JP2007085908A - Orientation meter - Google Patents

Orientation meter Download PDF

Info

Publication number
JP2007085908A
JP2007085908A JP2005275484A JP2005275484A JP2007085908A JP 2007085908 A JP2007085908 A JP 2007085908A JP 2005275484 A JP2005275484 A JP 2005275484A JP 2005275484 A JP2005275484 A JP 2005275484A JP 2007085908 A JP2007085908 A JP 2007085908A
Authority
JP
Japan
Prior art keywords
light
light receiving
orientation
light source
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005275484A
Other languages
Japanese (ja)
Other versions
JP4710510B2 (en
Inventor
Yoshihiko Ohigata
祐彦 大日方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2005275484A priority Critical patent/JP4710510B2/en
Publication of JP2007085908A publication Critical patent/JP2007085908A/en
Application granted granted Critical
Publication of JP4710510B2 publication Critical patent/JP4710510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize an orientation meter constituted so as to make it easy to obtain the orientation state over the whole layer of a coextruded or laminated film by calculating molecular orientation by transmitted light and enabling measurement using the transmitted light without deteriorating an S/N ratio even in a thin film or the like. <P>SOLUTION: The orientation meter is composed of a plurality of light detecting elements arranged on the circumference of a circle at equal intervals and the light sources arranged so as to hold the light detecting elements and a measuring target and constituted so that the light sources are arranged in the vicinity of the center axis of the circle which has an array of the light detecting elements, and the transmitted light through the measuring target emitted from the light sources is detected by the light detecting elements. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フィルタシートの分子又は紙の繊維の配向特性を光学的に非接触測定する配向計に関し、高速度・高精度化を図った配向計に関する。   The present invention relates to an orientation meter that optically non-contact measures the orientation characteristics of a filter sheet molecule or paper fiber, and relates to an orientation meter that achieves high speed and high accuracy.

配向計は、紙の繊維配向をはじめ、プラスチックフィルタシートに代表される分子配向や、強化プラスチック中に配合された繊維状のフィラーやその他フィラーによる混合具合を含む配向性、更には液晶フィルタ製造過程のラビング処理により生じる配向特性等を測定する装置である。配向を測定する手段には、超音波、誘電率、マイクロ波、透過光、反射光、顕微鏡、等々様々な測定方法が取られている。   The orientation meter includes fiber orientation of paper, molecular orientation typified by plastic filter sheets, orientation including fiber filler and other fillers mixed in reinforced plastic, and liquid crystal filter manufacturing process. This is a device for measuring orientation characteristics and the like generated by rubbing treatment. Various measuring methods such as ultrasonic waves, dielectric constants, microwaves, transmitted light, reflected light, and microscopes are taken as means for measuring the orientation.

紙の繊維配向を光学的に非接触測定する繊維配向計に関する先行技術としては、例えば下記のようなものがある。   Examples of prior art relating to a fiber orientation meter that optically and non-contact measures the fiber orientation of paper include the following.

特開平11−269790号公報JP-A-11-269790

図4は上記特許文献1に記載された繊維配向計の断面図(a)、及び底面図(b)である。図4(a)において、光源111は、被測定対象物112に対してほぼ鉛直に設置されたLEDやレーザー等で、集光レンズ113を用いて光源111から放射される光を被測定対象物112に集光する。
受光素子114は、光源111を中心として例えば8〜12個設けられた受光ダイオードで、被測定対象物112からの反射光を受光して電気信号に変換するもので、例えば光軸となす反射角度θを55度程度に選定して配向方向を測定する。
FIG. 4 is a cross-sectional view (a) and a bottom view (b) of the fiber orientation meter described in Patent Document 1. In FIG. 4A, a light source 111 is an LED, a laser, or the like installed substantially vertically with respect to the measurement target object 112, and the light radiated from the light source 111 using the condenser lens 113 is measured. The light is condensed at 112.
The light receiving element 114 is, for example, 8 to 12 light receiving diodes with the light source 111 as the center, and receives the reflected light from the measurement object 112 and converts it into an electrical signal. For example, the reflection angle formed with the optical axis The orientation direction is measured by selecting θ as about 55 degrees.

受光素子保持部115は、リング形状の鍔部116と、各受光素子毎に設けられた受光素子装着穴117と、集光レンズ113を保持するレンズ装着穴118を有している。光源保持部119は、レンズ装着穴118と同心円状に受光素子保持部115に固定されるもので、光源111が所定の姿勢で保持される。   The light receiving element holding portion 115 includes a ring-shaped flange portion 116, a light receiving element mounting hole 117 provided for each light receiving element, and a lens mounting hole 118 for holding the condenser lens 113. The light source holding part 119 is fixed to the light receiving element holding part 115 concentrically with the lens mounting hole 118, and holds the light source 111 in a predetermined posture.

図4(b)は、受光素子保持部115の底面図である。ここでは、鍔部116の一部を切り欠いて位置決め部120を形成し筐体(図示せず)に対する受光素子保持部115の取付け角度を一義的に定めている。受光素子装着穴117は、ここでは12個設けられており、受光素子固定穴122が一対一に設けられている。上部外周部123は、レンズ装着穴118と同心円状に設けられた円筒部で、光源保持部119が固定される。   FIG. 4B is a bottom view of the light receiving element holding portion 115. Here, a part of the collar portion 116 is cut out to form the positioning portion 120, and the mounting angle of the light receiving element holding portion 115 with respect to the housing (not shown) is uniquely determined. Here, twelve light receiving element mounting holes 117 are provided, and the light receiving element fixing holes 122 are provided one-on-one. The upper outer peripheral portion 123 is a cylindrical portion provided concentrically with the lens mounting hole 118, and the light source holding portion 119 is fixed thereto.

上述の構成において、光源111から被測定対象物112に光を照射し、被測定対象物112で反射した光を光源111からの照射光軸に対して沿面に配した受光素子114を用いて反射光の分布を測定する。
図5は信号の流れを示すもので、受光素子114で電気信号に変換された信号は素子信号130としてA/D変換器131に入力され、分布測定手段132により光の分布測定が行われた後、配向演算手段133により配向方向が演算されて測定値134が出力される。
In the above-described configuration, light is irradiated from the light source 111 to the measurement target object 112, and the light reflected by the measurement target object 112 is reflected by using the light receiving element 114 disposed along the optical axis irradiated from the light source 111. Measure the light distribution.
FIG. 5 shows the flow of signals. A signal converted into an electric signal by the light receiving element 114 is input to the A / D converter 131 as an element signal 130, and light distribution measurement is performed by the distribution measuring means 132. Thereafter, the orientation calculation unit 133 calculates the orientation direction and outputs a measurement value 134.

ところで、このような構成の配向計においては、分子配向は、光導波により反射/拡散した光の強度分布として求められるが、シート面に対して受光素子と発光素子を同じ側に持つ場合には、光導波性の小さい被測定物では感度が上がりにくいという欠点があった。   By the way, in the orientation meter having such a configuration, the molecular orientation is obtained as the intensity distribution of the light reflected / diffused by the optical waveguide. When the light receiving element and the light emitting element are on the same side with respect to the sheet surface, In addition, there is a drawback that the sensitivity is difficult to increase with an object to be measured having a small optical waveguide property.

また、共押し出しやラミネートフィルムの様にフィルタ内部の光の屈折率が異なる場合には、表層の状態と中間層/裏面層の影響が分り難いという欠点があった。
更に、透過式として沿面に配置した発光素子から斜め方向に照射された光をシートを挟んで対向する沿面に配置した受光素子で測定する場合、フィルタの屈折率に応じて受光側の信号強度が変化し、S/Nを安定化し難いという欠点があった。
Further, when the refractive index of light inside the filter is different as in coextrusion or laminate film, there is a drawback that it is difficult to understand the influence of the surface layer state and the intermediate layer / back surface layer.
Furthermore, when measuring light irradiated obliquely from a light emitting element arranged on a creeping surface as a transmission type with a light receiving element arranged on a facing surface across the sheet, the signal intensity on the light receiving side depends on the refractive index of the filter. There was a drawback that it was difficult to stabilize S / N.

従って本発明が解決しようとする課題は、
1)分子配向を透過光により求めることで、共押し出しやラミネートフィルムの全層に渡る配向状態を得易くすること。
2)透過光による測定であってもS/Nを劣化させずに測定ができるようにすること。
3)薄膜などのように反射側への光導波性の小さな被測定対象物でも配向特性の測定ができるようにすること。
が可能な配向計を実現することにある。
Therefore, the problem to be solved by the present invention is
1) By obtaining the molecular orientation by transmitted light, it is easy to obtain an orientation state over the entire layer of the co-extrusion or laminate film.
2) To enable measurement without deteriorating the S / N even when measuring with transmitted light.
3) To be able to measure the orientation characteristics of an object to be measured having a small optical waveguide property to the reflection side, such as a thin film.
Is to realize an orientation meter capable of

このような課題を達成するために、本発明のうち請求項1記載の配向計の発明は、
円周上に等間隔に配置された複数の受光素子と該受光素子と被測定対象物を挟んで配置された光源からなり、該光源は前記受光素子が並ぶ円の中心軸上付近に配置され、前記光源から照射され前記被測定対象物を透過した透過光を前記受光素子で受光するように構成したことを特徴とする。
In order to achieve such an object, the invention of the orientation meter according to claim 1 of the present invention is:
It comprises a plurality of light receiving elements arranged at equal intervals on the circumference and a light source arranged with the light receiving element and the object to be measured interposed therebetween, and the light source is arranged near the central axis of the circle in which the light receiving elements are arranged. The transmission light irradiated from the light source and transmitted through the object to be measured is received by the light receiving element.

請求項2記載の発明は、請求項1記載の配向計において、
前記受光素子は半導体フォトディテクタ、光源はLED或いは、円偏光レーザダイオードであることを特徴とする。
The invention according to claim 2 is the orientation meter according to claim 1,
The light receiving element is a semiconductor photodetector, and the light source is an LED or a circularly polarized laser diode.

請求項3記載の発明は、請求項1又は2に記載の配向計において、
各受光素子の個体差を記憶する記憶手段を有し、前記被測定対象物の配向方向の演算に際しては前記記憶手段に記憶された個体差に基づいて校正をおこなうことを特徴とする。
The invention according to claim 3 is the orientation meter according to claim 1 or 2,
Storage means for storing individual differences of the respective light receiving elements is provided, and calibration is performed based on the individual differences stored in the storage means when calculating the orientation direction of the object to be measured.

請求項4記載の発明は、請求項1乃至3のいずれかに記載の配向計において、
校正に際しては照射軸上に拡散板を配置することを特徴とする。
Invention of Claim 4 is the orientation meter in any one of Claims 1 thru | or 3,
In the calibration, a diffusion plate is arranged on the irradiation axis.

請求項5記載の発明は、請求項1乃至4のいずれかに記載の配向計において、
校正に際しては照射軸上にレンズユニットを配置すると共に照射軸上で移動可能としたことを特徴とする。
Invention of Claim 5 is the orientation meter in any one of Claims 1 thru | or 4,
In the calibration, the lens unit is arranged on the irradiation axis and is movable on the irradiation axis.

請求項6記載の発明は、請求項1乃至5のいずれかに記載の配向計において、
被測定対象物の光導波性または光透過率に応じてレンズユニットにより光束を調整可能としたことを特徴とする。
Invention of Claim 6 is the orientation meter in any one of Claims 1 thru | or 5,
The light beam can be adjusted by the lens unit according to the optical waveguide property or light transmittance of the object to be measured.

請求項7記載の発明は、請求項1乃至6のいずれかに記載の配向計において、
被測定対象物を挟んで対向して配置された光源と受光素子は光源が下側になるように配置したことを特徴とする。
The invention according to claim 7 is the orientation meter according to any one of claims 1 to 6,
The light source and the light receiving element arranged to face each other with the object to be measured interposed therebetween are arranged such that the light source is on the lower side.

請求項8記載の発明は、請求項1乃至7のいずれかに記載の配向計において、
光源は赤外線を含んだ光源とし、受光素子は赤外線透過フィルタを透過した光を受光するようにしたことを特徴とする。
The invention according to claim 8 is the orientation meter according to any one of claims 1 to 7,
The light source is a light source including infrared light, and the light receiving element receives light transmitted through the infrared transmission filter.

本発明によれば次のような効果がある。請求項1記載の配向計によれば、
円周上に等間隔に配置された複数の受光素子と該受光素子と被測定対象物を挟んで配置された光源からなり、該光源は前記受光素子が並ぶ円の中心軸上付近に配置され、前記光源から照射され前記被測定対象物を透過した透過光を前記受光素子で受光するように構成したので、共押し出しやラミネートフィルムの全層に渡る配向状態を得易くなり、また、薄膜等で反射側に導波される光が少ない場合でも透過光による測定であるためS/Nを劣化させずに測定ができる。
The present invention has the following effects. According to the orientation meter according to claim 1,
It comprises a plurality of light receiving elements arranged at equal intervals on the circumference and a light source arranged with the light receiving element and the object to be measured interposed therebetween, and the light source is arranged near the central axis of the circle in which the light receiving elements are arranged. Since the light receiving element receives the transmitted light irradiated from the light source and transmitted through the object to be measured, it becomes easy to obtain co-extrusion and an orientation state over the entire layer of the laminate film, and a thin film, etc. Thus, even when there is little light guided to the reflection side, the measurement can be performed without degrading the S / N because the measurement is based on the transmitted light.

請求項2記載の配向計によれば、
光源は半導体フォトディテクタ、光源はLED或いは、円偏光レーザダイオードとしたので、小型化が可能である。。
According to the orientation meter according to claim 2,
Since the light source is a semiconductor photodetector and the light source is an LED or a circularly polarized laser diode, the size can be reduced. .

請求項3記載の配向計によれば、
各受光素子の個体差を記憶する記憶手段を有し、前記被測定対象物の配向方向の演算に際しては前記記憶手段に記憶された個体差に基づいて校正を行うので、正確な配向測定が可能である。
According to the orientation meter according to claim 3,
It has storage means for storing individual differences of each light receiving element, and when calculating the orientation direction of the object to be measured, calibration is performed based on the individual differences stored in the storage means, so accurate orientation measurement is possible It is.

請求項4記載の配向計によれば、
校正に際しては照射軸上に拡散板を配置するので、拡散板を用いない場合に比べ、受光素子に入る光量が増えるため正確な校正を行うことができる。
また、校正時に照射光を拡散させることで受光素子の感度や機械精度によるばらつきを抑えて測定精度を向上させることができる。
According to the orientation meter according to claim 4,
When calibrating, a diffusion plate is disposed on the irradiation axis, so that the amount of light entering the light receiving element is increased as compared with the case where no diffusion plate is used, so that accurate calibration can be performed.
Further, by diffusing the irradiation light at the time of calibration, it is possible to improve the measurement accuracy by suppressing variations due to the sensitivity and mechanical accuracy of the light receiving element.

請求項5記載の配向計によれば、
校正に際しては照射軸上にレンズユニットを配置すると共に照射軸上で移動可能としたので、拡散光の広がりを調整することができる。
According to the orientation meter of claim 5,
At the time of calibration, the lens unit is disposed on the irradiation axis and is movable on the irradiation axis, so that the spread of the diffused light can be adjusted.

請求項6記載の配向計によれば、
被測定対象物の光導波性または光透過率に応じてレンズユニットにより光束を調整可能としたので、正確な配向の測定が可能となる。
請求項7記載の発明によれば、
被測定対象物を挟んで対向して配置された光源と受光素子は光源が下側になるように配置したので、埃の影響を少なくすることができる。
請求項8記載の発明によれば、
光源は赤外線を含んだ光源とし、受光素子は赤外線透過フィルタを透過した光を受光するようにしたので、可視光による迷光がノイズ成分になるのを防いでS/Nの低下を防止することができる。
According to the orientation meter of claim 6,
Since the light beam can be adjusted by the lens unit in accordance with the optical waveguide property or light transmittance of the object to be measured, it is possible to accurately measure the orientation.
According to invention of Claim 7,
Since the light source and the light receiving element arranged to face each other with the object to be measured interposed therebetween are arranged so that the light source is on the lower side, the influence of dust can be reduced.
According to invention of Claim 8,
Since the light source includes a light source including infrared rays and the light receiving element receives light transmitted through the infrared transmission filter, stray light due to visible light can be prevented from becoming a noise component, thereby preventing a decrease in S / N. it can.

以下本発明を図面を用いて詳細に説明する。図1(a,b)は本発明に係る配向計の要部を示す構成図で、(a)は測定時の(b)は校正時において発光素子と受光素子の間に拡散板を配置した状態を示している。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1A and FIG. 1B are configuration diagrams showing the main part of an orientation meter according to the present invention. FIG. 1A shows a diffuser plate disposed between a light-emitting element and a light-receiving element during measurement. Indicates the state.

図1(a)において、1はLEDやレーザー等の発光素子からなる光源、50は発光素子保持部材である。2−1〜2−8は受光ダイオード等からなる受光素子であり、これらの受光素子2−1〜2−8は円板状の受光素子保持部材31の周縁付近に等間隔に取付けられている。図に示すように発光素子と受光素子は被測定対象物を挟んで発光素子が下側になるように配置するのは埃の影響を少なくするためである。   In FIG. 1A, 1 is a light source composed of a light emitting element such as an LED or a laser, and 50 is a light emitting element holding member. Reference numerals 2-1 to 2-8 denote light receiving elements such as light receiving diodes, and these light receiving elements 2-1 to 2-8 are attached to the periphery of the disc-shaped light receiving element holding member 31 at equal intervals. . As shown in the figure, the light emitting element and the light receiving element are disposed so that the light emitting element is located on the lower side of the object to be measured in order to reduce the influence of dust.

また、図では省略するが、発光素子は赤外線を含んだ光源とし、受光素子の前面に赤外線透過フィルタを配置し、そのフィルタを透過した光を受光するようにすれば、可視光による迷光がノイズ成分になるのを防ぐのでS/Nの低下を防止することができる。   Although not shown in the figure, if the light emitting element is a light source containing infrared light, and an infrared transmission filter is disposed on the front surface of the light receiving element so that light transmitted through the filter is received, stray light due to visible light is noise. Since it is prevented from becoming a component, a decrease in S / N can be prevented.

発光素子1から照射された光は被測定対象物30を透過する際光導波されながら散乱し、その散乱光が受光素子保持部材31に取付けられた受光素子2−1〜2−8で受光される。また、校正時には発光素子1と受光素子2−1〜2−8の間に拡散板35が配置される。   The light emitted from the light emitting element 1 is scattered while being guided by the light when passing through the measurement object 30, and the scattered light is received by the light receiving elements 2-1 to 2-8 attached to the light receiving element holding member 31. The Further, at the time of calibration, the diffusion plate 35 is disposed between the light emitting element 1 and the light receiving elements 2-1 to 2-8.

図2(a,b)は本発明の配向計における測定の流れ(a)と機器の構成例(b)を示すものである。(a)図において、工程(A)にて発光部から光を照射する。校正モード時の工程(B)で発光部から照射された光は拡散板で拡散され、この拡散板からの透過光が受光素子で受光される。工程(C)において、受光素子からの電気信号がA/D変換され、個々の受光素子からの校正データが記憶素子(図示せず)に記憶される。   2A and 2B show a measurement flow (a) and a configuration example (b) of the apparatus in the orientation meter of the present invention. (a) In a figure, light is irradiated from a light emission part at a process (A). The light emitted from the light emitting unit in the step (B) in the calibration mode is diffused by the diffusion plate, and the transmitted light from the diffusion plate is received by the light receiving element. In step (C), electrical signals from the light receiving elements are A / D converted, and calibration data from the individual light receiving elements are stored in a storage element (not shown).

次に測定モードに移り、発光素子と受光素子の間に被測定対象物30が配置される。そして、発光素子から被測定対象物30に向かって光が照射され、工程(D)において、シート(測定対象物)の透過光が受光素子で受光される。   Next, the measurement mode is entered, and the object 30 to be measured is placed between the light emitting element and the light receiving element. And light is irradiated toward the to-be-measured object 30 from a light emitting element, and the transmitted light of a sheet | seat (measuring object) is received by a light receiving element in a process (D).

そして、工程(E)において受光素子からの電気信号がA/D変換され、工程(F)において、先に記憶した拡散板を用いた校正データを用いて測定データが正規化される。次に工程(G)において、この正規化されたデータに基づいて配向度と配向角が演算される。   In step (E), the electrical signal from the light receiving element is A / D converted, and in step (F), the measurement data is normalized using the calibration data using the diffusion plate stored in advance. Next, in step (G), the degree of orientation and the orientation angle are calculated based on the normalized data.

正規化した測定値は例えば下式に示すような楕円近似を行い、反射光の強度分布の方向とアスペクト比を求める。   The normalized measurement value is approximated to an ellipse as shown in the following equation, for example, to determine the direction and aspect ratio of the intensity distribution of the reflected light.

Figure 2007085908
Figure 2007085908

なお、配向強度及び角度の算出は反射光の強度分布から得るがその方法は上述の楕円近似のほか三角関数近似やその他の方法によるものでもよい。   The calculation of the orientation intensity and angle is obtained from the intensity distribution of the reflected light, but the method may be based on the above-described elliptic approximation, trigonometric approximation or other methods.

図2(b)の機器の構成例において、中央処理回路10は発光回路3に駆動指令を発する。受光素子2−1〜2−8で受光された光は受光回路4により信号処理が行われ中央処理回路10の指令に基づいてA/D変換器6によりA/D変換される。   2B, the central processing circuit 10 issues a drive command to the light emitting circuit 3. Light received by the light receiving elements 2-1 to 2-8 is subjected to signal processing by the light receiving circuit 4, and A / D converted by the A / D converter 6 based on a command from the central processing circuit 10.

次に同じく中央処理回路10の指令に基づいて演算器15により配向度と配向角が演算され、インタフェース16を介して出力される。このインタフェース16は外部からの操作に基づいて拡散板駆動回路12に駆動信号を発して拡散板35を駆動したり、校正データや測定データを格納する等測定/校正に必要な要素を中継する機能を持っている。   Next, the degree of orientation and the orientation angle are calculated by the calculator 15 based on the command of the central processing circuit 10 and output via the interface 16. This interface 16 functions to relay elements necessary for measurement / calibration, such as driving the diffusion plate 35 by issuing a drive signal to the diffusion plate driving circuit 12 based on an external operation, and storing calibration data and measurement data. have.

フィルムの分子配向やプラスチック中のフィラーの場合、光導波された拡散光の強度が強い方向が分子の配向方向として求められる。この現象は、分子配向をはじめ高分子性フィラーや紙の繊維においてもOpticalWaveGuideの効果により分子の配向方向及びフィラーや繊維の方向に光が導波されることにより反射光が強くなることに由来すると考えられる。   In the case of the molecular orientation of the film or the filler in the plastic, the direction in which the intensity of the diffused light guided by the light is strong is required as the orientation direction of the molecule. This phenomenon originates from the fact that reflected light is strengthened in the molecular orientation and the fiber and paper fibers as well as in the molecular orientation direction due to the effect of OpticalWaveGuide and the light is guided in the direction of the filler and fiber. Conceivable.

図3(a〜e)は拡散板35の取付け位置および保持手段について示すものである。図3aは利用時に拡散板35をせり出させて発光素子1上に接しない程度の上空に位置させたものであり、図3bは発光素子に接しない程度の位置から上方に距離Hが取り得る範囲が広いことを示している。   3A to 3E show the attachment position of the diffusion plate 35 and the holding means. FIG. 3A shows the diffuser plate 35 protruded during use and is positioned above the light emitting element 1 so that the distance H can be taken upward from the position where it does not contact the light emitting element. It shows that the range is wide.

このように拡散板35を受光素子2側に移動させると拡散光の広がりを調整することができる。
図3(c,d)は校正位置に予め支持部材35aに設置した拡散板35の位置に合わせてセンサ部を矢印A方向に移動させるように構成したものである。
Thus, when the diffusion plate 35 is moved to the light receiving element 2 side, the spread of the diffused light can be adjusted.
FIGS. 3C and 3D show a configuration in which the sensor unit is moved in the arrow A direction in accordance with the position of the diffusion plate 35 previously installed on the support member 35a at the calibration position.

このように校正に際して拡散板を照射軸上に配置すると、拡散板を用いない場合に比べ、受光素子に入る光量が増えるため正確な校正を行うことができる。これは、発光素子からの光束が絞られている場合、被測定対象物のない校正時は受光素子に光がほとんど届かないためである。
また、校正時に照射光を拡散させることで受光素子の感度や機械精度によるばらつきを抑えて測定精度を向上させることができる。
If the diffusion plate is arranged on the irradiation axis in the calibration as described above, the amount of light entering the light receiving element is increased as compared with the case where the diffusion plate is not used, so that accurate calibration can be performed. This is because when the light flux from the light emitting element is narrowed, light hardly reaches the light receiving element during calibration without an object to be measured.
Further, by diffusing the irradiation light at the time of calibration, it is possible to improve the measurement accuracy by suppressing variations due to the sensitivity and mechanical accuracy of the light receiving element.

図3eは拡散のためにレンズユニット36を用いた構成例を示すもので、レンズユニット36の取付け位置による照射角の広がりの違いを示す図である。即ち、レンズユニット36が発光素子側に近ければ照射角は広がり、離れるにしたがって広がりが少なくなっている。また、このレンズユニットは、校正に用いるだけでなく被測定対象物における光の導波しやすさ、光透過率に応じて適宜光束を調整する場合にも有効である。   FIG. 3e shows a configuration example using the lens unit 36 for diffusion, and shows the difference in the spread of the irradiation angle depending on the mounting position of the lens unit 36. FIG. That is, when the lens unit 36 is close to the light emitting element side, the irradiation angle is widened, and as the distance is increased, the spread is reduced. This lens unit is effective not only for calibration, but also for adjusting the light flux as appropriate according to the ease of light guiding and the light transmittance of the measurement object.

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。例えば、光導波路の性質を応用したものであれば、プラスチックシートや紙に限らず光透過性を持つ物質も測定対象とすることができる。
したがって本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention. For example, as long as the properties of the optical waveguide are applied, not only a plastic sheet or paper but also a substance having optical transparency can be measured.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

本発明の配向計の一実施例を示す要部構成図である。It is a principal part block diagram which shows one Example of the orientation meter of this invention. 本発明の配向計における測定の流れ(a)と機器の構成例(b)を示す図である。It is a figure which shows the measurement flow (a) in the orientation meter of this invention, and the structural example (b) of an apparatus. 拡散板の取付け位置を示す説明図であるIt is explanatory drawing which shows the attachment position of a diffusion plate. 従来の配向計の断面図及び底面図である。It is sectional drawing and bottom view of the conventional orientation meter. 従来の配向計の信号の流れを示す説明図である。It is explanatory drawing which shows the flow of the signal of the conventional orientation meter.

符号の説明Explanation of symbols

1 発光素子
2 受光素子
3 発光回路
4 受光回路
6 A/D変換器
10 CPU
12 拡散板駆動回路
15 演算器
16 入出力インタフェース
30 被測定対象物
31 受光素子保持部
35 拡散板
35a 支持部材
36 レンズユニット
50 発光素子保持部
111 光源
113 集光レンズ
116 鍔部
117 受光素子装着穴
118 レンズ装着穴
119 光源保持部
120 位置決め部
121 固定穴
122 受光素子固定穴
123 上部外周部
130 素子信号
132 分布測定手段
133 配向演算手段
134 測定値出力



















DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Light receiving element 3 Light emitting circuit 4 Light receiving circuit 6 A / D converter 10 CPU
DESCRIPTION OF SYMBOLS 12 Diffusion plate drive circuit 15 Calculator 16 Input / output interface 30 Measurement object 31 Light receiving element holding part 35 Diffusion plate 35a Support member 36 Lens unit 50 Light emitting element holding part 111 Light source 113 Condensing lens 116 Gutter part 117 Light receiving element mounting hole 118 Lens mounting hole 119 Light source holding part 120 Positioning part 121 Fixing hole 122 Light receiving element fixing hole 123 Upper outer peripheral part 130 Element signal 132 Distribution measuring means 133 Orientation calculating means 134 Measurement value output



















Claims (8)

円周上に等間隔に配置された複数の受光素子と該受光素子と被測定対象物を挟んで配置された光源からなり、該光源は前記受光素子が並ぶ円の中心軸上付近に配置され、前記光源から照射され前記被測定対象物を透過した透過光を前記受光素子で受光するように構成したことを特徴とする配向計。   It comprises a plurality of light receiving elements arranged at equal intervals on the circumference and a light source arranged with the light receiving element and the object to be measured interposed therebetween, and the light source is arranged near the central axis of the circle in which the light receiving elements are arranged. An orientation meter configured to receive the transmitted light irradiated from the light source and transmitted through the object to be measured by the light receiving element. 前記受光素子は半導体フォトディテクタ、光源はLED或いは、円偏光レーザダイオードであることを特徴とする請求項1に記載の配向計。   The orientation meter according to claim 1, wherein the light receiving element is a semiconductor photodetector, and the light source is an LED or a circularly polarized laser diode. 各受光素子の個体差を記憶する記憶手段を有し、前記被測定対象物の配向方向の演算に際しては前記記憶手段に記憶された個体差に基づいて校正をおこなうことを特徴とする請求項1又は2に記載の配向計。   2. A storage means for storing individual differences of the respective light receiving elements, wherein calibration is performed based on the individual differences stored in the storage means when calculating the orientation direction of the object to be measured. Or the orientation meter of 2. 校正に際しては照射軸上に拡散板を配置することを特徴とする請求項1乃至3に記載の配向計。   4. The orientation meter according to claim 1, wherein a diffusing plate is disposed on the irradiation axis during calibration. 校正に際しては照射軸上にレンズユニットを配置すると共に照射軸上で移動可能としたことを特徴とする請求項1乃至3に記載の配向計。   4. The orientation meter according to claim 1, wherein a lens unit is arranged on the irradiation axis and is movable on the irradiation axis during calibration. 被測定対象物の光導波性または光透過率に応じてレンズユニットにより光束を調整可能としたことを特徴とする請求項5に記載の配向計。   6. The orientation meter according to claim 5, wherein the light beam can be adjusted by the lens unit in accordance with the optical waveguide property or light transmittance of the object to be measured. 被測定対象物を挟んで対向して配置された光源と受光素子は光源が下側になるように配置したことを特徴とする請求項1乃至6に記載の配向計。   7. The orientation meter according to claim 1, wherein the light source and the light receiving element arranged to face each other with the measurement object interposed therebetween are arranged so that the light source is on the lower side. 光源は赤外線を含んだ光源とし、受光素子は赤外線透過フィルタを透過した光を受光するようにしたことを特徴とする請求項1乃至7に記載の配向計。   8. The orientation meter according to claim 1, wherein the light source is a light source including infrared light, and the light receiving element receives light transmitted through the infrared transmission filter.
JP2005275484A 2005-09-22 2005-09-22 Orientation meter Active JP4710510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275484A JP4710510B2 (en) 2005-09-22 2005-09-22 Orientation meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275484A JP4710510B2 (en) 2005-09-22 2005-09-22 Orientation meter

Publications (2)

Publication Number Publication Date
JP2007085908A true JP2007085908A (en) 2007-04-05
JP4710510B2 JP4710510B2 (en) 2011-06-29

Family

ID=37973028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275484A Active JP4710510B2 (en) 2005-09-22 2005-09-22 Orientation meter

Country Status (1)

Country Link
JP (1) JP4710510B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304284A (en) * 2007-06-07 2008-12-18 Yokogawa Electric Corp Infrared thickness meter
JP2017185200A (en) * 2016-03-31 2017-10-12 パナソニックIpマネジメント株式会社 Imaging device having light source, photo-detector, and control circuit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231136A (en) * 1984-05-01 1985-11-16 Kanzaki Paper Mfg Co Ltd Measurement of fiber orientation in paper
JPH04115050U (en) * 1991-03-28 1992-10-12 横河電機株式会社 Laser fiber orientation meter
JPH06337243A (en) * 1993-03-31 1994-12-06 New Oji Paper Co Ltd Optical measuring apparatus
JPH11269789A (en) * 1998-03-20 1999-10-05 Nippon Paper Industries Co Ltd Signal normalization apparatus for fiber orientation meter
JPH11269790A (en) * 1998-03-20 1999-10-05 Yokogawa Electric Corp Fiber orientation meter
WO2001075423A1 (en) * 2000-03-30 2001-10-11 Nippon Paper Industries Co., Ltd. Method for measuring orientation of paper fibers and apparatus for measuring orientation of paper fibers
JP2002214135A (en) * 2001-01-17 2002-07-31 Kubota Corp Internal quality measuring device
JP2004233271A (en) * 2003-01-31 2004-08-19 Matsushita Electric Ind Co Ltd Optical measuring instrument

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231136A (en) * 1984-05-01 1985-11-16 Kanzaki Paper Mfg Co Ltd Measurement of fiber orientation in paper
JPH04115050U (en) * 1991-03-28 1992-10-12 横河電機株式会社 Laser fiber orientation meter
JPH06337243A (en) * 1993-03-31 1994-12-06 New Oji Paper Co Ltd Optical measuring apparatus
JPH11269789A (en) * 1998-03-20 1999-10-05 Nippon Paper Industries Co Ltd Signal normalization apparatus for fiber orientation meter
JPH11269790A (en) * 1998-03-20 1999-10-05 Yokogawa Electric Corp Fiber orientation meter
WO2001075423A1 (en) * 2000-03-30 2001-10-11 Nippon Paper Industries Co., Ltd. Method for measuring orientation of paper fibers and apparatus for measuring orientation of paper fibers
JP2002214135A (en) * 2001-01-17 2002-07-31 Kubota Corp Internal quality measuring device
JP2004233271A (en) * 2003-01-31 2004-08-19 Matsushita Electric Ind Co Ltd Optical measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304284A (en) * 2007-06-07 2008-12-18 Yokogawa Electric Corp Infrared thickness meter
JP2017185200A (en) * 2016-03-31 2017-10-12 パナソニックIpマネジメント株式会社 Imaging device having light source, photo-detector, and control circuit

Also Published As

Publication number Publication date
JP4710510B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP2009150690A (en) Reflection-type optical sensor
US7889326B2 (en) Distance measuring apparatus
JP2011106896A (en) Non-contact probe and measuring machine
JP4104924B2 (en) Optical measuring method and apparatus
JP2005017382A (en) Distance measuring sensor and electronic apparatus provided with the same
JP4600763B2 (en) Orientation meter
JP4710510B2 (en) Orientation meter
JP2014199229A (en) Inclination angle measuring method and inclination angle measuring device
US10605729B2 (en) ATR-spectrometer
JP4732569B2 (en) Method for continuously determining the optical layer thickness of a coating
KR101124607B1 (en) Beam width measurement method and system using optical grating panel
US9535214B2 (en) Method of inputting light into optical waveguide
EP2573546A1 (en) Gas sensor
US10768095B2 (en) Optical sensor
JP2013120145A (en) Optical force sensor
JP4853968B2 (en) Wafer positioning method and positioning apparatus
JP2009271012A (en) Position adjusting method for distance sensor of thickness measuring instrument
JP2006132972A (en) Defect detecting method and defect detecting device of optical part
US11774239B1 (en) Optical measurement device and calibration method thereof
JP2018124122A (en) Raindrop detector
CN116734760B (en) Device and method for simultaneously detecting curing depth and light transmittance of UV adhesive
JP2000121725A (en) Distance measuring apparatus
US20220244165A1 (en) Particulate matter sensor
US20230367009A1 (en) Distance measurement using field of view
JPH11211437A (en) Device and method for measuring interface shape of sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Ref document number: 4710510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150