JP2008301643A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
JP2008301643A
JP2008301643A JP2007146406A JP2007146406A JP2008301643A JP 2008301643 A JP2008301643 A JP 2008301643A JP 2007146406 A JP2007146406 A JP 2007146406A JP 2007146406 A JP2007146406 A JP 2007146406A JP 2008301643 A JP2008301643 A JP 2008301643A
Authority
JP
Japan
Prior art keywords
conductor
positive
terminals
capacitor
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007146406A
Other languages
Japanese (ja)
Other versions
JP4501964B2 (en
Inventor
Kazuhisa Mori
和久 森
Takashi Ikimi
高志 伊君
Kosei Kishikawa
岸川  孝生
Tomoji Sakota
友治 迫田
Naoto Onuma
大沼  直人
Kiyoharu Hiruta
清玄 蛭田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007146406A priority Critical patent/JP4501964B2/en
Priority to CN200810008919XA priority patent/CN101316077B/en
Publication of JP2008301643A publication Critical patent/JP2008301643A/en
Priority to HK09101538.8A priority patent/HK1122406A1/en
Application granted granted Critical
Publication of JP4501964B2 publication Critical patent/JP4501964B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase capacity of a power conversion device without enlarging dimensions of the device. <P>SOLUTION: This device has the first conductor pole having a plate-shaped part in which a positive pole terminal or a negative pole terminal of a capacitor is connected and which is disposed roughly in parallel to a flat surface on which each terminal is disposed so as to cover the capacitors group and a part which is connected on DC side of the first power conversion circuit and located in a vertical posture to the flat surface, and the second conductor pole having a plate-shaped part in the same way, a part which is connected with the vertical part of the first conductor pole and is located in a vertical posture to the flat surface and a part which is connected on the DC side of the second power converting circuit and is located in a vertical posture to the flat surface. This structure increases freedom of a position of the connecting terminal and reduces wiring length between the first/second power converting circuits and a smoothing capacitor, thus reducing imbalance of current flowing in each capacitor, and increasing capacity without enlarging the power conversion device. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、コンデンサを複数並列接続した回路を含む電力変換装置に関する。   The present invention relates to a power conversion device including a circuit in which a plurality of capacitors are connected in parallel.

絶縁ゲート型バイポーラトランジスタ(IGBT)等の高速半導体スイッチング素子を用いた電力変換装置が様々な分野で使われている。近年、半導体技術の進歩により大容量半導体モジュールが実現され、更に半導体モジュールを複数並列接続して大容量化を図られることもある。   Power conversion devices using high-speed semiconductor switching elements such as insulated gate bipolar transistors (IGBTs) are used in various fields. In recent years, large-capacity semiconductor modules have been realized due to advances in semiconductor technology, and a large capacity may be achieved by connecting a plurality of semiconductor modules in parallel.

電力変換装置において半導体モジュールを並列接続して大容量化した場合には、インバータの直流電源部分を担う平滑コンデンサも充放電電流が増大するため、複数のコンデンサを並列接続、かつ電圧によっては直列接続されることが多い。コンデンサを並列接続した場合には、各コンデンサの電流分担を均等化しないと責務の重いコンデンサで使用条件あるいは寿命が決まってしまうため、各コンデンサに流れる電流をバランスさせることが必要となる。   When a semiconductor module is connected in parallel to increase the capacity in a power converter, the smoothing capacitor that handles the DC power supply of the inverter also increases the charge / discharge current, so multiple capacitors are connected in parallel and, depending on the voltage, connected in series Often done. When capacitors are connected in parallel, if the current sharing of each capacitor is not equalized, the use condition or the life is determined by the capacitor with heavy duty, so it is necessary to balance the current flowing through each capacitor.

並列接続の電流均等化に寄与する主な要因は、コンデンサ特性の差異及び配線インダクタンスの差異である。このうち、コンデンサ特性の差異については並列素子間で特性を揃えるように選別するなどの策が講じられることが多いが、配線インダクタンスの差異は構造設計の段階で検討される。   The main factors contributing to current equalization in parallel connection are differences in capacitor characteristics and differences in wiring inductance. Of these, for differences in capacitor characteristics, measures such as selecting the characteristics to be uniform among parallel elements are often taken, but differences in wiring inductance are considered at the stage of structural design.

特許文献1(特開2001−245480号公報)の図1及び図3には、板状導体によりコンデンサが4並列/2直列接続されている場合の構造が示されている。同特許文献の図10に示されているように、コンデンサ上方にある半導体モジュール部分の寸法とコンデンサ部分の寸法が概略同じである場合には、装置全体としては極端に大型化しない。しかし、半導体モジュールの大容量化が進み、同等の寸法でコンデンサの大容量化を図る際に、コンデンサの並列されている方向の寸法が極端に大きくなるため、装置全体としては歪な寸法となる。このため、半導体スイッチング素子までの配線長が長くなり、コンデンサ間で電流不均等が生ずる。このような電流不均等を見込んでコンデンサの定格電流または定格電圧を大きくする必要があるので、コンデンサが大きくなり装置が大型化する。   FIG. 1 and FIG. 3 of Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-245480) show a structure in which capacitors are connected in parallel / two series in a plate-like conductor. As shown in FIG. 10 of the patent document, when the size of the semiconductor module portion above the capacitor is substantially the same as the size of the capacitor portion, the entire device is not extremely enlarged. However, when the capacity of the semiconductor module is increased and the capacity of the capacitor is increased with the same dimension, the dimension in the direction in which the capacitors are arranged in parallel is extremely large. . For this reason, the wiring length to the semiconductor switching element becomes long, and current non-uniformity occurs between the capacitors. Since it is necessary to increase the rated current or the rated voltage of the capacitor in consideration of such current non-uniformity, the capacitor becomes larger and the apparatus becomes larger.

特開2001−245480号公報JP 2001-245480 A

本発明が解決しようとする課題は、電力変換装置におけるコンデンサの並列接続時における電流不均等を抑制して、装置寸法を大きくすることなく電力変換装置の大容量化を図ることである。   The problem to be solved by the present invention is to suppress current non-uniformity when capacitors are connected in parallel in the power converter, and to increase the capacity of the power converter without increasing the size of the apparatus.

上記の課題を解決するために、コンデンサの正極端子または負極端子が接続され、かつコンデンサ群上を覆うように、各端子が配置される平面に略平行に配置される板状部分と、第1の電力変換回路の直流側に接続され、かつ前記平面に対して垂直な部分とを有する第1の導体電極(712,722,714,724,731,741)と、同様の板状部分と、第1の導体電極の垂直部分に接続され、かつ前記平面に対して垂直な部分と、第2の電力変換回路の直流側に接続され、かつ前記平面に対して垂直な部分とを有する第2の導体電極(713,723,715,725,732,742)とを備える。   In order to solve the above-described problem, a plate-like portion that is connected to a positive electrode terminal or a negative electrode terminal of a capacitor and is arranged substantially parallel to a plane on which each terminal is arranged so as to cover the capacitor group; A first conductor electrode (712, 722, 714, 724, 731, 741) having a portion connected to the DC side of the power conversion circuit and perpendicular to the plane, and a similar plate-like portion; A second portion connected to a vertical portion of the first conductor electrode and perpendicular to the plane, and a portion connected to the DC side of the second power conversion circuit and perpendicular to the plane. Conductor electrodes (713, 723, 715, 725, 732, 742).

上記解決手段によれば、第1及び第2の電力変換回路共、板状部分を有する導体でコンデンサと接続されるので、配線インダクタンスが低減できる。さらに、接続端子の位置の自由度が大きく、第1及び第2の電力変換回路と平滑コンデンサ間の配線長を低減することが容易になる。これらにより、各コンデンサに流れる電流の不均等が緩和できるので、電力変換装置を大きくすることなく大容量化が図れる。   According to the above solution, since the first and second power conversion circuits are connected to the capacitor by the conductor having a plate-like portion, the wiring inductance can be reduced. Furthermore, the degree of freedom of the position of the connection terminal is large, and it becomes easy to reduce the wiring length between the first and second power conversion circuits and the smoothing capacitor. As a result, the unevenness of the current flowing through each capacitor can be alleviated, so that the capacity can be increased without enlarging the power converter.

