパルス電源に接続されている。そして、一対のコイル10A及び10Bにより発生する磁力線は、図示点線に示すように、それぞれコイルの中心部から軸方向に延び、金型20で互いに反発してラジアル方向に向く。なお、図示はしないが、一対のコイル10A及び10Bのうち、いずれか一方のコイルは油圧又はエアシリンダー等により図示上下方向に往復移動できるようになっている。
Embodiment 1 FIG.
1 is a cross-sectional view showing an apparatus for manufacturing a radial anisotropic ring magnet according to Embodiment 1 of the present invention. The manufacturing apparatus according to the present embodiment includes a pair of air-core coils 10A and 10B, and a mold 20 disposed between the coils 10A and 10B. The pair of coils 10A and 10B are connected in series and connected to a 4000 μF, 3000 V pulse power supply. The magnetic lines of force generated by the pair of coils 10 </ b> A and 10 </ b> B extend in the axial direction from the center of each coil, as shown by the dotted lines in the figure, and repel each other in the mold 20 and face in the radial direction. Although not shown, one of the pair of coils 10A and 10B can be reciprocated in the vertical direction in the figure by hydraulic pressure or an air cylinder.

本実施の形態の金型20は、円筒状のコア22と、当該コア22の周囲に配置されるダイ21と、ダイ21及びコア22の間に配置される下パンチ25及び上パンチ26を備えている。そして、ダイ21、コア22、下パンチ25及び上パンチ26の間に、リング状の空間であるキャビティ28が形成され、キャビティ28に磁性粉末が充填される。ダイ21は、圧縮強度の高いセラミック等の非磁性の絶縁体から成る。コア22は、パーメンジュール(permendur)等の強磁性部材22Aとセラミック等の非磁性の絶縁体22Bから成る。下パンチ25及び上パンチ26は、セラミック等の絶縁体から成る。なお、強磁性部材22Aはパーメンジュールに限らず、鉄やFe−Co−Si−B系非晶質合金などであってもよい。強磁性部材22Aとして非晶質合金を使用した場合、後述するようにキャビティ内の軸方向での磁場勾配を低減すると共に、さらにパルス磁界により発生する渦電流を小さくできるため、キャビティ内の磁界の乱れを少なくできる。   The mold 20 according to the present embodiment includes a cylindrical core 22, a die 21 disposed around the core 22, and a lower punch 25 and an upper punch 26 disposed between the die 21 and the core 22. ing. A cavity 28 that is a ring-shaped space is formed between the die 21, the core 22, the lower punch 25, and the upper punch 26, and the cavity 28 is filled with magnetic powder. The die 21 is made of a nonmagnetic insulator such as ceramic having a high compressive strength. The core 22 is composed of a ferromagnetic member 22A such as permendur and a nonmagnetic insulator 22B such as ceramic. The lower punch 25 and the upper punch 26 are made of an insulator such as ceramic. Note that the ferromagnetic member 22A is not limited to permendur, but may be iron, Fe—Co—Si—B based amorphous alloy, or the like. When an amorphous alloy is used as the ferromagnetic member 22A, the magnetic field gradient in the axial direction in the cavity can be reduced as described later, and the eddy current generated by the pulsed magnetic field can be further reduced, so that the magnetic field in the cavity can be reduced. Disturbance can be reduced.

図2は本実施の形態のコア22を示す斜視図である。コア22の芯として用いられる強磁性部材22Aは軸方向で外径が変化するような形状、例えば、図2のようにキャビティの軸方向両端部に対応する位置で外径が小、キャビティの軸方向中央部に対応する位置で外径が大となる形状になっている。そして、強磁性部材22Aの軸方向両端部に、セラミック等からなるリング状の絶縁体22Bを嵌合させ、ロウ付けなどにより接着することにより、コア22を形成している。なお、強磁性部材22Aの形状は、図3(a)及び図3(b)に示すようにその外径が滑らかに変化するような形状、また、図3(c)に示すようにその外径が階段状に変化するような形状であってもよい。   FIG. 2 is a perspective view showing the core 22 of the present embodiment. The ferromagnetic member 22A used as the core of the core 22 has a shape in which the outer diameter changes in the axial direction, for example, the outer diameter is small at positions corresponding to both ends in the axial direction of the cavity as shown in FIG. The outer diameter is increased at a position corresponding to the central portion in the direction. The core 22 is formed by fitting ring-shaped insulators 22B made of ceramic or the like to both ends in the axial direction of the ferromagnetic member 22A and bonding them by brazing or the like. The shape of the ferromagnetic member 22A is such that its outer diameter changes smoothly as shown in FIGS. 3 (a) and 3 (b), and the outer shape thereof as shown in FIG. 3 (c). The shape may be such that the diameter changes stepwise.

キャビティ28に充填された磁性粉末を配向した後は、金型20をコイル10A及び10Bから取り出し、油圧プレスサーボプレス等によって、上パンチ26を加圧することによりキャビティ28内の磁性粉末を圧縮できるようになっている。このとき、上パンチ26からのみ磁性粉末を圧縮すると、上パンチ26側の磁性粉末に最も圧力が伝わるため、リング成形体は上パンチ26側から下パンチ25側に向かうほど密度が小さくなってしまう。したがって、より密度差を軽減し、焼結後の形状精度を向上させるため、加圧子は上パンチ26だけでなく下パンチ25も加圧できるようにすることがより望ましい。   After the magnetic powder filled in the cavity 28 is oriented, the mold 20 is taken out from the coils 10A and 10B, and the magnetic powder in the cavity 28 can be compressed by pressurizing the upper punch 26 by a hydraulic press servo press or the like. It has become. At this time, if the magnetic powder is compressed only from the upper punch 26, the pressure is most transmitted to the magnetic powder on the upper punch 26 side, so that the density of the ring molded body decreases from the upper punch 26 side toward the lower punch 25 side. . Therefore, in order to further reduce the density difference and improve the shape accuracy after sintering, it is more desirable that the pressurizer can pressurize not only the upper punch 26 but also the lower punch 25.

