JP2008300673A - 発熱素子の冷却構造 - Google Patents
発熱素子の冷却構造 Download PDFInfo
- Publication number
- JP2008300673A JP2008300673A JP2007145766A JP2007145766A JP2008300673A JP 2008300673 A JP2008300673 A JP 2008300673A JP 2007145766 A JP2007145766 A JP 2007145766A JP 2007145766 A JP2007145766 A JP 2007145766A JP 2008300673 A JP2008300673 A JP 2008300673A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- inverter
- cooling structure
- phase
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
【課題】熱容量の大きな発熱素子の冷却構造を提供する。
【解決手段】発熱素子の冷却構造1000は、インバータ820と、インバータ820を支持する冷却器ケース1100と、を備える。冷却器ケース1100は、第一面1110と第二面1120とを有する。第二面1120側にインバータ820より幅広の放熱コア1200が設けられる。
【選択図】図3
【解決手段】発熱素子の冷却構造1000は、インバータ820と、インバータ820を支持する冷却器ケース1100と、を備える。冷却器ケース1100は、第一面1110と第二面1120とを有する。第二面1120側にインバータ820より幅広の放熱コア1200が設けられる。
【選択図】図3
Description
この発明は発熱素子の冷却構造に関し、より特定的には、熱容量を大きくすることが可能な発熱素子の冷却構造に関するものである。
従来、発熱素子の冷却構造は、たとえば特開2003−8264号公報(特許文献1)および特開2004−200333号公報(特許文献2)に開示されている。
特開2003−8264号公報
特開2004−200333号公報
従来の発熱素子の冷却構造では、熱容量が小さいため、昇温が早くなるという問題があった。
そこで、この発明は上述のような問題点を解決するためになされたもので、昇温速度を抑制することができる発熱素子の冷却構造を提供することを目的とする。
この発明に従った発熱素子の冷却構造は、発熱素子と、発熱素子を支持する支持部材とを備える。支持部材は、発熱素子側の第一面と、第一面と反対側の第二面とを有する。第二面側に発熱素子より幅広の柱状部が設けられている。この場合、柱状部に熱が拡散することで、発熱素子の急激な昇温を抑制することができる。
好ましくは、発熱素子の冷却構造は、柱状部に取付けられたフィンをさらに備える。
より好ましくは、柱状部は冷却水に浸される。
より好ましくは、柱状部は冷却水に浸される。
より好ましくは、柱状部は金属により構成される。
より好ましくは、 発熱素子の冷却構造は、第一面と発熱素子との間に設けられた絶縁部材をさらに備える。
より好ましくは、 発熱素子の冷却構造は、第一面と発熱素子との間に設けられた絶縁部材をさらに備える。
以下、この発明の実施の形態について、図面を参照して説明する。なお、以下の実施の形態では同一または相当する部分については同一の参照符号を付し、その説明については繰り返さない。また、各実施の形態を組合せることも可能である。
(実施の形態1)
図1は、本発明の1つの実施の形態に係る発熱素子を含む駆動ユニットの構造の一例を概略的に示す図である。図1に示される例では、駆動ユニット1は、ハイブリッド車両に搭載される駆動ユニットであり、モータジェネレータ100と、レゾルバ200と、減速機構300と、ディファレンシャル機構400と、ドライブシャフト受け部500と、ハウジング600と、端子台700とを含んで構成される。
図1は、本発明の1つの実施の形態に係る発熱素子を含む駆動ユニットの構造の一例を概略的に示す図である。図1に示される例では、駆動ユニット1は、ハイブリッド車両に搭載される駆動ユニットであり、モータジェネレータ100と、レゾルバ200と、減速機構300と、ディファレンシャル機構400と、ドライブシャフト受け部500と、ハウジング600と、端子台700とを含んで構成される。
モータジェネレータ100は、電動機または発電機として機能を有する回転電機であり、軸受120を介してハウジング600に回転可能に取付けられた回転シャフト110と、回転シャフト110に取付けられたロータ130と、ステータ140とを有する。
ロータ130は、鉄または鉄合金などの板状の磁性体を積層することにより構成されたロータコアと、該ロータコアに埋設された永久磁石とを有する。永久磁石は、たとえば、ロータコアの外周近傍にほぼ等間隔を隔てて配置される。