以下本発明の実施形態について図面を用いながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず図3に本発明が実施される電力変換装置の主回路構成を示す。図3に示すように、3相交流電源5から昇圧リアクトル61〜63,自己消弧スイッチング素子であるIGBT・RP〜TNで構成され交流電力を直流電力に変換する順変換回路(コンバータ回路),平滑コンデンサ1,IGBT・UP〜WNで構成され直流電力を交流電力に変換する逆変換回路(インバータ回路)を介してモータ4に任意の交流電力を供給する。なお、図3中の各スイッチング素子及び平滑コンデンサは、電力変換装置の電力容量に応じてそれぞれ複数個並列または直並列に接続されたものから構成される。   First, FIG. 3 shows a main circuit configuration of a power converter in which the present invention is implemented. As shown in FIG. 3, a forward conversion circuit (converter circuit) configured from a three-phase AC power source 5 to boost reactors 61 to 63 and IGBT / RP to TN which are self-extinguishing switching elements and converts AC power into DC power, Arbitrary AC power is supplied to the motor 4 through an inverse conversion circuit (inverter circuit) that is configured by the smoothing capacitor 1 and IGBTs UP to WN and converts DC power to AC power. In addition, each switching element and smoothing capacitor in FIG. 3 are comprised from what was respectively connected in parallel or in series parallel according to the power capacity of a power converter device.

図4に、順変換回路1相と逆変換回路1相とこれらの直流側に接続される平滑コンデンサの一部とから構成される1相分の構成を示す。   FIG. 4 shows a configuration for one phase composed of one phase of the forward conversion circuit, one phase of the reverse conversion circuit, and a part of the smoothing capacitor connected to these DC sides.

平滑コンデンサ1は、6並列接続された正極側コンデンサ111〜116及び、同じく6並列接続された負極側コンデンサ121〜126の6並列/2直列、合計12個のコンデンサからなるコンデンサ群で構成されている。この平滑コンデンサ1に、順変換回路1相を構成する正極側スイッチング素子RP1,RP2及び負極側スイッチング素子RN1,RN2が接続されている。同様に、逆変換回路1相を構成する正極側スイッチング素子UP1,UP2及び負極側スイッチング素子UN1,UN2が接続されている。   The smoothing capacitor 1 is composed of a capacitor group consisting of 12 capacitors in total, 6 parallel / 2 series of 6 parallel connected positive side capacitors 111 to 116 and 6 parallel connected negative side capacitors 121 to 126. Yes. Connected to the smoothing capacitor 1 are positive-side switching elements RP1 and RP2 and negative-side switching elements RN1 and RN2 that constitute one phase of the forward conversion circuit. Similarly, positive side switching elements UP1 and UP2 and negative side switching elements UN1 and UN2 constituting one phase of the inverse conversion circuit are connected.

ここでは、スイッチング素子として正極側及び負極側それぞれ2並列の場合を想定したが、変換器容量に応じた並列数にすれば良い。また、正極側と負極側とが一体化されたモジュールを用いてもよい。   Here, the case where two positive electrodes and two negative electrodes are arranged in parallel is assumed as the switching element, but the number of parallel elements may be set in accordance with the converter capacity. A module in which the positive electrode side and the negative electrode side are integrated may be used.

図5にスイッチング素子RP1〜RN2,UP1〜UN2及びコンデンサ111〜126の配置例を示す。図5(a)は側面図、(b)は正面図、(c)はA−A′矢視図である。スイッチング素子は放熱器31の表面にUP1〜UN2、裏面にRP1〜RN2が取り付けられている。ここでは放熱器31としては、ヒートパイプ方式を用いてファン32で強制空冷している。コンデンサは横に3列、奥行方向に4段並べている。また、各コンデンサは正極端子と負極端子を有し、これらの端子が略同一平面に配置される。なお、放熱器31は、その表面及び裏面すなわち半導体スイッチング素子の取り付け面がコンデンサの各端子が配置される平面に対して略垂直になるように配置される。これにより、電力変換装置全体の大きさを低減できる。   FIG. 5 shows an arrangement example of the switching elements RP1 to RN2, UP1 to UN2, and the capacitors 111 to 126. 5A is a side view, FIG. 5B is a front view, and FIG. 5C is a view taken along the line AA ′. As for the switching element, UP1-UN2 is attached to the surface of the heat radiator 31, and RP1-RN2 is attached to the back surface. Here, the radiator 31 is forcibly cooled by a fan 32 using a heat pipe system. The capacitors are arranged in three rows horizontally and four steps in the depth direction. Each capacitor has a positive electrode terminal and a negative electrode terminal, and these terminals are arranged on substantially the same plane. The radiator 31 is arranged such that the front surface and back surface thereof, that is, the mounting surface of the semiconductor switching element is substantially perpendicular to the plane on which each terminal of the capacitor is arranged. Thereby, the magnitude | size of the whole power converter device can be reduced.

図1は、本発明の第1の実施形態である電力変換装置における、コンデンサを直並列に接続する導体の構造を示す。   FIG. 1 shows the structure of a conductor that connects capacitors in series and parallel in the power conversion device according to the first embodiment of the present invention.

図1では、7つの板状導体が4層に積層されている。ここでは導体板の層間に挟まれている絶縁板については図示していない。また、コンデンサについても一番手前の4個(113,116,123,126)のみ図示した(図5(c)参照)。   In FIG. 1, seven plate-like conductors are laminated in four layers. Here, the insulating plates sandwiched between the conductor plates are not shown. Also, only the frontmost four capacitors (113, 116, 123, 126) are shown (see FIG. 5C).

図2に、導体断面方向から見た概略構造を示す。図1,図2ともに発明の実施形態を説明するためのものなので、寸法は実際とは異なる。   FIG. 2 shows a schematic structure viewed from the conductor cross-sectional direction. Since both FIG. 1 and FIG. 2 are for explaining the embodiment of the invention, the dimensions are different from the actual ones.

正側コンデンサ113,116の正極端子1131,1161は第1の正極導体711の正極端子7113,7116に(図1中に仮想線で結んだように)接続される。ここで、第1の正極導体711よりもコンデンサ側に積層されているコンデンサ中間導体70との絶縁を確保するために、コンデンサ中間導体70には円形の繰り抜き穴を設ける。これら繰り抜き穴を通ってから、正側コンデンサ113,116の正極端子1131,1161はそれぞれ正極導体711の正極端子7113,7116に接続される。   The positive terminals 1131 and 1161 of the positive capacitors 113 and 116 are connected to the positive terminals 7113 and 7116 of the first positive conductor 711 (as shown by imaginary lines in FIG. 1). Here, in order to ensure insulation from the capacitor intermediate conductor 70 laminated on the capacitor side with respect to the first positive electrode conductor 711, the capacitor intermediate conductor 70 is provided with a circular punching hole. After passing through these holes, the positive terminals 1131 and 1161 of the positive capacitors 113 and 116 are connected to the positive terminals 7113 and 7116 of the positive conductor 711, respectively.

さらに、外側に配置された正側コンデンサ111,112,113の正極端子1111,1121,1131は第2の正極導体712の板状部分にも正極端子7121,7122,7123で接続される。   Further, the positive terminals 1111, 1121, 1131 of the positive capacitors 111, 112, 113 arranged on the outside are connected to the plate-like portion of the second positive conductor 712 through positive terminals 7121, 7122, 7123.

なお、導体の端子(7113,7123など)の詳細構造は図示していないが、パイプ状のものを挟んだり、あるいは導体の一部を繰り抜き、折り曲げるなどの構成が適用できる。なお各導体におけるコンデンサ接続用の端子は各導体の板状部分に設けられる。これら板状部分は、コンデンサ群上を覆うように、かつ各コンデンサの正極端子及び負極端子が配置される平面に略平行に配置される。このような板状部分を有することにより、導体のインダクタンスが低減される。そして、導体の板状部分に設けられるコンデンサ接続用の端子の位置はコンデンサの端子のほぼ直上であり、両者がほぼ最短距離で接続される。これにより、両端子間の配線長が短縮し、インダクタンスが低減される。   Although the detailed structure of the conductor terminals (7113, 7123, etc.) is not shown in the figure, a configuration in which a pipe-shaped object is sandwiched or a part of the conductor is pulled out and bent is applicable. In addition, the terminal for capacitor | condenser connection in each conductor is provided in the plate-shaped part of each conductor. These plate-like portions are arranged so as to cover the capacitor group and substantially parallel to a plane on which the positive electrode terminal and the negative electrode terminal of each capacitor are arranged. By having such a plate-like portion, the inductance of the conductor is reduced. And the position of the terminal for capacitor | condenser connection provided in the plate-shaped part of a conductor is just right above the terminal of a capacitor | condenser, and both are connected by the shortest distance. Thereby, the wiring length between both terminals is shortened and inductance is reduced.

正側コンデンサの負極端子1132,1162はコンデンサ中間導体70の端子7013,7016に接続され、負側コンデンサ123,126の正極端子1231,1261はコンデンサ中間導体70の端子7023,7026に接続される。   The negative terminals 1132 and 1162 of the positive capacitor are connected to terminals 7013 and 7016 of the capacitor intermediate conductor 70, and the positive terminals 1231 and 1261 of the negative capacitors 123 and 126 are connected to terminals 7023 and 7026 of the capacitor intermediate conductor 70.