コイル10A及び10Bから発生する磁界は当該コイルから遠ざかるほど弱くなる。図4(a)に示すように、コア22が絶縁体のみで構成されている場合、対向するコイル10A及び10Bから発生し、キャビティ28へ導かれる磁界は、一対のコイル10A及び10Bの中間に位置するキャビティの軸方向中心部では磁界が弱く、一対のコイル10A及び10Bからの距離が短いところに位置するキャビティ軸方向端部では磁界が強くなる。つまり、図4(a)の磁束密度分布B(z)に示すように、キャビティ28の軸方向(Z方向)の磁場勾配が大きくなる。キャビティ28の軸方向の磁場勾配が大きくなると、磁場勾配に起因して発生する磁性粉末の軸方向両端部への磁気吸引力が、コア22の中心に引き寄せられる磁気吸引力や金型20との摩擦力より大きくなる。その結果、磁性粉末はキャビティ28の軸方向両端部に向けて移動し、圧縮成形前にキャビティ28内において軸方向の磁性粉末の疎密ができる。   The magnetic field generated from the coils 10A and 10B becomes weaker as the distance from the coil increases. As shown in FIG. 4A, when the core 22 is composed only of an insulator, the magnetic field generated from the opposing coils 10A and 10B and guided to the cavity 28 is intermediate between the pair of coils 10A and 10B. The magnetic field is weak at the axial center of the cavity, and the magnetic field is strong at the cavity axial end located at a short distance from the pair of coils 10A and 10B. That is, as shown in the magnetic flux density distribution B (z) in FIG. 4A, the magnetic field gradient in the axial direction (Z direction) of the cavity 28 increases. When the magnetic field gradient in the axial direction of the cavity 28 is increased, the magnetic attractive force to the both ends in the axial direction of the magnetic powder generated due to the magnetic field gradient is attracted to the center of the core 22 and the mold 20. It becomes larger than the frictional force. As a result, the magnetic powder moves toward both ends of the cavity 28 in the axial direction, and the magnetic powder in the axial direction can be densified in the cavity 28 before compression molding.

そこで、本実施の形態では、軸方向で外径が変化するような形状、例えば、軸方向両端部で外径が小、軸方向中央部で外径が大となる形状の強磁性部材22Aを有するコア22を使用することにより、前述の問題を解決することができる。図4(b)に示すように、キャビティ28の軸方向中心部に比べて、キャビティ28の軸方向両端部では、キャビティ28から強磁性部材22Aまでの距離が長いため、キャビティ28の軸方向両端部を通る磁界は磁気抵抗が大きい空間を通ることになる。また、強磁性部材22Aは磁気抵抗が低いため、磁束は磁気抵抗の高い空間よりも強磁性部材22Aに流れるような経路を通る。したがって、キャビティ28の軸方向両端部を通る磁界は、図4(a)のようにコア22の芯に強磁性部材22Aを設けない場合に比べて小さくなり、キャビティ28の軸方向中心部を通る磁界は図4(a)に比べて大きくなり、キャビティ28の軸方向における磁場勾配は小さくなっていく。キャビティ28の軸方向の磁場勾配が小さくなると、キャビティ28内に充填された磁性粉末に対する、磁場勾配に起因する軸方向の両端部に向かう磁気吸引力は、コア22の中心(強磁性部材22A)に引き寄せられる磁気吸引力や金型20との摩擦力と釣り合うこととなり、磁性粉末は軸方向両端部に向けて移動しない。その結果、キャビティ28の軸方向の磁性粉末の密度差(疎密)が軽減され、圧縮成形後の軸方向の密度差が小さくなり、焼結時の収縮が均等になり形状精度が向上する。   Therefore, in the present embodiment, the ferromagnetic member 22A having a shape in which the outer diameter changes in the axial direction, for example, a shape in which the outer diameter is small at both ends in the axial direction and the outer diameter is large at the central portion in the axial direction. By using the core 22 which has, the above-mentioned problem can be solved. As shown in FIG. 4B, since the distance from the cavity 28 to the ferromagnetic member 22A is longer at both axial ends of the cavity 28 than at the axial center of the cavity 28, both axial ends of the cavity 28 The magnetic field passing through the part passes through a space having a large magnetic resistance. Further, since the ferromagnetic member 22A has a low magnetic resistance, the magnetic flux passes through a path that flows to the ferromagnetic member 22A rather than a space having a high magnetic resistance. Therefore, the magnetic field passing through both ends of the cavity 28 in the axial direction is smaller than that in the case where the ferromagnetic member 22A is not provided at the core of the core 22 as shown in FIG. The magnetic field becomes larger than that in FIG. 4A, and the magnetic field gradient in the axial direction of the cavity 28 becomes smaller. When the magnetic field gradient in the axial direction of the cavity 28 is reduced, the magnetic attraction force toward both ends in the axial direction caused by the magnetic field gradient with respect to the magnetic powder filled in the cavity 28 is the center of the core 22 (ferromagnetic member 22A). Therefore, the magnetic powder does not move toward both ends in the axial direction. As a result, the density difference (dense / dense) of the magnetic powder in the axial direction of the cavity 28 is reduced, the density difference in the axial direction after compression molding is reduced, the shrinkage during sintering is made uniform, and the shape accuracy is improved.