ステータ140は、リング状のステータコア141と、ステータコア141に巻回されるステータコイル142と、ステータコイル142に接続されるバスバー143とを有する。バスバー143は、ハウジング600に設けられた端子台700および給電ケーブル800Aを介してPCU(Power Control Unit)800とに接続される。また、PCU800は、給電ケーブル900Aを介してバッテリ900に接続される。これにより、バッテリ900とステータコイル142とが電気的に接続される。
ステータコア141は、鉄または鉄合金などの板状の磁性体を積層することにより構成される。ステータコア141の内周面上には複数のティース部(図示せず)および該ティース部間に形成される凹部としてのスロット部(図示せず)が形成されている。スロット部は、ステータコア141の内周側に開口するように設けられる。
3つの巻線相であるU相、V相およびW相を含むステータコイル142は、スロット部に嵌り合うようにティース部に巻き付けられる。ステータコイル142のU相、V相およびW相は、互いに円周上でずれるように巻き付けられる。バスバー143は、それぞれステータコイル142のU相、V相およびW相に対応するU相、V相およびW相を含む。
給電ケーブル800Aは、U相ケーブルと、V相ケーブルと、W相ケーブルとからなる3相ケーブルである。バスバー143のU相、V相およびW相がそれぞれ給電ケーブル800AにおけるU相ケーブル、V相ケーブルおよびW相ケーブルに接続される。
モータジェネレータ100から出力された動力は、減速機構300からディファレンシャル機構400を介してドライブシャフト受け部500に伝達される。ドライブシャフト受け部500に伝達された駆動力は、ドライブシャフト(図示せず)を介して車輪(図示せず)に回転力として伝達されて車両を走行させる。
一方、ハイブリッド車両の回生制動時には、車輪は車体の慣性力により回転させられる。車輪からの回転力によりドライブシャフト受け部500、ディファレンシャル機構400および減速機構300を介してモータジェネレータ100が駆動される。このとき、モータジェネレータ100が発電機として作用する。モータジェネレータ100により発電された電力は、PCU800におけるインバータを介してバッテリ900に蓄えられる。
レゾルバ200は、レゾルバロータ210と、レゾルバステータ220とを有する。レゾルバロータ210は、モータジェネレータ100の回転シャフト110に接続されている。また、レゾルバステータ220は、レゾルバステータコア221と、該コアに巻回されたレゾルバステータコイル222とを有する。上記レゾルバ200によりモータジェネレータ100のロータ130の回転角度が検出される。検出された回転角度は、コネクタ10を介してPCU800へ伝達される。PCU800は、検出されたロータ130の回転角度と、外部ECU(Electrical Control Unit)からのトルク指令値とを用いてモータジェネレータ100を駆動するための駆動信号を生成し、その生成した駆動信号をモータジェネレータ100へ出力する。
図2は、PCU800の主要部の構成を示す回路図である。図2を参照して、PCU800は、コンバータ810と、インバータ820と、制御装置830と、コンデンサC1,C2と、電源ラインPL1、PL3と、出力ライン840U,840V,840Wとを含む。コンバータ810は、バッテリ900とインバータ820との間に接続され、インバータ820は、出力ライン840U,840V,840Wを介してモータジェネレータ100と接続される。
コンバータ810に接続されるバッテリ900は、たとえば、ニッケル水素やリチウムイオン等の2次電池である。
バッテリ900は、発生した直流電圧をコンバータ810に供給し、また、コンバータ810から受ける直流電圧によって充電される。
コンバータ810は、パワートランジスタQ1,Q2と、ダイオードD1,D2と、リアクトルLとからなる。パワートランジスタQ1,Q2は、電源ラインPL2,PL3間に直列に接続され、制御装置830からの信号をベースに受ける。ダイオードD1,D2は、それぞれパワートランジスタQ1,Q2のエミッタ側からコレクタ側に電流を流すようにパワートランジスタQ1,Q2のコレクタ−エミッタ間にそれぞれ接続される。リアクトルLは、バッテリ900の正極と接続される電源ラインPL1に一端が接続され、パワートランジスタQ1,Q2の接続点に他端が接続される。
このコンバータ810は、リアクトルLを用いてバッテリ900から受ける直流電圧を昇圧し、その昇圧した昇圧電圧を電源ラインPL2に供給する。またコンバータ810は、インバータ820から受ける直流電圧を降圧してバッテリ900を充電する。
インバータ820は、U相アーム850U、V相アーム850VおよびW相アーム850Wからなる。各相アームは、電源ラインPL2,PL3間に並列に接続される。U相アーム850Uは、直列に接続されたパワートランジスタQ3,Q4からなり、V相アーム850Vは、直列に接続されたパワートランジスタQ5,Q6からなり、W相アーム850Wは、直列に接続されたパワートランジスタQ7,Q8からなる。ダイオードD3〜D8は、それぞれパワートランジスタQ3〜Q8のエミッタ側からコレクタ側へ電流を流すようにパワートランジスタQ3〜Q8のコレクタ−エミッタ間にそれぞれ接続される。そして、各相アームにおける各パワートランジスタの接続点は、出力ライン840U,840V,840Wを介してモータジェネレータ100の各相コイルの反中性点側にそれぞれ接続されている。
このインバータ820は、制御装置830からの制御信号に基づいて、電源ラインPL2から受ける直流電圧を交流電圧に変換してモータジェネレータ100へ出力する。また、インバータ820は、モータジェネレータ100によって発電された交流電圧を直流電圧に整流して電源ラインPL2に供給する。
コンデンサC1は、電源ラインPL1,PL3間に接続され、電源ラインPL1の電圧レベルを平滑化する。また、コンデンサC2は、電源ラインPL2,PL3間に接続され、電源ラインPL2の電圧レベルを平滑化する。
レゾルバ200は、モータジェネレータ100の回転子の回転角度を検出して制御装置830へ出力する。ここで、制御装置830への出力は、配線13,14およびコネクタ10を介して行なわれる。
制御装置830は、モータジェネレータ100の回転子の回転角度を、モータトルク指令値、モータジェネレータ100の各相電流値、およびインバータ820の入力電圧に基づいてモータジェネレータ100の各相コイル電圧を演算し、その演算結果に基づいてパワートランジスタQ3〜Q8をオン/オフするPWM(Pulse Width Modulation)信号を生成してインバータ820へ出力する。
また、制御装置830は、上述したモータトルク指令値およびモータ回転数に基づいてインバータ820の入力電圧を最適にするためのパワートランジスタQ1,Q2のデューティ比を演算し、その演算結果に基づいてパワートランジスタQ1,Q2をオン/オフするPWM信号を生成してコンバータ810へ出力する。
さらに、制御装置830は、モータジェネレータ100によって発電された交流電力を直流電力に変換してバッテリ900を充電するため、コンバータ810およびインバータ820におけるパワートランジスタQ1〜Q8のスイッチング動作を制御する。
このCPU800においては、コンバータ810は、制御装置830からの制御信号に基づいて、バッテリ800から受ける直流電圧を昇圧して電源ラインPL2に供給する。そして、インバータ820は、コンデンサC2によって平滑化された直流電圧を電源ラインPL2から受け、その受けた直流電圧を交流電圧に変換してモータジェネレータ100へ出力する。
また、インバータ820は、モータジェネレータ100の回生動作によって発電された交流電圧を直流電圧に変換して電源ラインPL2へ出力する。そして、コンバータ810は、コンデンサC2によって平滑化された直流電圧を電源ラインPL2から受け、その受けた直流電圧を降圧してバッテリ900を充電する。
このような回路において、コンバータ810、インバータ820、コンデンサC1,C2などは発熱素子であるため、この発熱素子を冷却する必要がある。
図3は、発熱素子の冷却構造の断面図である。図3を参照して、発熱素子の冷却構造1000は、発熱素子としてのインバータ820と、インバータ820を支持する支持部材としての冷却器ケース1100とを有する。冷却器ケース1100は、インバータ820側の第一面1110と、第一面1110と反対側の第二面1120とを有する。第二面1120側に、インバータ820よりも幅広の放熱コア1200が設けられている。放熱コア1200にフィン1300が取付けられる。柱状部としての放熱コア1200は冷却水1510に浸されている。放熱コア1200は金属により構成される。第一面1110とインバータ820との間に絶縁部材1600が設けられている。
冷却器ケース1100に放熱コア1200が取付けられている。IPM(インテリジェントパワーモジュール)の冷却方式として、直接冷却方式がある。この方法では、チップの飽和温度を下げる効果は期待できるが、熱容量が小さいため昇温が早くなる。本発明では、昇温を遅くするために熱容量を大きくする構造を採用している。これにより冷却能力が高く(飽和温度が低く)かつ、温度の急変も小さい。そのため、チップサイズを小さくすることができる。
インバータ820と絶縁部材1600がチップ1400を構成する。チップ1400は冷却器ケース1100の第一面1110に搭載されている。搭載方法として、はんだ付けまたはろう付けなどを採用することができる。また、ボルトで第一面1110にチップ1400を固着してもよい。
自己発熱素子であるインバータ820の幅W1は柱状部分である放熱コア1200の幅W2よりも小さい。絶縁部材1600端部と放熱コア1200の端部を結ぶ線と第一面1110とのなす角度はおよそ45°である。第二面1120側に水路1500が設けられており、水路1500内に冷却水1510が充填されている。冷却水1510は純粋な水だけでなく、ロングライフクーラントなどの溶質を含むものであってもよい。
放熱コア1200はチップからの伝熱を考慮したサイズとする。フィン1300は薄板であり、チップ1400直下以外にはフィン1300を取付けないことにより遺物によるつまりをも防止することができる。
チップ1400直下を柱状にして熱容量を大きくし、その柱に放熱フィンを取付けている。水冷式の電子部品冷却装置に関し、放熱部の熱容量を大きくする構造を採用している。特に、熱容量を大きくしたい部分を柱状にし、多数のフィンを設けている。
なお、フィン1300は必ずしも配置する必要はない。また、放熱コア1200は冷却水1510に全部浸されているが、一部の放熱コア1200は冷却水1510に浸されていなくてもよい。また、冷媒として冷却水1510ではなく気体を用いてもよい。
また、自己発熱素子として、インバータだけでなく、コンバータ、IGBT、MOS、ダイオードなどを用いてもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
820 インバータ、1000 発熱素子の冷却構造、1100 冷却器ケース、1110 第一面、1120 第二面、1200 放熱コア、1300 フィン、1400 チップ、1500 水路、1510 冷却水。
Claims (5)
- 発熱素子と、
前記発熱素子を支持する支持部材とを備え、
前記支持部材は、前記発熱素子側の第一面と、前記第一面と反対側の第二面とを有し、
前記第二面側に前記発熱素子より幅広の柱状部が設けられる、発熱素子の冷却構造。 - 前記柱状部に取付けられたフィンをさらに備えた、請求項1に記載の発熱素子の冷却構造。
- 前記柱状部は冷却水に浸される、請求項1または2に記載の発熱素子の冷却構造。
- 前記柱状部は金属により構成される、請求項1から3のいずれか1項に記載の発熱素子の冷却構造。
- 前記第一面と前記発熱素子との間に設けられた絶縁部材をさらに備えた、請求項1から4のいずれか1項に記載の発熱素子の冷却構造。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007145766A JP2008300673A (ja) | 2007-05-31 | 2007-05-31 | 発熱素子の冷却構造 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007145766A JP2008300673A (ja) | 2007-05-31 | 2007-05-31 | 発熱素子の冷却構造 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008300673A true JP2008300673A (ja) | 2008-12-11 |
Family
ID=40173881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007145766A Withdrawn JP2008300673A (ja) | 2007-05-31 | 2007-05-31 | 発熱素子の冷却構造 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008300673A (ja) |
-
2007
- 2007-05-31 JP JP2007145766A patent/JP2008300673A/ja not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4645417B2 (ja) | リアクトルの冷却構造および電気機器ユニット | |
JP4506668B2 (ja) | リアクトルの冷却構造および電気機器ユニット | |
JP4470857B2 (ja) | 電気機器の冷却構造 | |
JP4436843B2 (ja) | 電力変換装置 | |
JP4106061B2 (ja) | パワーユニット装置及び電力変換装置 | |
JP4769752B2 (ja) | 半導体装置および電動車両 | |
JP2007220976A (ja) | 半導体モジュールおよびそれを備えるハイブリッド車両の駆動装置 | |
JP2007227640A (ja) | リアクトルの冷却構造および電気機器ユニット | |
JP2008290621A (ja) | 車両の駆動システム | |
JP2010119299A (ja) | 電力変換装置 | |
JP6039356B2 (ja) | 電力変換装置 | |
JP2008311496A (ja) | 半導体素子の冷却構造 | |
JP5815063B2 (ja) | 電力変換装置 | |
JP2005151747A (ja) | 電気機器の冷却構造 | |
JP2013016615A (ja) | 半導体モジュール | |
JP2009159815A (ja) | 電力変換装置 | |
JP2008067546A (ja) | コンデンサの冷却構造およびその冷却構造を備えたモータ | |
JP2012161242A (ja) | 電力変換装置 | |
JP2012239256A (ja) | 電力変換装置 | |
JP2007123606A (ja) | 電気機器の冷却構造 | |
JP6485705B2 (ja) | 電力変換装置および回転電機 | |
JP2007325341A (ja) | モータ及び発電機 | |
JP2008300673A (ja) | 発熱素子の冷却構造 | |
JP4613798B2 (ja) | コネクタの組付け構造、電気機器ユニットおよびその製造方法 | |
JP2012239255A (ja) | 電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100803 |