JP2008303109A - Hydrophobic orthotitanic acid microparticules and toner for electrophotography - Google Patents

Hydrophobic orthotitanic acid microparticules and toner for electrophotography Download PDF

Info

Publication number
JP2008303109A
JP2008303109A JP2007151706A JP2007151706A JP2008303109A JP 2008303109 A JP2008303109 A JP 2008303109A JP 2007151706 A JP2007151706 A JP 2007151706A JP 2007151706 A JP2007151706 A JP 2007151706A JP 2008303109 A JP2008303109 A JP 2008303109A
Authority
JP
Japan
Prior art keywords
hydrophobic
fine particles
orthotitanate
mass
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007151706A
Other languages
Japanese (ja)
Other versions
JP5096802B2 (en
Inventor
Takayasu Tanaka
貴康 田中
Koji Kurosaki
浩二 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP2007151706A priority Critical patent/JP5096802B2/en
Publication of JP2008303109A publication Critical patent/JP2008303109A/en
Application granted granted Critical
Publication of JP5096802B2 publication Critical patent/JP5096802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide hydrophobic orthotitanic acid microparticles excellent in hydrophobicity, dispersibility, and safeness and usable for various applications such as an outer additive of a toner for electrophotographies. <P>SOLUTION: A substrate consisting of orthotitanic acid is treated with an alkoxysilane in an amount of 50-200 mass%, then neutralized with an acid, filtered, cleaned, and dried at 100-170°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、疎水性及び分散性に優れ、塗料、プラスチック、繊維などの紫外線吸収剤や、電子写真用トナーの帯電調整剤、流動化剤に用いられるオルトチタン酸微粒子、及びそれを用いた電子写真用トナーに関するものである。   The present invention is excellent in hydrophobicity and dispersibility, and is composed of ultraviolet absorbers such as paints, plastics and fibers, charge control agents for electrophotographic toners, orthotitanate fine particles used for fluidizing agents, and electrons using the same. The present invention relates to a photographic toner.

酸化チタンの超微粒子は紫外線カットの目的で化粧品、塗料、インキ、プラスチック、光触媒等に使用される他、電子写真用トナーの帯電調整剤、流動化剤等にも広く使用されている。これらの用途には、分散性の向上や吸湿性の防止のために、表面を疎水化処理された酸化チタンやメタチタン酸が使用されている。   In addition to being used for cosmetics, paints, inks, plastics, photocatalysts and the like, ultrafine particles of titanium oxide are widely used for charge control agents and fluidizing agents for electrophotographic toners. In these applications, titanium oxide or metatitanic acid whose surface has been subjected to a hydrophobic treatment is used in order to improve dispersibility and prevent hygroscopicity.

従来、ベースとなる微粒子としては、四塩化チタンやチタンアルコキシドの気相酸化により合成された酸化チタンや、硫酸法で脱水焼成された酸化チタン、あるいは硫酸法加水分解反応により合成されたメタチタン酸であり、これらに気相中(特許文献1)あるいは水溶液中や有機溶媒中(特許文献2〜5)でシランカップリング剤の処理を行うものであった。   Conventionally, the base fine particles include titanium oxide synthesized by vapor phase oxidation of titanium tetrachloride and titanium alkoxide, titanium oxide dehydrated and fired by sulfuric acid method, or metatitanic acid synthesized by sulfuric acid method hydrolysis reaction. The silane coupling agent is treated in the gas phase (Patent Document 1), in an aqueous solution, or in an organic solvent (Patent Documents 2 to 5).

まず、四塩化チタンの気相酸化により合成された酸化チタンや硫酸法で脱水焼成された酸化チタンにシランカップリング剤の処理を行ったものは比較的安価に製造できるが、比表面積が小さく、分散性も劣るものであった。また、チタンアルコキシドの気相酸化により合成された酸化チタンにシランカップリング剤の処理を行ったものは、疎水化度、比表面積が大きく、分散性も良好であるが高価である。また、基体となる酸化チタンがIARC(国際がん研究機関)による「発ガン性のリスク情報のリスト」において、グループ3(人に対する発癌性については分類できない(不明である))からグループ2B(人に対して発癌性があるかもしれない)にランクが変更されたことから、疎水性酸化チタン微粒子に代替できる疎水性微粒子の開発が強く望まれている。
特開平1−153529号公報 特開平5−019528号公報 特開平5−221640号公報 特開平8−269359号公報 特開平8−048910号公報
First, titanium oxide synthesized by vapor phase oxidation of titanium tetrachloride and titanium oxide dehydrated and fired by the sulfuric acid method can be manufactured relatively inexpensively, but the specific surface area is small, Dispersibility was also poor. Further, titanium oxide synthesized by vapor phase oxidation of titanium alkoxide is treated with a silane coupling agent, has a high degree of hydrophobicity, a large specific surface area, good dispersibility, but is expensive. In addition, in the “List of risk information on carcinogenicity” by IARC (International Cancer Research Institute), the titanium oxide as the substrate is group 3B (cannot be classified as carcinogenic to humans (unknown)) to group 2B ( Since the rank has been changed to (possibly carcinogenic to humans), development of hydrophobic fine particles that can replace hydrophobic titanium oxide fine particles is strongly desired.
Japanese Patent Laid-Open No. 1-153529 JP-A-5-019528 JP-A-5-221640 JP-A-8-269359 Japanese Patent Application Laid-Open No. 8-048910

従って、本発明の目的は、疎水化度、及び比表面積が高く、分散性の良好な微粒子を比較的容易かつ安価に製造でき、しかも二酸化チタンに代替できる微粒子を提供することにある。   Accordingly, an object of the present invention is to provide fine particles that have a high degree of hydrophobicity and a high specific surface area, and that can produce fine particles with good dispersibility relatively easily and inexpensively, and that can substitute for titanium dioxide.

本発明者らは酸化チタンとは物質的に異なるオルトチタン酸、及びその透明性に着目し、高い疎水化度、及び比表面積を有し、コスト面と安全性に優れた微粒子を開発すべく鋭意検討した結果、特定量のアルコキシシランを被覆処理し特定の比表面積を有する疎水性オルトチタン酸微粒子は、本来の透明性を損なうことなく、電子写真用トナーの帯電調整剤や流動化剤を始めとした各種用途に優れたものとなることを見出し、本発明を完成させた。   The present inventors pay attention to orthotitanic acid, which is materially different from titanium oxide, and its transparency, and to develop fine particles having a high degree of hydrophobicity, a specific surface area, and excellent in cost and safety. As a result of intensive studies, hydrophobic orthotitanate fine particles having a specific surface area coated with a specific amount of alkoxysilane can be used as a charge control agent or a fluidizing agent for electrophotographic toner without impairing the original transparency. The present invention was completed by finding out that it was excellent in various uses including the beginning.

すなわち、本発明の疎水性オルトチタン酸微粒子は、基体であるオルトチタン酸に対してアルコキシシランが50〜200質量%被覆処理され、X線的に回折ピークが認められず、比表面積が100〜300m/gで、かつ2質量%を外添した黒色トナーの測色値L値の上昇ΔLが、外添前の黒色トナーに対し0.8以下であることを特徴とする。 That is, the hydrophobic orthotitanate fine particles of the present invention are coated with 50 to 200% by mass of alkoxysilane with respect to orthotitanic acid as a substrate, no X-ray diffraction peak is observed, and the specific surface area is 100 to 100%. The increase ΔL in the colorimetric value L of the black toner externally added at 300 m 2 / g and 2% by mass is 0.8 or less with respect to the black toner before external addition.

また、前記疎水性オルトチタン酸微粒子は、使用するアルコキシシランが、一般式RnSiR'm(R:炭化水素基、R':アルコキシ基、n=1〜3の整数、m=1〜3の整数、n+m=4)で表すことができ、前記アルコキシシランの炭化水素基Rの炭素数が3〜10であることが好ましい。   In the hydrophobic orthotitanate fine particles, the alkoxysilane used is represented by the general formula RnSiR′m (R: hydrocarbon group, R ′: alkoxy group, n = 1-3 integer, m = 1-3 integer. N + m = 4), and the hydrocarbon group R of the alkoxysilane preferably has 3 to 10 carbon atoms.

また、前記疎水性オルトチタン酸微粒子は、疎水化度が30〜75%であり、かつ、鉄粉に対する摩擦帯電量が−100〜−30μC/gであることが好ましい。   Further, the hydrophobic orthotitanate fine particles preferably have a degree of hydrophobicity of 30 to 75% and a triboelectric charge amount with respect to iron powder of −100 to −30 μC / g.

また、本発明の疎水性オルトチタン酸微粒子は、電子写真用トナーに好適に使用される。   Further, the hydrophobic orthotitanate fine particles of the present invention are suitably used for an electrophotographic toner.

本発明によれば、高価であるチタンアルコキシドを使用せず、また、四塩化チタンの気相法や硫酸法で得られる従来の酸化チタンより高比表面積である微粒子を製造することができ、また、疎水性及び比表面積が高く、発癌性や毒性の問題もないので、電子写真用トナーを始めとした種々の分野に利用できる。   According to the present invention, it is possible to produce fine particles having a higher specific surface area than conventional titanium oxide obtained by using a titanium tetrachloride vapor phase method or a sulfuric acid method without using expensive titanium alkoxide, Since it has high hydrophobicity and specific surface area and does not have carcinogenicity or toxicity problems, it can be used in various fields including electrophotographic toners.

(オルトチタン酸)
本発明でいうオルトチタン酸とは、主成分の化学式がTi(OH)で示され、酸化チタンやメタチタン酸と比較すると、後出の図1に示したようにX線的に回折ピークが認められないものをいう。また、700℃よりも高い温度で焼成すると、ルチル型酸化チタンを生成する特徴も併せ持つ。さらに、各種の安全性に関連した法規制では、IARCの対象外であり、日本の化審法(1−730(チタン酸))、米国のTSCA(20338−08−3(Titanium hydroxide))、並びに欧州のEINECS(243−744−3(Tetrahydroxytitanium))に登録されている。
(Ortho titanic acid)
In the present invention, orthotitanic acid has a chemical formula of Ti (OH) 4 as a main component, and has a diffraction peak in X-ray as shown in FIG. 1 later compared with titanium oxide or metatitanic acid. This is not allowed. Moreover, when it bakes at a temperature higher than 700 degreeC, it has the characteristic which produces | generates a rutile type titanium oxide. In addition, various safety-related laws and regulations are not subject to IARC, including the Japanese Chemical Substances Control Law (1-730 (titanic acid)), US TSCA (20338-08-3 (Titanium hydroxide)), In addition, it is registered in EINECS (243-744-3 (Tetrahydrytitanium)) in Europe.

(疎水性オルトチタン酸微粒子)
本発明で重要なのは、疎水性オルトチタン酸が、基体であるオルトチタン酸に対してアルコキシシランが50〜200質量%、好ましくは80〜180質量%、さらに好ましくは100〜150質量%被覆処理されたものであり、比表面積が100〜300m/g、好ましくは、120〜250m/g、さらに好ましくは150〜200m/g、かつ2質量%を外添した黒色トナーの測色値L値の上昇ΔLが、外添前の黒色トナーに対し0.8以下であることである。
(Hydrophobic orthotitanate fine particles)
What is important in the present invention is that the hydrophobic orthotitanic acid is coated with 50 to 200% by mass, preferably 80 to 180% by mass, more preferably 100 to 150% by mass of alkoxysilane with respect to orthotitanic acid as a substrate. The calorimetric value L of a black toner having a specific surface area of 100 to 300 m 2 / g, preferably 120 to 250 m 2 / g, more preferably 150 to 200 m 2 / g, and 2% by mass added externally. The increase in value ΔL is 0.8 or less with respect to the black toner before external addition.

(アルコキシシラン被覆処理量及び比表面積)
アルコキシシランの被覆処理量が50質量%未満であると疎水化度が低くなり好ましくない。また、200質量%を超えると凝集が起こってしまい比表面積も100m/g未満となるため好ましくない。
(Alkoxysilane coating amount and specific surface area)
When the coating amount of alkoxysilane is less than 50% by mass, the degree of hydrophobicity is lowered, which is not preferable. Moreover, when it exceeds 200 mass%, aggregation will occur and the specific surface area will be less than 100 m 2 / g, which is not preferable.

(透明性)
本発明の疎水性オルトチタン酸微粒子は、後述する所定の割合で黒色トナーに2質量%を外添したとき、その測色値L値の上昇ΔLが、外添前の黒色トナーに対し0.8以下である。当該範囲であることで、微粒子粉体の透明性が高く、未外添トナー本来の色を汚染しないという効果を奏する。
(transparency)
When the hydrophobic orthotitanate fine particles of the present invention are externally added with 2% by mass to a black toner at a predetermined ratio described later, the increase ΔL in the colorimetric value L is 0. 0% with respect to the black toner before external addition. 8 or less. By being in this range, the fine particle powder is highly transparent, and there is an effect that the original color of the non-added toner is not contaminated.

(疎水化度及び摩擦帯電量)
本発明の疎水性オルトチタン酸微粒子の疎水化度は30〜75%が好ましく、かつ、鉄粉に対する摩擦帯電量が−100〜−30μC/gであることが好ましい。当該範囲であることで負帯電性トナーに適した外添剤として使用できる。疎水化度が30%未満であると水分を吸着しやすくなって好ましくなく、また、75%を超えるとアルコキシシランの処理量が多くなって凝集が強くなるため好ましくない。
(Hydrophobicity and triboelectric charge)
The hydrophobicity of the hydrophobic orthotitanate fine particles of the present invention is preferably 30 to 75%, and the triboelectric charge amount with respect to the iron powder is preferably −100 to −30 μC / g. Within this range, it can be used as an external additive suitable for a negatively chargeable toner. If the degree of hydrophobicity is less than 30%, moisture is likely to be adsorbed, and more than 75% is not preferable because the amount of alkoxysilane treated increases and aggregation becomes strong.

(疎水性オルトチタン酸微粒子の製造方法)
本発明の疎水性オルトチタン酸微粒子は代表的には、基体であるオルトチタン酸に対してアルコキシシランを50〜200重量%処理した後、酸で中和し、ろ過、洗浄後、100〜170℃で乾燥することにより得られる。
(Method for producing hydrophobic orthotitanate fine particles)
The hydrophobic orthotitanate fine particles of the present invention are typically treated with 50 to 200% by weight of alkoxysilane with respect to orthotitanic acid as a substrate, neutralized with acid, filtered and washed, and then 100 to 170. Obtained by drying at 0C.

(オルトチタン酸微粒子の製造方法)
本発明の疎水性オルトチタン酸微粒子の基体となるオルトチタン酸は、四塩化チタンに氷冷した水を加えて加水分解する方法や、四塩化チタンまたは硫酸チタンの冷水溶液をアルカリで中和する方法で得られる。この時のアルカリは水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、アンモニア等が使用できるが、中和時の液温は30℃以下に保つことが必要である。30℃よりも高くなるとメタチタン酸を生成するため好ましくない。粒子形態は不定形であり、電子顕微鏡写真による一次粒径が0.01〜0.1μmのものであれば良い。
(Method for producing orthotitanic acid fine particles)
The orthotitanic acid used as the base of the hydrophobic orthotitanic acid fine particles of the present invention is hydrolyzed by adding ice-cooled water to titanium tetrachloride, or a cold aqueous solution of titanium tetrachloride or titanium sulfate is neutralized with an alkali. Obtained by the method. As the alkali at this time, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, ammonia and the like can be used, but the liquid temperature during neutralization needs to be kept at 30 ° C. or lower. . A temperature higher than 30 ° C. is not preferable because metatitanic acid is generated. The particle shape is indefinite, and the primary particle size according to the electron micrograph may be 0.01 to 0.1 μm.

(オルトチタン酸微粒子の疎水化方法)
本発明者らは前記のオルトチタン酸微粒子に疎水化処理を施すために、基体となるオルトチタン酸微粒子を乾燥した粉末を粉砕・分散することで単分散化をはかり、水系でアルコキシシランを処理する方法を検討したが、この方法では、オルトチタン酸の乾燥時に強い凝集を起こした。そのため、疎水性にすることはできたが、比表面積が小さく、分散性が劣り、従来からある超微粒子酸化チタンと大差ないものであり、且つ結晶構造は、二酸化チタンに属するものであった。そこで、この問題を解決するため検討を続けた結果、オルトチタン酸をスラリーの状態でアルコキシシランを添加し被覆処理を行うことにより、含水物であるオルトチタン酸であるにもかかわらず、固液分離し、乾燥した粉末は高い疎水化度及び比表面積を有しており乾燥後も非凝集性を維持した分散性の良好な微粒子であった。しかも黒トナーに2質量%を外添しても、黒色度を損なわないことが分かった。
(Method of hydrophobizing orthotitanate fine particles)
In order to hydrophobize the orthotitanic acid fine particles, the present inventors attempted monodispersion by pulverizing and dispersing the powder obtained by drying the orthotitanic acid fine particles serving as a base, and treating the alkoxysilane with an aqueous system. In this method, strong agglomeration was caused when the orthotitanic acid was dried. Therefore, although it could be made hydrophobic, the specific surface area was small, the dispersibility was inferior, it was not much different from conventional ultrafine titanium oxide, and the crystal structure belonged to titanium dioxide. Therefore, as a result of continuing investigations to solve this problem, by adding alkoxysilane in a slurry state and performing a coating treatment, orthotitanic acid is a solid-liquid solution even though it is orthotitanic acid which is a hydrate. The separated and dried powder had a high degree of hydrophobicity and a specific surface area, and was fine particles with good dispersibility that remained non-aggregated after drying. Moreover, it was found that even when 2% by mass of black toner was externally added, the blackness was not impaired.

被覆処理するアルコキシシランについて述べると、炭化水素基Rの炭素の数が3〜10のものが好ましい。炭素数が1若しくは2のものは分子鎖長が短いため疎水化度が低くなり、また乾燥時に粒子間が十分に離れないため凝集が起こり分散性が低下するので好ましくない。一方、炭素数が11以上のものは分子鎖長が長過ぎて分子鎖が絡み凝集を起こすとともに、比表面積の低下が大きく好ましくない。また、疎水化度を上げるためには、ポリジメチルシロキサン等シリコーンオイルのエマルジョンやチタネート系のカップリング剤も有効であるが、分子鎖が長いため、同様の理由で好ましくない。なお、アルコキシシランは2種以上を併用して用いることもでき、添加するアルコキシシランは、純水または純水にアルコールを加えた液中で予め加水分解を行った溶液を用いることで、被覆処理を迅速に行うことができる。   The alkoxysilane to be coated is preferably one having 3 to 10 carbon atoms in the hydrocarbon group R. Those having 1 or 2 carbon atoms are not preferred because the molecular chain length is short, so the degree of hydrophobicity is low, and the particles are not sufficiently separated during drying, causing aggregation and reducing dispersibility. On the other hand, those having 11 or more carbon atoms are not preferable because the molecular chain length is too long and the molecular chains are entangled and cause aggregation, and the specific surface area decreases. In order to increase the degree of hydrophobicity, an emulsion of a silicone oil such as polydimethylsiloxane and a titanate coupling agent are also effective. However, since the molecular chain is long, it is not preferable for the same reason. In addition, the alkoxysilane can be used in combination of two or more, and the alkoxysilane to be added is a coating treatment by using a pre-hydrolyzed solution in pure water or a solution obtained by adding alcohol to pure water. Can be done quickly.

アルコキシシランを添加するときは、好ましくはpH1.5以下若しくはpH7以上、さらに好ましくはpH0.8〜1若しくはpH8〜9で行う。pHを上記範囲にすることによって、オルトチタン酸の凝集を抑制できるとともに、アルコキシシランの被覆処理を均一に促進できる。また、撹拌保持した後、酸若しくはアルカリを用いて好ましくはpH4〜8、さらに好ましくは5〜7になるように中和を行う。又、反応中のスラリーの温度は、好ましくは20〜50℃、さらに好ましくは30〜40℃に加温する。   When alkoxysilane is added, it is preferably pH 1.5 or lower or pH 7 or higher, more preferably pH 0.8 to 1 or pH 8 to 9. By controlling the pH within the above range, aggregation of orthotitanic acid can be suppressed and the coating treatment with alkoxysilane can be promoted uniformly. In addition, after stirring and holding, neutralization is performed using an acid or an alkali so that the pH is preferably 4 to 8, and more preferably 5 to 7. The temperature of the slurry during the reaction is preferably 20 to 50 ° C, more preferably 30 to 40 ° C.

アルコキシシランは、一般式 RnSiR'm(Rはアルキル基、フェニル基、ビニル基、グリドキシ基、メルカプト基、メタクリル基を含む炭化水素基、nは1〜3の整数、R'はアルコキシ基、mは1〜3の整数、n+m=4)で表されるものであり、例えば、プロピルトリメトキシシラン、i−ブチルトリメトキシシラン、n−ブチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−オクチルトリメトキシシラン、n−ドデシルトリエトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、3−グリドキシプロピルトリメトキシシラン等を挙げることができ、炭化水素基Rの炭素の数が3〜10のものが好ましい。   Alkoxysilane has a general formula RnSiR′m (where R is an alkyl group, phenyl group, vinyl group, gridoxy group, mercapto group, methacryl group-containing hydrocarbon group, n is an integer of 1 to 3, R ′ is an alkoxy group, m Is an integer of 1 to 3, n + m = 4). For example, propyltrimethoxysilane, i-butyltrimethoxysilane, n-butyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyl Examples include trimethoxysilane, n-dodecyltriethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, 3-gridoxypropyltrimethoxysilane, etc., and hydrocarbon group R having 3 to 10 carbon atoms Is preferred.

アルコキシシランの被覆量は基体のオルトチタン酸に対して、50〜200質量%、好ましくは80〜180質量%、さらに好ましくは100〜150質量%である。前述したように、50質量%未満であると疎水化度が低くなり好ましくない。また、200質量%を超えると凝集が起こってしまい比表面積も100m/g未満となるため好ましくない。 The coating amount of alkoxysilane is 50 to 200% by mass, preferably 80 to 180% by mass, and more preferably 100 to 150% by mass with respect to the orthotitanic acid of the substrate. As described above, when it is less than 50% by mass, the degree of hydrophobicity is lowered, which is not preferable. Moreover, when it exceeds 200 mass%, aggregation will occur and the specific surface area will be less than 100 m 2 / g, which is not preferable.

中和に用いる酸としては、例えば、塩酸、硫酸、硝酸、酢酸等を使用することができ、アルカリとしては水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等があが、オルトチタン酸の分散が良い状態で被覆するには、塩酸、硝酸、酢酸、水酸化ナトリウム、及びアンモニアが好ましい。   Examples of the acid used for neutralization include hydrochloric acid, sulfuric acid, nitric acid, and acetic acid. Examples of the alkali include sodium hydroxide, potassium hydroxide, lithium hydroxide, and ammonia. For coating with good dispersion, hydrochloric acid, nitric acid, acetic acid, sodium hydroxide, and ammonia are preferred.

水洗後の乾燥温度は100℃〜170℃、好ましくは110℃〜150℃である。100℃より低くなると乾燥効率が悪く、また、疎水化度が低くなる。170℃より高くなると、炭化水素基の熱分解が起り、変色と疎水化度の低下が起こる。   The drying temperature after washing with water is 100 ° C to 170 ° C, preferably 110 ° C to 150 ° C. If it is lower than 100 ° C., the drying efficiency is poor and the degree of hydrophobicity is low. When the temperature is higher than 170 ° C., thermal decomposition of the hydrocarbon group occurs, causing discoloration and a decrease in the degree of hydrophobicity.

以下に実施例を挙げて本発明をさらに詳細に説明する。以下の実施例は単に例示のために記すものであり、発明の範囲がこれらによって制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The following examples are given for illustrative purposes only, and the scope of the invention is not limited thereby.

[オルトチタン酸微粒子の製造]
160g/Lの炭酸ナトリウム5Lを攪拌しながら、液温を30℃以下に保ったまま、pHを8.0に保持するように200g/Lの硫酸チタンの冷水溶液を徐々に加えて中和反応を行い、オルトチタン酸を得た。硫酸チタンの冷水溶液の使用量は1Lであった。得られたオルトチタン酸を、ろ過、水洗した後、洗浄ケーキに水を加え再びスラリーとした。
[Manufacture of orthotitanate fine particles]
While stirring 5 L of 160 g / L sodium carbonate, neutralization reaction was performed by gradually adding a cold aqueous solution of 200 g / L titanium sulfate while maintaining the liquid temperature at 30 ° C. or lower so as to maintain the pH at 8.0. And orthotitanic acid was obtained. The usage amount of the cold aqueous solution of titanium sulfate was 1 L. The obtained orthotitanic acid was filtered and washed with water, and then water was added to the washed cake to form a slurry again.

[実施例1]
オルトチタン酸として100g分のスラリーを分取し、5mol/L水酸化ナトリウムを加え、スラリーpH8.0、かつ、35℃に加温保持し撹拌しながら、i−ブチルトリメトキシシラン加水分解溶液200g(i−ブチルトリメトキシシランとして100質量%)を添加し4時間撹拌保持後、6mol/L塩酸を加えpH6.5まで中和し、ろ過、水洗を行った。
[Example 1]
A slurry for 100 g of orthotitanic acid was collected, 5 mol / L sodium hydroxide was added, and the slurry pH 8.0 was kept at 35 ° C. while being heated and stirred, while stirring, 200 g of i-butyltrimethoxysilane hydrolysis solution. (100% by mass as i-butyltrimethoxysilane) was added, and the mixture was stirred and held for 4 hours. Then, 6 mol / L hydrochloric acid was added to neutralize to pH 6.5, followed by filtration and washing with water.

ろ過、水洗済ケーキは170℃で乾燥した後、ジェット方式による微粉砕機で微粉砕し、目的とする疎水性オルトチタン酸微粒子を得た。   The filtered and washed cake was dried at 170 ° C. and then finely pulverized by a jet type fine pulverizer to obtain the desired hydrophobic orthotitanic acid fine particles.

[実施例2]
実施例1において、i−ブチルトリメトキシシラン加水分解溶液200gをi−ブチルトリメトキシシラン加水分解溶液300g(i−ブチルトリメトキシシランとして150質量%)としたほかは、同例の場合と同様に処理して、目的とする疎水性オルトチタン酸微粒子を得た。
[Example 2]
In Example 1, except that 200 g of i-butyltrimethoxysilane hydrolyzed solution was changed to 300 g of i-butyltrimethoxysilane hydrolyzed solution (150% by mass as i-butyltrimethoxysilane), the same as in the case of the same example. By processing, the desired hydrophobic orthotitanate fine particles were obtained.

[実施例3]
実施例2において、中和pHを5.5としたほかは、同例の場合と同様に処理して、目的とする疎水性オルトチタン酸微粒子を得た。
[Example 3]
The same treatment as in Example 2 was performed except that the neutralization pH was set to 5.5 in Example 2, and target hydrophobic orthotitanate fine particles were obtained.

[実施例4]
実施例3において、乾燥温度170℃を130℃としたほかは、同例の場合と同様に処理して、目的とする疎水性オルトチタン酸微粒子を得た。
[Example 4]
In Example 3, except that the drying temperature was set to 170 ° C., the same treatment as in the case was performed to obtain the desired hydrophobic orthotitanate fine particles.

[実施例5]
実施例1において、i−ブチルトリメトキシシラン加水分解溶液を添加する際のスラリーpHを9.0とし、中和pHを5.5、乾燥温度を130℃としたほかは、同例の場合と同様に処理して、目的とする疎水性オルトチタン酸微粒子を得た。
[Example 5]
In Example 1, except that the slurry pH when adding the i-butyltrimethoxysilane hydrolysis solution was 9.0, the neutralization pH was 5.5, and the drying temperature was 130 ° C. The same treatment was performed to obtain the desired hydrophobic orthotitanate fine particles.

[実施例6]
実施例5において、i−ブチルトリメトキシシラン100g(100質量%)を添加する際のスラリーpHを1.0としたほかは、同例の場合と同様に処理して、目的とする疎水性オルトチタン酸微粒子を得た。
[Example 6]
In Example 5, except that the slurry pH at the time of adding 100 g (100% by mass) of i-butyltrimethoxysilane was 1.0, the same treatment as in the case of the same example was carried out to obtain the desired hydrophobic ortho Titanate fine particles were obtained.

[実施例7]
実施例6において、i−ブチルトリメトキシシラン100gをi−ブチルトリメトキシシラン70g(70質量%)としたほかは、同例の場合と同様に処理して、目的とする疎水性オルトチタン酸微粒子を得た。
[Example 7]
In Example 6, except that 100 g of i-butyltrimethoxysilane was changed to 70 g (70% by mass) of i-butyltrimethoxysilane, treatment was performed in the same manner as in the same example to obtain the desired hydrophobic orthotitanate fine particles. Got.

[実施例8]
実施例6において、i−ブチルトリメトキシシラン100gをi−ブチルトリメトキシシラン50g(50質量%)とし、乾燥温度を100℃としたほかは、同例の場合と同様に処理して、目的とする疎水性オルトチタン酸微粒子を得た。
[Example 8]
In Example 6, except that 100 g of i-butyltrimethoxysilane was changed to 50 g (50% by mass) of i-butyltrimethoxysilane and the drying temperature was 100 ° C. Hydrophobic orthotitanate fine particles were obtained.

[実施例9]
実施例6において、i−ブチルトリメトキシシラン100gを、n−プロピルトリメトキシシラン150g(150質量%)としたほかは、同例の場合と同様に処理して、目的とする疎水性オルトチタン酸微粒子を得た。
[Example 9]
In Example 6, except that 100 g of i-butyltrimethoxysilane was changed to 150 g (150% by mass) of n-propyltrimethoxysilane, the treatment was performed in the same manner as in the same example to obtain the desired hydrophobic orthotitanic acid. Fine particles were obtained.

[実施例10]
実施例6において、i−ブチルトリメトキシシラン100g(100質量%)をn−ヘキシルトリメトキシシラン150g(150質量%)としたほかは、同例の場合と同様に処理して、目的とする疎水性オルトチタン酸微粒子を得た。
[Example 10]
In Example 6, except that 100 g (100% by mass) of i-butyltrimethoxysilane was changed to 150 g (150% by mass) of n-hexyltrimethoxysilane, treatment was performed in the same manner as in the same example to obtain the target hydrophobicity. Orthotitanic acid fine particles were obtained.

[実施例11]
実施例6において、i−ブチルトリメトキシシラン100g(100質量%)をn−オクチルトリエトキシシラン加水分解溶液262.5g(n−オクチルトリエトキシシランとして150質量%)としたほかは、同例の場合と同様に処理して、目的とする疎水性オルトチタン酸微粒子を得た。
[Example 11]
In Example 6, except that 100 g (100% by mass) of i-butyltrimethoxysilane was changed to 262.5 g of n-octyltriethoxysilane hydrolysis solution (150% by mass as n-octyltriethoxysilane), The same treatment as in the case was performed to obtain the desired hydrophobic orthotitanate fine particles.

[実施例12]
実施例6において、i−ブチルトリメトキシシラン100g(100質量%)をn−デシルトリメトキシシラン加水分解溶液350g(n−デシルトリメトキシシランとして200質量%)としたほかは、同例の場合と同様に処理して、目的とする疎水性オルトチタン酸微粒子を得た。
[Example 12]
In Example 6, 100 g (100% by mass) of i-butyltrimethoxysilane was changed to 350 g of n-decyltrimethoxysilane hydrolysis solution (200% by mass as n-decyltrimethoxysilane). The same treatment was performed to obtain the desired hydrophobic orthotitanate fine particles.

[実施例13]
実施例6において、i−ブチルトリメトキシシラン100g(100質量%)をi−ブチルトリメトキシシラン100g(100質量%)とフロロシラン10g(10質量%)の複合処理としたほかは、同例の場合と同様に処理して、目的とする疎水性オルトチタン酸微粒子を得た。
[Example 13]
In Example 6, except that 100 g (100 mass%) of i-butyltrimethoxysilane was combined with 100 g (100 mass%) of i-butyltrimethoxysilane and 10 g (10 mass%) of fluorosilane, the same example In the same manner as above, the desired hydrophobic orthotitanate fine particles were obtained.

[比較例1]
実施例3において、i−ブチルトリメトキシシラン150g(150質量%)に変えて、ポリジメチルシロキサンエマルジョン(東レ・ダウコーニング・シリコーン(株)製SM−7060)をシリコーンオイルとして50質量%とし、乾燥温度を150℃としたほかは、同例の場合と同様に処理して疎水性オルトチタン酸微粒子を得た。
[Comparative Example 1]
In Example 3, in place of 150 g (150% by mass) of i-butyltrimethoxysilane, polydimethylsiloxane emulsion (SM-7060 manufactured by Toray Dow Corning Silicone Co., Ltd.) was changed to 50% by mass as silicone oil and dried. Hydrophobic orthotitanate fine particles were obtained by the same treatment as in the same example except that the temperature was 150 ° C.

[比較例2]
実施例6において、i−ブチルトリメトキシシラン100g(100質量%)をエチルトリメトキシシラン(Rの炭素数2)としたほかは、同例の場合と同様に処理して、オルトチタン酸微粒子を得た。
[Comparative Example 2]
In Example 6, except that 100 g (100% by mass) of i-butyltrimethoxysilane was changed to ethyltrimethoxysilane (R has 2 carbon atoms), the same treatment as in the same example was performed to obtain orthotitanate fine particles. Obtained.

[比較例3]
実施例1のオルトチタン酸スラリーに5mol/L水酸化ナトリウム水溶液を加えpH6.5とした後、ろ過、水洗した。110℃で乾燥後、600℃で焼成して得られた親水性二酸化チタン粉末を水もどしし、湿式ボールミルを用いて微粉砕スラリー化を行った。引き続き、この中からTiOとして100g分のスラリーを分取し、撹拌しながら6mol/L塩酸を添加してpHを1.2とした。次いで、5mol/L水酸化ナトリウム水溶液を加えpH2.0とし、35℃に加温保持し、撹拌しながらi−ブチルトリメトキシシラン20gを添加し、30分間撹拌保持後5mol/L水酸化ナトリウム水溶液を加え、pH6.0まで中和し、ろ過、水洗を行った。
[Comparative Example 3]
The orthotitanic acid slurry of Example 1 was adjusted to pH 6.5 by adding a 5 mol / L sodium hydroxide aqueous solution, then filtered and washed with water. The hydrophilic titanium dioxide powder obtained by drying at 110 ° C. and calcining at 600 ° C. was returned to water, and finely pulverized into a slurry using a wet ball mill. Subsequently, 100 g of slurry as TiO 2 was collected from this, and 6 mol / L hydrochloric acid was added with stirring to adjust the pH to 1.2. Next, 5 mol / L sodium hydroxide aqueous solution was added to adjust the pH to 2.0, and the mixture was kept warm at 35 ° C., 20 g of i-butyltrimethoxysilane was added with stirring, and the mixture was stirred and maintained for 30 minutes. Was added, neutralized to pH 6.0, filtered and washed with water.

ろ過、水洗済ケーキは170℃で乾燥した後ジェット方式による微粉砕機で微粉砕し、疎水性二酸化チタン微粒子を得た。   The filtered and washed cake was dried at 170 ° C. and then finely pulverized by a jet type fine pulverizer to obtain hydrophobic titanium dioxide fine particles.

[比較例4]
メタチタン酸スラリーに撹拌しながら5mol/L水酸化ナトリウム水溶液を加えpH9.0として1時間撹拌保持後、6mol/L塩酸にてpH5.5まで中和し、ろ過、水洗を行った。洗浄済ケーキに水を加え再びスラリーとし、撹拌をしながら6mol/L塩酸を加えpH1.2とし2時間撹拌保持し、解膠処理を行った。この解膠スラリーからメタチタン酸として100g分を分取し、5mol/L水酸化ナトリウム水溶液を加えpH2.5とし、35℃に加温保持し撹拌しながら、i−ブチルトリメトキシシラン50g(50質量%)を添加し30分間撹拌保持後5mol/L水酸化ナトリウム水溶液を加えpH6.0まで中和し、ろ過、水洗を行った。
[Comparative Example 4]
A 5 mol / L aqueous sodium hydroxide solution was added to the metatitanic acid slurry while stirring, and the mixture was stirred and maintained at pH 9.0 for 1 hour. Then, the mixture was neutralized to pH 5.5 with 6 mol / L hydrochloric acid, filtered and washed with water. Water was added to the washed cake to form a slurry again, and 6 mol / L hydrochloric acid was added to pH 1.2 while stirring to maintain a pH of 1.2 for 2 hours, followed by peptization. From this peptized slurry, 100 g of metatitanic acid was fractionated, and 5 mol / L sodium hydroxide aqueous solution was added to adjust the pH to 2.5. While maintaining the temperature at 35 ° C. while stirring, 50 g of i-butyltrimethoxysilane (50 mass) %) Was added and neutralized to pH 6.0 by adding a 5 mol / L aqueous sodium hydroxide solution, followed by filtration and washing with water.

ろ過、水洗済ケーキは170℃で乾燥した後、ジェット方式による微粉砕機で微粉砕し、疎水性メタチタン酸微粒子を得た。   The cake after filtration and washing with water was dried at 170 ° C. and then finely pulverized by a jet type fine pulverizer to obtain hydrophobic metatitanic acid fine particles.

以上、実施例1〜13、比較例1〜4で得られた試料の測定結果を表1に示す。なお、これらの測定値は、下記の要領で測定した値である。   The measurement results of the samples obtained in Examples 1 to 13 and Comparative Examples 1 to 4 are shown in Table 1. These measured values are values measured in the following manner.

(比表面積)
MICROMETORICS INSTRUMENT CO.製ジェミニ2360を用い、BET法にて測定した。
(Specific surface area)
It measured by BET method using Gemini 2360 made from MICROMETORICS INSTRUMENT CO.

(疎水化度)
2.5質量%毎のメタノールを含む水溶液を試験管に用意しておき、少量の微粉末を投入し、沈降の有無を確認した。疎水化度としては、沈降無質量%〜沈降有質量%を疎水化度(%)として表示した。なお、疎水性とは疎水化度が少なくとも10%以上のことをいう。
(Hydrophobicity)
An aqueous solution containing 2.5% by mass of methanol was prepared in a test tube, a small amount of fine powder was added, and the presence or absence of sedimentation was confirmed. As the degree of hydrophobicity, precipitation mass% to sedimentation mass% were displayed as the degree of hydrophobicity (%). Hydrophobic means that the degree of hydrophobicity is at least 10% or more.

(摩擦帯電量)
微粉末と還元鉄粉(パウダーテック社製TSV−100)を混合し、ブローオフ粉体帯電量測定装置(東芝ケミカル社製TB−200)にて測定した。
(Frictional charge)
Fine powder and reduced iron powder (TSV-100, manufactured by Powder Tech Co., Ltd.) were mixed and measured with a blow-off powder charge measuring device (TB-200, manufactured by Toshiba Chemical Corporation).

(透明性)
黒色トナー50gと微粒子1gを採取し、協立理工(株)製サンプルミルSK−Mを用いて3分間混合した。外添トナー5gを、成形ダイス上に置いたアルミリングに入れ、 成形ダイスごと小型油圧自動プレス機にセットし、プレス成型した。成型した試料をスガ試験機(株)製SMカラーコンピューター MODEL SM−7を用いて測色した。外添前の黒色トナーに対し、測色値L値の上昇ΔLが小さいほど、トナー本来の色を汚染しない、すなわち微粒子粉体の透明性が高いと判断した。
(transparency)
50 g of black toner and 1 g of fine particles were collected and mixed for 3 minutes using a sample mill SK-M manufactured by Kyoritsu Riko Co., Ltd. 5 g of the external toner was placed in an aluminum ring placed on a molding die, and the molding die was set in a small hydraulic automatic press machine and press molded. The molded sample was measured using an SM color computer MODEL SM-7 manufactured by Suga Test Instruments Co., Ltd. It was determined that the smaller the increase ΔL in the colorimetric value L of the black toner before external addition, the more the original color of the toner is not contaminated, that is, the transparency of the fine particle powder is high.

(X線回折による同定)
理学電機工業製ローターフレックスRAD−RCにてターゲットCu、50kV×200mAの測定条件で同定を行った。
(Identification by X-ray diffraction)
Identification was carried out under the measurement conditions of a target Cu, 50 kV × 200 mA with a rotor flex RAD-RC manufactured by Rigaku Denki Kogyo.

Figure 2008303109
*1) 600℃で加熱(焼成)し、オルトチタン酸を二酸化チタンとしたもの。
*2)2質量%を外添した黒色トナーのL値−未外添黒色トナーのL値(12.6)
Figure 2008303109
* 1) Heated (baked) at 600 ° C. to make orthotitanic acid titanium dioxide.
* 2) L value of black toner with 2% by mass added externally-L value of non-externally added black toner (12.6)

表1の結果より、実施例1〜13により得られた疎水性オルトチタン酸微粒子は、比表面積が100〜300m/gで、疎水化度が30〜75%であって、鉄粉に対する摩擦帯電量が−100〜−30μC/gであり、かつΔLが、外添前の黒色トナーに対し0.8以下であることが分かる。 From the results of Table 1, the hydrophobic orthotitanate fine particles obtained in Examples 1 to 13 have a specific surface area of 100 to 300 m 2 / g, a degree of hydrophobicity of 30 to 75%, and friction against iron powder. It can be seen that the charge amount is −100 to −30 μC / g, and ΔL is 0.8 or less with respect to the black toner before external addition.

以上より、電子写真用トナー等として有用な疎水性オルトチタン酸微粒子が得られたことが確認できた。   From the above, it was confirmed that hydrophobic orthotitanate fine particles useful as an electrophotographic toner or the like were obtained.

顔料級のアナターゼ型二酸化チタン、メタチタン酸、オルトチタン酸を600℃で加熱し、二酸化チタンとしたもの、及びオルトチタン酸のX線回折チャートである。2 is an X-ray diffraction chart of pigment grade anatase-type titanium dioxide, metatitanic acid, orthotitanic acid heated to 600 ° C. to form titanium dioxide, and orthotitanic acid.

Claims (5)

基体であるオルトチタン酸に対してアルコキシシランが50〜200質量%被覆処理され、X線的に回折ピークが認められず、比表面積が100〜300m/gで、かつ2質量%を外添した黒色トナーの測色値L値の上昇ΔLが、外添前の黒色トナーに対し0.8以下であることを特徴とする疎水性オルトチタン酸微粒子。 The substrate is orthotitanic acid coated with 50 to 200% by mass of alkoxysilane, no X-ray diffraction peak is observed, the specific surface area is 100 to 300 m 2 / g, and 2% by mass is externally added. Hydrophobic orthotitanate fine particles, wherein the increase ΔL in the colorimetric value L value of the black toner is 0.8 or less compared to the black toner before external addition. 前記アルコキシシランが、一般式RnSiR'm(R:炭化水素基、R':アルコキシ基、n:1〜3の整数、m:1〜3の整数、n+m=4)で表されることを特徴とする請求項1記載の疎水性オルトチタン酸微粒子。   The alkoxysilane is represented by the general formula RnSiR′m (R: hydrocarbon group, R ′: alkoxy group, n: an integer of 1 to 3, m: an integer of 1 to 3, n + m = 4). The hydrophobic orthotitanate fine particles according to claim 1. 前記アルコキシシランの炭化水素基Rの炭素数が3〜10であることを特徴とする請求項2記載の疎水性オルトチタン酸微粒子。   The hydrophobic orthotitanate fine particles according to claim 2, wherein the hydrocarbon group R of the alkoxysilane has 3 to 10 carbon atoms. 疎水化度が30〜75%であり、かつ、鉄粉に対する摩擦帯電量が−100〜−30μC/gであることを特徴とする請求項1記載の疎水性オルトチタン酸微粒子。   The hydrophobic orthotitanate fine particles according to claim 1, wherein the degree of hydrophobicity is 30 to 75%, and the triboelectric charge amount with respect to iron powder is -100 to -30 µC / g. 請求項1乃至4のいずれか1項記載の疎水性オルトチタン酸微粒子を使用したことを特徴とする電子写真用トナー。   An electrophotographic toner comprising the hydrophobic orthotitanate fine particles according to any one of claims 1 to 4.
JP2007151706A 2007-06-07 2007-06-07 Hydrophobic orthotitanate fine particles and toner for electrophotography Active JP5096802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151706A JP5096802B2 (en) 2007-06-07 2007-06-07 Hydrophobic orthotitanate fine particles and toner for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151706A JP5096802B2 (en) 2007-06-07 2007-06-07 Hydrophobic orthotitanate fine particles and toner for electrophotography

Publications (2)

Publication Number Publication Date
JP2008303109A true JP2008303109A (en) 2008-12-18
JP5096802B2 JP5096802B2 (en) 2012-12-12

Family

ID=40232151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151706A Active JP5096802B2 (en) 2007-06-07 2007-06-07 Hydrophobic orthotitanate fine particles and toner for electrophotography

Country Status (1)

Country Link
JP (1) JP5096802B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015059A (en) 2017-05-25 2022-09-06 信越化学工业株式会社 Method for analyzing degree of hydrophobization of powder, highly hydrophobized colored pigment, and cosmetic preparation containing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223815A (en) * 1994-02-10 1995-08-22 Canon Inc Titanium oxide fine powder and hydrophobic titanium oxide fine powder
JPH08305083A (en) * 1995-03-07 1996-11-22 Fuji Xerox Co Ltd Electrostatic charge image developing full-color toner, its production and full-color image forming method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223815A (en) * 1994-02-10 1995-08-22 Canon Inc Titanium oxide fine powder and hydrophobic titanium oxide fine powder
JPH08305083A (en) * 1995-03-07 1996-11-22 Fuji Xerox Co Ltd Electrostatic charge image developing full-color toner, its production and full-color image forming method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V. URICANU ET AL.: "Organic-inorganic hybrids made from polymerizable precursors", MATERIALS CHEMISTRY AND PHYSICS, vol. Volume 85, Issue 1, JPN6012044280, 2004, pages 120 - 130, ISSN: 0002312151 *

Also Published As

Publication number Publication date
JP5096802B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP6151651B2 (en) Strontium titanate fine particles for toner and method for producing the same
CN107149943B (en) Metatitanic acid particles and method for producing same
JP5095943B2 (en) Method for producing conductive powder
WO1997015526A1 (en) Hydrothermal process for making ultrafine metal oxide powders
JP4220020B2 (en) Ultrafine titanium oxide, its production method and its application
JP2010006629A (en) Titanium dioxide fine particle and method for producing the same
JP5091685B2 (en) External additive for toner and method for producing the same
JP4495801B2 (en) Method for producing rutile ultrafine titanium dioxide
JP4634019B2 (en) Low magnetization black pigment powder, production method thereof and use thereof
JP4210785B2 (en) Method for producing transparent coating agent for optical element containing rutile type titanium oxide sol
WO2020017419A1 (en) Calcium titanate powder, method for producing same and external toner additive for electrophotography
JPH11189416A (en) Production of anhydrous zinc antimonate
JP4569597B2 (en) Zinc oxide production method and zinc oxide
JP3462610B2 (en) Hydrophobic metatitanate fine particles and method for producing the same
JP2000128534A (en) Hydrophobic rutile type titanium oxide and its production and application
JP2003327431A (en) Rutile type titanium dioxide fine grain and production method thereof
JP5096802B2 (en) Hydrophobic orthotitanate fine particles and toner for electrophotography
JP3278278B2 (en) Hydrophobic titanium oxide fine powder
JPS61106414A (en) Fine powder of electroconductive titanium oxide of low oxidation state and its preparation
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
JP2002129063A (en) Low-magnetic black pigment powder, its production method and its use
JP2010168254A (en) Ultraviolet screening agent, cosmetic, and micro-acicular zinc oxide
JP4195254B2 (en) Rutile type titanium dioxide fine particles and method for producing the same
JP3732265B2 (en) Spindle-shaped fine particle titanium dioxide and method for producing the same
JP7262853B2 (en) Toner external additive safe to the human body and toner manufactured using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100507

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5096802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250