負側コンデンサ123,126の負極端子1232,1262は第1の負極導体721の負極端子7213,7216に(図1中に仮想線で結んだように)接続される。ここで、第1の負極導体721よりもコンデンサ側に積層されているコンデンサ中間導体70との絶縁を確保するために、コンデンサ中間導体70には円形の繰り抜き穴を設ける。これら繰り抜き穴を通ってから、負側コンデンサ123,126の負極端子1232,1262はそれぞれ負極導体721の負極端子7213,7216に接続される。   The negative terminals 1232 and 1262 of the negative capacitors 123 and 126 are connected to the negative terminals 7213 and 7216 of the first negative conductor 721 (as shown by imaginary lines in FIG. 1). Here, in order to ensure insulation from the capacitor intermediate conductor 70 laminated on the capacitor side with respect to the first negative electrode conductor 721, the capacitor intermediate conductor 70 is provided with a circular punching hole. After passing through these holes, the negative terminals 1232 and 1262 of the negative capacitors 123 and 126 are connected to the negative terminals 7213 and 7216 of the negative conductor 721, respectively.

さらに、外側に配置された負側コンデンサ124,125,126の負極端子1242,1252,1262は第2の負極導体722の板状部分にもそれぞれ負極端子7224,7225,7226で接続される。   Further, the negative terminals 1242, 1252, and 1262 of the negative capacitors 124, 125, and 126 arranged on the outside are connected to the plate-like portion of the second negative conductor 722 through negative terminals 7224, 7225, and 7226, respectively.

第2の正極導体712には、ここでは図示していないインバータの正極に接続される導体(インバータ正極導体)と接続するための接続端子712a,712b,712cを設けている。これらの接続端子は第2の正極導体の板状部分から略垂直に折り曲げられた部分からなる。すなわち、これらの接続端子は、第2の正極導体において、各コンデンサの正極及び負極端子が配置される平面に対して略垂直な部分である。このような接続端子により、図5における半導体スイッチング素子と平滑コンデンサとの間の配線を短くできる。   The second positive electrode conductor 712 is provided with connection terminals 712a, 712b, and 712c for connection to a conductor (inverter positive electrode conductor) connected to the positive electrode of the inverter not shown here. These connection terminals are formed by a portion bent substantially perpendicularly from the plate-like portion of the second positive electrode conductor. That is, these connection terminals are portions that are substantially perpendicular to the plane in which the positive and negative terminals of each capacitor are arranged in the second positive conductor. Such a connection terminal can shorten the wiring between the semiconductor switching element and the smoothing capacitor in FIG.

また、同じくここでは図示していないコンバータの正極に接続される導体(コンバータ正極導体)は、第3の正極導体713の接続端子713d,713e,713fに接続される。第3の正極導体713の接続端子713a,713b,713cはそれぞれ第2の正極導体の接続端子712a,712b,712cに接続される。第3の正極導体713における接続端子713a〜cと接続端子713d〜fとの間は板状部分で接続される。これらの接続端子は、第2の正極導体712と同様に、板状部分から略垂直に折り曲げられた部分からなる。ここで、インバータ正極導体との接続端子部分の構造は図6(a)のように、折り曲げた接続端子712cと713cとが正対するようになり、さらにインバータ正極導体の接続端子PCも接続端子712cと接触させてネジ止めする構造である。   Similarly, a conductor (converter positive conductor) connected to the positive electrode of the converter not shown here is connected to the connection terminals 713d, 713e, and 713f of the third positive electrode conductor 713. The connection terminals 713a, 713b, and 713c of the third positive electrode conductor 713 are connected to the connection terminals 712a, 712b, and 712c of the second positive electrode conductor, respectively. The connection terminals 713a to 713c and the connection terminals 713d to 713f of the third positive electrode conductor 713 are connected by a plate-like portion. Similar to the second positive electrode conductor 712, these connection terminals are formed by a portion bent substantially vertically from the plate-like portion. Here, as shown in FIG. 6A, the structure of the connection terminal portion connected to the inverter positive conductor is such that the bent connection terminals 712c and 713c face each other, and the inverter positive conductor connection terminal PC is also connected to the connection terminal 712c. It is the structure which is made to contact with and is screwed.

なお、図6(a)の接続部分では、図の左から713c,712c,Pcの順番で接続したが、別の順番でも構わない。ただし、コンデンサ及びコンデンサ部分の積層導体を組み立ててからインバータ導体と接続する手順を取る場合には、インバータ導体の接続端子Pcが図の右側(装置としては外側になる)にした方が、インバータ導体を外側から押し当てれば良いので接続作業が容易である。   In addition, in the connection part of Fig.6 (a), it connected in order of 713c, 712c, and Pc from the left of the figure, but another order may be sufficient. However, when taking the procedure of connecting the capacitor and the laminated conductor of the capacitor portion and then connecting to the inverter conductor, the inverter conductor connecting terminal Pc should be on the right side of the figure (outside as the device). The connection work is easy because it is only necessary to press from the outside.

第2の負極導体722には、ここでは図示していないコンバータの負極に接続される導体(コンバータ負極導体)と接続するための接続端子722d,722e,722fを設けている。これらの接続端子は第2の負極導体の板状部分から略垂直に折り曲げられた部分からなる。すなわち、これらの接続端子は、第2の負極導体において、各コンデンサの正極及び負極端子が配置される平面に対して略垂直な部分である。このような接続端子により、図5における半導体スイッチング素子と平滑コンデンサとの間の配線を短くできる。   The second negative electrode conductor 722 is provided with connection terminals 722d, 722e, and 722f for connection to a conductor (converter negative electrode conductor) that is not illustrated here. These connection terminals are formed by a portion bent substantially perpendicularly from the plate-like portion of the second negative electrode conductor. That is, these connection terminals are portions that are substantially perpendicular to the plane on which the positive and negative electrode terminals of each capacitor are arranged in the second negative electrode conductor. Such a connection terminal can shorten the wiring between the semiconductor switching element and the smoothing capacitor in FIG.

また、図示していないインバータの負極に接続される導体(インバータ負極導体)は、第3の負極導体723の接続端子723a,723b,723cに接続される。第3の負極導体723の接続端子723d,723e,723fはそれぞれ第2の負極導体の接続端子722d,722e,722fに接続される。第3の負極導体723における接続端子723a〜cと接続端子723d〜fとの間は板状部分で接続される。これらの接続端子は、第2の負極導体722と同様に、板状部分から略垂直に折り曲げられた部分からなる。この接続端子部分の構造は、図6(b)のように、接続端子722fと723fとを正対させたところに左側からコンバータ負極導体の接続端子Nfを接続させている。   A conductor (inverter negative conductor) connected to the negative electrode of the inverter (not shown) is connected to the connection terminals 723a, 723b, and 723c of the third negative electrode conductor 723. The connection terminals 723d, 723e, and 723f of the third negative electrode conductor 723 are connected to the connection terminals 722d, 722e, and 722f of the second negative electrode conductor, respectively. The connection terminals 723a to 723c and the connection terminals 723d to 723f of the third negative electrode conductor 723 are connected by a plate-like portion. Similar to the second negative electrode conductor 722, these connection terminals are formed by a portion bent substantially vertically from the plate-like portion. As shown in FIG. 6B, the structure of this connection terminal portion is such that the connection terminal Nf of the converter negative electrode conductor is connected from the left side when the connection terminals 722f and 723f are directly opposed.

インバータ負極導体と第3の負極導体723との接続は、図2において、インバータ負極導体の接続端子Ncが第3の負極導体723の接続端子723cの右側に接触するような構造である。   The connection between the inverter negative electrode conductor and the third negative electrode conductor 723 is such that the connection terminal Nc of the inverter negative electrode conductor contacts the right side of the connection terminal 723c of the third negative electrode conductor 723 in FIG.

コンバータ正極導体と第3の正極導体713との接続は、図2において、コンバータ正極導体の接続端子Pfが第3の正極導体713の接続端子713fの左側に接触するような構造である。   The connection between the converter positive electrode conductor and the third positive electrode conductor 713 is such that the connection terminal Pf of the converter positive electrode conductor contacts the left side of the connection terminal 713f of the third positive electrode conductor 713 in FIG.

