JP2008304270A - Fluid measuring substrate, analyzer and analysis method - Google Patents

Fluid measuring substrate, analyzer and analysis method Download PDF

Info

Publication number
JP2008304270A
JP2008304270A JP2007150798A JP2007150798A JP2008304270A JP 2008304270 A JP2008304270 A JP 2008304270A JP 2007150798 A JP2007150798 A JP 2007150798A JP 2007150798 A JP2007150798 A JP 2007150798A JP 2008304270 A JP2008304270 A JP 2008304270A
Authority
JP
Japan
Prior art keywords
solution
flow path
discharge port
introduction port
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007150798A
Other languages
Japanese (ja)
Other versions
JP4966752B2 (en
Inventor
Yuichi Okabe
勇一 岡部
Katsuyoshi Hayashi
勝義 林
Gen Iwasaki
弦 岩崎
Takeshi Hayashi
剛 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007150798A priority Critical patent/JP4966752B2/en
Publication of JP2008304270A publication Critical patent/JP2008304270A/en
Application granted granted Critical
Publication of JP4966752B2 publication Critical patent/JP4966752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive fluid measuring substrate having a simple structure, capable of introducing a directly sampled measuring object solution, an analyzer equipped therewith, and an analysis method that uses the analyzer. <P>SOLUTION: In this fluid measuring substrate having a reference solution injection port for sending reference solution, a measuring object solution injection port for injecting the measuring object solution, and a discharge port for discharging the reference solution and/or the measuring object solution, the reference solution injection port, the measuring object solution injection port and the discharge port are bonded together through a sealed channel. The reference solution injection port and the measuring object solution injection port are arranged so that the reference solution and the measuring object solution flow into the discharge port from the same direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は流体中の物質をモニタするために用いる流体測定基板、これを備える分析装置及びその分析装置を使用した分析方法に関するものである。   The present invention relates to a fluid measurement board used for monitoring a substance in a fluid, an analysis apparatus including the same, and an analysis method using the analysis apparatus.

近年、診断や治療の効率化及びスピード化の観点からPOC(Point of Care)検査、すなわち診療の現場において患者のそばでおこなう臨床検査が注目されている。また、環境影響評価や食品安全性検査等のため、大気や水や土壌中の環境汚染物質のモニタリングや短時間で安価な診断又は分析のニーズが高くなってきている。このように健康管理や環境の分野で、簡単に検査ができる簡易分析機器として、マイクロチップ等のデバイスが注目されている。そのようなデバイスにμ−TAS(Micro Total Analysis System)がある(例えば、非特許文献1を参照。)。   In recent years, a point of care (POC) test, that is, a clinical test performed near a patient in a clinical practice, has attracted attention from the viewpoint of efficiency and speed of diagnosis and treatment. In addition, there is an increasing need for monitoring environmental pollutants in the air, water, and soil, and for making a quick diagnosis and analysis in a short time for environmental impact assessment and food safety inspection. Thus, devices such as microchips have attracted attention as simple analytical instruments that can be easily inspected in the fields of health management and the environment. One such device is μ-TAS (Micro Total Analysis System) (see, for example, Non-Patent Document 1).

μ−TASは、チップ上に微細流路、バルブ、反応槽、膜分離機構、電気泳動カラム、クロマト用カラム又はこれらの組み合わせを集積したものと検出器とを組み合わせた小さな総合化学分析システムのことである。検出器としては、例えば、誘導型プラズマ(ICP)、質量分析計(MS)、熱レンズ顕微鏡、蛍光顕微鏡、分光器、表面プラズモン共鳴(SPR:Surface Plasmon Resonance)又は電気化学測定装置である。μ−TASにより、測定機器の可搬性の向上、微量サンプルで分析可能、さらに測定の高感度化及び短時間化などが期待できる。生体試料中の特定分子濃度の測定には、例えば、液体クロマトグラフィー、SPR現象を用いた検出器、電気化学検出器及び簡易血糖計が用いられる。簡易血糖計は、生体試料を検出部にふれさせるだけで測定を行うことができる。   μ-TAS is a small total chemical analysis system that combines a detector with a microchannel, valve, reaction vessel, membrane separation mechanism, electrophoresis column, chromatographic column or a combination of these integrated on a chip. It is. Examples of the detector include an induction plasma (ICP), a mass spectrometer (MS), a thermal lens microscope, a fluorescence microscope, a spectrometer, a surface plasmon resonance (SPR), or an electrochemical measurement device. With μ-TAS, it is possible to improve the portability of measuring instruments, to analyze with a small amount of sample, and to expect higher sensitivity and shorter time of measurement. For example, liquid chromatography, a detector using an SPR phenomenon, an electrochemical detector, and a simple blood glucose meter are used for measuring the concentration of a specific molecule in a biological sample. The simple blood glucose meter can perform measurement only by touching a biological sample to the detection unit.

液体クロマトグラフィーは、送液用のポンプにより、pH緩衝液等の基準溶液を流しておいて検出器から得られる応答(ベースライン)を予め安定化させておき、その後測定試料を導入して高精度に測定を行う。SPR現象を用いた検出器は、測定試料導入前後の屈折率変化の差分から濃度を定量する。直接測定試料を導入した場合、ベースラインが安定せず基準となる屈折率が不明となるため、SPR現象を用いた検出器も濃度の定量には予め基準溶液のベースラインを取得しておく必要がある。また、電気化学検出器の場合も、図1に示すように応答が経時的に変化するため、観測したい電気化学反応に基づく電流あるいは電位の変化のみをとらえることが難しい。そのため、電気化学検出器も濃度の定量には予め基準溶液のベースラインを取得しておく必要がある。   In liquid chromatography, a response solution (baseline) obtained from a detector is stabilized by flowing a reference solution such as a pH buffer solution with a pump for feeding liquid, and then a measurement sample is introduced to increase the response. Measure accurately. The detector using the SPR phenomenon quantifies the concentration from the difference in refractive index change before and after the introduction of the measurement sample. When the measurement sample is directly introduced, the baseline is not stable and the reference refractive index is unknown, so the detector using the SPR phenomenon also needs to acquire the baseline of the reference solution in advance for concentration determination. There is. Also, in the case of an electrochemical detector, since the response changes with time as shown in FIG. 1, it is difficult to capture only the change in current or potential based on the electrochemical reaction to be observed. Therefore, the electrochemical detector also needs to obtain a baseline of the reference solution in advance for quantifying the concentration.

一方、簡易血糖計では、採取した測定試料(血液)を直接導入しても測定を行うことができるが、これは血液中のグルコース濃度が十分高いためであり、測定対象分子の濃度が低い場合には拡散律速となり、感度が不足する。これを解決するためには、連続的に送液しながら測定を行い、強制的に拡散律速の状態を回避することが必要である。   On the other hand, with a simple blood glucose meter, measurement can be performed even if the collected measurement sample (blood) is directly introduced. This is because the glucose concentration in the blood is sufficiently high, and the concentration of the molecule to be measured is low. Is diffusion limited and lacks sensitivity. In order to solve this, it is necessary to carry out the measurement while continuously feeding the liquid and forcibly avoid the diffusion-controlled state.

簡易血糖計で採用されている測定対象溶液の連続送液ができる装置の概略図を図2に示す。図2のように、測定対象溶液LQをシリンジ等の別容器に詰め、密封された流路16内にシリンジポンプ等の溶液押し出し手段111を用いて測定対象溶液LQを連続して導入している(例えば、非特許文献1を参照。)。また、SPR現象を用いた検出器や電気化学検出器で採用されている基準溶液測定後に測定対象の溶液を測定する装置の概略図を図3及び図4に示す。図3に示しているように、基準溶液LQ及び測定対象溶液LQをそれぞれ2つの容器に詰め、2つの溶液押し出し手段111を用いて密封された流路16内に基準溶液LQ又は測定対象溶液LQを交互に導入している(例えば、非特許文献2を参照。)。また、図4のように、流路切替用のバルブ25を流体測定基板103に組み込み、シリンジポンプ等の溶液吸引手段121を用いて流路16内の溶液を吸引し、バルブ25を切替えることで基準溶液LQ又は測定対象溶液LQを交互に測定している(例えば、非特許文献1を参照。)。また、バルブを用いずに電気浸透流を用いる方法も知られている(例えば、非特許文献1を参照。)。
マイクロ化学分析システム 庄子習一 電子情報通信学会論文誌C−II vol.J81−C−II N0.7 pp591−599 1998年7月 “ Selective detection of L−glutamate using a microfluidic device integrated with an enzyme‐modified pre‐reactorand an electrochemical detector” Katsuyoshi Hayashi, Ryoji Kurita, Tsutomu Horiuchi,Osamu Niwa、 Biosensors and Bioelectronics 18 pp1249−1255 2003年
FIG. 2 shows a schematic diagram of an apparatus capable of continuously feeding a solution to be measured that is adopted in a simple blood glucose meter. As shown in FIG. 2, the measurement target solution LQ T is packed in a separate container such as a syringe, and the measurement target solution LQ T is continuously introduced into the sealed flow path 16 using the solution push-out means 111 such as a syringe pump. (For example, see Non-Patent Document 1). Moreover, the schematic of the apparatus which measures the solution of a measuring object after the reference | standard solution measurement employ | adopted with the detector using an SPR phenomenon and an electrochemical detector is shown in FIG.3 and FIG.4. As shown in FIG. 3, the reference solution LQ B and the measurement target solution LQ T are packed in two containers, respectively, and the reference solution LQ B or the measurement is stored in the channel 16 sealed using the two solution pushing means 111. introduces a target solution LQ T alternately (e.g., see non-Patent Document 2.). In addition, as shown in FIG. 4, the flow path switching valve 25 is incorporated in the fluid measurement substrate 103, the solution in the flow path 16 is sucked using the solution suction means 121 such as a syringe pump, and the valve 25 is switched. The reference solution LQ B or the measurement target solution LQ T is measured alternately (see, for example, Non-Patent Document 1). A method using electroosmotic flow without using a valve is also known (see, for example, Non-Patent Document 1).
Micro Chemical Analysis System Shuichi Shoko Transactions of the Institute of Electronics, Information and Communication Engineers C-II vol. J81-C-II N0.7 pp591-599 July 1998 "Selective detection of L-glutamate using a microfluidic device integrated with an enzyme-modified pre-reactorand an electrochemical detector" Katsuyoshi Hayashi, Ryoji Kurita, Tsutomu Horiuchi, Osamu Niwa, Biosensors and Bioelectronics 18 pp1249-1255 2003 years