ここで、リング成形体の軸方向の密度差が大きい場合、焼結時の収縮差により著しく変形し、焼結時に配向が乱れる。しかし、本実施の形態の構成によれば、配向及び圧縮成形したリング成形体は軸方向の密度差が小さくなるため、焼結時の収縮差が小さい。したがって、焼結収縮時の配向の乱れが少なくなり、配向率が向上するとともに、ラジアル方向を向く磁性粉末を多くする(配向方向がよりラジアル方向に揃える)ことができ、リング磁石のラジアル方向成分の磁束量を増加することができる。   Here, when the density difference in the axial direction of the ring molded body is large, the ring molded body is significantly deformed due to the shrinkage difference during sintering, and the orientation is disturbed during sintering. However, according to the configuration of the present embodiment, the ring molded body that has been oriented and compression molded has a small density difference in the axial direction, and therefore has a small shrinkage difference during sintering. Therefore, the disorder of orientation during sintering shrinkage is reduced, the orientation rate is improved, and the magnetic powder oriented in the radial direction can be increased (the orientation direction is more aligned in the radial direction), and the radial direction component of the ring magnet The amount of magnetic flux can be increased.

ここで、図5に示すように、キャビティ28の軸長をLc、強磁性部材22Aの外径の大きい部分の軸長をLとし、L/Lcをパラメータとして、有限要素法を用いてキャビティ内に発生する磁束密度について磁界解析を行った。図6は、横軸に(L/Lc)を、縦軸にキャビティ軸方向端部の磁束密度(Be)とキャビティ軸方向中心部の磁束密度(Bc)の差(Be−Bc)を取った場合の両者の関係を示したものである。図6から、L/Lcが1以下、すなわち、強磁性部材の外径の大きい部分の軸長がキャビティの軸長以下の時に磁束密度差(Be−Bc)は小さくなり、好ましくは(L/Lc)が0.3〜0.6の間で磁束密度差(Be−Bc)が1000G以下となり、軸方向の磁場勾配を更に低減することができる。軸方向中心部の磁束密度(Bc)が約3T以上となるように磁気回路を設計した場合には、磁束密度差(Be−Bc)が1000G以下であると、約3%以下の磁場勾配を達成することができる。軸方向中心部の磁束密度が強いほど、磁場勾配により引き寄せられる力に抵抗する力(コア22の芯である強磁性部材22Aに引き寄せられる力)が大きくなるため、キャビティ内における磁性粉末の移動をさらに抑制することができる。 Here, as shown in FIG. 5, the axial length of the cavity 28 is Lc, the axial length of the portion having the large outer diameter of the ferromagnetic member 22A is L 0, and L 0 / Lc is used as a parameter, using the finite element method. Magnetic field analysis was performed on the magnetic flux density generated in the cavity. In FIG. 6, the horizontal axis represents (L 0 / Lc), and the vertical axis represents the difference (Be−Bc) between the magnetic flux density (Be) at the cavity axial end and the magnetic flux density (Bc) at the central cavity axial direction. This shows the relationship between the two cases. From FIG. 6, when L 0 / Lc is 1 or less, that is, when the axial length of the portion having a large outer diameter of the ferromagnetic member is equal to or less than the axial length of the cavity, the magnetic flux density difference (Be−Bc) becomes small, preferably (L 0 / Lc) is between 0.3 and 0.6, the magnetic flux density difference (Be−Bc) is 1000 G or less, and the axial magnetic field gradient can be further reduced. When the magnetic circuit is designed so that the magnetic flux density (Bc) in the axial center is about 3T or more, if the magnetic flux density difference (Be−Bc) is 1000G or less, a magnetic field gradient of about 3% or less is obtained. Can be achieved. The stronger the magnetic flux density in the central portion in the axial direction, the greater the force that resists the force attracted by the magnetic field gradient (the force attracted to the ferromagnetic member 22A that is the core of the core 22). Further suppression can be achieved.

さらに、強磁性部材22Aの最大外径をD、最小外径をDcとし、D/Dcとして、有限要素法を用いてキャビティ軸方向端部の磁束密度(Be)とキャビティ軸方向中心部の磁束密度(Bc)の磁束密度差(Be−Bc)の関係を図7に示す。図7から、(D/Dc)が0.8以下であれば、磁束密度差(Be−Bc)が500G以下となり、さらに軸方向の磁場勾配を低減することができる。ちなみに、図5においては、(D/Dc)=0.6としている。 Further, assuming that the maximum outer diameter of the ferromagnetic member 22A is D 0 , the minimum outer diameter is Dc, and D 0 / Dc, the magnetic flux density (Be) at the end in the cavity axis direction and the center in the cavity axis direction using the finite element method. The relationship of the magnetic flux density difference (Be-Bc) of the magnetic flux density (Bc) is shown in FIG. From FIG. 7, if (D 0 / Dc) is 0.8 or less, the magnetic flux density difference (Be−Bc) is 500 G or less, and the magnetic field gradient in the axial direction can be further reduced. Incidentally, in FIG. 5, (D 0 /Dc)=0.6.