上述したように、インバータ正極導体及びコンデンサの正極端子が接続される第2の正極導体と、この第2の正極導体と接続されかつコンバータ正極導体と接続される第3の正極導体を備えることにより、並びにコンバータ負極導体及びコンデンサの負極端子が接続される第2の負極導体と、この第2の負極導体と接続されかつインバータ負極導体と接続される第3の負極導体を備えることにより、インバータ及びコンバータ共、比較的広い板状部分を有する導体で平滑コンデンサと接続でき、配線インダクタンスが低減できる。さらに、接続端子の位置の自由度が大きくなり、インバータ及びコンバータと平滑コンデンサ間の配線長を低減できる。これらにより、各コンデンサに流れる電流のアンバランスが緩和できる。   As described above, by including the second positive conductor to which the inverter positive conductor and the positive terminal of the capacitor are connected, and the third positive conductor that is connected to the second positive conductor and connected to the converter positive conductor. And a second negative electrode conductor to which the converter negative electrode conductor and the negative electrode terminal of the capacitor are connected, and a third negative electrode conductor connected to the second negative electrode conductor and connected to the inverter negative electrode conductor. Both converters can be connected to a smoothing capacitor with a conductor having a relatively wide plate-like portion, and wiring inductance can be reduced. Furthermore, the degree of freedom of the position of the connection terminal is increased, and the wiring length between the inverter and converter and the smoothing capacitor can be reduced. As a result, the unbalance of the current flowing through each capacitor can be reduced.

なお、本実施形態では、コンデンサとして電解コンデンサを適用しているが(図4参照)、フィルムコンデンサ等でも構わない。   In this embodiment, an electrolytic capacitor is used as the capacitor (see FIG. 4), but a film capacitor or the like may be used.

また、コンデンサを2直列接続しており、コンデンサの個体差による分担電圧不均等を抑制するために分圧抵抗を接続しても良い。絶縁確保の問題が無ければコンデンサ端子から直接接続すれば良いし、そうでない場合は導体板の一部を引き出して折り曲げるなどして設けられる端子に接続しても良い。   Further, two capacitors may be connected in series, and a voltage dividing resistor may be connected in order to suppress uneven voltage sharing due to individual differences between capacitors. If there is no problem of ensuring insulation, the capacitor terminal may be connected directly, and if not, it may be connected to a terminal provided by pulling out a part of the conductor plate and bending it.

図1で示したコンデンサ導体は1相分であり、これを3相分並べることで電力変換装置全体を構成する。そのときに正極及び負極はそれぞれ3相分を電気的に接続する。   The capacitor conductor shown in FIG. 1 is for one phase, and the entire power conversion device is configured by arranging the capacitor conductors for three phases. At that time, the positive electrode and the negative electrode are electrically connected to each other for three phases.

第2の正極導体の相間接続端子712dと隣相の712eとを接続、第3の正極導体の相間接続端子713gと隣相の713hとを、713iと隣相の713jとを接続する。   The interphase connection terminal 712d of the second positive electrode conductor is connected to the adjacent phase 712e, the interphase connection terminal 713g of the third positive electrode conductor is connected to the adjacent phase 713h, and 713i is connected to the adjacent phase 713j.

負極側も同様に、第2の負極導体の相間接続端子722gと隣相の722hとを接続、第3の負極導体の相間接続端子723gと隣相の723hとを、723iと隣相の723jとを接続する。   Similarly, on the negative electrode side, the interphase connection terminal 722g of the second negative electrode conductor and the adjacent phase 722h are connected, the interphase connection terminal 723g of the third negative electrode conductor and the adjacent phase 723h are connected, 723i and the adjacent phase 723j, Connect.

これらの相間接続端子同士の接続(図示せず)は、板状導体で行うが、間隔が広い場合には、正極側と負極側とを絶縁を確保して積層することによりインダクタンスを低減することができる。   Connection between these interphase connection terminals (not shown) is performed by a plate-like conductor, but when the interval is wide, the inductance is reduced by ensuring that the positive electrode side and the negative electrode side are laminated with insulation. Can do.

本実施形態の動作を図7及び図8を用いて説明する。図7及び図8は図2の導体断面の図に概略の電流向きを示している。   The operation of this embodiment will be described with reference to FIGS. 7 and 8 show a schematic current direction in the conductor cross-sectional view of FIG.

図7はコンバータ(図2のRP,RN)側のスイッチング時のPN一巡回路すなわち、正側コンデンサ正極から放電してコンバータ正極導体接続端子(Pfのみ図示)へ電流が流れ、コンバータ負極導体接続端子(Nfのみ図示)から負側コンデンサ負極に電流が戻ってくる回路における概略電流経路について示している。   FIG. 7 shows a PN circuit during switching on the converter (RP, RN in FIG. 2) side, that is, discharge from the positive capacitor positive electrode and current flows to the converter positive conductor connection terminal (only Pf is shown). A schematic current path in a circuit in which current returns from a terminal (only Nf is shown) to the negative capacitor negative electrode is shown.

正側コンデンサ111〜116(113,116のみ図示)の正極端子1111〜1161(1131,1161のみ図示)からコンバータ正極導体接続端子Pd〜Pf(Pfのみ図示)への電流経路としては、外側にあるコンデンサ111〜113(113のみ図示)については正極端子1111〜1131(1131のみ図示)から第1の正極導体の正極端子7111〜7113(7113のみ図示)及び第2の正極導体の正極端子7121〜7123(7123のみ図示)を介して第2の正極導体712に電流が流れ込む。   Current paths from positive terminals 1111 to 1161 (only 1113 and 1161 are shown) of positive side capacitors 111 to 116 (only 113 and 116 are shown) to converter positive conductor connection terminals Pd to Pf (only Pf is shown) are outside. For the capacitors 111 to 113 (only 113 shown), the positive terminals 1111 to 1131 (only 1131 shown) to the positive terminals 7111 to 7113 (only 7113 shown) of the first positive conductor and the positive terminals 7121 to 7123 of the second positive conductor are shown. A current flows into the second positive conductor 712 via (only 7123 is shown).

また、内側にあるコンデンサ114〜116(116のみ図示)の正極端子1141〜1161(1161のみ図示)から第1の正極導体の正極端子7114〜7116(7116のみ図示)を介して第1の正極導体711に流れて、それから第2の正極導体の正極端子7121〜7123(7123のみ図示)を介して第2の正極導体712に電流が流れる。   In addition, the first positive electrode conductor from the positive terminals 1141 to 1161 (only 1161 shown) of the capacitors 114 to 116 (only 116 shown) inside through the positive terminals 7114 to 7116 (only 7116 shown) of the first positive electrode conductor. 711, and then a current flows to the second positive conductor 712 via the positive terminals 7121-7123 (only 7123 shown) of the second positive conductor.

このとき、外側コンデンサ111〜113からの電流経路に比べて、内側コンデンサ114〜116からの電流経路は長くなるが、図7中で楕円囲み部分で逆向き電流が対向しているため、配線インダクタンスが低減する。従って、外側及び内側の電流経路のインダクタス不均等は抑制され、外側コンデンサと内側コンデンサの電流分担不均等が低減される。   At this time, the current paths from the inner capacitors 114 to 116 are longer than the current paths from the outer capacitors 111 to 113, but the reverse currents are opposed to each other in the oval box in FIG. Is reduced. Therefore, the inductance unevenness of the outer and inner current paths is suppressed, and the current sharing unevenness of the outer capacitor and the inner capacitor is reduced.

第2の正極導体712からは、接続端子712aから713a、712bから713b及び712cから713c(このうち712c,713cのみ図示)へと第3の正極導体713に電流が流れ、第3の正極導体から接続端子713d,713e,713f(713fのみ図示)を介して、コンバータ正極導体の接続端子Pd,Pe,Pf(Pfのみ図示)に電流が流れる。   From the second positive electrode conductor 712, current flows through the third positive electrode conductor 713 from the connection terminals 712a to 713a, 712b to 713b, and 712c to 713c (only 712c and 713c are shown). A current flows through the connection terminals Pd, Pe, Pf (only Pf is shown) of the converter positive electrode conductor via the connection terminals 713d, 713e, 713f (only 713f is shown).

コンバータ負極導体の接続端子Nd,Ne,Nf(Nfのみ図示)からの電流は、第2の負極導体722の接続端子722d,722e,722f(722fのみ図示)を介して第2の負極導体722に流れ、負極端子7224〜7226(7226のみ図示)を介して第1の負極導体721に流れる。   Current from the connection terminals Nd, Ne, Nf (only Nf shown) of the converter negative electrode conductor is supplied to the second negative electrode conductor 722 via the connection terminals 722d, 722e, 722f (only 722f shown) of the second negative electrode conductor 722. And flows to the first negative electrode conductor 721 via the negative terminals 7224 to 7226 (only 7226 is shown).

