JP2008301744A - Water-pumping material and its use - Google Patents

Water-pumping material and its use Download PDF

Info

Publication number
JP2008301744A
JP2008301744A JP2007150471A JP2007150471A JP2008301744A JP 2008301744 A JP2008301744 A JP 2008301744A JP 2007150471 A JP2007150471 A JP 2007150471A JP 2007150471 A JP2007150471 A JP 2007150471A JP 2008301744 A JP2008301744 A JP 2008301744A
Authority
JP
Japan
Prior art keywords
water
pumping
pores
pumping material
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007150471A
Other languages
Japanese (ja)
Inventor
Kiyoshi Okada
清 岡田
Kinichi Kameshima
欣一 亀島
Akira Nakajima
章 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2007150471A priority Critical patent/JP2008301744A/en
Publication of JP2008301744A publication Critical patent/JP2008301744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Air Humidification (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-pumping material excellent in a self-sustaining water-pumping capacity. <P>SOLUTION: This water-pumping material comprises a ceramic porous material in which pores having diameters of 0.05 to 300 μm are communicated with each other and are unidirectionally oriented, preferably a ceramic porous material in which fibrous communicated pores having diameters of 0.1 to 60 μm, lengths of 20 μm to 3 mm, and aspect ratios of 10 to 10,000 are unidirectionally oriented. The ceramic porous material has porosity of 30 to 60% and a pore size of 50 cm to 1.2m in the orientated direction. Provided are a plant cultivation apparatus in which the water-pumping material is used as a means for supplying water from a water-storing portion to a plant, or a humidifier in which the water-pumping material is used as a water-absorbing humidifying material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は揚水材及びこれを用いた植物栽培設備及び加湿器に関する。   The present invention relates to a pumping material, plant cultivation equipment and a humidifier using the same.

花壇や鉢植えなどの植物を生育するには毎日のように定期的な水やりが必要不可欠である。一部にはそれらの下に貯水をしておき、多孔質セラミックスを使って自動的に給水する方式も提案されているが、使われている多孔質セラミックスの基本的な揚水能力が乏しいため、限定的な使用に止まっている。   Regular watering is essential to grow plants such as flower beds and pot plants. In some cases, a method of storing water under them and automatically supplying water using porous ceramics has also been proposed, but because the basic pumping capacity of the porous ceramics used is poor, Limited use.

生活空間の中で冬季には乾燥を防ぐ目的で加湿器を用いることも多い。これらの加湿器は電気エネルギーを使って微細なミストを発生させる方式が一般的であるが、エネルギーを必要とすることや、ミストの発生自体が衛生上問題となることもある。   A humidifier is often used in the living space in winter to prevent drying. These humidifiers generally use a method of generating fine mist using electric energy, but energy is required, and the generation of mist itself may be a sanitary problem.

特開2005-263537号公報JP 2005-263537 A

上記のような課題には、自立的な揚水能力に優れた材料を用いれば、上記の問題の解決につながるものと考えられる。   It is considered that the above problems can be solved by using a material having excellent self-sustaining pumping capacity for the above problems.

本発明は、上記の課題を解決する手段として下記を提供するものである。   The present invention provides the following as means for solving the above problems.

(1)径0.05〜300μmの気孔が連通しかつ一次元配向したセラミックス多孔体からなる揚水材。   (1) A pumping material comprising a ceramic porous body in which pores having a diameter of 0.05 to 300 μm communicate with each other and are one-dimensionally oriented.

(2)気孔率が10〜70%、長さが20cm〜2mである、上記(1)に記載の揚水材。   (2) The pumping material according to (1), wherein the porosity is 10 to 70% and the length is 20 cm to 2 m.

(3)連通しかつ一次元配向した気孔が繊維状であり、連通気孔を構成する繊維状気孔のアスペクト比が10〜10,000である、上記(1)または(2)に記載の揚水材。   (3) The pumping material according to (1) or (2), wherein the pores communicated and one-dimensionally oriented are fibrous, and the aspect ratio of the fibrous pores constituting the continuous ventilation holes is 10 to 10,000. .

(4)揚水能力が50cm以上である、上記(1)〜(3)のいずれか1項に記載の揚水材。   (4) The pumping material according to any one of (1) to (3), wherein the pumping capacity is 50 cm or more.

(5)径0.1〜60μm、長さ20μm〜3mm、アスペクト比が10〜10,000の繊維状の気孔が連通しかつ一次元配向したセラミックス多孔体からなり、セラミックス多孔体は、気孔率が30〜60%、かつ気孔の配向方向の多孔体の寸法が50cm〜1.2mである、上記(1)〜(4)のいずれか1項に記載の揚水材。   (5) It consists of a ceramic porous body in which fibrous pores having a diameter of 0.1 to 60 μm, a length of 20 μm to 3 mm, and an aspect ratio of 10 to 10,000 communicate with each other and are one-dimensionally oriented. Is 30 to 60%, and the dimension of the porous body in the orientation direction of the pores is 50 cm to 1.2 m, The pumping material according to any one of (1) to (4) above.

(6)セラミックス原料と分解性の繊維状または高アスペクト比の粒子状の気孔形成材を含むスラリーまたはペーストを押出成形または射出成形して、気孔形成材が一方向に配向した成形体を得、該成形体から該気孔形成材を除去し、焼成する方法で製造された、上記(1)〜(5)のいずれか1項に記載の揚水材。   (6) A slurry or paste containing a ceramic raw material and a decomposable fibrous or high aspect ratio particulate pore-forming material is extrusion-molded or injection-molded to obtain a molded body in which the pore-forming material is oriented in one direction, The pumping material according to any one of the above (1) to (5), which is produced by a method in which the pore forming material is removed from the molded body and fired.

(7)上記(1)〜(6)のいずれか1項に記載の揚水材を貯水部から植物への給水手段として用いたことを特徴とする植物栽培設備。   (7) A plant cultivation facility characterized in that the pumped water according to any one of (1) to (6) above is used as a means for supplying water from a water storage section to a plant.

(8)貯水槽と、前記貯水槽内から起立した前記揚水材と、前記揚水材に形成された植物保持部とを有する、上記(7)に記載の植物栽培設備。   (8) The plant cultivation facility according to (7), including a water storage tank, the pumped water rising from the water storage tank, and a plant holding unit formed on the water pump.

(9)上方が開放した土壌保持部と、前記土壌保持手段の下方に存在する貯水部と、前記貯水部から前記土壌保持部へと延在する前記揚水材とを含む、上記(7)に記載の植物栽培設備。   (9) In the above (7), including the soil holding part whose upper side is open, the water storage part existing below the soil holding means, and the pumping material extending from the water storage part to the soil holding part The plant cultivation equipment described.

(10)上記(1)〜(6)のいずれか1項に記載の揚水材を吸水加湿材として用いたことを特徴とする加湿器。   (10) A humidifier using the pumped water material according to any one of (1) to (6) as a water-absorbing humidifier.

(11)貯水槽と、前記貯水槽から上方へ延在する前記揚水材からなる吸水加湿材を含む、上記(10)に記載の加湿器。   (11) The humidifier according to (10), including a water storage tank and a water absorption humidifier made of the pumping material extending upward from the water storage tank.

従来の多孔質セラミックスは、不完全な焼結条件で焼成することにより焼成体の内部に気孔を残留させる方式や、有機物などの粉末を造孔材として混合した後で焼成することによりその後を気孔とする方式などで製造されている。これらの方法では気孔はランダムに分布している。これを連通させるためには、気孔をたくさん導入する必要があり、その分、機械的性質を犠牲にすることになる。また、連通経路は複雑で長行路になる。さらに、球状の気孔がつながった構造であるため、毛管張力により揚水があったとしても、気孔が広くなったところで水道(みずみち)が切れてしまう。これらの要因によりあまり高くまで揚水できない結果であった。従来の多孔質セラミックスは、その孔の大きさ、分布、連通性などを充分に制御していないため、優れたものでも高々20〜30 cm程度の揚水能力しか見られなかった。   In conventional porous ceramics, pores are left inside the fired body by firing under incomplete sintering conditions, or powders such as organic matter are mixed as a pore-forming material and fired after that. It is manufactured by the method. In these methods, the pores are randomly distributed. In order to make this communicate, it is necessary to introduce many pores, and the mechanical properties are sacrificed accordingly. Also, the communication route is complicated and long. Furthermore, since it has a structure in which spherical pores are connected, even if there is pumping due to capillary tension, the water supply is cut when the pores become wide. Due to these factors, it was impossible to pump water to a very high level. Since conventional porous ceramics do not sufficiently control the size, distribution, and connectivity of the pores, even excellent ones can only see a pumping capacity of about 20 to 30 cm at most.

揚水能に優れた植物の組織に着目し、草木植物における茎や幹の部分で揚水を司る道管に似た気孔組織を多孔質セラミックスに導入できれば、同様の優れた特性が得られるものと考えた。優れた自立的な揚水特性を実現するために、本発明では、植物の導管組織に模した、連通気孔が一次元に配向した組織を有する多孔質セラミックスを有機繊維や炭素繊維などの分解性繊維もしくは可塑性物質を造孔材として押出法により製造する。   Focusing on the plant structure with excellent pumping ability, it is considered that the same excellent characteristics can be obtained if a porous tissue resembling a canal that controls pumping at the stem and trunk of a plant is introduced into the porous ceramics. It was. In order to achieve excellent self-sustaining pumping characteristics, in the present invention, porous ceramics having a structure in which continuous vents are oriented one-dimensionally, which is modeled on a plant duct structure, is made of degradable fibers such as organic fibers and carbon fibers. Alternatively, it is produced by an extrusion method using a plastic material as a pore former.

高い揚水能力を実現するためには毛管張力が利用でき、本発明者らは、有機繊維や炭素繊維などの分解性繊維もしくは可塑性物質を造孔材としてセラミックス原料などと混合してペースト状にし、これを押出成形して、繊維などが一次元に配向した成形体を作製し、これを焼成して有機物などの造孔材を焼き飛ばすことにより一次元長に連通した気孔を有する多孔質セラミックスを作製した。これを用いると、その毛管張力により従来のものよりも遙かに高い位置まで揚水する能力を持った材料となり、前記の従来技術の課題が解決できることを見出し、ひいて本発明を完成したものである。   Capillary tension can be used to achieve a high pumping capacity, and the present inventors mixed a degradable fiber such as organic fiber or carbon fiber or a plastic material with a ceramic raw material or the like as a pore-forming material to form a paste, This is extruded to produce a molded body in which fibers and the like are oriented one-dimensionally, and the porous ceramics having pores communicated in a one-dimensional length are fired to burn away pore-forming materials such as organic matter. Produced. When this is used, it becomes a material having the ability to pump up to a position much higher than the conventional one due to its capillary tension, and it has been found that the problems of the prior art can be solved, and the present invention has been completed. is there.

この製造方法により毛管張力を発揮するのに適した気孔径の連通気孔が一次元的に配向した組織を作ることにより、従来では困難であった50cm以上の揚水能力を持たせることができる。   By producing a structure in which continuous air holes having pore diameters suitable for exerting capillary tension by this manufacturing method are one-dimensionally oriented, it is possible to have a pumping capacity of 50 cm or more, which has been difficult in the past.

具体的には、毛管張力を発揮するのに適した平均気孔径は0.01〜300μmであり、より好ましくは0.1〜100μm、特に0.1〜50μmである。平均気孔径が小さいと容量的な揚水能力が小さくなるので、実用性から気孔径に下限がある。一方、平均気孔径が大きすぎると、揚水高さが低下するので、好ましくない。   Specifically, the average pore diameter suitable for exerting capillary tension is 0.01 to 300 μm, more preferably 0.1 to 100 μm, and particularly 0.1 to 50 μm. If the average pore size is small, the capacity of pumping capacity is small, so there is a lower limit to the pore size from practicality. On the other hand, if the average pore diameter is too large, the pumping height decreases, which is not preferable.

このような径の気孔は連通しかつ一次元的に配向している必要がある。連通気孔でなければ揚水できないし、連通気孔が一次元的に配向していることで高い揚水性能が発揮されるものである。   The pores having such a diameter need to communicate and be oriented one-dimensionally. Pumping is not possible unless the air vents are continuous, and high water pumping performance is exhibited because the air vents are oriented one-dimensionally.

連通しかつ一次元的に配向している気孔は繊維状から構成されていることが、高い揚水性能と高い揚水容量の両方を実現する上で好ましい。連通気孔を形成する個々の繊維状気孔のアスペクト比(繊維状気孔の長さの上記短径0.05〜300μmに対する比)は、例えば10〜10,000であることが好ましく、30〜1000のアスペクト比がより好ましい。勿論、このようなアスペクト比を持つ繊維状気孔が連通しかつ一次元配向して形成されるので、連通した気孔全体のアスペクト比はこれより大きくなり、連通気孔全体の最大長さは揚水材の長さに一致し、連通気孔全体のアスペクト比は上記より大きくなり得る。ここでいう繊維状気孔のアスペクト比は、連通気孔を形成する要素としての単位の繊維状気孔のそれである。   It is preferable that the pores communicating and one-dimensionally oriented are composed of fibers in order to achieve both high pumping performance and high pumping capacity. The aspect ratio of the individual fibrous pores forming the continuous air holes (ratio of the length of the fibrous pores to the short axis of 0.05 to 300 μm) is preferably, for example, 10 to 10,000, and preferably 30 to 1,000. An aspect ratio is more preferable. Of course, since the fibrous pores having such an aspect ratio are connected and formed in a one-dimensional orientation, the aspect ratio of the entire connected pores is larger than this, and the maximum length of the entire continuous pores is that of the pumping material. According to the length, the aspect ratio of the whole continuous air hole can be larger than the above. The aspect ratio of the fibrous pore here is that of the unitary fibrous pore as an element forming the continuous vent.

揚水材の気孔率は、10〜70%であることが好ましく、25〜70%がより好ましく、30〜60%が更に好ましい。更には35%〜60%、40%〜60%がより好ましい。気孔率が小さいと揚水量が不十分になるので、気孔率は高いことが望ましいが、気孔率をあまり高くするとセラミックス多孔体の強度が不足する恐れがある。   The porosity of the pumped water is preferably 10 to 70%, more preferably 25 to 70%, and still more preferably 30 to 60%. Furthermore, 35% to 60% and 40% to 60% are more preferable. If the porosity is small, the amount of pumped water becomes insufficient, so it is desirable that the porosity be high. However, if the porosity is too high, the strength of the ceramic porous body may be insufficient.

揚水材の一次元的配向方向の寸法(長さ)は用途に応じて決めればよく、限定されないが、20cm〜2mが好ましい。40cm〜1.2mがより好ましい。   The dimension (length) in the one-dimensional orientation direction of the pumped material may be determined according to the application and is not limited, but is preferably 20 cm to 2 m. 40 cm to 1.2 m is more preferable.

揚水能力は、50cm以上あるものが好ましく使用できる。より好ましくは80cm以上である。   A pumping capacity of 50 cm or more can be preferably used. More preferably, it is 80 cm or more.

本発明の好ましい揚水材は、径0.1〜60μm、長さ20μm〜3mm、アスペクト比が10〜10,000の繊維状の気孔が連通しかつ一次元配向したセラミックス多孔体からなり、気孔率が30〜60%、気孔の配向方向の長さが50cm〜1.2mであるセラミックス多孔体である。   A preferred pumping material of the present invention comprises a ceramic porous body in which fibrous pores having a diameter of 0.1 to 60 μm, a length of 20 μm to 3 mm, and an aspect ratio of 10 to 10,000 communicate with each other and are one-dimensionally oriented. Is a porous ceramic body in which the length in the orientation direction of the pores is 50 cm to 1.2 m.

本発明のセラミックス多孔体は、セラミックス原料と分解性の繊維状または高アスペクト比の粒子状の気孔形成材を含むスラリーまたはペーストを押出成形または射出成形して、気孔形成材が一方向に配向した成形体を得、該成形体から該気孔形成材を除去し、焼成する方法で製造されたものが好ましい。このセラミックス多孔体は上記の好ましい揚水性能を発揮する。   The ceramic porous body of the present invention is obtained by extruding or injection-molding a slurry or paste containing a ceramic raw material and a decomposable fibrous or high aspect ratio particulate pore forming material so that the pore forming material is oriented in one direction. What was manufactured by the method of obtaining a molded object, removing this pore formation material from this molded object, and baking is preferable. This ceramic porous body exhibits the preferable pumping performance.

このようなセラミックス多孔体の製造方法は、本発明者らにより特開2005-263537号公報(特許文献1)に開示されている。詳しくは同公報を参照されたいが、簡単に述べると下記の如くである。   Such a method for producing a ceramic porous body is disclosed in Japanese Patent Laid-Open No. 2005-263537 (Patent Document 1) by the present inventors. For details, refer to the publication, but briefly described as follows.

セラミックス原料は、特に限定するものではないが、アルミナ、ジルコニア、ムライト、コーディエライト、リン酸カルシウム、チタニア、サイアロン、炭化珪素、窒化珪素、スピネル、アルミン酸ニッケル、チタン酸アルミニウムなどが使用できる。本発明では、レンガ製造用に用いられている粘土、ケイ石、長石などの鉱物資源は、安価であり、好ましく使用できる。また、無機質成分を主体とする石炭灰、スラグ、製紙スラッジ灰、キラなどの副生物も使用できる。   The ceramic raw material is not particularly limited, and alumina, zirconia, mullite, cordierite, calcium phosphate, titania, sialon, silicon carbide, silicon nitride, spinel, nickel aluminate, aluminum titanate and the like can be used. In the present invention, mineral resources such as clay, silica, and feldspar used for brick production are inexpensive and can be preferably used. Also, by-products such as coal ash, slag, paper sludge ash and glitter mainly composed of inorganic components can be used.

セラミックス原料の寸法も特に限定されないが、例えば、サブミクロンないし数10μmの平均径の粉末を好適に用いることができる。   The size of the ceramic raw material is also not particularly limited, and for example, powder having an average diameter of submicron to several tens of μm can be suitably used.

気孔形成材は、分解性のものを使用する。気孔形成材を取り除くためには分解性である必要がある。分解性の具体例としては、熱分解性、酸溶解、アルカリ溶解、有機溶媒溶解、生分解などを挙げることができるが、熱分解性の気孔形成材を使用すると、成形体の焼結と同時に気孔形成材を取り除くことができるので、熱分解性が好ましい。気孔形成材の材質は、分解性を有するものであれば、特に限定されないが、たとえば、炭素繊維、ポリアミド、ポリビニルアルコール、アセチルセルロース、ポリエステル、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリウレタン、ナイロン、綿、毛、麻、レーヨン、キュプラなどを挙げることができ、なかでも炭素繊維が好ましい。   As the pore forming material, a decomposable material is used. In order to remove the pore-forming material, it must be degradable. Specific examples of decomposability include thermal decomposability, acid dissolution, alkali dissolution, organic solvent dissolution, biodegradation, etc. When using a thermally decomposable pore-forming material, simultaneously with sintering of the molded body Since the pore forming material can be removed, thermal decomposability is preferable. The material of the pore forming material is not particularly limited as long as it is decomposable. For example, carbon fiber, polyamide, polyvinyl alcohol, acetyl cellulose, polyester, polyacrylonitrile, polyethylene, polypropylene, polyurethane, nylon, cotton, wool , Hemp, rayon, cupra and the like, and carbon fiber is preferable among them.

気孔形成材は、繊維状または高アスペクト比の粒子状である。気孔形成材のアスペクト比は好ましくは10〜10,000、より好ましくは30〜1000である。気孔形成材の大きさは、製造する貫通孔を有するセラミックス多孔体の用途により適宜選択すればよいが、たとえば気孔形成材が繊維状の場合、その長さは好ましくは20μm〜30mm、より好ましくは0.1〜3mm、さらに好ましくは0.5〜2mmであり、その繊維の直径は好ましくは0.1μm〜1mm、より好ましくは0.5μm〜100μm、さらに好ましくは1〜60μmである。気孔形成材が高アスペクト比の粒子状の場合、その長径は好ましくは10μm〜10mmであり、その短径は好ましくは0.1μm〜1mmである。   The pore forming material is in the form of fibers or particles having a high aspect ratio. The aspect ratio of the pore forming material is preferably 10 to 10,000, more preferably 30 to 1000. The size of the pore forming material may be appropriately selected depending on the use of the ceramic porous body having through-holes to be produced. For example, when the pore forming material is fibrous, the length is preferably 20 μm to 30 mm, more preferably It is 0.1-3 mm, More preferably, it is 0.5-2 mm, The diameter of the fiber becomes like this. Preferably it is 0.1 micrometer-1 mm, More preferably, it is 0.5 micrometer-100 micrometers, More preferably, it is 1-60 micrometers. When the pore forming material is in the form of particles having a high aspect ratio, the major axis is preferably 10 μm to 10 mm, and the minor axis is preferably 0.1 μm to 1 mm.

混合する気孔形成材の量は、貫通孔が得られるような量であれば、特に限定するものではないが、好ましくは気孔形成材の体積混入率(体積%)が20〜70体積%である。気孔形成材の体積混入率が小さすぎると、得られるセラミックス多孔体の貫通孔が少なくなるおそれがあり、逆に大きすぎると、気孔が横に繋がってしまい、セラミックス多孔体の強度が低下するおそれがある。   The amount of the pore forming material to be mixed is not particularly limited as long as the through hole can be obtained, but preferably the volume mixing rate (volume%) of the pore forming material is 20 to 70% by volume. . If the volume mixing ratio of the pore-forming material is too small, there may be fewer through-holes in the resulting ceramic porous body. Conversely, if it is too large, the pores may be connected to the side and the strength of the ceramic porous body may be reduced. There is.

溶媒は、混練過程で気孔形成材を完全に分解しないものであれば、特に限定されないが、水、エタノール、有機溶媒が使用でき、なかでも水が好ましく使用できる。   The solvent is not particularly limited as long as it does not completely decompose the pore-forming material in the kneading process, but water, ethanol and organic solvents can be used, and water is preferably used.

スラリーまたはペーストは、セラミックス原料、気孔形成材および溶媒以外に、本発明の効果を損なわない限り、各種添加物を含んでもよい。添加物の例としては、メチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリカルボン酸アンモニウム、アクリル酸アンモニウムなどを挙げることができる。メチルセルロース、カルボキシメチルセルロース、ポリビニルアルコールは、結合剤として、非可塑性粉末に可塑性を付与する効果がある。ポリカルボン酸アンモニウム、アクリル酸アンモニウムは、分散剤として、粉末と水の親和性を改質し、粉末を均質に分散する効果がある。   The slurry or paste may contain various additives in addition to the ceramic raw material, the pore forming material, and the solvent as long as the effects of the present invention are not impaired. Examples of the additive include methyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, ammonium polycarboxylate, and ammonium acrylate. Methyl cellulose, carboxymethyl cellulose, and polyvinyl alcohol have an effect of imparting plasticity to the non-plastic powder as a binder. Ammonium polycarboxylate and ammonium acrylate have the effect of modifying the affinity of powder and water as a dispersant, and uniformly dispersing the powder.

押出成形または射出成形は、公知の押出成形機または射出成形機を使用して行うことができる。押出成形機としては、横型または縦型ピストン式押出成形機、オーガ型押出成形機(スクリュー式押出成形機)を例示することができるが、なかでもピストン式押出成形機が好ましい。また、押出成形機は、スラリーまたはペーストの流路の押出方向に垂直な断面の面積が押出方向に漸減する部分または段階的に減少する部分を有することが好ましい。また、押出成形機は、胴部と口金部からなり、または胴部、テーパー部および口金部からなり、口金部の内径が胴部の内径よりも小さいことが好ましい。好ましくは、胴部の内径は口金部の内径の3〜10倍であり、より好ましくは4〜6倍である。そのような押出成形機を使用することにより、気孔形成材の配向が促進される。   Extrusion molding or injection molding can be performed using a known extrusion molding machine or injection molding machine. Examples of the extruder include a horizontal or vertical piston extruder, and an auger extruder (screw extruder), among which a piston extruder is preferable. Moreover, it is preferable that an extruder has a part which the area of the cross section perpendicular | vertical to the extrusion direction of the flow path of a slurry or a paste reduces gradually in an extrusion direction, or a part which decreases in steps. The extrusion molding machine is preferably composed of a body part and a base part, or is composed of a body part, a taper part and a base part, and the inner diameter of the base part is preferably smaller than the inner diameter of the body part. Preferably, the inner diameter of the body part is 3 to 10 times, more preferably 4 to 6 times the inner diameter of the base part. By using such an extruder, the orientation of the pore forming material is promoted.

成形体から気孔形成材を取り除く方法は、使用する気孔形成材に応じた方法を採用すればよい。たとえば、熱分解性の気孔形成材を使用したときは、焼成によって、気孔形成材を取り除くことができる。   As a method of removing the pore forming material from the molded body, a method corresponding to the pore forming material to be used may be adopted. For example, when a thermally decomposable pore forming material is used, the pore forming material can be removed by firing.

成形体は、通常、高温で焼成することによって、焼結させる。熱分解性の気孔形成材を使用したときは、焼成によって、気孔形成材の除去と焼結を同時に行うことができる。気孔形成材を取り除く工程と焼結工程を別々に行うときは、焼結工程を気孔形成材を取り除く工程の前に行ってもよいし、後に行ってもよい。   The molded body is usually sintered by firing at a high temperature. When a thermally decomposable pore forming material is used, the pore forming material can be removed and sintered simultaneously by firing. When the step of removing the pore forming material and the sintering step are performed separately, the sintering step may be performed before or after the step of removing the pore forming material.

本発明者らが特開2005-263537号公報に開示したこの方法で製造したセラミックス多孔体は、揚水性能が例えば80〜90cm以上と高く、さらに高くすることも可能であり、本発明の目的に好適であることが確認されている。   The porous ceramic body produced by this method disclosed in Japanese Patent Application Laid-Open No. 2005-263537 by the present inventors has a high pumping performance of, for example, 80 to 90 cm or more, and can be further enhanced. It has been confirmed that it is suitable.

また、上記の方法において、焼成前の原料成形体を気孔の配向方向を揃えて束ねて大型の成形体としてから焼成することで、より大型の揚水材を製造することができる。また、一旦製造したセラミックス多孔体を、気孔の配向方向を揃えて束ねて、必要に応じて更に焼成して、大型の揚水材とすることもできる。   Further, in the above method, a raw material molded body before firing is bundled by aligning the orientation direction of the pores to form a large molded body, and then fired, and thereby a larger pumping material can be produced. Moreover, the once produced ceramic porous body can be bundled by aligning the orientation direction of the pores, and further fired as necessary to obtain a large pumping material.

本発明のセラミックス多孔体からなる揚水材の具体的用途としては、例えば、植物栽培設備、加湿器などがある。   Specific applications of the pumped water material comprising the ceramic porous body of the present invention include, for example, plant cultivation facilities and humidifiers.

植物栽培設備としては、揚水材を貯水部から植物への給水手段として用いるが、図1及び図2に示すような形態を例示することができる。   As a plant cultivation facility, a pumping material is used as a means for supplying water from a water storage unit to a plant, and examples of the configuration shown in FIGS. 1 and 2 can be given.

図1(ア)を参照すると、植物栽培設備は、貯水槽1に水2を保有し、貯水槽1内から起立した揚水材3とを有し、揚水材2には植物保持部4、4’が形成されている。植物保持部4は揚水材3の上面に形成された凹部からなり、凹部内にこけ玉5を収容している。植物保持部4’は揚水材3の側面に形成された横穴からなり、横穴内に土壌6を収容し、土壌6に草花7が植栽されている。植物保持部4、4’の位置や形状、利用方法は限定されず、要は植物を植栽する土壌等を保持するものであり、揚水材3を介して貯水槽1から水が給水されることで、植物に水が長時間給水されることが可能である。図1(イ)は図1(ア)の変形例であり、植物保持部4、4’がいずれも揚水材2の上面に形成されている。貯水槽1の水2は、揚水材2内を毛細管作用で揚水され、植物保持部4、4’のこけ玉5や土壌6に水分を供給する。揚水材2内の連通気孔は一次元配向方向に対して側面にも開口しているので、基本的に揚水材2の全表面に水が浸透し、蒸散する可能性がある。そこで、揚水材2の植物保持部4、4’以外の表面を必要に応じてコーティングその他の方法で塞いで、そこから余分な水分が蒸散することを防止することができる。   Referring to FIG. 1 (a), the plant cultivation facility has water 2 in a water tank 1 and a pumping material 3 that stands up from the water tank 1, and the pumping material 2 has plant holding parts 4, 4. 'Is formed. The plant holding part 4 is composed of a recess formed on the upper surface of the pumped water material 3 and accommodates a koke ball 5 in the recess. The plant holding part 4 ′ is a horizontal hole formed in the side surface of the pumped water material 3, and the soil 6 is accommodated in the horizontal hole, and the flower 7 is planted in the soil 6. The position, shape, and method of use of the plant holding units 4 and 4 ′ are not limited. In short, the plant holding units 4 and 4 ′ hold soil for planting plants, and water is supplied from the water tank 1 through the pumping material 3. Thus, water can be supplied to the plant for a long time. FIG. 1 (a) is a modification of FIG. 1 (a), and plant holding parts 4, 4 ′ are all formed on the upper surface of the pumped water material 2. The water 2 in the water storage tank 1 is pumped through the pumping material 2 by a capillary action, and supplies moisture to the moss balls 5 and soil 6 of the plant holding parts 4, 4 ′. Since the continuous air holes in the pumping material 2 are also open on the side surfaces in the one-dimensional orientation direction, basically, water may permeate the entire surface of the pumping material 2 and may evaporate. Therefore, it is possible to block the surface of the pumping material 2 other than the plant holding portions 4 and 4 ′ by coating or other methods as necessary, and to prevent excess water from evaporating from the surface.

図2を参照すると、この植物栽培設備の植木鉢のように上方が開放した土壌保持手段11の内部は、底部に貯水部12と、そ上方の土壌保持部13とからなり、貯水部12から土壌保持部13へは揚水材14が延在している。土壌保持部13に収容した土壌に植物15が植栽されている。土壌保持部13と貯水部12の間仕切りは、水を透過するが土壌は透過しない材料で形成することが望ましいが、水不透過性の材料で土壌も通過させない材料であっても貯水部12に水が供給できればよい。また、土壌保持手段11と、貯水部12は、別体であってもよい。貯水部12に水を蓄積しておくことで、揚水材14が貯水部12から水を毛細管作用で揚水し、土壌中に水分を放散、浸透させることで、水蒔きをしなくても貯水部12の水が続く間は植物に水が供給される。揚水材14の形状、寸法、数等は任意である。   Referring to FIG. 2, the inside of the soil holding means 11 opened upward like a flower pot of this plant cultivation facility is composed of a water storage portion 12 at the bottom and a soil holding portion 13 thereabove. A pumping material 14 extends to the holding unit 13. Plants 15 are planted in the soil accommodated in the soil holding unit 13. The partition between the soil holding unit 13 and the water storage unit 12 is preferably formed of a material that allows water to pass therethrough but does not pass through the soil. However, even if the material is a water-impermeable material and does not allow the soil to pass through, It only needs to be able to supply water. Moreover, the soil holding means 11 and the water storage part 12 may be separate bodies. By accumulating water in the water storage unit 12, the pumping material 14 pumps water from the water storage unit 12 by capillary action, and dissipates and permeates water into the soil. Water is supplied to the plant while 12 waters continue. The shape, size, number, etc. of the pumping material 14 are arbitrary.

図2は、移動可能な植木鉢風の植物栽培設備であるが、例えば、花壇のように移動不可能な植物栽培設備にも、本発明の植物栽培設備は適用できる。花壇などにおいて天然の雨水を貯水する場合、雨水が過剰に蓄えられて、植物の根を腐らせる恐れがあるならば、貯水部にはドレーンを設けて、貯水量を制御することができる。図1の植木鉢でも必要に応じて同様のドレーン手段を採用し、あるいは貯水量を見えるようにすることができる。   FIG. 2 shows a movable plant pot-like plant cultivation facility, but the plant cultivation facility of the present invention can also be applied to a plant cultivation facility that cannot move, such as a flower bed. When natural rainwater is stored in a flower bed or the like, if the rainwater is excessively stored and there is a risk of rotting the roots of the plant, a drain can be provided in the water storage section to control the amount of water stored. In the flower pot of FIG. 1, the same drain means can be adopted as necessary, or the amount of stored water can be made visible.

また、本発明の揚水材は、吸水加湿材として用いて加湿器を構成することができる。   Moreover, the pumping material of this invention can comprise a humidifier using it as a water absorption humidification material.

例えば、図3を参照すると、貯水槽21内から複数の揚水材23を上方へ起立させて吸水加湿材とした加湿器が示されている。ただし、図3では複数の板状の揚水材を用いているが、板状でなく円筒状でもよく、また個数も複数でなく1個でも有効である。貯水槽21に水を蓄えると、複数の揚水材23が水を揚水して、揚水材23の表面に水が浸出し、揚水材23の表面は常に水で濡らされている。そこで、雰囲気中の湿度に応じて、揚水材23の表面から水分が雰囲気中へ蒸散することで、加湿器として作用する。したがって、このような加湿器を室内等に置いておくだけで加湿ができ、電気等の動力は必要がない。もっとも、本発明の加湿器は、必要に応じて、複数の揚水材23の後方から送風することで、加湿能力を高めて使用することは可能である。   For example, referring to FIG. 3, a humidifier is shown in which a plurality of pumping materials 23 are erected upward from the water storage tank 21 to form a water-absorbing humidifier. However, although a plurality of plate-shaped pumping materials are used in FIG. 3, it may be cylindrical instead of plate-like, and the number is not plural but one is effective. When water is stored in the water storage tank 21, the plurality of pumping materials 23 pumps water, the water oozes on the surface of the pumping material 23, and the surface of the pumping material 23 is always wet with water. Then, according to the humidity in the atmosphere, moisture evaporates from the surface of the pumping material 23 into the atmosphere, thereby acting as a humidifier. Therefore, humidification can be performed only by placing such a humidifier indoors, and power such as electricity is not necessary. But the humidifier of this invention can raise and use a humidification capability by blowing from the back of the some pumping material 23 as needed.

以上、植物栽培設備及び加湿器の例を記載したが、これらに限定されないことは明らかである。   As mentioned above, although the example of plant cultivation equipment and a humidifier was described, it is clear that it is not limited to these.

実施例1
アルミナセラミックス
(1)高純度アルミナ粉末(AA-07,住友化学;平均粒径0.4μm)にFiber/(Fiber+Alumina)比で30mass%の炭素繊維(呉羽化学;20μmφ、数100μm長)を添加し、混練機を用いて1時間混練した。得られた混合粉末にメチルセルロース(400cP,ワコー純薬製)3mass%とポリカルボン酸アンモニウム(セルナD-305,中京油脂)0.6mass%および適量の蒸留水を添加し、さらに混練した。このとき得られた坏土の含水率は17.6%であった。
(2)続いて、小型真空土練機を用いて真空土練し、坏土内の気孔を取り除いた。
(3)その後、横型ピストン式押出成形機を用いて、10mmφの円柱に成形した。
(4)得られた成形体を湿度100%に保った容器に入れ、110℃24時間加熱して、メチルセルロースを熱ゲル化させた。その後、徐々に湿度を低下させながら24時間乾燥した。乾燥後1000℃で1時間で脱脂したのち、1600℃で2時間焼成した。
(5)得られた焼成体の相対密度は約60%であった。水銀圧入法による細孔径分布測定では約10μmの気孔径に鋭いピークが観察されるだけで、それ以外にピークは認められなかった。焼成体内部の微構造写真を図4に示す。気孔の平均直径は14μmであった。またSEM写真より求めた面積気孔率は、押出方向に垂直に切断した面が25.3%、押出方向に水平に切断した面の気孔面積率が41.0%と、垂直面より水平面の気孔率が高く、繊維は高い一次元5配向性を示していることがわかった。
(6)得られた長さ300 mmの焼成体をシャーレの上に立て、これに水を入れて揚水特性を評価した。その結果、試料の上端まで揚水できることが確認された。また、揚水量を見積もったところ、24 L/(m2・日)以上の揚水量を持っていた。なお、蒸発潜熱による表面温度の低下効果に必要な最低の給水量は約6L/(m2・日)とされている。
実施例2
コーディエライトセラミックス
60φ×400mmの大きさのコーディエライト焼成体を上と同様の条件で製造し、その揚水特性について調べた。まず、この焼成体1本の下端を水に漬け、揚水高さと浸漬け間との関係を測定したところ、図5のように変化した。この測定値から揚水高さの時間変化は、時間の0.44乗に比例する式〔(揚水高さ)=61.3×(揚水時間)0.44〕で近似できることが分かる。この式から8時間後に予測される揚水高さは約900mmと見積もられた。
Example 1
Alumina ceramics (1) Add high-fidelity alumina powder (AA-07, Sumitomo Chemical; average particle size 0.4μm) with 30mass% of fiber / (Fiber + Alumina) ratio carbon fiber (Kureha Chemical; 20μmφ, several 100μm long) And kneaded for 1 hour using a kneader. Methyl cellulose (400 cP, manufactured by Wako Pure Chemical Industries) 3 mass%, ammonium polycarboxylate (Selna D-305, Chukyo Yushi) 0.6 mass% and an appropriate amount of distilled water were added to the obtained mixed powder and further kneaded. The moisture content of the dredged soil obtained at this time was 17.6%.
(2) Subsequently, vacuum kneading was performed using a small vacuum kneader to remove pores in the clay.
(3) Thereafter, it was molded into a 10 mmφ cylinder using a horizontal piston type extruder.
(4) The obtained molded body was put into a container kept at a humidity of 100% and heated at 110 ° C. for 24 hours to heat-methylize methylcellulose. Then, it dried for 24 hours, reducing humidity gradually. After drying, it was degreased at 1000 ° C. for 1 hour and then calcined at 1600 ° C. for 2 hours.
(5) The relative density of the obtained fired body was about 60%. In the pore size distribution measurement by the mercury intrusion method, only a sharp peak was observed at a pore size of about 10 μm, and no other peaks were observed. FIG. 4 shows a microstructure photograph inside the fired body. The average diameter of the pores was 14 μm. In addition, the area porosity determined from the SEM photograph is 25.3% for the surface cut perpendicular to the extrusion direction, the pore area ratio for the surface cut horizontally in the extrusion direction is 41.0%, the porosity of the horizontal plane is higher than the vertical surface, It was found that the fiber showed high one-dimensional five-orientation.
(6) The obtained fired body having a length of 300 mm was placed on a petri dish, and water was added thereto to evaluate the pumping characteristics. As a result, it was confirmed that water could be pumped up to the upper end of the sample. The estimated yield was 24 L / (m 2 · day) or more. The minimum water supply required for the effect of lowering the surface temperature due to latent heat of vaporization is about 6L / (m 2 · day).
Example 2
Cordierite ceramics
A cordierite fired body with a size of 60φ × 400 mm was produced under the same conditions as above, and its pumping characteristics were examined. First, the lower end of one fired body was immersed in water, and the relationship between the pumping height and the immersion gap was measured, and the result was changed as shown in FIG. It can be seen from this measured value that the change in pumping height over time can be approximated by the formula [(pumping height) = 61.3 × (pumping time) 0.44 ] proportional to the 0.44th power of time. From this formula, the estimated pumping height after 8 hours was estimated to be about 900 mm.

次に、この試料の上に少量の綿を敷き、その上にもう1本試料を立てて、そのギャップを乗り越えて揚水することができるか否かについて調べた。その結果、揚水の速度は遅くなるが、2本目の試料に充分揚水できることが確かめられた。また、試料同士を直接接触させても、その接触面を越えて揚水できた。   Next, a small amount of cotton was laid on the sample, and another sample was put on it, and it was examined whether it was possible to overcome the gap and pump water. As a result, although the speed of pumping became slow, it was confirmed that the second sample could be pumped sufficiently. Moreover, even when the samples were brought into direct contact with each other, water could be pumped beyond the contact surface.

一方、一旦試料に水を給水させると、トータルで約800mmの高さの試料上端面は、下部からの給水が確保されている限りは濡れ続け、充分な揚水能力があることが確かめられた。
実施例3
実施例2で作製した長さ400mm、直径60mmの多孔体を上下に連ねて置き(高さ800mm)、上端面に付けた窪みの中にこけ玉を入れた。
On the other hand, once water was supplied to the sample, the upper end surface of the sample with a total height of about 800 mm continued to be wet as long as water supply from the lower part was secured, and it was confirmed that there was sufficient pumping capacity.
Example 3
A porous body having a length of 400 mm and a diameter of 60 mm prepared in Example 2 was placed in a row (height 800 mm), and a koke ball was placed in a dent provided on the upper end surface.

多孔体の下端を水中に浸漬させ、1週間経過後の状態を観察したところ、実験開始時と同様に湿った状態が維持されていた。
実施例4
実施例2で作製した長さ400mm、直径60mmの多孔体を上下に連ねて置き(高さ800mm)、多孔体の下端を水中に浸漬させた。
When the lower end of the porous body was immersed in water and the state after 1 week was observed, the wet state was maintained as at the start of the experiment.
Example 4
The porous body having a length of 400 mm and a diameter of 60 mm prepared in Example 2 was placed one above the other (height 800 mm), and the lower end of the porous body was immersed in water.

気温20〜26℃、相対湿度40〜60%の室内で蒸発量を測定したところ、約1000ml/日であった。この試験体の表面積は約1500cm2なので、0.67ml/cm2の蒸発量である。 When the amount of evaporation was measured in a room with an air temperature of 20 to 26 ° C. and a relative humidity of 40 to 60%, it was about 1000 ml / day. The surface area of the test body so about 1500 cm 2, which is the amount of evaporation of 0.67 ml / cm 2.

本発明の揚水材は、植物栽培設備や加湿器に用いることで産業上有用であることは明らかである。   It is clear that the pumping material of the present invention is industrially useful when used in plant cultivation facilities and humidifiers.

本発明の揚水材を用いた植物栽培設備の例を示す。The example of the plant cultivation equipment using the pumping material of this invention is shown. 本発明の揚水材を用いた植物栽培設備の他の例を示す。The other example of the plant cultivation equipment using the pumping material of this invention is shown. 本発明の揚水材を用いた加湿器の例を示す。The example of the humidifier using the pumping material of this invention is shown. 本発明の実施例で作成した揚水材の断面顕微鏡写真である。It is a cross-sectional microscope picture of the pumping material created in the Example of this invention. 本発明の実施例で作成した揚水材の揚水高さと浸漬け間との関係を示す。The relationship between the pumping height of the pumping material created in the Example of this invention and the immersion gap is shown.

符号の説明Explanation of symbols

1 貯水槽
2 水
3 揚水材
4、4’ 植物保持部
5 こけ玉
6 土壌
7 草花
11 土壌保持手段
12 貯水部
13 土壌保持部
14 揚水材
21 貯水槽
22 水
23 揚水材
DESCRIPTION OF SYMBOLS 1 Water tank 2 Water 3 Pumping material 4, 4 'Plant holding part 5 Koke ball 6 Soil 7 Flower 11 Soil holding means 12 Water storage part 13 Soil holding part 14 Pumping material 21 Water tank 22 Water 23 Pumping material

Claims (11)

径0.05〜300μmの気孔が連通しかつ一次元配向したセラミックス多孔体からなる揚水材。   A pumping material made of a ceramic porous body having pores having a diameter of 0.05 to 300 μm communicated and one-dimensionally oriented. 気孔率が10〜70%、長さが20cm〜2mである、請求項1に記載の揚水材。   The pumping material according to claim 1, wherein the porosity is 10 to 70% and the length is 20 cm to 2 m. 連通しかつ一次元配向した気孔が繊維状であり、連通気孔を構成する繊維状気孔のアスペクト比が10〜10,000である、請求項1または2に記載の揚水材。   The pumping material according to claim 1 or 2, wherein the pores communicated and one-dimensionally oriented are fibrous, and the aspect ratio of the fibrous pores constituting the continuous ventilation holes is 10 to 10,000. 揚水能力が50cm以上である、請求項1〜3のいずれか1項に記載の揚水材。   The pumping material of any one of Claims 1-3 whose pumping capacity is 50 cm or more. 径0.1〜60μm、長さ20μm〜3mm、アスペクト比が10〜10,000の繊維状の気孔が連通しかつ一次元配向したセラミックス多孔体からなり、セラミックス多孔体は、気孔率が30〜60%、かつ気孔の配向方向の多孔体の寸法が50cm〜1.2mである、請求項1〜4のいずれか1項に記載の揚水材。   It consists of a ceramic porous body in which fibrous pores having a diameter of 0.1 to 60 μm, a length of 20 μm to 3 mm, and an aspect ratio of 10 to 10,000 communicate and are one-dimensionally oriented. The ceramic porous body has a porosity of 30 to 30%. The pumping material according to any one of claims 1 to 4, wherein a dimension of the porous body in the orientation direction of pores is 60 cm to 1.2 m. セラミックス原料と分解性の繊維状または高アスペクト比の粒子状の気孔形成剤を含むスラリーまたはペーストを押出成形または射出成形して、気孔形成剤が一方向に配向した成形体を得、該成形体から該気孔形成剤を除去し、焼成する方法で製造された、請求項1〜5のいずれか1項に記載の揚水材。   A molded article in which the pore former is oriented in one direction is obtained by extrusion molding or injection molding a slurry or paste containing a ceramic raw material and a degradable fibrous or high aspect ratio particulate pore former, and the molded article The water pumping material according to any one of claims 1 to 5, which is produced by a method of removing the pore-forming agent from sinter and firing it. 請求項1〜6のいずれか1項に記載の揚水材を貯水部から植物への給水手段として用いたことを特徴とする植物栽培設備。   A plant cultivation facility, wherein the pumping material according to any one of claims 1 to 6 is used as a means for supplying water from a water storage section to a plant. 貯水槽と、前記貯水槽内から起立した前記揚水材と、前記揚水材に形成された植物保持部とを有する、請求項7に記載の植物栽培設備。   The plant cultivation equipment according to claim 7, comprising a water storage tank, the pumped water standing up from the water storage tank, and a plant holding part formed in the water pumping material. 上方が開放した土壌保持部と、前記土壌保持部の下方に存在する貯水部と、前記貯水部から前記土壌保持部へと延在する前記揚水材とを含む、請求項7に記載の植物栽培設備。   The plant cultivation according to claim 7, comprising: a soil holding part whose upper part is open; a water storage part existing below the soil holding part; and the pumping material extending from the water storage part to the soil holding part. Facility. 請求項1〜6のいずれか1項に記載の揚水材を吸水加湿材として用いたことを特徴とする加湿器。   A humidifier using the pumped water material according to any one of claims 1 to 6 as a water-absorbing humidifier. 貯水槽と、前記貯水槽から上方へ延在する前記揚水材からなる吸水加湿材を含む、請求項10に記載の加湿器。   The humidifier according to claim 10, comprising a water storage tank and a water-absorbing humidifier made of the pumping material extending upward from the water storage tank.
JP2007150471A 2007-06-06 2007-06-06 Water-pumping material and its use Pending JP2008301744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007150471A JP2008301744A (en) 2007-06-06 2007-06-06 Water-pumping material and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007150471A JP2008301744A (en) 2007-06-06 2007-06-06 Water-pumping material and its use

Publications (1)

Publication Number Publication Date
JP2008301744A true JP2008301744A (en) 2008-12-18

Family

ID=40231016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007150471A Pending JP2008301744A (en) 2007-06-06 2007-06-06 Water-pumping material and its use

Country Status (1)

Country Link
JP (1) JP2008301744A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038209A (en) * 2009-08-11 2011-02-24 Toyobo Co Ltd Water-liftable fiber structure
JP2011144498A (en) * 2010-01-12 2011-07-28 Tokyo Institute Of Technology Water supply system
JP2011145048A (en) * 2010-01-14 2011-07-28 Hiroaki Ishibashi Humidifying tool using tissue
JP2011144499A (en) * 2010-01-12 2011-07-28 Tokyo Institute Of Technology Evaporative cooling wall body
WO2012046698A1 (en) 2010-10-04 2012-04-12 住友電気工業株式会社 Water pumping pipe and water pumping device using same
JP2013005788A (en) * 2011-06-23 2013-01-10 Amemiya Kiki Kk Planting base
JP2017515456A (en) * 2014-05-16 2017-06-15 ソンホ チョ Automatic watering device for humidification of flowerpots
CN107166610A (en) * 2017-05-27 2017-09-15 李贤章 A kind of humidifier of office
JP7281851B1 (en) 2022-07-08 2023-05-26 株式会社Gcj Whole plant cultivation apparatus and cultivation method, and cultivation apparatus manufacturing method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137764U (en) * 1984-08-14 1986-03-08 金八郎 落合 Plant cultivation and ornamental equipment
JPH0666437A (en) * 1992-08-13 1994-03-08 Matsushita Electric Works Ltd Humidifier
JPH08100A (en) * 1994-06-17 1996-01-09 Gifu Plast Ind Co Ltd Planter for watering culture and stand frame supporting the same
JPH09275827A (en) * 1996-04-12 1997-10-28 Toyoda Spinning & Weaving Co Ltd Water-feeding nonwoven mat for agriculture and horticulture and its production
JP2000063184A (en) * 1998-08-13 2000-02-29 Daito Co Ltd Porous ceramic sintered product
JP2003219731A (en) * 2002-01-29 2003-08-05 Yoshimi Katayama Plant-mounting body
JP2003339231A (en) * 2002-05-28 2003-12-02 Sumitomo Forestry Co Ltd Planting base structure
JP2004022285A (en) * 2002-06-14 2004-01-22 Canon Inc Heating means and manufacturing method
JP2004051449A (en) * 2002-07-23 2004-02-19 Yasuhiro Imanishi Water absorptive porous ceramic body
JP2004099364A (en) * 2002-09-09 2004-04-02 Yamakawa Sangyo Kk Foamed ceramic shaped article and its producing process
JP2004150214A (en) * 2002-10-31 2004-05-27 Masaru Mizutani Outer wall structure for creating good environment
JP2004271156A (en) * 2003-03-06 2004-09-30 One Uiru:Kk Indoor natural humidification method and interior product with natural humidification function
JP2004290044A (en) * 2003-03-26 2004-10-21 Nishimatsu Constr Co Ltd Greening panel
JP2004298170A (en) * 2003-03-31 2004-10-28 Kuniyoshi Konishi Container used for cultivation and concurrently for transportation of potted plant
JP2005263537A (en) * 2004-03-17 2005-09-29 Rikogaku Shinkokai Method for manufacturing porous ceramic body having through-hole

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137764U (en) * 1984-08-14 1986-03-08 金八郎 落合 Plant cultivation and ornamental equipment
JPH0666437A (en) * 1992-08-13 1994-03-08 Matsushita Electric Works Ltd Humidifier
JPH08100A (en) * 1994-06-17 1996-01-09 Gifu Plast Ind Co Ltd Planter for watering culture and stand frame supporting the same
JPH09275827A (en) * 1996-04-12 1997-10-28 Toyoda Spinning & Weaving Co Ltd Water-feeding nonwoven mat for agriculture and horticulture and its production
JP2000063184A (en) * 1998-08-13 2000-02-29 Daito Co Ltd Porous ceramic sintered product
JP2003219731A (en) * 2002-01-29 2003-08-05 Yoshimi Katayama Plant-mounting body
JP2003339231A (en) * 2002-05-28 2003-12-02 Sumitomo Forestry Co Ltd Planting base structure
JP2004022285A (en) * 2002-06-14 2004-01-22 Canon Inc Heating means and manufacturing method
JP2004051449A (en) * 2002-07-23 2004-02-19 Yasuhiro Imanishi Water absorptive porous ceramic body
JP2004099364A (en) * 2002-09-09 2004-04-02 Yamakawa Sangyo Kk Foamed ceramic shaped article and its producing process
JP2004150214A (en) * 2002-10-31 2004-05-27 Masaru Mizutani Outer wall structure for creating good environment
JP2004271156A (en) * 2003-03-06 2004-09-30 One Uiru:Kk Indoor natural humidification method and interior product with natural humidification function
JP2004290044A (en) * 2003-03-26 2004-10-21 Nishimatsu Constr Co Ltd Greening panel
JP2004298170A (en) * 2003-03-31 2004-10-28 Kuniyoshi Konishi Container used for cultivation and concurrently for transportation of potted plant
JP2005263537A (en) * 2004-03-17 2005-09-29 Rikogaku Shinkokai Method for manufacturing porous ceramic body having through-hole

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038209A (en) * 2009-08-11 2011-02-24 Toyobo Co Ltd Water-liftable fiber structure
JP2011144498A (en) * 2010-01-12 2011-07-28 Tokyo Institute Of Technology Water supply system
JP2011144499A (en) * 2010-01-12 2011-07-28 Tokyo Institute Of Technology Evaporative cooling wall body
JP2011145048A (en) * 2010-01-14 2011-07-28 Hiroaki Ishibashi Humidifying tool using tissue
WO2012046698A1 (en) 2010-10-04 2012-04-12 住友電気工業株式会社 Water pumping pipe and water pumping device using same
JP2013005788A (en) * 2011-06-23 2013-01-10 Amemiya Kiki Kk Planting base
JP2017515456A (en) * 2014-05-16 2017-06-15 ソンホ チョ Automatic watering device for humidification of flowerpots
CN107166610A (en) * 2017-05-27 2017-09-15 李贤章 A kind of humidifier of office
JP7281851B1 (en) 2022-07-08 2023-05-26 株式会社Gcj Whole plant cultivation apparatus and cultivation method, and cultivation apparatus manufacturing method
JP2024008532A (en) * 2022-07-08 2024-01-19 株式会社Gcj Culture device and culture method of whole plant, and production method of culture device

Similar Documents

Publication Publication Date Title
JP2008301744A (en) Water-pumping material and its use
JP2014227324A (en) Porous ceramics sintered body and method for producing the same
JP6043853B2 (en) Porous ceramic sintered body and method for producing the same
US8544207B2 (en) Hydroponic plant growth systems with activated carbon and/or carbonized fiber substrates
CN105196398A (en) Preparation methods of ceramic slurry for air pressure extrusion type three-dimensional printing and biological ceramic bracket
JP4669925B2 (en) Method for producing ceramic porous body having through hole
CN1829667A (en) Method for the production of porous carbon-based molded bodies, and use thereof as cell culture carrier systems and culture systems
Yu et al. Fabrication of hierarchical polycaprolactone/gel scaffolds via combined 3D bioprinting and electrospinning for tissue engineering
CN101555159A (en) Directional orifice carbide biological ceramic material and preparation method thereof
CN101716369A (en) Preparation method for calcium polyphosphate-tricalcium phosphate bone bracket
US11396619B2 (en) Phase-change material and method for producing same
JP7016610B2 (en) Porous ceramics manufacturing method and porous ceramics
JP2008241124A (en) Humidifying member and humidifier using this member
KR20180001546A (en) Heat storage properties enhanced sspcm concrete and method for manufacturing the same
JP6088380B2 (en) Floating water purification system
JP2002142556A (en) Method for producing porous ceramic for planting
JP6427832B2 (en) Plant growing device
KR20150030468A (en) Complex porous ceramic flower pot
KR101494071B1 (en) Method for producing porous scaffolds with unidirectionally macro-channel and porous scaffolds with unidirectionally macro-channel manufactured thereby
JP2008295777A (en) Calcium phosphate-containing composite porous body and its production method
JP3734202B2 (en) Liquid core for transpiration and method for producing the same
JP5124763B2 (en) Ceramic porous body and method for producing the same
CN101555157A (en) Directional orifice oxide material and preparation method thereof
JP3728525B2 (en) Water-absorbing ceramic porous body
JP3242979U (en) flower pot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A131 Notification of reasons for refusal

Effective date: 20120313

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821