次に、本実施の形態1によるラジアル異方性リング磁石の製造方法について述べる。永久磁石材料は、希土類元素−Fe−B系磁石材料からなり、少量の添加物を添加したものを原料として用いる。さらに詳しくは、Nd−Fe−B系磁石に代表されるR−Fe−B系(RはLa系の希土類元素)磁石材料に、少量のCoなど磁石特性を向上させるための物質や、Ni、Alなどの耐食性、耐熱性、加工性を改善するための物質を含有させたものを原料として用いる。そして、これらの原料を真空中にて約1500度で溶解し、その溶湯を銅製の鋳型又は銅製の回転するロールに流して急冷し、磁石合金を製造する。そして、この磁石合金を水素脆性処理後、ジェットミル、ボールミル等により微粉砕し、磁性粉末を製造する。次に、本実施の形態のダイ21、コア22、及び下パンチ25により形成されたリング状のキャビティ28に磁性粉末を充填し、上パンチ26を挿入して金型20を構成する。そして、上側のコイル10Aを上方に移動させることで空いた空間に金型20を配置し、上側のコイル10Aを下方に移動させて金型20を上下一対のコイル10A及び10Bにより挟み込む。このとき、上パンチ26は磁性粉末を圧縮しない蓋状態の位置で止めている。次に、パルス電源によりコイル10A及び10Bにパルス電流を流し、対向するパルス磁界を印加する。その後、上側のコイル10Aを上方へ移動させ、金型20をコイル10A及び10Bから取り出し、油圧プレスにより、上パンチ26を加圧し、磁性粉末を2tで圧縮成形する。本実施の形態の金型20は、コア22の芯に強磁性部材22Aを用いることで、より多くの磁界を発生させることができ、さらにコア22の芯以外はセラミック等の非磁性の絶縁体22Bにより構成されているため、渦電流による磁界の乱れを小さくできる。圧縮成形したリング成形体を真空中にて1080度で焼結した後、500度で時効処理を施した。   Next, a method for manufacturing the radial anisotropic ring magnet according to the first embodiment will be described. The permanent magnet material is made of a rare earth element-Fe-B magnet material, and a material with a small amount of additives is used as a raw material. More specifically, an R-Fe-B-based (R is a La-based rare earth element) magnet material typified by an Nd-Fe-B-based magnet, a substance for improving magnet characteristics such as a small amount of Co, Ni, A material containing a substance for improving corrosion resistance, heat resistance, and workability such as Al is used as a raw material. Then, these raw materials are melted at about 1500 degrees in a vacuum, and the molten metal is poured into a copper mold or a copper rotating roll to be rapidly cooled to produce a magnet alloy. Then, the magnet alloy is subjected to hydrogen embrittlement treatment and then finely pulverized by a jet mill, a ball mill or the like to produce a magnetic powder. Next, the mold 20 is configured by filling the ring-shaped cavity 28 formed by the die 21, the core 22, and the lower punch 25 of this embodiment with magnetic powder, and inserting the upper punch 26. Then, the mold 20 is placed in an empty space by moving the upper coil 10A upward, and the upper coil 10A is moved downward to sandwich the mold 20 between the pair of upper and lower coils 10A and 10B. At this time, the upper punch 26 is stopped at a position in a lid state where the magnetic powder is not compressed. Next, a pulse current is applied to the coils 10A and 10B by a pulse power source, and an opposing pulse magnetic field is applied. Thereafter, the upper coil 10A is moved upward, the mold 20 is taken out from the coils 10A and 10B, the upper punch 26 is pressurized by a hydraulic press, and the magnetic powder is compression-molded in 2 t. The mold 20 of the present embodiment can generate more magnetic field by using the ferromagnetic member 22A for the core of the core 22, and the non-magnetic insulator such as ceramic other than the core of the core 22 can be generated. Since it is constituted by 22B, the magnetic field disturbance due to the eddy current can be reduced. The compression-molded ring molded body was sintered at 1080 degrees in a vacuum and then subjected to an aging treatment at 500 degrees.

上述の製造方法によって製造したラジアル異方性リング磁石について、パルスBHトレーサによる配向率の測定と、3次元測定器による外径形状測定を行った。表1にL/Lcをパラメータとして、リング磁石の軸方向端部と軸方向中心部の外径を測定した結果を示す。ここで、D/Dc=0.6と一定とした。また、ここでの配向率とは、試験片に5000kA/m印加した時のラジアル方向の飽和磁束密度をBs、ラジアル方向の残留磁束密度をBrとして、配向率(%)=Br/Bsとした。表1から明らかなように、軸方向の両端部の外径と軸方向中心部の外径の差は、0.52mm(L/Lc=1.0)から0.05mm(L/Lc=0.4)に改善されていることがわかる。また、配向率も92.2%(L/Lc=1.0)から95.6%(L/Lc=0.4)と向上しているのがわかる。 About the radial anisotropic ring magnet manufactured by the above-mentioned manufacturing method, the orientation rate was measured with a pulse BH tracer and the outer diameter shape was measured with a three-dimensional measuring instrument. Table 1 shows the results of measuring the outer diameters of the axial end and axial center of the ring magnet using L 0 / Lc as a parameter. Here, D 0 /Dc=0.6 and constant. In addition, the orientation ratio here is the orientation ratio (%) = Br / Bs, where Bs is the saturation magnetic flux density in the radial direction when 5000 kA / m is applied to the test piece, and Br is the residual magnetic flux density in the radial direction. . As is evident from Table 1, the difference between the outer diameter of the axial center portion of both end portions in the axial direction, 0.05 mm from 0.52mm (L 0 /Lc=1.0) (L 0 / Lc = 0.4). It can also be seen that the orientation ratio is also improved from 92.2% (L 0 /Lc=1.0) to 95.6% (L 0 /Lc=0.4).

Figure 2008305812
Figure 2008305812

以上のように、本実施の形態は、軸方向に向けて相互に対向する磁界を発生する一対のコイル10A及び10Bと、一対のコイル10A及び10B間に配置され、コア22及びコア22の周囲に配置されたダイ21を有し、コア22とダイ21の間に磁性粉末が供給されるキャビティ28が形成される金型を備え、コア22の芯部からキャビティ28の軸方向中央部に向けて磁気抵抗の小なる部分となる強磁性体22Aを設け、キャビティ28の軸方向両端部に対応する箇所に磁気抵抗の大なる部分となる絶縁体22Bを設けたものである。その結果、一対のコイル10A及び10Bにより発生するキャビティ内の磁界について軸方向の磁場勾配が軽減され、配向時における磁性粉末の偏りが少なくなり、圧縮成形後の軸方向の密度差が小さくなる。そのため、焼結後のリング磁石の軸方向の形状精度を向上でき、形状仕上げの機械加工時の歩留りが向上し、生産性及びコスト低減を実現できる。   As described above, the present embodiment is arranged between the pair of coils 10A and 10B that generate magnetic fields facing each other in the axial direction and the pair of coils 10A and 10B. And a die having a cavity 28 to which magnetic powder is supplied between the core 22 and the die 21, and from the core of the core 22 toward the axial center of the cavity 28. Thus, a ferromagnetic body 22A that is a portion having a small magnetic resistance is provided, and an insulator 22B that is a portion having a large magnetic resistance is provided at locations corresponding to both axial ends of the cavity. As a result, the magnetic field gradient in the axial direction is reduced with respect to the magnetic field in the cavity generated by the pair of coils 10A and 10B, the magnetic powder is less biased during orientation, and the axial density difference after compression molding is reduced. Therefore, the shape accuracy in the axial direction of the ring magnet after sintering can be improved, the yield at the time of machining the shape finish can be improved, and productivity and cost reduction can be realized.