POCには、流体測定基板が安価であり、生体分子濃度を簡便かつ迅速に測定を行うことができる分析装置が望まれている。しかし、図2や図3の方法では、採取した測定対象の溶液をシリンジなどの別の器具にとらなければならず異物混入やノイズ発生の課題があった。また、図4の方法では、測定対象溶液を流体測定基板内に直接滴下し、測定対象溶液を流路内に導入することができたとしても、流体測定基板内にバルブなどの流路切替機構を組み込む必要があり、流体測定基板の価格が高価になるという課題があった。さらに、電気浸透流を用いる場合、別途電源が必要となることや、流体測定基板内に別途電極やデカブラを設置する必要があり、流体測定基板の構造を複雑にするという課題があった。   For the POC, an analysis apparatus that can measure a biomolecule concentration simply and quickly is desired because a fluid measurement substrate is inexpensive. However, in the methods of FIGS. 2 and 3, the collected solution to be measured has to be taken in another instrument such as a syringe, and there are problems of foreign matter contamination and noise generation. Further, in the method of FIG. 4, even if the measurement target solution is directly dropped into the fluid measurement substrate and the measurement target solution can be introduced into the flow channel, a flow path switching mechanism such as a valve is provided in the fluid measurement substrate. Therefore, there is a problem that the price of the fluid measurement board becomes expensive. Furthermore, when the electroosmotic flow is used, a separate power source is required, and it is necessary to separately install an electrode and a decabra in the fluid measurement board, which causes a problem of complicating the structure of the fluid measurement board.

本発明は、上記課題を解決するためになされたもので、採取した測定対象溶液を直接導入でき、構造が簡易で安価な流体測定基板、これを備える分析装置及びその分析装置を使用した分析方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and a fluid measurement substrate that can directly introduce a collected solution to be measured, has a simple structure, is inexpensive, an analysis apparatus including the same, and an analysis method using the analysis apparatus The purpose is to provide.

前記目的を達成するために、本発明に係る流体測定基板は、基準溶液を供給する溶液導入口と、測定対象溶液を直接滴下する溶液導入口と、前記基準溶液及び/または測定対象溶液を排出するための溶液排出口をもち、それぞれの溶液導入口と溶液排出口とを密閉された流路で結合している。また、基準溶液及び測定対象溶液が溶液排出口に対して同方向から流れ込むようにそれぞれの溶液導入口が配置されている。   In order to achieve the object, a fluid measurement board according to the present invention includes a solution introduction port for supplying a reference solution, a solution introduction port for directly dropping a measurement target solution, and discharging the reference solution and / or the measurement target solution. In addition, each solution introduction port and the solution discharge port are connected by a sealed flow path. Moreover, each solution introduction port is arrange | positioned so that a reference | standard solution and a measurement object solution may flow from the same direction with respect to a solution discharge port.

具体的には、本発明に係る流体測定基板は、溶液が供給される少なくとも1つの溶液導入口と、前記溶液導入口の少なくと1つに取り付けられ、外部の機器と接続する導入口接続部と、前記溶液導入口から供給された溶液を排出する少なくとも1つの溶液排出口と、前記溶液排出口の少なくと1つに取り付けられ、外部の機器と接続する排出口接続部と、前記溶液導入口と前記溶液排出口とを結合し、前記溶液導入口のいずれから供給された溶液も経由する共通部分を持つ流路と、を有する。   Specifically, the fluid measurement board according to the present invention includes at least one solution introduction port to which a solution is supplied, and at least one of the solution introduction ports, and an introduction port connection unit that is connected to an external device. And at least one solution discharge port for discharging the solution supplied from the solution introduction port, a discharge port connection unit attached to at least one of the solution discharge ports and connected to an external device, and the solution introduction And a flow path having a common portion through which the solution supplied from any of the solution introduction ports is connected.

本発明に係る流体測定基板は、構造が簡易のため安価で提供可能である。さらに、本発明に係る流体測定基板の導入口接続部に基準溶液用の溶液押し出し手段を接続し、排出口接続部に溶液吸引手段を接続すれば、溶液押し出し手段のON/OFFのみで、送液する溶液を基準溶液から測定対象溶液に切り換えることが可能である。   The fluid measurement board according to the present invention can be provided at low cost because of its simple structure. Further, if the solution pushing means for the reference solution is connected to the inlet connection portion of the fluid measurement board according to the present invention and the solution suction means is connected to the discharge port connecting portion, the solution pushing means can be turned ON / OFF only. It is possible to switch the solution to be liquid from the reference solution to the solution to be measured.

より詳細には、溶液押し出し手段と溶液吸引手段を同時に駆動させて基準溶液を送液することで、基準溶液は他の溶液導入口に流れ込むことなく溶液排出口へと流れる。流路の共通部分を基準溶液で満たした後、前記溶液押し出し手段を停止すれば溶液吸引手段が動作しているため、他の溶液導入口にある溶液のみを流路内に導入させることができる。測定対象溶液をシリンジ等の器具に取る必要がなく、ピペットなどを使って溶液押し出し手段が接続されていない溶液導入口に直接滴下するだけでよい。   More specifically, by driving the solution push-out means and the solution suction means at the same time and feeding the reference solution, the reference solution flows to the solution discharge port without flowing into the other solution introduction ports. After the common part of the flow path is filled with the reference solution, if the solution pushing means is stopped, the solution suction means operates, so that only the solution at the other solution introduction port can be introduced into the flow path. . There is no need to take the solution to be measured in an instrument such as a syringe, and it is only necessary to directly drop the solution to be measured using a pipette or the like to a solution introduction port to which no solution pushing means is connected.

従って、本発明は、採取した測定対象溶液を直接導入でき、構造が簡易で安価な流体測定基板を提供できる。   Therefore, the present invention can directly introduce the collected measurement target solution, and can provide a fluid measurement substrate that has a simple structure and is inexpensive.

また、本発明に係る流体測定基板の前記流路は、前記共通部分に溶液と接触する少なくとも1つの金属薄膜を持つことを特徴とする。金属薄膜と流路内の溶液とが接触するため、SPR現象を用いた検出や電気化学検出が可能である。   Further, the flow path of the fluid measurement substrate according to the present invention has at least one metal thin film in contact with the solution at the common part. Since the metal thin film and the solution in the flow channel are in contact, detection using the SPR phenomenon and electrochemical detection are possible.

より詳細には、SPR現象を用いた検出器は、測定対象溶液導入前後の微小な屈折率変化の差分から濃度を定量する。本発明に係る流体測定基板を用いると流路内を溶液で満たされたまま基準溶液から測定対象溶液へ置換可能である。このため基準となる溶液の屈折率を測定した後、連続的に測定対象溶液の屈折率を測定することができ、測定時間の短縮を実現できる。さらに連続送液により、測定対象溶液以外の物質の混入を防ぐことができ、ノイズ低減にも効果がある。   More specifically, the detector using the SPR phenomenon quantifies the concentration from the difference in minute refractive index change before and after introduction of the solution to be measured. When the fluid measurement substrate according to the present invention is used, the reference solution can be replaced with the solution to be measured while the flow path is filled with the solution. For this reason, after measuring the refractive index of the reference solution, the refractive index of the solution to be measured can be continuously measured, and the measurement time can be shortened. Furthermore, continuous liquid feeding can prevent substances other than the solution to be measured from being mixed, and is effective in reducing noise.