さらに、この電流の一部は第1の負極導体721から負極端子7211〜7213(7213のみ図示)を介して負側コンデンサ121〜123(123のみ図示)の負極端子1212,1222,1232(1232のみ図示)に流れる。残りの電流は第2の負極導体の負極端子7214〜7216(7216のみ図示)を介して外側にある負側コンデンサ124〜126の負極端子1242,1252,1262(1262のみ図示)に流れる。この場合でも図中の楕円囲み部分が逆向き電流対向部を構成するため電流分担不均等が低減される。   Further, a part of this current flows from the first negative conductor 721 to the negative terminals 1212, 1222, and 1232 (1232 only) of the negative capacitors 121 to 123 (123 only) through the negative terminals 7211 to 7213 (only 7213 illustrated). Flow). The remaining current flows to the negative terminals 1242, 1252, and 1262 (only 1262 shown) of the negative capacitors 124 to 126 on the outside via the negative terminals 7214 to 7216 (only 7216 shown) of the second negative conductor. Even in this case, the non-uniform current sharing is reduced because the oval-enclosed portion in the figure forms a reverse current facing portion.

負側コンデンサ121〜126の各正極端子と正側コンデンサ111〜116の各負極端子とは中間導体70によって接続されている。   The positive terminals of the negative capacitors 121 to 126 and the negative terminals of the positive capacitors 111 to 116 are connected by an intermediate conductor 70.

図8はインバータ(図2のUP,UN)側のスイッチング時のPN一巡回路すなわち、正側コンデンサの正極から放電してインバータ正極導体接続端子(Pcのみ図示)へ電流が流れ、インバータ負極導体接続端子(Ncのみ図示)から負側コンデンサ負極に電流が戻ってくる回路における概略電流経路について示している。電流経路は図中の矢印で示しており、図7の場合と同様なので説明は省略する。   FIG. 8 shows a PN circuit during switching on the inverter (UP, UN in FIG. 2) side, that is, discharge from the positive electrode of the positive capacitor and current flows to the inverter positive conductor connection terminal (only Pc is shown). It shows a schematic current path in a circuit in which current returns from a connection terminal (only Nc is shown) to the negative capacitor negative electrode. The current path is indicated by an arrow in the figure and is the same as in FIG.

本発明の第2の実施形態について、図9〜図12を用いて説明する。   A second embodiment of the present invention will be described with reference to FIGS.

図10に示すように、コンデンサが6並列/2直列で三相電力変換器の平滑コンデンサ部分を構成している。   As shown in FIG. 10, the capacitors are 6 parallel / 2 series to form the smoothing capacitor portion of the three-phase power converter.

図9にコンデンサ導体の構造を示す。なお、ここで導体板間に挟まれる絶縁板は図示していない。なお、各導体における板状部分,垂直部分や繰り抜き穴などの構成は、図1の実施形態と同様である。   FIG. 9 shows the structure of the capacitor conductor. Here, the insulating plate sandwiched between the conductor plates is not shown. Note that the configuration of each conductor, such as a plate-like portion, a vertical portion, and a punch hole, is the same as that of the embodiment of FIG.

図9において、コンデンサは横に4列、奥行方向に3段配置されており、正側コンデンサ111〜116が右側2列に、負側コンデンサ121〜126が左側2列に配置されている。図9では一番手前側の負側コンデンサ126,負側コンデンサ123,正側コンデンサ116及び正側コンデンサ113のみ図示している。   In FIG. 9, capacitors are arranged in four rows horizontally and in three rows in the depth direction, with positive capacitors 111 to 116 arranged in the right two columns and negative capacitors 121 to 126 arranged in the two left columns. In FIG. 9, only the negative capacitor 126, the negative capacitor 123, the positive capacitor 116, and the positive capacitor 113 on the foremost side are shown.

図9において最も右側の列の正側コンデンサ111〜113の正極端子(1131のみ図示)は第1の正極導体714の正極端子7141〜7143に接続され、残りの正側コンデンサ114〜116の正極端子(1161のみ図示)は第2の正極導体715の正極端子(7151〜7153)に接続される。   In FIG. 9, the positive terminals (only 1131 shown) of the positive capacitors 111 to 113 in the rightmost column are connected to the positive terminals 7141 to 7143 of the first positive conductor 714, and the positive terminals of the remaining positive capacitors 114 to 116. (Only 1161 is shown) is connected to the positive terminal (7151-7153) of the second positive conductor 715.

正側コンデンサ111〜116の負極端子(1132,1162のみ図示)はコンデンサ中間導体70の端子7011〜7016に接続され、負側コンデンサ121〜126の正極端子(1231,1261のみ図示)はコンデンサ中間導体70の端子7021〜7026に接続される。   The negative terminals (only 1132 and 1162 are shown) of the positive capacitors 111 to 116 are connected to the terminals 7011 to 7016 of the capacitor intermediate conductor 70, and the positive terminals (1231 and 1261 are only shown) of the negative capacitors 121 to 126 are connected to the capacitor intermediate conductor. 70 terminals 7021 to 7026 are connected.

図9において最も左側の列の負側コンデンサ124〜126の負極端子(1262のみ図示)は第1の負極導体724の負極端子7241〜7243に接続され、残りの負側コンデンサ121〜123の負極端子(1232のみ図示)は第2の負極導体725の負極端子(7251〜7253)に接続される。   In FIG. 9, the negative terminals (only 1262 shown) of the negative capacitors 124 to 126 in the leftmost column are connected to the negative terminals 7241 to 7243 of the first negative conductor 724, and the negative terminals of the remaining negative capacitors 121 to 123. (Only 1232 is shown) is connected to the negative terminal (7251-7253) of the second negative conductor 725.

第1の正極導体714のインバータの正極(図示していないPu〜Pw)への接続端子714u〜714wと、第2の正極導体715のインバータの正極(図示していないPu〜Pw)への接続端子715u〜715wとでインバータの正極へと接続する。   Connection of the first positive electrode conductor 714 to the positive terminals (Pu to Pw not shown) of the inverter, and connection of the second positive electrode conductor 715 to the positive electrodes (Pu to Pw not shown) of the inverter Terminals 715u to 715w are connected to the positive electrode of the inverter.

第2の正極導体715にはコンバータの正極(図示していないPr〜Pt)への接続端子715r〜715tでコンバータの正極へと接続する。   The second positive electrode conductor 715 is connected to the positive electrode of the converter through connection terminals 715r to 715t to the positive electrode (Pr to Pt not shown) of the converter.

第1の負極導体724のコンバータの負極(図示していないNr〜Nt)への接続端子724r〜724tと、第2の負極導体725のコンバータの負極(図示していないNr〜Nt)への接続端子725r〜725tとでコンバータの負極へと接続する。   Connection terminals 724r to 724t of the first negative electrode conductor 724 to the negative electrode (Nr to Nt, not shown) of the converter, and connection of the second negative electrode conductor 725 to the negative electrode (Nr to Nt, not shown) of the converter. Terminals 725r to 725t are connected to the negative electrode of the converter.

第2の負極導体725にはインバータの負極(図示していないNu〜Nw)への接続端子725r〜725tでインバータの負極へと接続する。   The second negative electrode conductor 725 is connected to the negative electrode of the inverter through connection terminals 725r to 725t to the negative electrode (Nu to Nw not shown) of the inverter.

接続端子の構造については、図6と同様であるため説明は省略する。   The structure of the connection terminal is the same as that in FIG.

図11はコンバータ(図2のRP,RN)側のスイッチング時のPN一巡回路すなわち、正側コンデンサの正極端子から放電してコンバータ正極導体接続端子(Ptのみ図示)へ電流が流れ、コンバータ負極導体接続端子(Ntのみ図示)から負側コンデンサ負極に電流が戻ってくる回路における概略電流経路について示している。   FIG. 11 shows a PN circuit during switching on the converter (RP, RN in FIG. 2) side, that is, discharge from the positive terminal of the positive capacitor and current flows to the converter positive conductor connection terminal (only Pt is shown), A schematic current path in a circuit in which a current returns from a conductor connection terminal (only Nt is shown) to the negative capacitor negative electrode is shown.

正側コンデンサ111〜116(113,116のみ図示)の正極端子1111〜1161(1131,1161のみ図示)からコンバータ正極導体接続端子Pr〜Pt(Ptのみ図示)への電流経路としては、外側にあるコンデンサ111〜113(113のみ図示)については正極端子1111〜1131(1131のみ図示)から第1の正極導体714の正極端子7141〜7143(7143のみ図示)及び第1の正極導体714及び第2の正極導体715の接続端子714u〜714w及び715u〜715wを介して第2の正極導体715に電流が流れ込む。   Current paths from positive terminals 1111 to 1161 (only 1113 and 1161 only) of positive side capacitors 111 to 116 (only 113 and 116 are shown) to converter positive electrode conductor connection terminals Pr to Pt (only Pt is shown) are outside. Regarding the capacitors 111 to 113 (only 113 shown), the positive terminals 1111 to 1131 (only 1131 shown) to the positive terminals 7141 to 7143 (only 7143 shown) of the first positive conductor 714, the first positive conductor 714 and the second positive electrode conductor 714 are shown. A current flows into the second positive electrode conductor 715 via the connection terminals 714 u to 714 w and 715 u to 715 w of the positive electrode conductor 715.