実施の形態2.
上記実施の形態1で説明したように、同極を対向させた1対のコイル10A及び10Bから発生する磁界は、互いに軸方向に向かった後に軸方向中央付近で反発し、ラジアル方向に向かう経路を取る。図8に示すように、コア22内部に透磁率の高い一塊の強磁性部材22Aが配置されている場合、コイル10A及び10Bから発生するパルス磁界の周波数が高くなるほど、軸方向に向かう磁界によりコア22の中心軸に対して回転するような渦電流Iec1が発生すると共に、ラジアル方向に向かう磁界によりラジアル方向の中心軸に対して回転するような渦電流Iec2が発生する。
Embodiment 2. FIG.
As described in the first embodiment, the magnetic fields generated from the pair of coils 10A and 10B facing each other with the same polarity repel each other in the axial direction and then rebound near the center in the axial direction and travel in the radial direction. I take the. As shown in FIG. 8, in the case where a lump of ferromagnetic member 22A having a high magnetic permeability is arranged inside the core 22, the higher the frequency of the pulse magnetic field generated from the coils 10A and 10B, the higher the magnetic field directed in the axial direction. An eddy current Iec1 that rotates with respect to the central axis 22 is generated, and an eddy current Iec2 that rotates with respect to the central axis in the radial direction is generated by a magnetic field directed in the radial direction.

本実施の形態は、上述のパルス磁界により発生するコアの渦電流を低減することを目的とする。図9はこの発明の実施の形態2によるコアに内蔵する強磁性部材220を示す斜視図である。   The purpose of this embodiment is to reduce the eddy current of the core generated by the above-described pulse magnetic field. FIG. 9 is a perspective view showing a ferromagnetic member 220 built in a core according to Embodiment 2 of the present invention.

図9に示すように、本実施の形態2の強磁性部材220は、パーメンジュール等の透磁率の非常に大きい強磁性材料からなる厚み0.5mmの円板を軸方向に積層し、軸方向に接着、カシメ、溶接等により固定した積層体である。強磁性部材220を構成する各円板は絶縁皮膜で被覆されており、円板同士は互いに電気的に絶縁されている。また、円板の材料は、パーメンジュールだけでなく、鉄やFe−Co−Si−B系非晶質合金等であってもよい。強磁性部材220の外径は軸方向で異なっており、軸方向中心部の積層体220bの外径はφ30mmと最も大きく、軸方向両端部の積層体の外径はφ5mmと最も小さい。そして、積層体である強磁性部材220を、セラミックから成り、内部が強磁性部材220の外径に沿うように階段状にくりぬかれ、分割されたコア外殻体(図示せず)の中に嵌合させる。そして、分割されたコア外殻体をロウ付け等により接着した後、コア外殻体の外周に約1mmの非磁性リングを被せることでコアを形成する。   As shown in FIG. 9, the ferromagnetic member 220 according to the second embodiment is formed by laminating a 0.5 mm-thick disk made of a ferromagnetic material having a very high permeability such as permendur in the axial direction. It is a laminate fixed in the direction by bonding, caulking, welding, or the like. Each disk constituting the ferromagnetic member 220 is covered with an insulating film, and the disks are electrically insulated from each other. Further, the material of the disk is not limited to permendur, but may be iron, Fe—Co—Si—B based amorphous alloy, or the like. The outer diameter of the ferromagnetic member 220 is different in the axial direction, the outer diameter of the laminated body 220b at the central portion in the axial direction is as large as 30 mm, and the outer diameter of the laminated body at both end portions in the axial direction is as small as 5 mm. And the ferromagnetic member 220 which is a laminated body is made of ceramics, and the inside is stepped so as to follow the outer diameter of the ferromagnetic member 220, and is divided into core outer shells (not shown). Fit. Then, after the divided core outer shell is bonded by brazing or the like, the core is formed by covering the outer periphery of the core outer shell with a nonmagnetic ring of about 1 mm.

本実施の形態の強磁性部材220によれば、パルス磁界により発生するコア内部の渦電流、特に図8に示す渦電流Iec2を分断することでき、磁界の乱れを最小限に抑えることができる。そのため、磁石配向時に大きな磁界を発生させつつ、よりラジアル方向に磁性粉末を配向させることができ、かつ軸方向の磁場勾配を低減させることができる。そのため、焼結後のリング磁石の形状精度が向上し、形状仕上げの機械加工工程での歩留りが良好となり、生産性の向上及びコスト低減を実現できる。   According to the ferromagnetic member 220 of the present embodiment, the eddy current inside the core generated by the pulse magnetic field, in particular, the eddy current Iec2 shown in FIG. 8 can be divided, and the disturbance of the magnetic field can be minimized. Therefore, the magnetic powder can be oriented in the radial direction while generating a large magnetic field during magnet orientation, and the magnetic field gradient in the axial direction can be reduced. Therefore, the shape accuracy of the ring magnet after sintering is improved, the yield in the shape finishing machining process is improved, and productivity and cost reduction can be realized.