また、電気化学検出器の場合、本発明に係る流体測定基板を用いると流路内が溶液で満たされたままのため、電極上の電気二重層を保持することができる。このため基準溶液から測定対象溶液への置換時には、再度電気二重層形成のための充電電流は流れない。溶液注入から測定にかかる時間は、大まかには測定電流量が定常状態になるまでの時間であるが、充電電流の寄与分がないため、測定時間を短縮させることが可能である。また、図11のように、安定なベースラインを得た後に、測定対象溶液を導入すると、すばやく応答電流が定常状態となり、電流値の増加分から高感度な定量が可能である。   In the case of an electrochemical detector, when the fluid measurement substrate according to the present invention is used, the inside of the flow path remains filled with the solution, so that the electric double layer on the electrode can be held. For this reason, when the reference solution is replaced with the solution to be measured, the charging current for forming the electric double layer does not flow again. The time taken from the injection of the solution to the measurement is roughly the time until the measurement current amount reaches the steady state, but the measurement time can be shortened because there is no contribution of the charging current. In addition, as shown in FIG. 11, when a solution to be measured is introduced after obtaining a stable baseline, the response current quickly becomes a steady state, and highly sensitive quantification is possible from the increase in current value.

前記目的を達成するために、本発明に係る分析装置は、前記流体測定基板と、溶液押し出し手段と、溶液吸引手段と、を備える。   In order to achieve the above object, an analysis apparatus according to the present invention includes the fluid measurement substrate, a solution pushing means, and a solution suction means.

具体的には、本発明に係る分析装置は、前記流体測定基板と、前記導入口接続部に接続され、前記溶液導入口から溶液を前記流路に供給する溶液押し出し手段と、前記溶液排出口に接続され、前記溶液排出口から前記流路の溶液を吸引する溶液吸引手段と、を備える。   Specifically, the analyzer according to the present invention includes the fluid measurement substrate, a solution push-out means that is connected to the introduction port connection portion and supplies a solution from the solution introduction port to the flow path, and the solution discharge port. And a solution suction means for sucking the solution in the flow path from the solution discharge port.

前記流体測定基板の導入口接続部に基準溶液用の溶液押し出し手段を接続し、排出口接続部に溶液吸引手段を接続することで、前述のように、溶液押し出し手段のON/OFFのみで、送液する溶液を基準溶液から測定対象溶液に切り換えることが可能である。測定対象溶液をシリンジ等の器具に取る必要がなく、ピペットなどを使って溶液押し出し手段が接続されていない溶液導入口に直接滴下するだけでよい。   By connecting the solution extrusion means for the reference solution to the inlet connection portion of the fluid measurement substrate and connecting the solution suction means to the discharge port connection portion, as described above, only ON / OFF of the solution extrusion means, It is possible to switch the solution to be sent from the reference solution to the solution to be measured. There is no need to take the solution to be measured in an instrument such as a syringe, and it is only necessary to directly drop the solution to be measured using a pipette or the like to a solution introduction port to which no solution pushing means is connected.

従って、本発明は、採取した測定対象溶液を直接導入でき、構造が簡易で安価な分析装置を提供できる。また、測定対象溶液をシリンジ等の器具に取る必要がないため、異物混入やノイズ発生を低減することができる。   Therefore, the present invention can directly introduce the collected solution to be measured, and can provide an analyzer with a simple structure and low cost. In addition, since it is not necessary to take the solution to be measured in an instrument such as a syringe, foreign matter contamination and noise generation can be reduced.

また、本発明に係る流体測定基板の前記溶液押し出し手段が単位時間に押し出す溶液の量は、前記溶液吸引手段が単位時間に吸引する溶液の量に等しいことが好ましい。これにより、基準溶液は測定対象溶液が滴下された溶液導入口に流れ込むことなく、溶液排出口へと流れる。   Moreover, it is preferable that the amount of the solution pushed out by the solution pushing means of the fluid measurement substrate according to the present invention per unit time is equal to the amount of the solution sucked by the solution suction means per unit time. Accordingly, the reference solution flows to the solution discharge port without flowing into the solution introduction port where the measurement target solution is dropped.

前記目的を達成するために、本発明に係る分析方法は、前記流体測定基板に接続された溶液押し出し手段及び溶液吸引手段が、所定の測定順序に従って駆動するようにそれぞれ同期している。   In order to achieve the object, the analysis method according to the present invention is synchronized so that the solution pushing means and the solution suction means connected to the fluid measurement substrate are driven according to a predetermined measurement order.

具体的には、本発明に係る分析方法は、前記分析装置を使用した溶液の分析方法であって、前記溶液押し出し手段の単位時間に押し出す溶液の量を前記溶液吸引手段の単位時間に吸引する溶液の量に設定して、前記溶液押し出し手段で1の前記溶液導入口から第1の溶液を前記流路に押し出すとともに、前記溶液吸引手段で前記溶液排出口から前記流路の第1の溶液を吸引しつつ、前記流路中の第1の溶液を分析する第1の工程と、前記第1の工程の後に、前記溶液押し出し手段の単位時間に押し出す溶液の量を零に設定して、前記溶液吸引手段で前記溶液排出口から前記流路の第1の溶液を吸引することにより、他の前記溶液導入口から第2の溶液を前記流路に引き込む第2の工程と、前記第2の工程の後に、前記溶液吸引手段で前記溶液排出口から前記流路の第2の溶液を吸引しつつ、前記流路中の第2の溶液を分析する第3の工程と、を含み、第1の溶液の分析結果と第2の溶液の分析結果との差分を解析することを特徴とする。   Specifically, the analysis method according to the present invention is a solution analysis method using the analyzer, wherein the amount of the solution to be pushed out in a unit time of the solution pushing means is sucked in the unit time of the solution sucking means. The amount of the solution is set, and the first solution is pushed out from the one solution introduction port to the flow path by the solution pushing means, and the first solution in the flow path is drawn from the solution discharge port by the solution suction means. A first step of analyzing the first solution in the flow path, and after the first step, the amount of the solution pushed out per unit time of the solution pushing means is set to zero, A second step of drawing the second solution into the flow path from the other solution introduction port by sucking the first solution in the flow path from the solution discharge port by the solution suction means; After the step, the solution is sucked by the solution suction means. A third step of analyzing the second solution in the flow path while sucking the second solution in the flow path from the outlet, and analyzing the analysis result of the first solution and the analysis of the second solution It is characterized by analyzing the difference with the result.

本発明に係る分析方法により、溶液押し出し手段のON/OFFのみで、送液する溶液を基準溶液から測定対象溶液に切り換えることが可能であり、基準溶液を測定した後、連続して測定対象溶液を測定することができる。また、測定対象溶液をシリンジ等の器具に取る必要がなく、ピペットなどを使って溶液押し出し手段が接続されていない溶液導入口に直接滴下するだけでよい。   With the analysis method according to the present invention, it is possible to switch the solution to be fed from the reference solution to the measurement target solution only by turning on / off the solution pushing means. After measuring the reference solution, the measurement target solution is continuously Can be measured. Moreover, it is not necessary to take the solution to be measured in an instrument such as a syringe, and it is only necessary to directly drop the solution to be measured using a pipette or the like to a solution introduction port to which no solution pushing means is connected.

本発明は、採取した測定対象溶液を直接導入でき、構造が簡易で安価な流体測定基板、これを備える分析装置及びその分析装置を使用した分析方法を提供することを提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a fluid measurement substrate that can directly introduce a collected solution to be measured, has a simple structure, is inexpensive, an analysis device including the fluid measurement substrate, and an analysis method using the analysis device.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
本実施形態の分析装置801の概略図を図5に示す。分析装置801は、流体測定基板501、溶液押し出し手段111及び溶液吸引手段121を備える。流体測定基板501の上面図を図6に示す。流体測定基板501は、溶液導入口53、溶液導入口54、溶液排出口55及び流路56が形成された基板51を有する。さらに、流体測定基板501は、導入口接続部57及び排出口接続部58が形成された蓋52を有する。図6では、蓋52を省略して記載している。
(Embodiment 1)
A schematic diagram of the analyzer 801 of the present embodiment is shown in FIG. The analysis device 801 includes a fluid measurement substrate 501, a solution push-out unit 111, and a solution suction unit 121. A top view of the fluid measurement substrate 501 is shown in FIG. The fluid measurement substrate 501 includes a substrate 51 on which a solution introduction port 53, a solution introduction port 54, a solution discharge port 55, and a flow path 56 are formed. Furthermore, the fluid measurement substrate 501 has a lid 52 on which an inlet connection part 57 and an outlet connection part 58 are formed. In FIG. 6, the lid 52 is omitted.

基板51及び蓋52は、例えば、シリコン、石英、ガラス、金属又は有機高分子材料で形成される。有機高分子材料は、例えば、ポリジメチルシロキサン(PDMS)、アクリル樹脂(PMMA)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル、フッ素樹脂、ポリテトラフルオロエチレン(PTFE)、ABS樹脂及びAS樹脂等の汎用プラスチック類がある。また、有機高分子材料は、ポリアミド(PA)、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m−PPE,変性PPE)、ポリブチレンテレフタレート(PBT)、グラスファイバー強化ポリエチレンテレフタレート(GF−PET)及び環状ポリオレフィン(COP)の汎用エンプラがある。また、有機高分子材料は、スーパーエンプラ、ポリエチレンスルフィド(PPS)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、非晶ポリアリレート(PAR)、液晶ポリエステル(LCP)、ポリエーテルエーテルケトン(PEEK)及びポリイミド(PI)の汎用エンプラがある。   The substrate 51 and the lid 52 are made of, for example, silicon, quartz, glass, metal, or organic polymer material. Organic polymer materials include, for example, polydimethylsiloxane (PDMS), acrylic resin (PMMA), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene (PS), polyvinyl acetate And general-purpose plastics such as fluororesin, polytetrafluoroethylene (PTFE), ABS resin and AS resin. Organic polymer materials include polyamide (PA), polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE, modified PPE), polybutylene terephthalate (PBT), glass fiber reinforced polyethylene terephthalate (GF-). There are general-purpose engineering plastics of PET and cyclic polyolefin (COP). Organic polymer materials include super engineering plastics, polyethylene sulfide (PPS), polysulfone (PSF), polyethersulfone (PES), amorphous polyarylate (PAR), liquid crystal polyester (LCP), polyetheretherketone (PEEK). And polyimide (PI) general-purpose engineering plastics.

有機高分子材料は、熱硬化性樹脂であってもよい。熱硬化性樹脂は、例えば、エポキシ樹脂、ウレタン樹脂(ポリウレタン)、ケイ素樹脂(シリコン)、フェノール樹脂、不飽和ポリエステル、アルキド樹脂、尿素樹脂(ウレア樹脂)、メラミン樹脂及びイオノマーである。   The organic polymer material may be a thermosetting resin. Examples of the thermosetting resin include epoxy resins, urethane resins (polyurethanes), silicon resins (silicones), phenol resins, unsaturated polyesters, alkyd resins, urea resins (urea resins), melamine resins, and ionomers.

有機高分子材料は、光硬化性樹脂であってもよい。光硬化性樹脂は、例えば、光カチオン重合性化合物および光カチオン重合開始剤を含有するものがある。光カチオン重合性化合物は、例えば、分子内に少なくとも1個のエポキシ基、オキセタニル基、水酸基、ビニルエーテル基、エピスルフィド基及びエチレンイミン基などの光カチオン重合性官能基を有する化合物等が挙げられ、なかでも、光カチオン重合性が高く、少ない光量でも効率的に光硬化が進行することから、分子内に少なくとも1個のエポキシ基を有する化合物が好ましい。これらの光カチオン重合性化合物の性状(分子量)は、特に限定されるものではなく、モノマー、オリゴマー、ポリマーのいずれであっても良い。また、これらの光カチオン重合性化合物は、単独で用いられても良いし、2種類以上が併用されても良い。有機高分子材料は上記のいずれでもよく、例えば、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、アクリル樹脂、たんぱく質、ゴム又はこれらの複合材を用いることができる。   The organic polymer material may be a photocurable resin. Examples of the photocurable resin include those containing a photocationic polymerizable compound and a photocationic polymerization initiator. Examples of the photocationically polymerizable compound include compounds having at least one photocationically polymerizable functional group such as epoxy group, oxetanyl group, hydroxyl group, vinyl ether group, episulfide group, and ethyleneimine group in the molecule. However, a compound having at least one epoxy group in the molecule is preferable because photocuring property is high and photocuring proceeds efficiently even with a small amount of light. The properties (molecular weight) of these photocationically polymerizable compounds are not particularly limited, and any of monomers, oligomers, and polymers may be used. Moreover, these photocationic polymerizable compounds may be used independently and 2 or more types may be used together. Any of the above organic polymer materials may be used, and for example, epoxy resin, urethane resin, silicon resin, acrylic resin, protein, rubber, or a composite material thereof can be used.

溶液導入口53及び溶液導入口54は、溶液が供給される空間である。導入口接続部57は、溶液導入口53に取り付けられ、溶液を供給する外部の機器と接続可能とする。溶液排出口55は溶液導入口53又は溶液導入口54から供給された溶液を排出するための空間である。排出口接続部58は、溶液排出口55に取り付けられ、溶液を排出する外部の機器と接続可能とする。流路56は、溶液導入口53、溶液導入口54と溶液排出口55とを結合し、溶液導入口53又は溶液導入口54のいずれから供給された溶液も経由する共通部分56aを持つ。   The solution introduction port 53 and the solution introduction port 54 are spaces to which a solution is supplied. The introduction port connecting portion 57 is attached to the solution introduction port 53 and can be connected to an external device that supplies the solution. The solution discharge port 55 is a space for discharging the solution supplied from the solution introduction port 53 or the solution introduction port 54. The discharge port connection portion 58 is attached to the solution discharge port 55 and can be connected to an external device that discharges the solution. The flow path 56 has a common portion 56 a that connects the solution introduction port 53, the solution introduction port 54, and the solution discharge port 55, and the solution supplied from either the solution introduction port 53 or the solution introduction port 54.

溶液導入口53又は溶液導入口54は、供給された溶液が溶液排出口55に向かって同じ方向から流路56の共通部分56aに流れ込むように形成されている。流体測定基板501では図6に示すように、左から溶液導入口54、溶液導入口53、溶液排出口55という順で配置され、直線状の流路56で接続されている。   The solution introduction port 53 or the solution introduction port 54 is formed so that the supplied solution flows into the common portion 56 a of the flow channel 56 from the same direction toward the solution discharge port 55. In the fluid measurement substrate 501, as shown in FIG. 6, the solution introduction port 54, the solution introduction port 53, and the solution discharge port 55 are arranged in this order from the left, and are connected by a linear flow path 56.

また、図7の流体測定基板502のようにT字型の流路56、図8の流体測定基板503のようにY字型の流路56でもよい。図6から図8には、溶液導入口が2つ、溶液排出口が1つの流体測定基板を記載しているが、溶液導入口が3以上であってもよく、溶液排出口が複数であってもよい。   7 may be a T-shaped channel 56 like the fluid measurement substrate 502 and a Y-shaped channel 56 like the fluid measurement substrate 503 in FIG. 6 to 8 show the fluid measurement board having two solution inlets and one solution outlet, but there may be three or more solution inlets, and there may be a plurality of solution outlets. May be.

流路56は、共通部分56aに溶液と接触する少なくとも1つの金属薄膜を持つ。図5の流体測定基板501の場合、流路56は金属薄膜として参照電極31、酵素付作用電極32及び対向電極33を持つ。参照電極31、酵素付作用電極32及び対向電極33は、溶液導入口53と溶液排出口55の間の流路56内に露出するように形成されており、形成されている順は溶液導入口53から参照電極31、酵素付作用電極32、対向電極33である。参照電極31、酵素付作用電極32及び対向電極33は、それぞれ基板51上に形成された電極パッド34に接続されている。   The flow path 56 has at least one metal thin film in contact with the solution at the common portion 56a. In the case of the fluid measurement substrate 501 in FIG. 5, the flow path 56 has the reference electrode 31, the enzyme-attached working electrode 32, and the counter electrode 33 as a metal thin film. The reference electrode 31, the working electrode 32 with the enzyme, and the counter electrode 33 are formed so as to be exposed in the flow path 56 between the solution introduction port 53 and the solution discharge port 55, and the order in which they are formed is the solution introduction port. Reference electrode 31, working electrode 32 with enzyme, and counter electrode 33. The reference electrode 31, the enzyme-attached working electrode 32, and the counter electrode 33 are each connected to an electrode pad 34 formed on the substrate 51.

それぞれの電極には導電性の高い材料が用いられる。そのような材料として、金、銀、銅、パラジウム、白金、白金黒、鉄、アルミニウム、チタン、錫、亜鉛、ニッケル、タングステン又はイリジウムの単体金属、ステンレス、黄銅、青銅、炭素鋼又はジュラルミンの合金あるいは炭素が挙げられる。酵素付作用電極32は測定対象物質と特異的に反応する酵素が固定されている。なお、流体測定基板501の場合、溶液導入口53側から必ず溶液が流れてくるので、酵素は必ずしも電極に固定されている必要はなく、作用電極の上流側の流路内に固定しておいてもよい。   A material having high conductivity is used for each electrode. Such materials include gold, silver, copper, palladium, platinum, platinum black, iron, aluminum, titanium, tin, zinc, nickel, tungsten or iridium single metal, stainless steel, brass, bronze, carbon steel or duralumin alloy. Or carbon is mentioned. The enzyme electrode 32 is fixed with an enzyme that specifically reacts with the substance to be measured. In the case of the fluid measurement substrate 501, since the solution always flows from the solution introduction port 53 side, the enzyme is not necessarily fixed to the electrode, but is fixed in the flow channel upstream of the working electrode. May be.

蓋52には導入口接続部57及び排出口接続部58が形成されている。図6〜8は、蓋52を省略しているが、説明のため導入口接続部57及び排出口接続部58を記載している。基板51と蓋52とは、基板51の流路56を密閉するように接合される。導入口接続部57は、基板51と蓋52とを接合したときに、溶液導入口53の上になるような位置に形成されている。排出口接続部58は、基板51と蓋52とを接合したときに、溶液排出口55の上になるような位置に形成されている。また、蓋52には溶液導入口54の上には外部から液体を滴下できるように孔が開けられている。   The lid 52 is formed with an introduction port connection portion 57 and a discharge port connection portion 58. Although FIGS. 6 to 8 omit the lid 52, the inlet connection part 57 and the outlet connection part 58 are shown for the sake of explanation. The substrate 51 and the lid 52 are joined so as to seal the flow path 56 of the substrate 51. The introduction port connecting portion 57 is formed at a position such that it is above the solution introduction port 53 when the substrate 51 and the lid 52 are joined. The discharge port connecting portion 58 is formed at a position such that it is above the solution discharge port 55 when the substrate 51 and the lid 52 are joined. The lid 52 is provided with a hole on the solution inlet 54 so that liquid can be dropped from the outside.

図5に示すように、溶液押し出し手段111は、導入口接続部57にチューブ42で接続され、溶液導入口53から溶液を流路56に供給する。溶液吸引手段121は、排出口接続部58にチューブ42で接続され、溶液排出口55から前記流路の溶液を吸引する。溶液押し出し手段111及び溶液吸引手段121は、例えば、シリンジポンプ、水素ポンプ、ダイヤフラム型ポンプ又はマイクロ圧電ポンプである。   As shown in FIG. 5, the solution push-out means 111 is connected to the introduction port connecting portion 57 with a tube 42, and supplies the solution from the solution introduction port 53 to the flow path 56. The solution suction means 121 is connected to the discharge port connecting portion 58 via the tube 42 and sucks the solution in the flow path from the solution discharge port 55. The solution pushing means 111 and the solution suction means 121 are, for example, a syringe pump, a hydrogen pump, a diaphragm pump, or a micro piezoelectric pump.

基板51上の電極パッド34と電気化学測定器151とが接続されている。分析装置801は、フロー型の酵素を用いた電気化学測定法(アンペロメトリー)で動作する。   The electrode pad 34 on the substrate 51 and the electrochemical measuring device 151 are connected. The analyzer 801 operates by an electrochemical measurement method (amperometry) using a flow-type enzyme.

次に、分析装置801を用いた分析方法について説明する。具体的には、分析装置801を用いた分析方法は、溶液押し出し手段111の単位時間に押し出す溶液の量を溶液吸引手段121の単位時間に吸引する溶液の量に設定して、溶液押し出し手段111で溶液導入口53から第1の溶液を流路56に押し出すとともに、溶液吸引手段121で溶液排出口55から流路56の第1の溶液を吸引しつつ、流路56中の第1の溶液を分析する第1の工程と、第1の工程の後に、溶液押し出し手段111の単位時間に押し出す溶液の量を零に設定して、溶液吸引手段121で溶液排出口55から流路56の第1の溶液を吸引することにより、溶液導入口54から第2の溶液を流路56に引き込む第2の工程と、第2の工程の後に、溶液吸引手段121で溶液排出口55から流路56の第2の溶液を吸引しつつ、流路56中の第2の溶液を分析する第3の工程と、を含み、第1の溶液の分析結果と第2の溶液の分析結果との差分を解析することを特徴とする。   Next, an analysis method using the analyzer 801 will be described. Specifically, in the analysis method using the analyzer 801, the amount of the solution pushed out per unit time of the solution pushing means 111 is set to the amount of the solution sucked per unit time of the solution sucking means 121, and the solution pushing means 111 is set. The first solution in the channel 56 is pushed out from the solution inlet 53 to the channel 56 and the solution suction means 121 sucks the first solution in the channel 56 from the solution outlet 55. After the first step, and after the first step, the amount of the solution pushed out per unit time of the solution push-out means 111 is set to zero, and the solution suction means 121 uses the solution discharge port 55 through the first flow path 56. The second step of drawing the second solution into the flow path 56 from the solution inlet 54 by sucking one solution, and the flow path 56 from the solution discharge port 55 by the solution suction means 121 after the second step. Aspirate the second solution of One, and a third step of analyzing the second solution in the channel 56, and characterized by analyzing the difference between the analysis result of the analysis result and the second solution of the first solution.

グルコースオキシダーゼによる酵素反応を用いた電気化学測定法によるグルコース溶液測定を例として、分析方法の説明をする。基準溶液としてリン酸緩衝溶液を、測定対象溶液としてグルコース溶液を用い、グルコースオキシダーゼを酵素として、測定対象溶液のグルコース濃度の測定実験を行った。   The analysis method will be described by taking glucose solution measurement by an electrochemical measurement method using an enzyme reaction by glucose oxidase as an example. A phosphate buffer solution was used as a reference solution, a glucose solution was used as a measurement target solution, and glucose oxidase was used as an enzyme to measure the glucose concentration of the measurement target solution.

今回用いた流体測定基板501は、縦20mm、横50mm、厚さ2mmのポリジメチルシロキサン(PDMS)の基板51を用意し、流路56として幅1mm、深さ50μmの溝をパターニングし、溶液導入口54、溶液導入口53、溶液排出口55を形成したものを用いた。参照電極31、酵素付作用電極32及び対向電極33として蒸着により金の薄膜を形成した。また、参照電極には、金薄膜電極上にさらに銀薄膜を蒸着した。   The fluid measurement substrate 501 used here is a polydimethylsiloxane (PDMS) substrate 51 having a length of 20 mm, a width of 50 mm, and a thickness of 2 mm. A groove having a width of 1 mm and a depth of 50 μm is patterned as a flow path 56 to introduce a solution. What formed the opening | mouth 54, the solution introduction port 53, and the solution discharge port 55 was used. Gold thin films were formed by vapor deposition as the reference electrode 31, the working electrode 32 with the enzyme, and the counter electrode 33. For the reference electrode, a silver thin film was further deposited on the gold thin film electrode.

まず、溶液押し出し手段111であるシリンジポンプのシリンジ41内に基準溶液LQを詰める。溶液押し出し手段111が単位時間に押し出す溶液の量は、溶液吸引手段121が単位時間に吸引する溶液の量に等しくなるように溶液押し出し手段111であるシリンジポンプと溶液吸引手段121であるシリンジポンプを駆動する。これにより流路56を基準溶液LQで満たす。 First, the reference solution LQ B is filled in the syringe 41 of the syringe pump that is the solution pushing means 111. The amount of the solution pushed out by the solution pushing means 111 per unit time is equal to the amount of the solution sucked by the solution suction means 121 per unit time, and the syringe pump that is the solution pushing means 111 and the syringe pump that is the solution suction means 121 are To drive. Thereby satisfying the channel 56 at the reference solution LQ B.

流路56が基準溶液LQで満ちたところで電気化学測定器151を用いてバックグラウンド測定を開始する。測定電位は500mv vs.Agとした。電位印加後、約200秒で定常状態に推移する。このときの電流量(バックグランド電流)を第1の溶液の分析結果とする。今回の測定では約1nAであった。 When the flow path 56 is filled with the reference solution LQ B , the background measurement is started using the electrochemical measuring device 151. The measurement potential is 500 mV vs. Ag was used. After applying the potential, the state changes to a steady state in about 200 seconds. The amount of current (background current) at this time is taken as the analysis result of the first solution. In this measurement, it was about 1 nA.

次に、溶液導入口54をグルコース溶液である測定対象溶液LQで満たす。例えば、ピペットを用いて溶液導入口54にグルコース溶液を滴下する。溶液導入口54が満たされた後、溶液押し出し手段111を停止し、基準溶液LQの注入を止める。溶液吸引手段121は駆動しているので、溶液導入口54に満たされたグルコース溶液が流路56内に吸引される。流路56内は、基準溶液LQから測定対象溶液LQに置換される。 Next, the solution inlet 54 is filled with the measurement target solution LQ T that is a glucose solution. For example, a glucose solution is dropped into the solution introduction port 54 using a pipette. After the solution inlet 54 is filled, the solution pushing means 111 is stopped, and the injection of the reference solution LQ B is stopped. Since the solution suction means 121 is driven, the glucose solution filled in the solution introduction port 54 is sucked into the flow path 56. The channel 56 is displaced from the reference solution LQ B in test liquid LQ T.

バックグランド測定と同様に電圧を印加すると電流が流れる。その後所定時間経過すると、電流は定常状態に推移する。このときの電流量を第2の溶液の分析結果として採用する。今回の測定ではグルコース溶液の濃度が0.1mg/dlで約2nA、1mg/dlで約20nA、10mg/dlで約200nA、100mg/dlで約1500nAの電流の電流値の増加が観測された。   As with the background measurement, a current flows when a voltage is applied. Thereafter, when a predetermined time elapses, the current changes to a steady state. The amount of current at this time is adopted as the analysis result of the second solution. In this measurement, an increase in the current value of a current of about 2 nA at a concentration of 0.1 mg / dl, about 20 nA at 1 mg / dl, about 200 nA at 10 mg / dl, about 1500 nA at 100 mg / dl was observed.

比較実験として、静止系で同様な酵素固定化電極を用いて測定を行ったところ、グルコース溶液の濃度が1mg/dl以下では測定ができなかった。   As a comparative experiment, measurement was performed using a similar enzyme-immobilized electrode in a stationary system, but measurement was not possible at a glucose solution concentration of 1 mg / dl or less.

本発明の分析方法を用いて、あらかじめ濃度のわかっているグルコース溶液を測定し、電流値との相関をとり、この相関から未知のグルコース溶液濃度を定量することが可能である。構造が簡易で安価な流体測定基板および送液機構で構成された分析装置801は、電気化学測定法による分析方法で高感度かつ簡便に分析することができる。   Using the analysis method of the present invention, it is possible to measure a glucose solution whose concentration is known in advance and to correlate it with the current value, and to quantify the unknown glucose solution concentration from this correlation. The analysis device 801 having a simple structure and a low-cost fluid measurement substrate and a liquid feeding mechanism can perform a highly sensitive and simple analysis by an analysis method based on an electrochemical measurement method.

(実施形態2)
本実施形態の分析装置802の概略図を図9に示す。図9では、流体測定基板504の断面を示している。流体測定基板504と図5及び図6の流体測定基板501との違いは、流体測定基板504が基板91及び蓋92で構成されている点である。
(Embodiment 2)
A schematic diagram of the analyzer 802 of this embodiment is shown in FIG. FIG. 9 shows a cross section of the fluid measurement substrate 504. The difference between the fluid measurement board 504 and the fluid measurement board 501 shown in FIGS. 5 and 6 is that the fluid measurement board 504 includes a substrate 91 and a lid 92.

基板91は光が透過する材質で形成される。例えば、BK7である。図5及び図6の基板51と異なり、基板91には溶液導入口53、溶液導入口54、溶液排出口55及び流路56を形成しない。また、参照電極31、酵素付作用電極32、対向電極33及び電極パッド34も形成しない。基板91には、基板91と後述の蓋92とを接合したときに、流路56の共通部分56aがある位置に抗体付金属薄膜94が形成される。例えば、抗体付金属薄膜94は1000オングストロームの膜厚の金薄膜である。抗体は、例えば、IgG抗体である。抗体付金属薄膜94は蒸着法を用いて成膜できる。さらに、基板91には、抗体付金属薄膜94が形成された面と反対側にプリズム95を有する。   The substrate 91 is formed of a material that transmits light. For example, BK7. Unlike the substrate 51 of FIGS. 5 and 6, the solution introduction port 53, the solution introduction port 54, the solution discharge port 55, and the channel 56 are not formed in the substrate 91. Further, the reference electrode 31, the working electrode 32 with the enzyme, the counter electrode 33, and the electrode pad 34 are not formed. An antibody-attached metal thin film 94 is formed on the substrate 91 at a position where the common portion 56a of the flow path 56 is present when the substrate 91 and a lid 92 described later are joined. For example, the antibody-attached metal thin film 94 is a gold thin film having a thickness of 1000 Å. The antibody is, for example, an IgG antibody. The antibody-attached metal thin film 94 can be formed by vapor deposition. Furthermore, the substrate 91 has a prism 95 on the side opposite to the surface on which the antibody-attached metal thin film 94 is formed.

蓋92は、図5及び図6の蓋52で説明した材質で形成される。蓋92に、溶液導入口53、溶液導入口54、溶液排出口55及び流路56を形成する。図10に蓋92側から見た流体測定基板504を示す。蓋92の基板91側の面に溶液導入口53、溶液導入口54、溶液排出口55及び流路56が形成されているため、これらを破線で示している。   The lid 92 is formed of the material described with reference to the lid 52 in FIGS. A solution inlet 53, a solution inlet 54, a solution outlet 55, and a channel 56 are formed in the lid 92. FIG. 10 shows the fluid measurement substrate 504 viewed from the lid 92 side. Since the solution introduction port 53, the solution introduction port 54, the solution discharge port 55, and the flow path 56 are formed on the surface of the lid 92 on the substrate 91 side, these are indicated by broken lines.

溶液導入口53には蓋92を貫通するように導入口接続部57を形成し、溶液排出口55には蓋92を貫通するように排出口接続部58を形成した。また、蓋92には溶液導入口54として外部から液体を滴下できるように孔が開けられている。図6で説明した流体測定基板501のように、溶液導入口53又は溶液導入口54は、供給された溶液が溶液排出口55に向かって同じ方向から流路56の共通部分56aに流れ込むように形成されている。また、左から溶液導入口54、溶液導入口53、溶液排出口55という順で配置され、直線状の流路56で接続されている。図7や図8のようなT字型やY字型でもよい。また、溶液導入口は3以上であってもよく、溶液排出口は複数であってもよい。   The solution inlet 53 was formed with an inlet connection portion 57 so as to penetrate the lid 92, and the solution outlet 55 was formed with an outlet port connection portion 58 so as to penetrate the lid 92. The lid 92 has a hole as a solution introduction port 54 so that liquid can be dropped from the outside. Like the fluid measurement substrate 501 described in FIG. 6, the solution introduction port 53 or the solution introduction port 54 is configured so that the supplied solution flows into the common portion 56 a of the flow channel 56 from the same direction toward the solution discharge port 55. Is formed. Further, the solution introduction port 54, the solution introduction port 53, and the solution discharge port 55 are arranged in this order from the left, and are connected by a linear flow path 56. It may be T-shaped or Y-shaped as shown in FIGS. Further, the number of solution inlets may be 3 or more, and the number of solution outlets may be plural.

蓋92の流路56を密閉するように、蓋92を基板91に被せ、流体測定基板504とする。図5の分析装置801で説明したように、溶液押し出し手段111及び溶液吸引手段121を流体測定基板504に接続する。分析装置802はSPR現象を用いた検出方法により溶液の分析を行う。そのため、外部に光源96、レンズ97及び光検出器98が備えられる。これらは、光源96からの光がレンズ97を通り、プリズム95で集光されて抗体付金属薄膜94に照射し、その反射光を光検出器98が受光できるように配置される。   The lid 92 is placed on the substrate 91 so as to seal the flow path 56 of the lid 92, thereby forming a fluid measurement substrate 504. As described in the analysis apparatus 801 in FIG. 5, the solution pushing means 111 and the solution suction means 121 are connected to the fluid measurement substrate 504. The analyzer 802 analyzes the solution by a detection method using the SPR phenomenon. Therefore, a light source 96, a lens 97, and a photodetector 98 are provided outside. These are arranged so that the light from the light source 96 passes through the lens 97, is collected by the prism 95, is irradiated onto the metal thin film 94 with an antibody, and the reflected light can be received by the photodetector 98.

次に、分析装置802を用いたSPR現象を利用した分析方法について説明する。測定対象溶液としてIgGを含む溶液の測定を例として分析方法の説明をする。   Next, an analysis method using the SPR phenomenon using the analyzer 802 will be described. The analysis method will be described by taking measurement of a solution containing IgG as the measurement target solution as an example.

今回用いた流体測定基板504は、縦20mm、横50mm、厚さ2mmのポリジメチルシロキサン(PDMS)の蓋92を用意し、流路56となる幅1mm、深さ50μmの溝をパターニングし、さらに溶液導入口53、溶液導入口54及び溶液排出口55を形成したものを用いた。また、基板91には、BK7にIgG抗体を付けた金薄膜を抗体付金属薄膜94として形成した。   The fluid measurement substrate 504 used this time is provided with a polydimethylsiloxane (PDMS) lid 92 having a length of 20 mm, a width of 50 mm, and a thickness of 2 mm, and a groove having a width of 1 mm and a depth of 50 μm to be a flow path 56 is patterned. What formed the solution introduction port 53, the solution introduction port 54, and the solution discharge port 55 was used. On the substrate 91, a gold thin film obtained by attaching an IgG antibody to BK7 was formed as a metal thin film 94 with an antibody.

図5の分析装置801で説明したように溶液押し出し手段111及び溶液吸引手段121を駆動させ、流路56を基準溶液LQ(IgG溶液10ng/ml)で満たす。ここで光源76から光を照射し、光検出器78で基準となるSPR角度の測定を行った。このときのSPR角度を第1の溶液の分析結果とする。 As described in the analysis apparatus 801 in FIG. 5, the solution pushing means 111 and the solution suction means 121 are driven, and the flow path 56 is filled with the reference solution LQ B (IgG solution 10 ng / ml). Here, light was emitted from the light source 76, and a standard SPR angle was measured by the photodetector 78. The SPR angle at this time is taken as the analysis result of the first solution.

次に、溶液導入口54をIgG溶液である測定対象溶液LQで満たす。図5の分析装置801で説明したように溶液押し出し手段111を停止し、測定対象溶液LQを流路56内に吸引する。流路56内の基準溶液LQが測定対象溶液LQで置換されると、SPR角度は徐々に変化する。このときのSPR角度を第2の溶液の分析結果として採用する。本例では変化開始10分後には約2.3×10−4度変化した。また、SPR角度変化は、IgG溶液の濃度に比例して増加することも確認し、検出下限は、1ng/mlであった。 Next, the solution inlet 54 is filled with the measurement target solution LQ T which is an IgG solution. The solution pushing means 111 as described in the analyzer 801 of FIG. 5 is stopped to suck test liquid LQ T in the flow path 56. When the reference solution LQ B in the flow channel 56 is replaced with the measurement target solution LQ T , the SPR angle gradually changes. The SPR angle at this time is adopted as the analysis result of the second solution. In this example, it changed about 2.3 × 10 −4 degrees 10 minutes after the start of the change. It was also confirmed that the SPR angle change increased in proportion to the concentration of the IgG solution, and the lower limit of detection was 1 ng / ml.

比較実験として、直接検出部に測定対象溶液を導入したところ、SPR角度は大きく変化した。この時の変化は、試料溶液の導入に伴う変化と抗原抗体反応に伴う変化とを足し合わせた変化であることから、測定試料中の抗原濃度を定量することは難しく、また可能であるとしても複雑な流体測定基板構成や計算を必要となる。   As a comparative experiment, when the measurement target solution was directly introduced into the detection unit, the SPR angle changed greatly. Since the change at this time is a change that is the sum of the change accompanying the introduction of the sample solution and the change accompanying the antigen-antibody reaction, it is difficult and possible to quantify the antigen concentration in the measurement sample. Complicated fluid measurement board configuration and calculation are required.

本発明の分析方法を用いて、あらかじめ濃度のわかっているIgG溶液のSPR角度を測定し、SPR角度と濃度との相関をとり、この相関から未知のIgG溶液濃度を定量することが可能である。構造が簡易で安価な流体測定基板および送液機構で構成された分析装置802は、SPR現象を利用した分析方法で高感度かつ簡便に分析することができる。   Using the analysis method of the present invention, it is possible to measure the SPR angle of an IgG solution whose concentration is known in advance, to correlate the SPR angle with the concentration, and to quantify the unknown IgG solution concentration from this correlation. . The analysis device 802 having a simple structure and a low-cost fluid measurement substrate and a liquid feeding mechanism can perform a highly sensitive and simple analysis by an analysis method using the SPR phenomenon.

本発明はSPR現象を用いた検出器、電気化学検出器に限ったものではなく、流路を用いた分析装置に応用でき、連続送液、不純物混入防止の効果が得られる。   The present invention is not limited to detectors using the SPR phenomenon and electrochemical detectors, but can be applied to analyzers using flow paths, and the effects of continuous liquid feeding and impurity contamination prevention can be obtained.

電気化学反応に基づく電流の変化を示した図である。It is the figure which showed the change of the electric current based on an electrochemical reaction. 従来の分析装置の概略図である。It is the schematic of the conventional analyzer. 従来の分析装置の概略図である。It is the schematic of the conventional analyzer. 従来の分析装置の概略図である。It is the schematic of the conventional analyzer. 本発明に係る分析装置の概略図である。It is the schematic of the analyzer which concerns on this invention. 本発明に係る流体測定基板の上面図である。It is a top view of the fluid measurement board | substrate which concerns on this invention. 本発明に係る流体測定基板の上面図である。It is a top view of the fluid measurement board | substrate which concerns on this invention. 本発明に係る流体測定基板の上面図である。It is a top view of the fluid measurement board | substrate which concerns on this invention. 本発明に係る分析装置の概略図である。It is the schematic of the analyzer which concerns on this invention. 本発明に係る流体測定基板の上面図である。It is a top view of the fluid measurement board | substrate which concerns on this invention. 本発明に係る分析装置における電気化学反応に基づく電流の変化を示した図である。It is the figure which showed the change of the electric current based on the electrochemical reaction in the analyzer which concerns on this invention.

符号の説明Explanation of symbols

801、802 分析装置
101、102、103、501、502、503、504 流体測定基板
111 溶液押し出し手段
121 溶液吸引手段
131 ピペット
151 電気化学測定器
25 バルブ
31 参照電極
32 酵素付作用電極
33 対向電極
34 電極パッド
41 シリンジ
42 チューブ
51、91 基板
52、92 蓋
53、54 溶液導入口
55 溶液排出口
16、56 流路
56a 共通部分
57 導入口接続部
58 排出口接続部
94 抗体付金属薄膜
95 プリズム
96 光源
97 レンズ
98 光検出器
LQ 基準溶液
LQ 測定対象溶液
LQ 廃液
801, 802 Analytical apparatus 101, 102, 103, 501, 502, 503, 504 Fluid measurement substrate 111 Solution pushing means 121 Solution suction means 131 Pipette 151 Electrochemical measuring instrument 25 Valve 31 Reference electrode 32 Working electrode 33 with enzyme Counter electrode 34 Electrode pad 41 Syringe 42 Tube 51, 91 Substrate 52, 92 Lid 53, 54 Solution inlet 55 Solution outlet 16, 56 Channel 56a Common part 57 Inlet connection part 58 Outlet connection part 94 Metal thin film with antibody 95 Prism 96 Light source 97 Lens 98 Photodetector LQ B Reference solution LQ T Solution to be measured LQ D Waste liquid

Claims (5)

溶液が供給される少なくとも1つの溶液導入口と、
前記溶液導入口の少なくと1つに取り付けられ、外部の機器と接続する導入口接続部と、
前記溶液導入口から供給された溶液を排出する少なくとも1つの溶液排出口と、
前記溶液排出口の少なくと1つに取り付けられ、外部の機器と接続する排出口接続部と、
前記溶液導入口と前記溶液排出口とを結合し、前記溶液導入口のいずれから供給された溶液も経由する共通部分を持つ流路と、
を有する流体測定基板。
At least one solution inlet to which the solution is supplied;
An inlet connection portion attached to at least one of the solution inlets and connected to an external device;
At least one solution outlet for discharging the solution supplied from the solution inlet;
An outlet connection part attached to at least one of the solution outlets and connected to an external device;
A flow path having a common portion that connects the solution introduction port and the solution discharge port and passes through the solution supplied from any of the solution introduction ports;
A fluid measurement substrate.
前記流路は、前記共通部分に溶液と接触する少なくとも1つの金属薄膜を持つことを特徴とする請求項1に記載の流体測定基板。   The fluid measurement substrate according to claim 1, wherein the flow path has at least one metal thin film in contact with the solution at the common portion. 請求項1又は2に記載の流体測定基板と、
前記導入口接続部に接続され、前記溶液導入口から溶液を前記流路に供給する溶液押し出し手段と、
前記溶液排出口に接続され、前記溶液排出口から前記流路の溶液を吸引する溶液吸引手段と、
を備える分析装置。
The fluid measurement board according to claim 1 or 2,
A solution push-out means connected to the introduction port connecting portion and supplying a solution from the solution introduction port to the flow path;
A solution suction means connected to the solution discharge port and sucking the solution in the flow path from the solution discharge port;
An analyzer comprising:
前記溶液押し出し手段が単位時間に押し出す溶液の量は、前記溶液吸引手段が単位時間に吸引する溶液の量に等しいことを特徴とする請求項3に記載の分析装置。   The analyzer according to claim 3, wherein the amount of the solution pushed out by the solution pushing means per unit time is equal to the amount of the solution sucked by the solution suction means per unit time. 請求項3又は4に記載の分析装置を使用した溶液の分析方法であって、
前記溶液押し出し手段の単位時間に押し出す溶液の量を前記溶液吸引手段の単位時間に吸引する溶液の量に設定して、前記溶液押し出し手段で1の前記溶液導入口から第1の溶液を前記流路に押し出すとともに、前記溶液吸引手段で前記溶液排出口から前記流路の第1の溶液を吸引しつつ、前記流路中の第1の溶液を分析する第1の工程と、
前記第1の工程の後に、前記溶液押し出し手段の単位時間に押し出す溶液の量を零に設定して、前記溶液吸引手段で前記溶液排出口から前記流路の第1の溶液を吸引することにより、他の前記溶液導入口から第2の溶液を前記流路に引き込む第2の工程と、
前記第2の工程の後に、前記溶液吸引手段で前記溶液排出口から前記流路の第2の溶液を吸引しつつ、前記流路中の第2の溶液を分析する第3の工程と、
を含み、第1の溶液の分析結果と第2の溶液の分析結果との差分を解析することを特徴とする分析方法。
A method for analyzing a solution using the analyzer according to claim 3 or 4,
The amount of the solution pushed out per unit time of the solution pushing means is set to the amount of the solution sucked per unit time of the solution sucking means, and the first solution is fed from the one solution introduction port by the solution pushing means. A first step of analyzing the first solution in the flow path while pushing the first solution in the flow path from the solution discharge port by the solution suction means,
After the first step, the amount of the solution to be pushed out per unit time of the solution pushing means is set to zero, and the solution sucking means sucks the first solution in the flow path from the solution discharge port. A second step of drawing the second solution into the flow path from the other solution introduction port;
After the second step, a third step of analyzing the second solution in the flow path while sucking the second solution in the flow path from the solution discharge port by the solution suction means;
And analyzing the difference between the analysis result of the first solution and the analysis result of the second solution.
JP2007150798A 2007-06-06 2007-06-06 Fluid measurement substrate, analyzer, and analysis method Active JP4966752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007150798A JP4966752B2 (en) 2007-06-06 2007-06-06 Fluid measurement substrate, analyzer, and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007150798A JP4966752B2 (en) 2007-06-06 2007-06-06 Fluid measurement substrate, analyzer, and analysis method

Publications (2)

Publication Number Publication Date
JP2008304270A true JP2008304270A (en) 2008-12-18
JP4966752B2 JP4966752B2 (en) 2012-07-04

Family

ID=40233127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007150798A Active JP4966752B2 (en) 2007-06-06 2007-06-06 Fluid measurement substrate, analyzer, and analysis method

Country Status (1)

Country Link
JP (1) JP4966752B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010142471A1 (en) * 2009-06-11 2010-12-16 Technische Universität Ilmenau Device and method for generating and/or arranging sequences of one or more fluid samples in a carrier fluid
JP2015001416A (en) * 2013-06-14 2015-01-05 日本電信電話株式会社 Flow cell and liquid feeding method
JP5833716B1 (en) * 2014-07-24 2015-12-16 日本電信電話株式会社 Blood coagulation test method and flow channel chip for blood coagulation test
WO2022219116A1 (en) 2021-04-15 2022-10-20 Screensys Gmbh Systems and methods for microscopic object handling

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081406A (en) * 1998-09-04 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> Infinitesimal flow cell and its manufacture
JP2000230916A (en) * 1999-02-12 2000-08-22 Nippon Telegr & Teleph Corp <Ntt> Integrated type biosensor and its preparation method
JP2003075444A (en) * 2001-08-31 2003-03-12 Mitsubishi Chemicals Corp Chip for measuring substance to be measured, substance measuring apparatus and method therefor
JP2004085506A (en) * 2002-08-29 2004-03-18 Sanyo Electric Co Ltd Micro-chemical analyzer
JP2004219325A (en) * 2003-01-16 2004-08-05 Ntt Advanced Technology Corp Electrochemical online type biosensor and its manufacturing method
JP2005186033A (en) * 2003-12-26 2005-07-14 Fuji Xerox Co Ltd Manufacturing method of micro reactor chip
JP2006058112A (en) * 2004-08-19 2006-03-02 Kawamura Inst Of Chem Res Trace sample measuring device, trace sample measuring instrument, and trace sample measuring method
JP2006170654A (en) * 2004-12-13 2006-06-29 Canon Inc Biochemical treatment device
JP2006234791A (en) * 2005-01-26 2006-09-07 Seiko Instruments Inc Reactor, microreactor chip, microreactor system and method for manufacturing the reactor
JP2007024742A (en) * 2005-07-20 2007-02-01 National Institute Of Advanced Industrial & Technology Enzyme immunoassay method and enzyme immunosensor for the same
JP2007093444A (en) * 2005-09-29 2007-04-12 Fujifilm Corp Fluid feeder, biosensor, and fluid feeding method
JP2007218838A (en) * 2006-02-20 2007-08-30 Kawamura Inst Of Chem Res Micro sample inlet method and microfluidic device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081406A (en) * 1998-09-04 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> Infinitesimal flow cell and its manufacture
JP2000230916A (en) * 1999-02-12 2000-08-22 Nippon Telegr & Teleph Corp <Ntt> Integrated type biosensor and its preparation method
JP2003075444A (en) * 2001-08-31 2003-03-12 Mitsubishi Chemicals Corp Chip for measuring substance to be measured, substance measuring apparatus and method therefor
JP2004085506A (en) * 2002-08-29 2004-03-18 Sanyo Electric Co Ltd Micro-chemical analyzer
JP2004219325A (en) * 2003-01-16 2004-08-05 Ntt Advanced Technology Corp Electrochemical online type biosensor and its manufacturing method
JP2005186033A (en) * 2003-12-26 2005-07-14 Fuji Xerox Co Ltd Manufacturing method of micro reactor chip
JP2006058112A (en) * 2004-08-19 2006-03-02 Kawamura Inst Of Chem Res Trace sample measuring device, trace sample measuring instrument, and trace sample measuring method
JP2006170654A (en) * 2004-12-13 2006-06-29 Canon Inc Biochemical treatment device
JP2006234791A (en) * 2005-01-26 2006-09-07 Seiko Instruments Inc Reactor, microreactor chip, microreactor system and method for manufacturing the reactor
JP2007024742A (en) * 2005-07-20 2007-02-01 National Institute Of Advanced Industrial & Technology Enzyme immunoassay method and enzyme immunosensor for the same
JP2007093444A (en) * 2005-09-29 2007-04-12 Fujifilm Corp Fluid feeder, biosensor, and fluid feeding method
JP2007218838A (en) * 2006-02-20 2007-08-30 Kawamura Inst Of Chem Res Micro sample inlet method and microfluidic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010142471A1 (en) * 2009-06-11 2010-12-16 Technische Universität Ilmenau Device and method for generating and/or arranging sequences of one or more fluid samples in a carrier fluid
JP2015001416A (en) * 2013-06-14 2015-01-05 日本電信電話株式会社 Flow cell and liquid feeding method
JP5833716B1 (en) * 2014-07-24 2015-12-16 日本電信電話株式会社 Blood coagulation test method and flow channel chip for blood coagulation test
WO2022219116A1 (en) 2021-04-15 2022-10-20 Screensys Gmbh Systems and methods for microscopic object handling

Also Published As

Publication number Publication date
JP4966752B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
US7879619B2 (en) Apparatus for detecting one or more substances and method of detecting a substance
US9213043B2 (en) Clinical diagnostic system including instrument and cartridge
Pumera et al. New materials for electrochemical sensing VII. Microfluidic chip platforms
US9357946B2 (en) Breath condensate sampler and detector and breath/breath condensate sampler and detector
JP6090330B2 (en) Sensor chip and measurement system
JP4494877B2 (en) Method for reducing dilution of working fluid in liquid systems
WO2013173524A2 (en) Clinical diagnostic system including instrument and cartridge
US20060245978A1 (en) Fluid partitioning in multiple microchannels
US20130260481A1 (en) Analysis device and analysis method
JP6130306B2 (en) Rapid quantification of biomolecules and methods in selectively functionalized nanofluidic biosensors
US20090213383A1 (en) Apparatus and method for detecting one or more substances
JP4966752B2 (en) Fluid measurement substrate, analyzer, and analysis method
CN105973823A (en) UV-visible absorption detection system based on micro-fluidic chip and detection method thereof
US20120115246A1 (en) Microfluidic device comprising sensor
US10114032B2 (en) Blood coagulation test method
JP2008039615A (en) Separation device and method, and analysis method
JP4657867B2 (en) Microreactor and microreactor system
JP2012042425A (en) Biological fluid analysis instrument
JP2013511714A5 (en)
CN116351490A (en) Single-electrode card micro-fluidic chip for multi-parameter biochemical molecule detection
US20220280937A1 (en) Arrangement for analyzing a liquid sample
US20210278358A1 (en) Methods for Detecting Analytes in Excreta in an Analytical Toilet
JP2008122152A (en) Biosensor and manufacturing method of biosensor
TWI291025B (en) An integral micro-dialysis electrophoresis chip having on-line labeling function and the analysis method thereof
JP2003107080A (en) Blood analyzer and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350