また、内側にあるコンデンサ114〜116(116のみ図示)の正極端子1141〜1161(1161のみ図示)から第2の正極導体715の正極端子7151〜7153(7153のみ図示)を介して第2の正極導体715に電流が流れる。   Further, the second positive electrode is connected to the second positive electrode conductors 715 through the positive terminals 7151 to 7153 (only 7153 is shown) from the positive terminals 1141 to 1161 (only 1161 is shown) of the capacitors 114 to 116 (only 116 is shown) inside. A current flows through the conductor 715.

このとき、外側コンデンサ111〜113からの電流経路は、内側コンデンサ114〜116からの電流経路に比べて長くなるが、正側コンデンサと負側コンデンサとを接続する中間導体70を流れる電流と逆向き電流が対向した構成になっているため、電流経路のインダクタス不均等は抑制され、電流分担不均等も低減されている。   At this time, the current path from the outer capacitors 111 to 113 is longer than the current path from the inner capacitors 114 to 116, but in the opposite direction to the current flowing through the intermediate conductor 70 that connects the positive and negative capacitors. Since the currents are opposed to each other, non-uniform inductance in the current path is suppressed, and non-uniform current sharing is also reduced.

第2の正極導体715からは、接続端子715r,715s,715t(715tのみ図示)を介して、コンバータ正極導体の接続端子Pr,Ps,Pt(Ptのみ図示)に電流が流れていく。   From the second positive electrode conductor 715, current flows to the connection terminals Pr, Ps, Pt (only Pt shown) of the converter positive electrode conductor via the connection terminals 715r, 715s, 715t (only 715t shown).

コンバータ負極導体の接続端子Nr,Ns,Nt(Ntのみ図示)からの電流の一部は、第1の負極導体724の接続端子724r,724s,724t(724tのみ図示)を介して第1の負極導体724に流れ、負極端子7241〜7243(7243のみ図示)を介して外側にある負側コンデンサ124〜126の負極端子1242,1252,1262(1262のみ図示)に流れる。   A part of the current from the connection terminals Nr, Ns, Nt (only Nt is shown) of the converter negative electrode conductor is connected to the first negative electrode via the connection terminals 724r, 724s, 724t (only 724t is shown) of the first negative electrode conductor 724. It flows to the conductor 724 and flows to the negative terminals 1242, 1252, and 1262 (only 1262 shown) of the negative side capacitors 124 to 126 located outside via the negative terminals 7241 to 7243 (only 7243 shown).

残りの電流は第2の負極導体725の接続端子725r,725s,725t(725tのみ図示)を介して第2の負極導体725に流れ、負極端子7251〜7253(7253のみ図示)を介して内側にある負側コンデンサ121〜123の負極端子1212,1222,1232(1232のみ図示)に流れる。   The remaining current flows to the second negative electrode conductor 725 via the connection terminals 725r, 725s, and 725t (only 725t shown) of the second negative electrode conductor 725, and inward via the negative electrode terminals 7251 to 7253 (only 7253 shown). It flows to the negative terminals 1212, 1222, and 1232 (only 1232 are shown) of certain negative capacitors 121 to 123.

このとき、コンバータ負極導体の接続端子(図ではNt)に、第1の負極導体724及び第2の負極導体725の両方が接続されていて、内側コンデンサ(図では123)と外側コンデンサ(図では126)とに流れる電流経路の長さは概ね等しくなるために、コンデンサ電流分担の不均等が低減される。   At this time, both the first negative electrode conductor 724 and the second negative electrode conductor 725 are connected to the connection terminal (Nt in the drawing) of the converter negative electrode conductor, and the inner capacitor (123 in the drawing) and the outer capacitor (123 in the drawing). 126), the lengths of the current paths flowing through the capacitor 126 are substantially equal, so that the non-uniformity of the capacitor current sharing is reduced.

図12はインバータ(図2のUP,UN)側のスイッチング時のPN一巡回路すなわち、正側コンデンサ正極から放電してインバータ正極導体接続端子(Pwのみ図示)へ電流が流れ、インバータ負極導体接続端子(Nwのみ図示)から負側コンデンサ負極に電流が戻ってくる回路における概略電流経路について示している。   FIG. 12 shows a PN circuit during switching on the inverter (UP, UN in FIG. 2) side, that is, discharge from the positive capacitor positive electrode, current flows to the inverter positive conductor connection terminal (only Pw is shown), and inverter negative conductor connection A schematic current path in a circuit in which current returns from the terminal (only Nw is shown) to the negative capacitor negative electrode is shown.

この場合も図11の場合と同様のため、電流経路に関する説明は省略するが、インバータ正極端子Pwへの電流が第1の正極導体714の接続端子(図では714w)と第2の正極導体715の接続端子(図では715w)の両方が接続されているため、外側コンデンサ(図では113)と内側コンデンサ(図では116)とから流れる電流経路の長さは概ね等しくなるために、コンデンサ電流分担の不均等が低減される。   Since this case is also the same as that in FIG. 11, description on the current path is omitted, but the current to the inverter positive terminal Pw is connected to the connection terminal (714 w in the figure) of the first positive conductor 714 and the second positive conductor 715. Since both of the connection terminals (715w in the figure) are connected, the lengths of the current paths flowing from the outer capacitor (113 in the figure) and the inner capacitor (116 in the figure) are substantially equal. Non-uniformity is reduced.

なお、本実施形態においては、各導体ともコンデンサの端子が接続されるので、配線インダクタンスが低減されると共に、各導体がコンデンサ端子との接続部によって支持されるので、導体部の組立作業が容易になる。   In this embodiment, since the capacitor terminals are connected to each conductor, the wiring inductance is reduced and each conductor is supported by the connection portion with the capacitor terminal, so that the assembly work of the conductor portion is easy. become.

本発明の第3の実施形態について、図13〜図19を用いて説明する。   A third embodiment of the present invention will be described with reference to FIGS.

図13に示した例では、コンデンサは直列接続せずに6個並列接続した構成となっており、正極側はPa〜Pfの6箇所で、負極側はNa〜Ndの4箇所で接続する構成である。   In the example shown in FIG. 13, six capacitors are connected in parallel without being connected in series, and the positive electrode side is connected at six points Pa to Pf, and the negative electrode side is connected at four points Na to Nd. It is.

図14に導体構造を示す。ただし、絶縁板は表示していない。また、図15に導体断面構造の構成を示す。   FIG. 14 shows a conductor structure. However, the insulating plate is not shown. FIG. 15 shows the configuration of the conductor cross-sectional structure.

第1の正極側導体731は図の右端で折り返した構成となっていて、逆向き対向電流の部分を構成している。また、第1の負極側導体741は図の左端で折り返した構造となっていて、同様に逆向き対向電流の部分を構成している。   The first positive electrode-side conductor 731 has a configuration folded at the right end of the drawing, and constitutes a portion of the counter current in the reverse direction. Further, the first negative electrode side conductor 741 has a structure folded at the left end in the figure, and similarly constitutes a portion of the counter current in the reverse direction.

また、前述の実施形態と同様に第2の正極側導体732及び第2の負極側導体742もそれぞれコンデンサの正極端子及び負極端子と接続される。   Similarly to the above-described embodiment, the second positive electrode side conductor 732 and the second negative electrode side conductor 742 are also connected to the positive electrode terminal and the negative electrode terminal of the capacitor, respectively.

図16に図14及び図15において上面から見た第1の正極側導体731及び第2の正極側導体732を示す。また、図15における矢視A−A′図も示す。   FIG. 16 shows the first positive electrode side conductor 731 and the second positive electrode side conductor 732 as viewed from above in FIGS. 14 and 15. Moreover, the arrow AA 'figure in FIG. 15 is also shown.

第1の正極側導体731はコンデンサ接続端子7311〜7316によりコンデンサ101〜106の正極端子1011〜1061に接続される。また、第2の正極側導体732はコンデンサ接続端子7322,7325により第1の正極側導体731に接続される。   The first positive electrode side conductor 731 is connected to the positive terminals 1011 to 1061 of the capacitors 101 to 106 by capacitor connecting terminals 7311 to 7316. The second positive electrode side conductor 732 is connected to the first positive electrode side conductor 731 by capacitor connection terminals 7322 and 7325.

第1の正極側導体731は接続端子731a〜731fによりコンバータ及びインバータの正極Pa〜Pfに接続される。さらに、第2の正極側導体732も接続端子732a〜732fによりコンバータ及びインバータの正極Pa〜Pfに接続される。   The first positive electrode side conductor 731 is connected to the positive electrodes Pa to Pf of the converter and the inverter by connection terminals 731a to 731f. Furthermore, the second positive electrode side conductor 732 is also connected to the positive electrodes Pa to Pf of the converter and the inverter by connection terminals 732a to 732f.

図17に図14及び図15において上面から見た第1の負極側導体741及び第2の負極側導体742を示す。また、図15における矢視B−B′図も示す。   FIG. 17 shows the first negative electrode side conductor 741 and the second negative electrode side conductor 742 as viewed from above in FIGS. 14 and 15. Moreover, the arrow BB 'figure in FIG. 15 is also shown.

第1の負極側導体741はコンデンサ接続端子7411〜7416によりコンデンサ101〜106の負極端子1012〜1062に接続される。また、第2の負極側導体742はコンデンサ接続端子7422,7425により第1の負極側導体741に接続される。   The first negative electrode side conductor 741 is connected to the negative electrode terminals 1012 to 1062 of the capacitors 101 to 106 by capacitor connection terminals 7411 to 7416. Further, the second negative electrode side conductor 742 is connected to the first negative electrode side conductor 741 by capacitor connection terminals 7422 and 7425.

第1の負極側導体741は接続端子741a〜741dによりコンバータ及びインバータの負極Na〜Ndに接続される。さらに、第2の負極側導体742も接続端子742a〜742dによりコンバータ及びインバータの負極Na〜Ndに接続される。   The first negative electrode side conductor 741 is connected to the negative electrodes Na to Nd of the converter and the inverter by connection terminals 741a to 741d. Further, the second negative electrode side conductor 742 is also connected to the negative electrodes Na to Nd of the converter and the inverter by connection terminals 742a to 742d.

図18及び図19に、コンバータ及びインバータのPN一巡回路における電流経路を示す。図18は、電流がコンデンサからインバータの正極Pa〜Pcへと放電され、インバータの負極Na,Nbから戻ってくる場合の電流経路である。図中に楕円で囲んだ部分が逆向き電流が対向している部分となる。   18 and 19 show current paths in the PN circuit of the converter and the inverter. FIG. 18 shows a current path when the current is discharged from the capacitor to the positive electrodes Pa to Pc of the inverter and returns from the negative electrodes Na and Nb of the inverter. The part enclosed by the ellipse in the figure is the part where the reverse current is opposed.

図19は、電流がコンデンサからコンバータの正極Pd〜Pfへと放電され、コンバータの負極Nc,Ndから戻ってくる場合の経路を示す。同様に図中に楕円で囲んだ部分が逆向きが電流対向している部分となる。   FIG. 19 shows a path when the current is discharged from the capacitor to the positive electrodes Pd to Pf of the converter and returns from the negative electrodes Nc and Nd of the converter. Similarly, the part surrounded by an ellipse in the figure is the part where the opposite direction is opposite to the current.

このような配線導体構成とすることで、並列接続コンデンサ間の電流不均等が抑制され、装置全体の小型化が図れる。   By adopting such a wiring conductor configuration, current non-uniformity between parallel-connected capacitors is suppressed, and the entire apparatus can be reduced in size.

なお、ここでは電力変換器の平滑コンデンサ部分を複数のコンデンサで並列接続した場合について示したが、正極と負極とを有する電気部品、例えば、半導体モジュールや電池などに本発明を適用しても良い。   Although the case where the smoothing capacitor portion of the power converter is connected in parallel by a plurality of capacitors is shown here, the present invention may be applied to an electrical component having a positive electrode and a negative electrode, for example, a semiconductor module or a battery. .

本発明の第1の実施形態における配線構造を示す。The wiring structure in the 1st Embodiment of this invention is shown. 本発明の第1の実施形態における配線構造の断面模式図を示す。The cross-sectional schematic diagram of the wiring structure in the 1st Embodiment of this invention is shown. 本発明を実施した電力変換装置の回路構成を示す。The circuit structure of the power converter device which implemented this invention is shown. 本発明の第1の実施形態を適用した回路の構成を示す。1 shows a configuration of a circuit to which a first embodiment of the present invention is applied. 本発明の第1の実施形態を適用した電力変換装置の実装構造例を示す。The example of the mounting structure of the power converter device to which the 1st Embodiment of this invention is applied is shown. 本発明の第1の実施例形態における接続端子の概略構造を示す。The schematic structure of the connection terminal in the 1st Example form of this invention is shown. 本発明の第1の実施形態における電流経路を説明するための図を示す。The figure for demonstrating the current pathway in the 1st Embodiment of this invention is shown. 本発明の第1の実施形態における電流経路を説明するための図を示す。The figure for demonstrating the current pathway in the 1st Embodiment of this invention is shown. 本発明の第2の実施形態における配線構造を示す。The wiring structure in the 2nd Embodiment of this invention is shown. 本発明の第2の実施形態を適用した回路の構成を示す。The structure of the circuit to which the 2nd Embodiment of this invention is applied is shown. 本発明の第2の実施形態における電流経路を説明するための図を示す。The figure for demonstrating the current pathway in the 2nd Embodiment of this invention is shown. 本発明の第2の実施形態における電流経路を説明するための図を示す。The figure for demonstrating the current pathway in the 2nd Embodiment of this invention is shown. 本発明の第3の実施形態を適用した回路の構成を示す。The structure of the circuit to which the 3rd Embodiment of this invention is applied is shown. 本発明の第3の実施形態における配線構造を示す。The wiring structure in the 3rd Embodiment of this invention is shown. 本発明の第3の実施形態における配線構造を示す。The wiring structure in the 3rd Embodiment of this invention is shown. 本発明の第3の実施形態における正極側導体の構造を示す。The structure of the positive electrode side conductor in the 3rd Embodiment of this invention is shown. 本発明の第3の実施形態における負極側導体の構造を示す。The structure of the negative electrode side conductor in the 3rd Embodiment of this invention is shown. 本発明の第3の実施形態における電流経路を説明するための図を示す。The figure for demonstrating the current pathway in the 3rd Embodiment of this invention is shown. 本発明の第3の実施形態における電流経路を説明するための図を示す。The figure for demonstrating the current pathway in the 3rd Embodiment of this invention is shown.

符号の説明Explanation of symbols

1 平滑コンデンサ
4 モータ
5 電源
31 放熱器
32 ファン
61〜63 リアクトル
101〜106,111〜116,121〜126 コンデンサ
RP,SP,TP,UP,VP,WP,RN,SN,TN,UN,VN,WN 自己消弧スイッチング素子(還流ダイオード含む)
DESCRIPTION OF SYMBOLS 1 Smoothing capacitor 4 Motor 5 Power supply 31 Radiator 32 Fans 61-63 Reactors 101-106, 111-116, 121-126 Capacitors RP, SP, TP, UP, VP, WP, RN, SN, TN, UN, VN, WN self-extinguishing switching element (including freewheeling diode)

Claims (6)