図10はこの発明の実施の形態2の他の例によるコアに内蔵する強磁性部材221を示す斜視図である。図10に示す強磁性部材221は、コアの芯部に強磁性材料からなる積層円筒部221aを配置し、積層円筒部221aの軸方向中心部に強磁性材料からなる積層リング部221bを嵌め合わせることにより構成される。積層円筒部221aは、パーメンジュール等の透磁率の非常に大きい強磁性材料から成り円筒を軸方向に切断した薄板を積層したものであり、各薄板は絶縁皮膜で被覆されており、薄板同士は互いに電気的に絶縁されている。また、積層リング部221bは、パーメンジュール等の透磁率の非常に大きい強磁性材料から成るリング状薄板を積層したものであり、各薄板は絶縁皮膜で被覆されており、薄板同士は互いに電気的に絶縁されている。   FIG. 10 is a perspective view showing a ferromagnetic member 221 built in the core according to another example of the second embodiment of the present invention. The ferromagnetic member 221 shown in FIG. 10 has a laminated cylindrical portion 221a made of a ferromagnetic material arranged at the core of a core, and a laminated ring portion 221b made of a ferromagnetic material is fitted to the axial center of the laminated cylindrical portion 221a. It is constituted by. The laminated cylindrical portion 221a is formed by laminating thin plates made of a ferromagnetic material having a very high permeability such as permendur, and the cylinder is cut in the axial direction. Each thin plate is covered with an insulating film, and the thin plates are Are electrically isolated from each other. The laminated ring part 221b is a laminate of ring-shaped thin plates made of a ferromagnetic material having a very high permeability such as permendur, and each thin plate is covered with an insulating film, and the thin plates are electrically connected to each other. Is electrically insulated.

図10の強磁性部材221によれば、パルス磁界により発生するコア内部の軸方向とラジアル方向の両方向の渦電流、つまり図8に示す渦電流Iec1及び渦電流Iec2を分断することでき、磁界の乱れを最小限に抑えることができる。そのため、磁石配向時に大きな磁界を発生させつつ、よりラジアル方向に磁性粉末を配向させることができ、かつ軸方向の磁場勾配を低減させることができる。そのため、焼結後のリング磁石の形状精度が向上し、形状仕上げの機械加工工程での歩留りが良好となり、生産性の向上及びコスト低減を実現できる。   According to the ferromagnetic member 221 of FIG. 10, the eddy currents in both the axial direction and the radial direction inside the core generated by the pulsed magnetic field, that is, the eddy current Iec1 and the eddy current Iec2 shown in FIG. Disturbance can be minimized. Therefore, the magnetic powder can be oriented in the radial direction while generating a large magnetic field during magnet orientation, and the magnetic field gradient in the axial direction can be reduced. Therefore, the shape accuracy of the ring magnet after sintering is improved, the yield in the shape finishing machining process is improved, and productivity and cost reduction can be realized.

実施の形態3.
図11(a)はこの発明の実施の形態3によるコアを示す断面図、図11(b)は図11(a)のA−A’線断面図、図11(c)は図11(a)のB−B’線断面図である。
Embodiment 3 FIG.
11 (a) is a cross-sectional view showing a core according to Embodiment 3 of the present invention, FIG. 11 (b) is a cross-sectional view taken along the line AA ′ of FIG. 11 (a), and FIG. 11 (c) is FIG. It is a BB 'line sectional view of).

本実施の形態の強磁性部材222は、パーメンジュール等の透磁率の非常に大きい強磁性材料から成るφ0.5mmの線材を束ね、この線材の束をセラミック等の絶縁体から成るリングの内周に配置して構成される。上記各線材は、絶縁皮膜で被覆されることで互いに電気的に絶縁されている。また、線材の材料は、パーメンジュールだけでなく、鉄やFe−Co−Si−B系非晶質合金などであってもよい。強磁性部材222を構成する線材の束の外径は軸方向で異なっており、軸方向中心部の外径が最も大きく、軸方向両端部の外径が最も小さい。また、線材の断面形状は、図12に示すように、円形や、四角形、六角形等の多角形であってもよい。さらに、線材を束ねた外径を所望の外径よりも若干大きくしておき、外周から圧力をかけて所望の外径まで押しつぶし、セラミック等の絶縁体から成るリングの内周に配置される強磁性体材料の密度を上げることが望ましい。また、密度を上げる方法としては、他にも線材の断面形状や線径の異なる線材を組合せてもよい。   The ferromagnetic member 222 of the present embodiment bundles a φ0.5 mm wire made of a ferromagnetic material having a very high permeability such as permendur, and the bundle of the wire is bundled in an insulator made of an insulator such as ceramic. It is arranged around the circumference. Each said wire is electrically insulated from each other by being covered with an insulating film. Further, the material of the wire is not limited to permendur, but may be iron, Fe—Co—Si—B based amorphous alloy, or the like. The outer diameter of the bundle of wires constituting the ferromagnetic member 222 is different in the axial direction, the outer diameter at the central portion in the axial direction is the largest, and the outer diameter at both ends in the axial direction is the smallest. Further, as shown in FIG. 12, the cross-sectional shape of the wire may be a circle, a polygon such as a quadrangle, or a hexagon. Furthermore, the outer diameter of the bundle of wires is made slightly larger than the desired outer diameter, and is pressed to the desired outer diameter by applying pressure from the outer periphery, and is placed on the inner periphery of the ring made of an insulator such as ceramic. It is desirable to increase the density of the magnetic material. In addition, as a method for increasing the density, wires having different cross-sectional shapes or wire diameters may be combined.

本実施の形態の強磁性部材222によれば、パルス磁界により発生するコア内部の軸方向とラジアル方向の両方向の渦電流、つまり図8に示す渦電流Iec1及び渦電流Iec2を分断することでき、磁界の乱れを最小限に抑えることができる。そのため、磁石配向時に大きな磁界を発生させつつ、よりラジアル方向に磁性粉末を配向させることができ、かつ軸方向の磁場勾配を低減させることができる。そのため、焼結後のリング磁石の形状精度が向上し、形状仕上げの機械加工工程での歩留りが良好となり、生産性の向上及びコスト低減を実現できる。   According to the ferromagnetic member 222 of the present embodiment, the eddy currents in both the axial direction and the radial direction inside the core generated by the pulse magnetic field, that is, the eddy currents Iec1 and Iec2 shown in FIG. Magnetic field disturbance can be minimized. Therefore, the magnetic powder can be oriented in the radial direction while generating a large magnetic field during magnet orientation, and the magnetic field gradient in the axial direction can be reduced. Therefore, the shape accuracy of the ring magnet after sintering is improved, the yield in the shape finishing machining process is improved, and productivity and cost reduction can be realized.

この発明の実施の形態1によるラジアル異方性リング磁石の製造装置を示す断面図である。It is sectional drawing which shows the manufacturing apparatus of the radial anisotropic ring magnet by Embodiment 1 of this invention. この発明の実施の形態1によるコアを示す斜視図である。It is a perspective view which shows the core by Embodiment 1 of this invention. この発明の実施の形態1によるコアを示す断面図である。It is sectional drawing which shows the core by Embodiment 1 of this invention. 製造装置のキャビティ付近の磁界を説明するための図である。It is a figure for demonstrating the magnetic field near the cavity of a manufacturing apparatus. この発明の実施の形態1によるラジアル異方性リング磁石の製造装置の寸法関係を示す断面図である。It is sectional drawing which shows the dimensional relationship of the manufacturing apparatus of the radial anisotropic ring magnet by Embodiment 1 of this invention. 実施の形態の寸法比(L/Lc)とキャビティの軸方向の磁束密度の差(Be−Bc)の関係を示す図である。It is a diagram showing a relationship between the dimensional ratio of the embodiment (L 0 / Lc) and the difference between the axial magnetic flux density of the cavities (Be-Bc). 実施の形態のキャビティの軸方向の磁束密度差(Be−Bc)と寸法比(D/Dc)の関係を示す図である。It is a diagram showing the relationship between the magnetic flux density difference between the axial direction of the cavity of the embodiment (Be-Bc) and the dimensional ratio (D 0 / Dc). ラジアル異方性リング磁石の製造装置のコアに発生する渦電流を示す断面図である。It is sectional drawing which shows the eddy current which generate | occur | produces in the core of the manufacturing apparatus of a radial anisotropic ring magnet. この発明の実施の形態2によるコアに内蔵する強磁性部材を示す斜視図である。It is a perspective view which shows the ferromagnetic member incorporated in the core by Embodiment 2 of this invention. この発明の実施の形態2の他の例によるコアに内蔵する強磁性部材を示す斜視図である。It is a perspective view which shows the ferromagnetic member incorporated in the core by the other example of Embodiment 2 of this invention. この発明の実施の形態3によるコアを示す断面図である。It is sectional drawing which shows the core by Embodiment 3 of this invention. この発明の実施の形態3によるコアの線材の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the wire of the core by Embodiment 3 of this invention.

符号の説明Explanation of symbols

10A コイル、10B コイル、20 金型、21 ダイ、22 コア、
22A 強磁性部材、22B 絶縁体、25 下パンチ、26 上パンチ、
28 キャビティ、220 強磁性部材、221 強磁性部材、222 強磁性部材。
10A coil, 10B coil, 20 mold, 21 die, 22 core,
22A ferromagnetic member, 22B insulator, 25 lower punch, 26 upper punch,
28 cavities, 220 ferromagnetic members, 221 ferromagnetic members, 222 ferromagnetic members.

Claims (8)

軸方向に向けて相互に対向する磁界を発生する一対のコイルと、
上記一対のコイル間に配置され、コア及び上記コアの周囲に配置されたダイを有し、上記コアと上記ダイの間に磁性粉末が供給されるキャビティが形成される金型とを備え、
上記コアにおいて、その芯部から上記キャビティの軸方向中央部に対応する箇所の磁気抵抗が、上記キャビティの軸方向両端部に対応する箇所の磁気抵抗に比して小なる部分を設けたラジアル異方性リング磁石の製造装置。
A pair of coils generating magnetic fields facing each other in the axial direction;
A die that is disposed between the pair of coils and includes a core and a die disposed around the core, and a cavity in which a magnetic powder is supplied between the core and the die;
In the core, a radial difference is provided in which a portion of the core corresponding to the axial central portion of the cavity has a smaller magnetic resistance than that of the portion corresponding to both axial end portions of the cavity. Equipment for manufacturing anisotropic ring magnets.
上記コアの芯部に強磁性部材を設け、上記強磁性部材の軸に垂直な断面形状が軸方向位置により変化し、上記キャビティの軸方向中心部の外径が、上記キャビティの軸方向両端部の外径に比して大きい請求項1に記載のラジアル異方性リング磁石の製造装置。 A ferromagnetic member is provided in the core portion of the core, and a cross-sectional shape perpendicular to the axis of the ferromagnetic member varies depending on the axial position, and the outer diameter of the axial center portion of the cavity is the both axial end portions of the cavity. The apparatus for manufacturing a radial anisotropic ring magnet according to claim 1, which is larger than an outer diameter of the radial anisotropic ring magnet. 上記強磁性部材の外径が、上記キャビティの軸方向中心部で最も大きく、上記キャビティの軸方向両端部に向かうほど小さくなる請求項2に記載のラジアル異方性リング磁石の製造装置。 The manufacturing apparatus of a radial anisotropic ring magnet according to claim 2, wherein the outer diameter of the ferromagnetic member is largest at the axial center of the cavity and decreases toward both axial ends of the cavity. 上記強磁性部材の外径が、上記キャビティの軸方向中心部で最も大きく、上記キャビティの軸方向両端部で小さくなるように階段状に変化する請求項2に記載のラジアル異方性リング磁石の製造装置。 3. The radial anisotropic ring magnet according to claim 2, wherein the outer diameter of the ferromagnetic member changes stepwise so that the outer diameter of the ferromagnetic member is largest at an axial center portion of the cavity and becomes small at both axial end portions of the cavity. Manufacturing equipment. 上記強磁性部材が、非晶質合金である請求項2から請求項4のいずれか1項に記載のラジアル異方性リング磁石の製造装置。 The apparatus for manufacturing a radial anisotropic ring magnet according to any one of claims 2 to 4, wherein the ferromagnetic member is an amorphous alloy. 上記強磁性部材が、強磁性材料から成り絶縁被膜が形成された円板を軸方向に積層した積層体である請求項2から請求項4のいずれか1項に記載のラジアル異方性リング磁石の製造装置。 The radial anisotropic ring magnet according to any one of claims 2 to 4, wherein the ferromagnetic member is a laminated body in which discs made of a ferromagnetic material and having an insulating coating formed thereon are laminated in an axial direction. Manufacturing equipment. 上記強磁性部材の軸方向両端部が、絶縁被膜が形成され軸方向に切断した形状の強磁性材料の薄板の積層体から成り、上記強磁性部材の軸方向中央部が、絶縁被膜が形成され軸に対して垂直に切断した形状の強磁性材料の薄板の積層体から成る請求項2から請求項4のいずれか1項に記載のラジアル異方性リング磁石の製造装置。 Both end portions in the axial direction of the ferromagnetic member are made of a laminated body of thin ferromagnetic materials having an insulating film formed and cut in the axial direction, and an insulating film is formed in the axial center portion of the ferromagnetic member. The apparatus for manufacturing a radial anisotropic ring magnet according to any one of claims 2 to 4, comprising a laminate of thin sheets of ferromagnetic material having a shape cut perpendicular to an axis. 上記強磁性部材が、強磁性材料から成り絶縁被膜が形成された軸方向に延在する線材の束である請求項2から請求項4のいずれか1項に記載のラジアル異方性リング磁石の製造装置。 The radial anisotropic ring magnet according to any one of claims 2 to 4, wherein the ferromagnetic member is a bundle of wires extending in an axial direction made of a ferromagnetic material and having an insulating coating formed thereon. Manufacturing equipment.
JP2007148706A 2007-06-05 2007-06-05 Radial anisotropic ring magnet manufacturing equipment Expired - Fee Related JP4926834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007148706A JP4926834B2 (en) 2007-06-05 2007-06-05 Radial anisotropic ring magnet manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007148706A JP4926834B2 (en) 2007-06-05 2007-06-05 Radial anisotropic ring magnet manufacturing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012001270A Division JP2012119698A (en) 2012-01-06 2012-01-06 Manufacturing apparatus of radial anisotropic ring magnet

Publications (2)

Publication Number Publication Date
JP2008305812A true JP2008305812A (en) 2008-12-18
JP4926834B2 JP4926834B2 (en) 2012-05-09

Family

ID=40234307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007148706A Expired - Fee Related JP4926834B2 (en) 2007-06-05 2007-06-05 Radial anisotropic ring magnet manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4926834B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195323A (en) * 1995-01-18 1996-07-30 Seiko Instr Inc Manufacture of radially oriented magnet
JP2001192705A (en) * 1999-10-25 2001-07-17 Sumitomo Special Metals Co Ltd Method of manufacturing for compact of rare earth alloy powder, compaction device, and rare earth magnet
JP2005310853A (en) * 2004-04-19 2005-11-04 Mitsubishi Electric Corp Annular sintered magnet and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195323A (en) * 1995-01-18 1996-07-30 Seiko Instr Inc Manufacture of radially oriented magnet
JP2001192705A (en) * 1999-10-25 2001-07-17 Sumitomo Special Metals Co Ltd Method of manufacturing for compact of rare earth alloy powder, compaction device, and rare earth magnet
JP2005310853A (en) * 2004-04-19 2005-11-04 Mitsubishi Electric Corp Annular sintered magnet and manufacturing method therefor

Also Published As

Publication number Publication date
JP4926834B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4438967B2 (en) Manufacturing method of radial anisotropic magnet
TWI391194B (en) Stator compacted in one piece
JP5904124B2 (en) Arc-shaped magnet having polar anisotropic orientation, method for manufacturing the same, and mold for manufacturing the same
CN106876086B (en) Multi-magnetized single permanent magnet, magnetic circuit, mold and manufacturing method thereof
US11069464B2 (en) Method and assembly for producing a magnet
JP2756471B2 (en) Method for manufacturing radially oriented magnet and radially oriented magnet
JP2018092988A (en) Multiple magnetization unit permanent magnet, manufacturing method thereof, mold, and magnetic circuit
JP2012119698A (en) Manufacturing apparatus of radial anisotropic ring magnet
US20170287632A1 (en) Radially anisotropic sintered ring magnet and its production method
JP4926834B2 (en) Radial anisotropic ring magnet manufacturing equipment
JP3639584B1 (en) Magnetic field orientation molding device and orientation magnetic field generator
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JP2013123318A (en) Ring magnet, method of manufacturing ring magnet, and motor
EP4098433A2 (en) Preformed chip manufacturing apparatus, preformed chip, dust core manufacturing apparatus, dust core, preformed chip manufacturing method, and dust core manufacturing method
JPS6214410A (en) Manufacture of cylindrical magnet
JP2017103312A (en) Magnet manufacturing method
JP3079348B2 (en) Manufacturing method of radially oriented magnet
JP2001015340A (en) Method and device for manufacturing radial ring magnet
JPH0799924B2 (en) Voice coil type linear motor
JP2020113578A (en) Mold and method for forming magnet material
JPH08195323A (en) Manufacture of radially oriented magnet
NZ767174B2 (en) A method of manufacturing, and an assembly for producing, a magnet
JPH0552045B2 (en)
KR20050014193A (en) Axial pulse pressing method for improved magnetic alignment of rare earth magnet
JPS6221206A (en) Manufacture of ring-shaped multipolar magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4926834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees