JP2008304284A - Infrared thickness meter - Google Patents

Infrared thickness meter Download PDF

Info

Publication number
JP2008304284A
JP2008304284A JP2007151060A JP2007151060A JP2008304284A JP 2008304284 A JP2008304284 A JP 2008304284A JP 2007151060 A JP2007151060 A JP 2007151060A JP 2007151060 A JP2007151060 A JP 2007151060A JP 2008304284 A JP2008304284 A JP 2008304284A
Authority
JP
Japan
Prior art keywords
film
light
thickness
orientation
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007151060A
Other languages
Japanese (ja)
Other versions
JP5019110B2 (en
Inventor
Tetsuhito Nikami
鉄人 仁神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007151060A priority Critical patent/JP5019110B2/en
Publication of JP2008304284A publication Critical patent/JP2008304284A/en
Application granted granted Critical
Publication of JP5019110B2 publication Critical patent/JP5019110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared thickness meter for accurately measuring a thin film, etc. without being affected by interference on a front or rear surface of the film or by molecular orientation. <P>SOLUTION: In this infrared thickness meter, polarized light is inputted into a film at an oblique angle with its surface to measure the thickness of the film based on the attenuation amount of the light owing to absorption. This thickness meter is characterized by being equipped with a molecular orientation detection part 20 for detecting the scatter distribution of the light applied to the surface of the film, an orientation calculation part 42 for calculating an orientation index based on a detection signal outputted from the detection part 20, and a corrective calculation part 43 for correctively calculating the thickness of the film based on the orientation index. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、照射した光の吸収に基づいて薄膜フィルムの厚さを測定する赤外線厚さ計に関する。   The present invention relates to an infrared thickness meter that measures the thickness of a thin film based on absorption of irradiated light.

従来の技術として、フィルムの吸収感度を測定することでフィルムの厚さを測定する赤外線厚さ計がある。
図4は従来の赤外線厚さ計の原理を示す説明図である。光源51から出射された光はバンドパスフィルタ52を通過し、測定フィルムに吸収感度がある光と感度がない光に分光される。バンドパスフィルタ52の分光特性はモータ53の回転により切り換えられる。バンドパスフィルタ52で分光された光は、偏光フィルタ54を透過する際にフィルムシート55のフィルム面に対して平行な成分だけに偏光され、フィルム55に斜め方向に入射し透過する。フィルム55の流れ方向(MD方向ともいう)の光源と反対側に反射用ミラー56が置かれ、ミラー56で反射された光は再度、フィルムシート55を透過し、検出器57で光の信号レベルに応じた電気信号に変換される。検出器57から出力される検出信号に基づき、フィルム55に吸収感度がある光とない光の場合を比較し、吸光指数を求めることで、フィルム55の厚さを測定することができる。上記で、フィルム55に光を斜め方向に入射すると、通常はフィルム55の表裏で干渉現象が発生して測定誤差となるが、バンドパスフィルタ52で分光した光を、偏光フィルタ24を透過させ、フィルム面に対して平行な成分だけに偏光してフィルム55に入射させることにより、干渉現象を避けることができる。
As a conventional technique, there is an infrared thickness meter that measures the thickness of a film by measuring the absorption sensitivity of the film.
FIG. 4 is an explanatory view showing the principle of a conventional infrared thickness gauge. The light emitted from the light source 51 passes through the bandpass filter 52 and is split into light having absorption sensitivity and light having no sensitivity in the measurement film. The spectral characteristics of the bandpass filter 52 are switched by the rotation of the motor 53. The light split by the bandpass filter 52 is polarized only in a component parallel to the film surface of the film sheet 55 when passing through the polarizing filter 54, and enters the film 55 in an oblique direction and passes therethrough. A reflection mirror 56 is placed on the opposite side of the light source in the flow direction (also referred to as MD direction) of the film 55, and the light reflected by the mirror 56 passes through the film sheet 55 again and is detected by the detector 57. It is converted into an electrical signal according to Based on the detection signal output from the detector 57, the thickness of the film 55 can be measured by comparing the light with and without the light absorption sensitivity of the film 55 and obtaining the light absorption index. In the above, when light is incident on the film 55 in an oblique direction, an interference phenomenon usually occurs on the front and back of the film 55, resulting in a measurement error, but the light dispersed by the bandpass filter 52 is transmitted through the polarizing filter 24, By polarizing only the component parallel to the film surface and entering the film 55, the interference phenomenon can be avoided.

赤外線厚さ計に関連する先行技術文献としては次のようなものがある。   Prior art documents related to the infrared thickness gauge include the following.

特開平4−212003号公報JP-A-4-212003

図4の赤外線厚さ計によれば、フィルム表面と平行な成分に偏光した光をフィルムに対して斜め方向から入射するので光干渉の影響を除去でき、精度よく薄いフィルムの厚さを測定できる。   According to the infrared thickness meter of FIG. 4, since the light polarized in a component parallel to the film surface is incident on the film from an oblique direction, the influence of optical interference can be removed, and the thickness of a thin film can be accurately measured. .

しかし、赤外線厚さ計は、フィルム分子間の赤外線吸収を利用して厚さを測定するセンサであるが、延伸フィルムにおいては、フィルム内部の分子配列の向きが異なる角度に配列されていると配向の影響を受けてしまい、測定誤差となるため、精度の良い測定が行えなかった。 However, an infrared thickness meter is a sensor that measures the thickness using infrared absorption between film molecules. In a stretched film, the orientation of the molecular alignment inside the film is oriented at different angles. As a result, measurement errors would occur, so accurate measurement could not be performed.

なお、一般的な薄いフィルムは、原反と呼ばれるフィルムに熱を加えて柔らかくし、流れ方向と幅方向とに引っ張る(延伸する)ことで薄くすることにより生産される。このときの引っ張る力の分布により、フィルムの分子配向が決定され、フィルムの幅方向の分子配向に分布が生じる。 In addition, a general thin film is produced by applying heat to a film called an original fabric to soften it, and pulling (stretching) it in the flow direction and the width direction to make it thin. The molecular orientation of the film is determined by the distribution of the pulling force at this time, and the distribution occurs in the molecular orientation in the width direction of the film.

したがって、垂直に光を入射させる赤外線厚さ計では、配向の影響をほとんど受けなかったが、光を斜め方向に入射させることにより、配向の影響を受けやすくなるという問題があった。 Therefore, an infrared thickness meter that vertically enters light is hardly affected by orientation, but has a problem that it is easily affected by orientation when light is incident in an oblique direction.

図5は、ポリエステルフィルム15μmを図4の赤外線厚さ計で測定した結果であり、測定ポイントを中心に測定フィルムを10°毎に回転させ、角度と吸収指数の関係を記録した結果を示すチャートである。測定フィルムを、測定ポイントを中心に回転させると吸収指数が大きい角度と少ない角度が現れる。延伸したフィルムの厚さをオンラインで測定すると延伸の強さ、延伸の方向により配向の違いが発生し、同じ厚さのフィルムにおいても赤外線の吸収指数が変化するため、フィルム厚さの測定誤差が発生し、正確な厚さ測定が行えないことになる。 FIG. 5 is a result of measuring a polyester film of 15 μm with the infrared thickness meter of FIG. 4, and a chart showing a result of recording a relationship between an angle and an absorption index by rotating the measurement film every 10 ° around the measurement point. It is. When the measurement film is rotated around the measurement point, an angle with a large absorption index and a small angle appear. When the thickness of the stretched film is measured online, the orientation difference occurs depending on the strength and direction of stretching, and the infrared absorption index changes even in the same thickness film. It will occur and accurate thickness measurement cannot be performed.

フィルム厚さ計とは異なるセンサで、フィルムの分子配向を測定する分子配向計がある。測定原理は、フィルム表面に垂直に光を照射し、フィルムの配向に応じて散乱した光の分布を測定中心の周囲に複数個配置した検出器で測定することで、フィルムの分子配向を測定する。測定中心に対する散乱光の分布は、図5の分布と相関があり、受光した信号レベルの最大値と最小値の比率を配向指数として定義する。 There is a molecular orientation meter that measures the molecular orientation of a film with a sensor different from the film thickness meter. The measurement principle is to measure the molecular orientation of the film by irradiating light perpendicular to the film surface and measuring the distribution of scattered light according to the orientation of the film with a plurality of detectors arranged around the measurement center. . The distribution of scattered light with respect to the measurement center correlates with the distribution of FIG. 5, and the ratio between the maximum value and the minimum value of the received signal level is defined as the orientation index.

ここで、以下に分子配向計の原理を説明する。
図6に分子配向計の検出部の基本的構成を示す。赤外発光ダイオード(LED)61の光をレンズ62で平行光にしてフィルム65の被測定フィルム面に垂直に照射する。投光軸に対して大きな角度の円周上に反射光強度分布を検出するフォトダイオード(PD)63を測定面に向けて複数個配置する。このときに、LED61とPD63の位置関係が変動すると反射強度分布に影響があるので、一体ブロック構造にしてお互いの位置関係が変動しないようにする。
Here, the principle of the molecular orientation meter will be described below.
FIG. 6 shows a basic configuration of the detection unit of the molecular orientation meter. The light from the infrared light emitting diode (LED) 61 is converted into parallel light by the lens 62 and irradiated perpendicularly to the surface of the film 65 to be measured. A plurality of photodiodes (PD) 63 for detecting the reflected light intensity distribution are arranged on the circumference of a large angle with respect to the light projection axis toward the measurement surface. At this time, if the positional relationship between the LED 61 and the PD 63 fluctuates, the reflection intensity distribution is affected, so that the positional relationship between the LED 61 and the PD 63 does not fluctuate with an integrated block structure.

また、フィルムシート65の流れ方向(MD方向)に対してこのブロックの取り付け位置を固定することで各PDの方向を固定する。複数のPD信号は増幅されA/D変換されて演算部に送られる。演算部では複数のPD63で検出された光強度分布を、投光軸中心を原点とする極座標上に展開し、楕円状の分布を作成する。その様子を図7に示す。これを最小自乗法で楕円関数近似し、その短軸72の向きから「配向角度」を、その楕円71の形状(長軸bと短軸aの比)から配向の強さ(配向指数)を求める(次式参照)。
配向角=θ (1)
配向指数=(b/a−1) (2)
配向角度の極性は、図7を上方から見たフィルム面とした場合、図中のθの矢印方向がプラスの極性と定義する。
Moreover, the direction of each PD is fixed by fixing the attachment position of this block with respect to the flow direction (MD direction) of the film sheet 65. A plurality of PD signals are amplified, A / D converted, and sent to the calculation unit. The calculation unit develops the light intensity distribution detected by the plurality of PDs 63 on the polar coordinates with the center of the projection axis as the origin to create an elliptical distribution. This is shown in FIG. This is approximated by an elliptic function by the method of least squares, the “orientation angle” is determined from the direction of the minor axis 72, and the strength of the orientation (orientation index) is determined from the shape of the ellipse 71 (ratio of major axis b to minor axis a). Obtain (see the following formula).
Orientation angle = θ (1)
Orientation index = (b / a-1) (2)
The polarity of the orientation angle is defined as a positive polarity in the direction of the arrow θ in the figure when FIG. 7 is a film surface viewed from above.

なお、フィルム配向計は、測定ポイントの周囲の複数の角度から斜めに光を照射し、垂直方向に反射した光の成分を検出する方式もある。 Note that the film orientation meter also has a method of detecting light components reflected in the vertical direction by irradiating light obliquely from a plurality of angles around the measurement point.

図8は、異なる分子配向を持つフィルムの厚さを赤外線フィルム厚さ計で測定した結果と実厚みとの誤差を示す特性曲線図である。赤外線フィルム厚さ計で幅方向に延伸比率が異なるフィルムの厚さを測定すると、配向指数が大きくなるほど、赤外線フィルム厚さ計の指示値は低めになる傾向がある。これは、フィルムの配向指数が大きくなるほど、フィルム分子の結合されている方向性が赤外線厚さ計で測定する光軸に対し、垂直成分が多くなるので、赤外線が吸収される成分が減り、同じ厚さであっても、厚さ指示値が低くなってしまう。 FIG. 8 is a characteristic curve diagram showing an error between the result of measuring the thickness of a film having different molecular orientations with an infrared film thickness meter and the actual thickness. When the thickness of a film having a different stretching ratio in the width direction is measured with an infrared film thickness meter, the indicated value of the infrared film thickness meter tends to be lower as the orientation index is larger. This is because, as the orientation index of the film increases, the direction in which the film molecules are bonded increases with respect to the optical axis measured by the infrared thickness meter, so the component that absorbs infrared rays decreases, and the same Even if it is a thickness, a thickness indication value will become low.

本発明はこのような課題を解決しようとするもので、薄いフィルムなどの測定において、フィルムの表裏面での干渉や分子配向の影響を受けず、精度よく測定できる赤外線厚さ計を提供することを目的とする。   The present invention is intended to solve such a problem, and provides an infrared thickness meter that can accurately measure a thin film or the like without being affected by interference or molecular orientation on the front and back surfaces of the film. With the goal.

このような課題を達成するために、本発明のうち請求項1記載の発明に係る赤外線厚さ計は、
偏光した第1の光をフィルム表面に対して斜め方向の角度から入射し、吸収による光の減衰量に基づいてフィルム厚さを測定する赤外線厚さ計において、
前記第1の光の前記フィルム表面への入射点の、前記フィルムの流れ方向の近傍に照射された第2の光の散乱分布を検出する分子配向検出部と、
該分子配向検出部から出力される検出信号に基づいて前記フィルムの配向指数を演算する配向演算部と、
前記配向指数に対する前記フィルム厚さの誤差特性に基づいて前記フィルム厚さを補正演算する補正演算部と
を備えたことを特徴とする。
In order to achieve such an object, an infrared thickness meter according to the invention of claim 1 is provided.
In an infrared thickness meter that measures the thickness of a film based on the amount of attenuation of light due to absorption when the polarized first light is incident on the film surface at an oblique angle.
A molecular orientation detection unit that detects a scattering distribution of the second light irradiated in the vicinity of the flow direction of the film at a point of incidence of the first light on the film surface;
An orientation calculation unit for calculating an orientation index of the film based on a detection signal output from the molecular orientation detection unit;
A correction calculation unit that corrects the film thickness based on an error characteristic of the film thickness with respect to the orientation index.

請求項2記載の発明は、
請求項1記載の赤外線厚さ計において、
前記分子配向検出部は、前記フィルム表面に垂直に第2の光を照射する光源と、
該光源の周囲に配置され前記フィルムで散乱された光を検出する複数の検出器と
を備えたことを特徴とする。
The invention according to claim 2
The infrared thickness meter according to claim 1,
The molecular orientation detection unit includes a light source that irradiates a second light perpendicular to the film surface;
And a plurality of detectors arranged around the light source for detecting light scattered by the film.

請求項3記載の発明は、
請求項1記載の赤外線厚さ計において、
前記分子配向検出部は、前記フィルム表面の測定点に周囲から斜めに第2の光を照射する複数の光源と、
前記測定点の上方に配設され前記フィルム表面で散乱された光を検出する検出器と
を備えたことを特徴とする。
The invention described in claim 3
The infrared thickness meter according to claim 1,
The molecular orientation detection unit includes a plurality of light sources that irradiate the measurement points on the film surface with second light obliquely from the surroundings,
And a detector that is disposed above the measurement point and detects light scattered on the film surface.

請求項4記載の発明は、
請求項1乃至請求項3のいずれかに記載の赤外線厚さ計において、
前記配向演算部は前記分子配向検出部から出力される複数の検出信号の最大レベルと、最低レベルから配向指数を演算する
ことを特徴とする。
The invention according to claim 4
In the infrared thickness meter according to any one of claims 1 to 3,
The orientation calculation unit calculates an orientation index from a maximum level and a minimum level of a plurality of detection signals output from the molecular orientation detection unit.

以上説明したことから明らかなように、本発明によれば、偏光した第1の光をフィルム表面に対して斜め方向の角度から入射し、吸収による光の減衰量に基づいてフィルム厚さを測定する赤外線厚さ計において、前記フィルム表面に照射した第2の光の散乱分布を検出する分子配向検出部と、該分子配向検出部から出力される検出信号に基づいて配向指数を演算する配向演算部と、前記配向指数に対する前記フィルム厚さの誤差特性に基づいて前記フィルム厚さを補正演算する補正演算部とを備えたことにより、薄いフィルムなどの測定において、フィルムの表裏面での干渉や分子配向の影響を受けず、精度よく測定できる赤外線厚さ計を提供することができる。   As is apparent from the above description, according to the present invention, the polarized first light is incident on the film surface from an oblique angle, and the film thickness is measured based on the attenuation of light due to absorption. In the infrared thickness meter, the molecular orientation detection unit for detecting the scattering distribution of the second light irradiated on the film surface, and the orientation calculation for calculating the orientation index based on the detection signal output from the molecular orientation detection unit And a correction calculation unit that corrects and calculates the film thickness based on the error characteristic of the film thickness with respect to the orientation index. It is possible to provide an infrared thickness meter that can be accurately measured without being affected by molecular orientation.

以下本発明の実施の形態について図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施の形態に係る赤外線厚さ計の一実施例のセンサ部30を示し、(A)は側面方向から見た構成説明図、(B)は上面方向から見た構成説明図である。
赤外線厚さ計のセンサ部30は赤外線厚さ検出部10と分子配向検出部20とから構成される。
1A and 1B show a sensor unit 30 of an example of an infrared thickness meter according to an embodiment of the present invention. FIG. 1A is a configuration explanatory view viewed from a side surface direction, and FIG. FIG.
The sensor unit 30 of the infrared thickness meter includes an infrared thickness detection unit 10 and a molecular orientation detection unit 20.

赤外線厚さ検出部10において、光源11は赤外線光を放射し、バンドパスフィルタ12は、光源11から出射された赤外線光を測定に必要な波長帯に分離するため、出射された光を測定フィルム15に吸収感度がある光と感度がない光に分光する。モータ13はバンドパスフィルタ12の分光特性を回転により切り換える。偏光フィルタ14は、バンドパスフィルタ12で分光された光を入射して、フィルムシート15のフィルム面に対して平行な成分だけを偏光して通過させ、フィルム15に対して、斜め方向から入射させる。反射用ミラー16は、フィルム15の流れ方向下方に置かれ、フィルム15を透過した光を反射して、再度フィルムシート15を透過させる。通常、2つの透過点の距離は2センチ前後である。検出器17は、再度フィルムシート15を透過し、フィルム15の厚さに応じて吸収され、減衰した赤外線光を検出して光信号レベルに応じた電気信号に変換する。 In the infrared thickness detector 10, the light source 11 emits infrared light, and the band-pass filter 12 separates the infrared light emitted from the light source 11 into a wavelength band necessary for measurement. 15 is split into light having absorption sensitivity and light having no sensitivity. The motor 13 switches the spectral characteristics of the bandpass filter 12 by rotation. The polarizing filter 14 makes the light split by the bandpass filter 12 incident, polarizes and passes only the component parallel to the film surface of the film sheet 15, and makes it incident on the film 15 from an oblique direction. . The reflection mirror 16 is placed below the flow direction of the film 15, reflects light transmitted through the film 15, and transmits the film sheet 15 again. Usually, the distance between the two transmission points is around 2 cm. The detector 17 transmits the film sheet 15 again, is absorbed according to the thickness of the film 15, detects the attenuated infrared light, and converts it into an electrical signal corresponding to the optical signal level.

分子配向検出部20において、光源21は、LEDなどからなり、フィルム15の被測定面を垂直に照射する。検出器23は投光軸に対して大きな角度の円周上にフォトダイオード(PD)などが被測定面に向けて複数個配置されたもので、被測定面からの反射光強度分布を検出する。検出器23は4個以上が配置されるが、図1では検出器が12個配置された場合を示す。このときに、光源21と検出器23の位置関係が変動すると反射強度分布に影響があるので、一体ブロック構造にしてお互いの位置関係が変動しないようにする。
なお、赤外線厚さ検出部10におけるフィルムシート15上の光照射位置と分子配向検出部20におけるフィルムシート15上の光照射位置(入射点)とは一致するのが理想であるが、それが難しい場合は、幅方向の位置を合わせた上で、フィルムシート15の流れ方向(MD方向ともいう)に沿って15センチ以内の近傍に配置することが望ましい。赤外線厚さ検出部10と分子配向検出部20相互の配置はこの点を考慮して行う。
In the molecular orientation detection unit 20, the light source 21 is composed of an LED or the like, and irradiates the measured surface of the film 15 vertically. The detector 23 includes a plurality of photodiodes (PD) or the like arranged on the circumference of a large angle with respect to the light projection axis toward the surface to be measured, and detects the reflected light intensity distribution from the surface to be measured. . Although four or more detectors 23 are arranged, FIG. 1 shows a case where twelve detectors are arranged. At this time, if the positional relationship between the light source 21 and the detector 23 fluctuates, the reflection intensity distribution is affected. Therefore, an integrated block structure is adopted so that the mutual positional relationship does not fluctuate.
In addition, although it is ideal that the light irradiation position on the film sheet 15 in the infrared thickness detection part 10 and the light irradiation position (incident point) on the film sheet 15 in the molecular orientation detection part 20 coincide, it is difficult. In this case, it is desirable that the positions in the width direction are matched, and the film sheet 15 is arranged in the vicinity of 15 cm or less along the flow direction of the film sheet 15 (also referred to as MD direction). The mutual arrangement of the infrared thickness detector 10 and the molecular orientation detector 20 is performed in consideration of this point.

図2は上記の赤外線厚さ計全体の構成ブロック図である。
演算部40は厚さ演算部41、配向演算部42及び補正演算部43から構成される。
厚さ演算部41は、赤外線厚さ検出部10から出力される検出信号に基づき、フィルム15に吸収感度がある光とない光の場合を比較し(比率をとるなど)、周知の方法で吸光指数を求めることによりフィルム15の厚さを算出する。配向演算部42は、分子配向検出部20から出力される検出信号に基づいて配向指数を算出する。補正演算部43は、厚さ演算部41で求めたフィルムの厚さに対して、配向演算部42で求めた配向指数による補正演算を行う。
FIG. 2 is a configuration block diagram of the entire infrared thickness gauge.
The calculation unit 40 includes a thickness calculation unit 41, an orientation calculation unit 42, and a correction calculation unit 43.
Based on the detection signal output from the infrared thickness detector 10, the thickness calculator 41 compares the light with or without the light absorption sensitivity (such as taking a ratio) on the film 15, and absorbs light by a well-known method. The thickness of the film 15 is calculated by obtaining the index. The orientation calculation unit 42 calculates an orientation index based on the detection signal output from the molecular orientation detection unit 20. The correction calculation unit 43 performs correction calculation using the orientation index obtained by the orientation calculation unit 42 with respect to the film thickness obtained by the thickness calculation unit 41.

図1及び図2に示した赤外線厚さ計の動作を次に説明する。
図1の赤外線厚さ検出部10において、光源11から出射された光はバンドパスフィルタ12を通過し、測定フィルム15に吸収感度がある光と感度がない光に分光される。バンドパスフィルタ12の分光特性はモータ13の回転により切り換えられる。バンドパスフィルタ12で分光された光は、偏光フィルタ14を透過してフィルムシート15のフィルム面に対して平行な成分の偏光となり(第1の光)、フィルム15に対して斜め方向から入射する。フィルム15を透過した光は反射用ミラー16で反射され、再度フィルムシート15を透過して検出器17に入射し、光の信号レベルに応じた電気信号に変換される。
Next, the operation of the infrared thickness meter shown in FIGS. 1 and 2 will be described.
In the infrared thickness detector 10 of FIG. 1, the light emitted from the light source 11 passes through the bandpass filter 12 and is split into light having absorption sensitivity and light having no sensitivity in the measurement film 15. The spectral characteristics of the bandpass filter 12 are switched by the rotation of the motor 13. The light dispersed by the bandpass filter 12 passes through the polarizing filter 14 and becomes polarized light having a component parallel to the film surface of the film sheet 15 (first light), and enters the film 15 from an oblique direction. . The light that has passed through the film 15 is reflected by the reflecting mirror 16, passes through the film sheet 15 again, enters the detector 17, and is converted into an electrical signal corresponding to the signal level of the light.

図1の分子配向検出部20において、光源21から出射された光はレンズなど(図示せず)で平行光にされた後(第2の光)、フィルム15の被測定面を垂直に照射する。被測定面で反射し、散乱された光は。複数の検出器23に入射して散乱光の強度分布が検出される。 In the molecular orientation detection unit 20 of FIG. 1, the light emitted from the light source 21 is collimated by a lens or the like (not shown) (second light), and then irradiates the measured surface of the film 15 vertically. . The light reflected and scattered by the surface to be measured. The intensity distribution of scattered light is detected by entering the plurality of detectors 23.

図2において、赤外線厚さ検出部10から出力される検出信号は演算部40に送られ、厚さ演算部41に入力されて、フィルム15に吸収感度がある光とない光の場合の検出信号を比較する周知の方法で吸光指数が演算され、吸光指数に基づいてフィルム15の厚さが求められる。 In FIG. 2, the detection signal output from the infrared thickness detection unit 10 is sent to the calculation unit 40 and input to the thickness calculation unit 41, and the detection signal when the film 15 has light with or without absorption sensitivity. The light absorption index is calculated by a well-known method of comparing the two, and the thickness of the film 15 is obtained based on the light absorption index.

分子配向検出部20から出力された検出信号は、増幅された後、A/D変換されて演算部40に送られ、配向演算部42で配向指数が演算される。配向演算部42では、検出器23から出力される複数の検出信号の内、反射信号が最大となったレベルと、最低になったレベルから、前述の(2)式に基づいて配向指数を演算により求める。 The detection signal output from the molecular orientation detection unit 20 is amplified, A / D converted, sent to the calculation unit 40, and the orientation index is calculated by the alignment calculation unit 42. In the orientation calculation unit 42, the orientation index is calculated from the level at which the reflected signal is maximized and the level at which the reflected signal is minimized among the plurality of detection signals output from the detector 23, based on the above equation (2). Ask for.

厚さ演算部41で求められたフィルムの厚さ及び配向演算部42で求められた配向指数は補正演算部43に入力され、配向指数によりフィルムの厚さの補正を行う補正演算が行われる。ここで、厚さ演算部41で演算したフィルムの厚さ(補正前)をT1、配向演算部42で測定したフィルムの配向指数をAとし、配向指数の関数をF(A)とすると、配向指数で補正したフィルムの厚さT2は(3)式で与えられる。
T2 = T1−F(A) (3)
The film thickness obtained by the thickness computing unit 41 and the orientation index obtained by the orientation computing unit 42 are input to the correction computing unit 43, and a correction operation for correcting the film thickness by the orientation index is performed. Here, when the thickness (before correction) of the film calculated by the thickness calculator 41 is T1, the orientation index of the film measured by the orientation calculator 42 is A, and the function of the orientation index is F (A), the orientation The film thickness T2 corrected by the index is given by equation (3).
T2 = T1-F (A) (3)

すなわち、厚さ演算部41で演算したフィルムの厚さT1を配向指数の関数F(A)で補正することにより、実際の厚さT2を測定することができる。ここで、補正関数F(A)は、配向指数に対するフィルム厚さの誤差特性を示す図8の特性を赤外線厚さ検出部10について予め測定しておき、その結果をテーブル化してメモリに記憶させたものを用いる。また、近似式による演算を行ってもよい。 That is, the actual thickness T2 can be measured by correcting the film thickness T1 calculated by the thickness calculator 41 with the function F (A) of the orientation index. Here, the correction function F (A) is obtained by measuring the characteristic of FIG. 8 showing the error characteristic of the film thickness with respect to the orientation index in advance with respect to the infrared thickness detector 10, and storing the result in a table as a table. Use the same thing. Moreover, you may perform the calculation by an approximate expression.

図3は、赤外線厚さ計で48μmの厚さのポリイミドフィルムの厚さを測定した例について、配向補正前後の指示値を示す図である。配向補正を行う前では、本来赤外線の吸収によって減衰する光の信号強度が、配向による影響を受けて変化してしまうため、測定誤差となり、正しい厚さ測定が行われていない。一般に、配向指数が小さいフィルムでは、厚さ指示値が高く表示されるが、配向指数が大きいフィルムでは、赤外線が吸収される成分が少なくなり、実際の厚さよりも厚さ指示値が低く表示されてしまう。 FIG. 3 is a diagram showing the indication values before and after orientation correction for an example in which the thickness of a polyimide film having a thickness of 48 μm is measured with an infrared thickness meter. Before the alignment correction, the signal intensity of the light that is attenuated by the absorption of infrared rays changes due to the influence of the alignment, resulting in a measurement error, and the correct thickness measurement is not performed. In general, a film with a small orientation index displays a high thickness indication value, but a film with a large orientation index displays a component that absorbs infrared rays and displays a thickness indication value lower than the actual thickness. End up.

これに対し、同じ測定箇所を分子配向検出部20で測定し、求めた配向指数で補正することにより、補正後の演算結果は、実厚みL1と相関がある結果が得られた。 On the other hand, by measuring the same measurement location with the molecular orientation detection unit 20 and correcting with the obtained orientation index, the corrected calculation result has a correlation with the actual thickness L1.

上記のような構成の赤外線厚さ計によれば、厚さ演算部41で求めたフィルムの厚さを、配向演算部42で求めた配向指数で補正演算を行うことにより、配向の影響を受けずに精度良くフィルムの厚さを演算表示することが可能となる。特にフィルムの厚さが薄い場合に効果が大きい。 According to the infrared thickness meter having the above-described configuration, the film thickness obtained by the thickness computing unit 41 is corrected by the orientation index obtained by the orientation computing unit 42, thereby being affected by the orientation. Accordingly, the film thickness can be accurately calculated and displayed. The effect is particularly great when the film is thin.

また、偏光した光をフィルム表面に対し斜め方向の角度から入射させてフィルム厚さを測定することにより、光干渉の影響を受けずに精度良く、フィルム厚さを測定できる。 In addition, by measuring the film thickness by making polarized light incident at an oblique angle with respect to the film surface, the film thickness can be accurately measured without being affected by light interference.

また、延伸フィルムの生産工程において、走査手段によりフィルムの幅方向の厚さと配向分布を同時に測定できることにより、品質の向上を図ることができる。 Moreover, in the production process of a stretched film, the thickness in the width direction of the film and the orientation distribution can be measured simultaneously by the scanning means, so that the quality can be improved.

また、フィルムの配向指数を測定することができるので、厚さの補正以外の目的にも使用することができる。例えば、配向指数をオンラインで測定することにより、幅方向への引っ張り過ぎによるフィルム破断の予想検知が可能となり、フィルム破断による生産ライン停止を避けることにより、生産効率のアップを図ることができる。 Moreover, since the orientation index of a film can be measured, it can be used for purposes other than thickness correction. For example, by measuring the orientation index online, it is possible to detect a film breakage due to excessive pulling in the width direction, and it is possible to increase production efficiency by avoiding a production line stop due to film breakage.

なお、上記の実施例では、配向演算部42において、配向指数は、複数個ある検出器のうち、検出感度が最大値となった数値と最小値となった数値の比率により求めているが、図7に示すように、複数の検出部23で検出された光強度分布を最小自乗法で楕円関数近似し、その短軸72の向きから配向角度を、その楕円71の形状(長軸bと短軸aの比)から前記(2)式で配向指数を求め、補正演算部43において配向角度と配向指数の両方を用いて厚さ演算部41から出力されたフィルムの厚さを補正演算してもよい。この場合には、配向角が大きい場合などにも精度よくフィルムの厚さを補正することができる。 In the above embodiment, the orientation calculation unit 42 obtains the orientation index by the ratio of the numerical value at which the detection sensitivity is the maximum value to the minimum value among the plurality of detectors. As shown in FIG. 7, the light intensity distribution detected by the plurality of detectors 23 is approximated by an elliptic function by the least square method, and the orientation angle is determined from the direction of the minor axis 72 to the shape of the ellipse 71 (the major axis b and From the ratio of the minor axis a), the orientation index is obtained by the above equation (2), and the correction calculation unit 43 corrects the film thickness output from the thickness calculation unit 41 using both the orientation angle and the orientation index. May be. In this case, the film thickness can be accurately corrected even when the orientation angle is large.

また、本提案で示した分子配向検出部20の例は、1つの光源から出た光の散乱を周囲の複数ある検出器で散乱光の分布を検出するが、周囲に配置した複数の光源から光を照射し、中央部分に設置した1つの検出器で、各光源からの光の散乱分布を測定してもよい。 In addition, in the example of the molecular orientation detection unit 20 shown in the present proposal, scattering of light emitted from one light source is detected by a plurality of surrounding detectors, but from a plurality of light sources arranged around the light source. The light scattering distribution from each light source may be measured with one detector that is irradiated with light and installed in the central portion.

本発明の実施の形態に係る赤外線厚さ計の一実施例のセンサ部30の構成説明図である。It is composition explanatory drawing of the sensor part 30 of one Example of the infrared thickness meter which concerns on embodiment of this invention. 図1の赤外線厚さ計の構成ブロック図である。FIG. 2 is a configuration block diagram of the infrared thickness meter of FIG. 1. 図1の赤外線厚さ計で厚さを測定した例について、配向補正前後の指示値を示す図である。It is a figure which shows the instruction | indication value before and behind orientation correction | amendment about the example which measured thickness with the infrared thickness meter of FIG. 従来の赤外線厚さ計の原理を示す説明図である。It is explanatory drawing which shows the principle of the conventional infrared thickness meter. 図4の赤外線厚さ計の測定結果から角度と吸収指数の関係を示したチャートである。It is the chart which showed the relationship between an angle and an absorption index from the measurement result of the infrared thickness meter of FIG. 分子配向計の検出部の基本的構成を示す図である。It is a figure which shows the basic composition of the detection part of a molecular orientation meter. 図6の装置による反射光強度の楕円分布を示す極座標チャートである。It is a polar coordinate chart which shows the elliptical distribution of the reflected light intensity by the apparatus of FIG. 異なる分子配向を持つフィルムの厚さを図4の赤外線フィルム厚さ計で測定した結果と実厚みとの誤差を示す特性曲線図である。It is a characteristic curve figure which shows the difference | error between the result of having measured the thickness of the film which has a different molecular orientation with the infrared film thickness meter of FIG. 4, and actual thickness.

符号の説明Explanation of symbols

15 フィルム
20 分子配向検出部
21 光源
23 検出器
42 配向演算部
43 補正演算回路
15 Film 20 Molecular Orientation Detection Unit 21 Light Source 23 Detector 42 Orientation Calculation Unit 43 Correction Calculation Circuit

Claims (4)

偏光した第1の光をフィルム表面に対して斜め方向の角度から入射し、吸収による光の減衰量に基づいてフィルム厚さを測定する赤外線厚さ計において、
前記第1の光の前記フィルム表面への入射点の、前記フィルムの流れ方向の近傍に照射された第2の光の散乱分布を検出する分子配向検出部と、
該分子配向検出部から出力される検出信号に基づいて前記フィルムの配向指数を演算する配向演算部と、
前記配向指数に対する前記フィルム厚さの誤差特性に基づいて前記フィルム厚さを補正演算する補正演算部と
を備えたことを特徴とする赤外線厚さ計。
In an infrared thickness meter that measures the thickness of a film based on the amount of attenuation of light due to absorption when the polarized first light is incident on the film surface at an oblique angle.
A molecular orientation detection unit that detects a scattering distribution of the second light irradiated in the vicinity of the flow direction of the film at a point of incidence of the first light on the film surface;
An orientation calculation unit for calculating an orientation index of the film based on a detection signal output from the molecular orientation detection unit;
An infrared thickness meter, comprising: a correction calculation unit that corrects the film thickness based on an error characteristic of the film thickness with respect to the orientation index.
前記分子配向検出部は、前記フィルム表面に垂直に第2の光を照射する光源と、
該光源の周囲に配置され前記フィルムで散乱された光を検出する複数の検出器と
を備えたことを特徴とする請求項1記載の赤外線厚さ計。
The molecular orientation detection unit includes a light source that irradiates a second light perpendicular to the film surface;
The infrared thickness meter according to claim 1, further comprising: a plurality of detectors that are disposed around the light source and detect light scattered by the film.
前記分子配向検出部は、前記フィルム表面の測定点に周囲から斜めに第2の光を照射する複数の光源と、
前記測定点の上方に配設され前記フィルム表面で散乱された光を検出する検出器と
を備えたことを特徴とする請求項1記載の赤外線厚さ計。
The molecular orientation detection unit includes a plurality of light sources that irradiate the measurement points on the film surface with second light obliquely from the surroundings,
The infrared thickness meter according to claim 1, further comprising: a detector that is disposed above the measurement point and detects light scattered on the film surface.
前記配向演算部は前記分子配向検出部から出力される複数の検出信号の最大レベルと、最低レベルから配向指数を演算する
ことを特徴とする請求項1乃至請求項3のいずれかに記載の赤外線厚さ計。
The infrared ray according to any one of claims 1 to 3, wherein the orientation calculation unit calculates an orientation index from a maximum level and a minimum level of a plurality of detection signals output from the molecular orientation detection unit. Thickness gauge.
JP2007151060A 2007-06-07 2007-06-07 Infrared thickness gauge Active JP5019110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151060A JP5019110B2 (en) 2007-06-07 2007-06-07 Infrared thickness gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151060A JP5019110B2 (en) 2007-06-07 2007-06-07 Infrared thickness gauge

Publications (2)

Publication Number Publication Date
JP2008304284A true JP2008304284A (en) 2008-12-18
JP5019110B2 JP5019110B2 (en) 2012-09-05

Family

ID=40233140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151060A Active JP5019110B2 (en) 2007-06-07 2007-06-07 Infrared thickness gauge

Country Status (1)

Country Link
JP (1) JP5019110B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145761A (en) * 2013-01-07 2014-08-14 Seiko Epson Corp Recording medium determination device and recording medium determination method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224002A (en) * 1984-04-21 1985-11-08 Kurabo Ind Ltd Infrared thickness gage
JPS6189542A (en) * 1984-09-24 1986-05-07 コルモーゲン コーポレイション Method of simultaneously measuring thickness and orientationof polymerized film
JPH0850007A (en) * 1994-08-04 1996-02-20 Mitsubishi Chem Corp Method and apparatus for evaluating film thickness
JPH1110728A (en) * 1997-05-01 1999-01-19 Mitsui Chem Inc Equipment for manufacture of oriented film, and birefringence measuring method
JPH1123233A (en) * 1997-07-08 1999-01-29 Kurabo Ind Ltd Meter and method for measurement of film thickness by infrared rays
JP2004226340A (en) * 2003-01-27 2004-08-12 Toray Ind Inc Film thickness measuring method and film manufacturing method
JP2005265757A (en) * 2004-03-22 2005-09-29 Yokogawa Electric Corp Orientation meter
JP2007085908A (en) * 2005-09-22 2007-04-05 Yokogawa Electric Corp Orientation meter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224002A (en) * 1984-04-21 1985-11-08 Kurabo Ind Ltd Infrared thickness gage
JPS6189542A (en) * 1984-09-24 1986-05-07 コルモーゲン コーポレイション Method of simultaneously measuring thickness and orientationof polymerized film
JPH0850007A (en) * 1994-08-04 1996-02-20 Mitsubishi Chem Corp Method and apparatus for evaluating film thickness
JPH1110728A (en) * 1997-05-01 1999-01-19 Mitsui Chem Inc Equipment for manufacture of oriented film, and birefringence measuring method
JPH1123233A (en) * 1997-07-08 1999-01-29 Kurabo Ind Ltd Meter and method for measurement of film thickness by infrared rays
JP2004226340A (en) * 2003-01-27 2004-08-12 Toray Ind Inc Film thickness measuring method and film manufacturing method
JP2005265757A (en) * 2004-03-22 2005-09-29 Yokogawa Electric Corp Orientation meter
JP2007085908A (en) * 2005-09-22 2007-04-05 Yokogawa Electric Corp Orientation meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145761A (en) * 2013-01-07 2014-08-14 Seiko Epson Corp Recording medium determination device and recording medium determination method

Also Published As

Publication number Publication date
JP5019110B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
KR0159290B1 (en) Apparatus for detecting extraneous substances on a glass plate
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
TWI384213B (en) Method and device for measuring optical anisotropy parameter
US7583368B1 (en) Method of enhancing measurement of stress in glass
TW201641927A (en) Measurement device and measurement method for thin film provided with transparent substrate
RU2013143824A (en) DEVICE FOR MEASURING OPTICAL CHARACTERISTICS AND METHOD FOR MEASURING OPTICAL CHARACTERISTICS
WO2020007370A1 (en) Detecting device and method
CN104764798B (en) A kind of visualization leakage magnetic detection device
CN105387933B (en) A kind of broadband Brewster window regulating device and method
JP5837283B2 (en) Tire appearance inspection method and appearance inspection apparatus
KR20180010982A (en) Inspection apparatus and inspection method
JP2014020890A (en) Polarization measurement method, polarization measurement device, and polarization measurement system
US7780258B2 (en) Media sensor with polarization filter
US11313805B2 (en) Differential interference-based optical film defect detection method
WO2009016405A3 (en) Optical measurement apparatus and method therefor
CN105806847A (en) Detection device of substrate
JP4967639B2 (en) Infrared thickness / orientation meter and infrared thickness / orientation measuring method
US9759671B2 (en) Device and method for measuring panes, in particular windscreens of vehicles
JP5019110B2 (en) Infrared thickness gauge
US20160245760A1 (en) Device and Method for Measuring Sheets, More Particularly Windshields of Vehicles
WO2011040350A1 (en) Electromagnetic wave measurement device
CN105258801A (en) Polarization characteristic detection system of polarized light after passing through spherical alkali metal air chamber
TWI625510B (en) Light irradiation device
JP2011117792A (en) Device for measuring lamination angle of elliptically polarized light plate
KR20220044694A (en) Imaging system for surface inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Ref document number: 5019110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3