第1及び第2の電力変換回路と、
前記第1及び第2の電力変換回路の直流側に接続され、正極端子及び負極端子を有するコンデンサを複数個並列または直並列に接続されたものからなり、前記正極端子及び前記負極端子が略同一平面に配置されるコンデンサ群と、
を備える電力変換装置において、
複数の前記正極端子及び負極端子の内の一方の端子が接続され、かつ前記コンデンサ群上を覆うように前記平面に略平行に配置される板状部分と、前記第1の電力変換回路の直流側に接続され、かつ前記平面に対して垂直な部分と、を有する第1の導体電極と、
前記コンデンサ群上を覆うように前記平面に略平行に配置される板状部分と、前記第1の導体電極の前記垂直な部分に接続され、かつ前記平面に対して垂直な部分と、前記第2の電力変換回路の直流側に接続され、かつ前記平面に対して垂直な部分とを有する第2の導体電極と、
を備えることを特徴とする電力変換装置。
First and second power conversion circuits;
The first and second power conversion circuits are connected to the DC side, and a plurality of capacitors each having a positive terminal and a negative terminal are connected in parallel or in series. The positive terminal and the negative terminal are substantially the same. A group of capacitors arranged in a plane;
In a power converter comprising:
A plate-like portion that is connected to one of the plurality of positive terminals and negative terminals and is arranged substantially parallel to the plane so as to cover the capacitor group, and a direct current of the first power conversion circuit A first conductor electrode having a portion connected to the side and perpendicular to the plane;
A plate-like portion disposed substantially parallel to the plane so as to cover the capacitor group; a portion connected to the perpendicular portion of the first conductor electrode and perpendicular to the plane; A second conductor electrode connected to the DC side of the two power conversion circuits and having a portion perpendicular to the plane;
A power conversion device comprising:
請求項1において、複数の前記一方の端子が接続され、前記コンデンサ群上を覆うように前記平面に略平行に配置される板状部分を有し、この板状部分と前記第1の導体電極の前記板状部分とが往復電流が流れるように対向する第3の導体電極を備えることを特徴とする電力変換装置。   2. The plate-like portion according to claim 1, wherein a plurality of the one terminals are connected, and the plate-like portion is arranged substantially parallel to the plane so as to cover the capacitor group. The plate-like portion and the first conductor electrode A power conversion device comprising a third conductor electrode facing the plate-like portion so that a reciprocating current flows. 請求項1において、前記第2の導体電極に複数の前記一方の端子が接続されることを特徴とする電力変換装置。   The power conversion device according to claim 1, wherein a plurality of the one terminals are connected to the second conductor electrode. 請求項1において、前記第1の導体電極は、前記第1の電極の前記板状部分に続く折り曲げ部と前記折り曲げ部に続く他の板状部分を有し、前記他の板状部分は前記コンデンサ群上を覆うように前記平面に略平行に配置され、前記第1の電極の前記板状部分と前記他の板状部分とが往復電流が流れるように対向することを特徴とする電力変換装置。   2. The first conductor electrode according to claim 1, wherein the first conductor electrode has a bent portion that follows the plate-like portion of the first electrode and another plate-like portion that follows the bent portion, and the other plate-like portion is The power conversion is arranged substantially parallel to the plane so as to cover a capacitor group, and the plate-like portion of the first electrode and the other plate-like portion face each other so that a reciprocating current flows. apparatus. 第1及び第2の電力変換回路と、
前記第1及び第2の電力変換回路の直流側に接続され、正極端子及び負極端子を有するコンデンサを複数個並列または直並列に接続されたものからなり、前記正極端子及び前記負極端子が略同一平面に配置されるコンデンサ群と、
を備える電力変換装置において、
複数の前記正極端子が接続され、かつ前記コンデンサ群上を覆うように前記平面に略平行に配置される板状部分と、前記第1の電力変換回路の直流側の正極に接続され、かつ前記平面に対して垂直な部分と、を有する第1の導体電極と、
前記コンデンサ群上を覆うように前記平面に略平行に配置される板状部分と、前記第1の導体電極の前記垂直な部分に接続され、かつ前記平面に対して垂直な部分と、前記第2の電力変換回路の直流側の正極に接続され、かつ前記平面に対して垂直な部分とを有する第2の導体電極と、
複数の前記負極端子が接続され、かつ前記コンデンサ群上を覆うように前記平面に略平行に配置される板状部分と、前記第2の電力変換回路の直流側の負極に接続され、かつ前記平面に対して垂直な部分と、を有する第3の導体電極と、
前記コンデンサ群上を覆うように前記平面に略平行に配置される板状部分と、前記第3の導体電極の前記垂直な部分に接続され、かつ前記平面に対して垂直な部分と、前記第1の電力変換回路の直流側の負極に接続され、かつ前記平面に対して垂直な部分とを有する第4の導体電極と、
を備えることを特徴とする電力変換装置。
First and second power conversion circuits;
The positive and negative terminals are connected to the DC side of the first and second power conversion circuits, and a plurality of capacitors each having a positive terminal and a negative terminal are connected in parallel or in series. The positive terminal and the negative terminal are substantially the same. A group of capacitors arranged in a plane;
In a power converter comprising:
A plurality of the positive terminals are connected, and are connected to a plate-like portion disposed substantially parallel to the plane so as to cover the capacitor group, to a positive pole on the DC side of the first power conversion circuit, and A first conductor electrode having a portion perpendicular to the plane;
A plate-like portion disposed substantially parallel to the plane so as to cover the capacitor group; a portion connected to the perpendicular portion of the first conductor electrode and perpendicular to the plane; A second conductor electrode connected to the positive electrode on the direct current side of the power conversion circuit 2 and having a portion perpendicular to the plane;
A plurality of the negative electrode terminals connected to each other and connected to a plate-like portion disposed substantially parallel to the plane so as to cover the capacitor group; and a negative electrode on the DC side of the second power conversion circuit; and A third conductor electrode having a portion perpendicular to the plane;
A plate-like portion disposed substantially parallel to the plane so as to cover the capacitor group; a portion connected to the perpendicular portion of the third conductor electrode and perpendicular to the plane; A fourth conductor electrode connected to the negative electrode on the DC side of one power conversion circuit and having a portion perpendicular to the plane;
A power conversion device comprising:
請求項1〜5のいずれか1項において、前記第1の電力変換回路,前記第2の電力変換回路及び前記コンデンサ群が、それぞれインバータ,コンバータ及び平滑コンデンサであることを特徴とする電力変換装置。   6. The power conversion device according to claim 1, wherein the first power conversion circuit, the second power conversion circuit, and the capacitor group are an inverter, a converter, and a smoothing capacitor, respectively. .
JP2007146406A 2007-06-01 2007-06-01 Power converter Expired - Fee Related JP4501964B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007146406A JP4501964B2 (en) 2007-06-01 2007-06-01 Power converter
CN200810008919XA CN101316077B (en) 2007-06-01 2008-01-25 Electric inverter
HK09101538.8A HK1122406A1 (en) 2007-06-01 2009-02-18 Electrical inversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146406A JP4501964B2 (en) 2007-06-01 2007-06-01 Power converter

Publications (2)

Publication Number Publication Date
JP2008301643A true JP2008301643A (en) 2008-12-11
JP4501964B2 JP4501964B2 (en) 2010-07-14

Family

ID=40106953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146406A Expired - Fee Related JP4501964B2 (en) 2007-06-01 2007-06-01 Power converter

Country Status (3)

Country Link
JP (1) JP4501964B2 (en)
CN (1) CN101316077B (en)
HK (1) HK1122406A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193593A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Power converter
JP2012065374A (en) * 2010-09-14 2012-03-29 Hitachi Ltd Power converter and elevator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5475722B2 (en) * 2011-07-25 2014-04-16 株式会社日立製作所 Power converter
JP5867472B2 (en) * 2013-09-17 2016-02-24 株式会社安川電機 Power converter
JP6457800B2 (en) * 2014-11-28 2019-01-23 株式会社日立製作所 Power conversion device and railway vehicle equipped with the same
ES2909038T3 (en) 2016-10-11 2022-05-05 Alstom Transp Tech Auxiliary converter for railway vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306778A (en) * 1996-05-10 1997-11-28 Mitsubishi Electric Corp Capacitor and manufacture of capacitor
JP2000060145A (en) * 1998-08-17 2000-02-25 Ebara Densan Ltd Driving device
JP2001245480A (en) * 2000-02-28 2001-09-07 Hitachi Ltd Semiconductor power conversion device
JP2002084766A (en) * 2000-09-06 2002-03-22 Hitachi Ltd Semiconductor power converter
JP2007006571A (en) * 2005-06-22 2007-01-11 Mitsubishi Electric Corp Power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306778A (en) * 1996-05-10 1997-11-28 Mitsubishi Electric Corp Capacitor and manufacture of capacitor
JP2000060145A (en) * 1998-08-17 2000-02-25 Ebara Densan Ltd Driving device
JP2001245480A (en) * 2000-02-28 2001-09-07 Hitachi Ltd Semiconductor power conversion device
JP2002084766A (en) * 2000-09-06 2002-03-22 Hitachi Ltd Semiconductor power converter
JP2007006571A (en) * 2005-06-22 2007-01-11 Mitsubishi Electric Corp Power converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193593A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Power converter
JP2012065374A (en) * 2010-09-14 2012-03-29 Hitachi Ltd Power converter and elevator

Also Published As

Publication number Publication date
JP4501964B2 (en) 2010-07-14
CN101316077A (en) 2008-12-03
HK1122406A1 (en) 2009-05-15
CN101316077B (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4920677B2 (en) Power conversion device and assembly method thereof
US8213179B2 (en) Semiconductor element cooling structure
KR101574404B1 (en) Power converter
US7333331B2 (en) Power unit device and power converter device
JP5132175B2 (en) Power converter
JP4501964B2 (en) Power converter
US20130320896A1 (en) Modular inverter arrangement
JP6690478B2 (en) Power converter
JP5241421B2 (en) Power converter
JP2011015455A (en) Three-phase power converter
JP2005176555A (en) Power converter
JP2013042663A (en) Three-phase power conversion apparatus
JP2017118776A (en) Electric power conversion device
JP5732871B2 (en) Stack structure of power converter
JP6610193B2 (en) Power converter
CN108768195B (en) Power circuit, power module and converter
JP2013074721A (en) Power conversion device
JP2012110099A (en) Main circuit structure for power converter
JP7283429B2 (en) power converter
JP4827174B2 (en) Boost chopper device
JP6788940B2 (en) Power converter
JP2017112682A (en) Three-level power conversion device
JP2015154558A (en) Power conversion device
JP6134798B2 (en) Power converter
JP2019193443A (en) Electric power conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R151 Written notification of patent or utility model registration

Ref document number: 4501964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees