JP2008300517A - Method of manufacturing light-emitting diode using zinc oxide - Google Patents

Method of manufacturing light-emitting diode using zinc oxide Download PDF

Info

Publication number
JP2008300517A
JP2008300517A JP2007143428A JP2007143428A JP2008300517A JP 2008300517 A JP2008300517 A JP 2008300517A JP 2007143428 A JP2007143428 A JP 2007143428A JP 2007143428 A JP2007143428 A JP 2007143428A JP 2008300517 A JP2008300517 A JP 2008300517A
Authority
JP
Japan
Prior art keywords
lithium
zinc oxide
gallium nitride
substrate
germanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007143428A
Other languages
Japanese (ja)
Inventor
Meiki Shu
周明奇
Jih-Jen Wu
呉季珍
Wen-Ching Hsu
徐文慶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Sino American Silicon Products Inc
Original Assignee
National Sun Yat Sen University
Sino American Silicon Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University, Sino American Silicon Products Inc filed Critical National Sun Yat Sen University
Priority to JP2007143428A priority Critical patent/JP2008300517A/en
Publication of JP2008300517A publication Critical patent/JP2008300517A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a light-emitting diode using zinc oxide, by which a gallium nitride nuclei forming layer is formed on a lithium aluminate substrate using a zinc oxide buffer layer like a single-crystal film, defective concentration of the gallium nitride is reduced, excellent lattice matching and crystal interface quality can be obtained and light emission efficiency and finished element function are improved. <P>SOLUTION: The producing method has a step of selecting a lithium aluminate substrate, a step of epitaxially growing a zinc oxide buffer layer and a gallium nitride nuclei forming layer on the lithium aluminate substrate to obtain a gallium nitride having high mass by utilizing a wurtzite structure similar in the zinc oxide and the gallium nitride and growing a multiple quantum well and a first metal electrode layer in a GaN/ZnO/LiAlO<SB>2</SB>structure after epitaxial growth, a step of removing the lithium aluminate substrate and the zinc oxide buffer layer by etching, and a step of growing a second metal electrode layer below the gallium nitride nuclei forming layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、酸化亜鉛による発光ダイオードの作製方法に関し、特に、単結晶フィルム状である酸化亜鉛(ZnO)バッファ層を利用して、窒化ガリウム(GaN)核形成層を、アルミン酸リチウム(LiAlO2)基板上に、成功に生長させ、また、窒化ガリウムの欠陥密度が低減されることにより、格子マッチングと優れた結晶界面品質が得られ、発光効率と完成済みの素子機能が向上されるものに関する。 The present invention relates to a method for manufacturing a light-emitting diode using zinc oxide, and in particular, using a zinc oxide (ZnO) buffer layer that is in the form of a single crystal film, a gallium nitride (GaN) nucleation layer is replaced with lithium aluminate (LiAlO 2). ) On a substrate that successfully grows and reduces the defect density of gallium nitride, resulting in lattice matching and excellent crystal interface quality, improving luminous efficiency and completed device function .

従来の発光ダイオード構造の作製方法は、サファイヤ(Sapphire)を基板とし、そして、該サファイヤ上に、窒化ガリウムがエピタキシャルされ、発光ダイオードの構造を構成するのが多い。 In a conventional method for manufacturing a light emitting diode structure, a sapphire is used as a substrate, and gallium nitride is epitaxially formed on the sapphire to form a light emitting diode structure.

図7〜図9は、それぞれ、従来の基板上にMQWとp型電極層を生長させる時の構造概念図と従来の発光ダイオードの構造概念図及び従来の格子ミスマッチングの概念図である。図のように、まず、サファイヤ基板31を用意し、また、該サファイヤ基板31上に、順に、窒化ガリウム多重量子井戸32(Multiple Quantum Well、 MQW)とp極(p-side)電極層33をエピタキシャル生長させ、そして、該窒化ガリウム多重量子井戸32の上方に、n型電極層34を生長させ、これにより、発光ダイオードの構造が構成される。 7 to 9 are a conceptual diagram of a structure when MQW and p-type electrode layers are grown on a conventional substrate, a structural conceptual diagram of a conventional light emitting diode, and a conceptual diagram of conventional lattice mismatching, respectively. As shown in the figure, first, a sapphire substrate 31 is prepared, and a gallium nitride multiple quantum well 32 (Multiple Quantum Well, MQW) and a p-electrode layer 33 are sequentially formed on the sapphire substrate 31. Epitaxial growth is performed, and an n-type electrode layer 34 is grown above the gallium nitride multiple quantum well 32, whereby a light emitting diode structure is formed.

しかしながら、その電子ルミネセンススペクトラムは、該p型電極層33量子井戸付近の中心波長によって支配されて、均一ではない白光になる。正孔の移動度が、電子より遥かに悪いから、発光する量子井戸が、該p型電極層33に集中し、他の色の量子井戸の発光効率が、極めて悪くなる。 However, the electroluminescence spectrum is dominated by the center wavelength in the vicinity of the p-type electrode layer 33 quantum well, resulting in non-uniform white light. Since the hole mobility is much worse than that of the electrons, the light emitting quantum wells are concentrated on the p-type electrode layer 33, and the light emission efficiency of the quantum wells of other colors is extremely deteriorated.

また、窒化ガリウム多重量子井戸33と該サファイヤ基板31との間において、格子ミスマッチング数が高すぎると、該窒化ガリウム多重量子井戸33によりエピタキシャルされた格子の平衡位置が悪くなり(図9のように)、そのため、結晶界面品質が悪くなり、そして、完成品素子の品質が悪くなる。 In addition, if the number of lattice mismatches between the gallium nitride multiple quantum well 33 and the sapphire substrate 31 is too high, the equilibrium position of the lattice epitaxially formed by the gallium nitride multiple quantum well 33 is deteriorated (as shown in FIG. 9). Therefore, the crystal interface quality deteriorates, and the quality of the finished product element deteriorates.

また、従来の、直接に単結晶である酸化亜鉛を基板とし、また、該酸化亜鉛基板上に窒化ガリウムがエピタキシャルされることで、該窒化ガリウムと酸化亜鉛とが、類似する構造を利用して、直接に、サファイヤ上に窒化ガリウムを生長させるものより、高い品質である利点が得られるが、やや厚い酸化亜鉛を基板として、該酸化亜鉛の高価であるため、量産化し難い問題があり、また、薄い酸化亜鉛により、該利点も得られる点から言えば、無駄なことになり、そのため、一般の、従来のものは実用とは言えない。 In addition, a conventional single-crystal zinc oxide substrate is used as a substrate, and gallium nitride is epitaxially formed on the zinc oxide substrate, so that the gallium nitride and zinc oxide are utilized in a similar structure. It is possible to obtain the advantage of higher quality than directly growing gallium nitride on sapphire, but since the zinc oxide is expensive due to the slightly thick zinc oxide used as a substrate, there is a problem that it is difficult to mass-produce. From the point of view that the advantage can be obtained by thin zinc oxide, it is useless. Therefore, the conventional and conventional ones are not practical.

本発明の主な目的は、単結晶フィルム状である酸化亜鉛バッファ層のみで、アルミン酸リチウム基板上に、窒化ガリウム核形成層を生長させることを成功し、該窒化ガリウムの欠陥密度を低減でき、優れた格子マッチングと結晶界面品質が得られ、発光効率と完成済みの素子機能が向上される酸化亜鉛による発光ダイオードの作製方法を提供する。 The main object of the present invention is to successfully grow a gallium nitride nucleation layer on a lithium aluminate substrate using only a zinc oxide buffer layer in the form of a single crystal film, and to reduce the defect density of the gallium nitride. The present invention provides a method for manufacturing a light emitting diode using zinc oxide, which provides excellent lattice matching and crystal interface quality, and improves light emission efficiency and completed device function.

本発明は、上記の目的を達成するため、アルミン酸リチウム基板を選択して、該アルミン酸リチウム基板上に、酸化亜鉛バッファ層と窒化ガリウム核形成層を順にエピタキシャル生長させ、該酸化亜鉛と窒化ガリウムとの類似する構造を利用して、高い質量である該窒化ガリウムが得られ、また、エピタキシャルされた後のGaN/ZnO/LiAlO2構造に、多重量子井戸と第1の金属電極層を生長させてから、該アルミン酸リチウム基板と該酸化亜鉛バッファ層をエッチング除去し、また、該窒化ガリウム核形成層の下方に第2の金属電極層を生長させる酸化亜鉛による発光ダイオードの作製方法である。これにより、単結晶フィルム状である酸化亜鉛バッファ層で、該アルミン酸リチウム基板上に、該窒化ガリウム核形成層を生長させることを成功し、該窒化ガリウムの欠陥密度が低減され、また、優れた格子マッチングと結晶界面品質が得られ、そして、発光効率と完成済みの素子機能が向上される。 In order to achieve the above object, the present invention selects a lithium aluminate substrate, and epitaxially grows a zinc oxide buffer layer and a gallium nitride nucleation layer on the lithium aluminate substrate in order, and the zinc oxide and nitride Using a structure similar to gallium, the gallium nitride having a high mass can be obtained, and a multi-quantum well and a first metal electrode layer are grown on the GaN / ZnO / LiAlO 2 structure after being epitaxially grown. Then, the lithium aluminate substrate and the zinc oxide buffer layer are removed by etching, and a second metal electrode layer is grown below the gallium nitride nucleation layer. . As a result, the zinc oxide buffer layer in the form of a single crystal film has succeeded in growing the gallium nitride nucleation layer on the lithium aluminate substrate, the defect density of the gallium nitride is reduced, and excellent Lattice matching and crystal interface quality are obtained, and luminous efficiency and completed device function are improved.

図1〜図5は、それぞれ、本発明の作製流れの概念図や本発明のアルミン酸リチウム基板の概念図、本発明の順にエピタキシャルした後の構造概念図、本発明の基板とバッファ層に対してエッチングした後の構造概念図及び本発明の発光ダイオードの構造概念図である。図のように、本発明は、酸化亜鉛による発光ダイオードの作製方法であり、少なくとも、(A)アルミン酸リチウム(Lithium Aluminum Oxide、 LiAlO2)基板を用意するステップ11:図2のように、アルミン酸リチウム基板21を選択し、該基板21は、没食子酸リチウム(Lithium Gallium Oxide、 LiGaO2)やシリコン酸リチウム(Lithium Silicon Oxide、 Li2SiO3)、ゲルマニウム酸リチウム(Lithium Germanium Oxide、 LiGeO3)、アルミン酸ナトリウム(Sodium Aluminum Oxide、 NaAlO2)、ゲルマニウム酸ナトリウム(Sodium Germanium Oxide、 Na2GeO3)、シリコン酸ナトリウム(Sodium Silicon Oxide、 Na2SiO3)、リン酸リチウム(Lithium Phosphor Oxide、 Li3PO4)、ヒ酸リチウム(Lithium Arsenic Oxide、 Li3AsO4)、バナジウム酸リチウム(Lithium Vanadium Oxide、 Li3VO4)、ゲルマニウム酸リチウムマグネシウム(Lithium Magnesium Germanium Oxide、 Li2MgGeO4)、ゲルマニウム酸リチウム亜鉛(Lithium Zinc Germanium Oxide、 Li2ZnGeO4)、ゲルマニウム酸リチウムカドミウム(Lithium Cadmium Germanium Oxide、 Li2CdGeO4)、シリコン酸リチウムマグネシウム(Lithium Magnesium Silicon Oxide、 Li2MgSiO4)、シリコン酸リチウム亜鉛(Lithium Zinc Silicon Oxide、 Li2ZnSiO4)、シリコン酸リチウムカドミウム(Lithium Cadmium Silicon Oxide、 Li2CdSiO4)、ゲルマニウム酸ナトリウムマグネシウム(Sodium Magnesium Germanium Oxide、 Na2MgGeO4)、ゲルマニウム酸ナトリウム亜鉛(Sodium Zinc Germanium Oxide、 Na2ZnGeO4)或いはシリコン酸ナトリウム亜鉛(Sodium Zinc Silicon Oxide、 Na2ZnSiO4)から構成される基板であり、(B)該アルミン酸リチウム基板上に、順にエピタキシャルするステップ12:図3のように、該アルミン酸リチウム基板21に下から上へ順に単結晶フィルム状である酸化亜鉛(ZnO)バッファ層22と窒化ガリウム(GaN)核形成層23を生長させ、該エピタキシャルされた後のGaN/ZnO/LiAlO2構造に、多重量子井戸(Multiple
Quantum Well、 MQW)24や第1の金属電極層25を生長させ、該多重量子井戸は、一つ以上の異なる井戸幅とバリア幅の量子井戸であり、(C)該アルミン酸リチウム基板と該酸化亜鉛バッファ層をエッチング除去するステップ13:図4のように、その後、エピタキシャル構造を酸性溶液に浸漬して、該アルミン酸リチウム基板21と該酸化亜鉛バッファ層22をエッチング除去するステップ:該酸性溶液は、硝酸(HNO3)や弗化水素酸(HF)或いは酢酸(CH3COOH)であり、(D)第2の金属電極層を生長させるステップ14:図5のように、更に、該窒化ガリウム核形成層23の下方に第2の金属電極層26を生長させて、発光ダイオードの構造が構成される。
FIGS. 1 to 5 are a conceptual diagram of a manufacturing flow of the present invention, a conceptual diagram of a lithium aluminate substrate of the present invention, a structural conceptual diagram after epitaxially in the order of the present invention, and a substrate and a buffer layer of the present invention. FIG. 2 is a structural conceptual diagram after etching and a structural conceptual diagram of a light emitting diode of the present invention. As shown in the figure, the present invention is a method for producing a light emitting diode using zinc oxide. At least (A) a lithium aluminate (Lithium Aluminum Oxide, LiAlO 2 ) substrate is prepared. Step 11: As shown in FIG. Lithium oxide substrate 21 is selected, and the substrate 21 is composed of lithium gallate (Lithium Gallium Oxide, LiGaO 2 ), lithium silicon oxide (Lithium Silicon Oxide, Li 2 SiO 3 ), lithium germanate (Lithium Germanium Oxide, LiGeO 3 ). , Sodium Aluminum Oxide, NaAlO 2 , Sodium Germanium Oxide, Na 2 GeO 3 , Sodium Silicon Oxide, Na 2 SiO 3 , Lithium Phosphor Oxide, Li 3 PO 4), lithium arsenate (lithium arsenic Oxide, Li 3 AsO 4), lithium vanadate (lithium vanadium Oxide, Li 3 VO 4), germanium Lithium magnesium (Lithium Magnesium Germanium Oxide, Li 2 MgGeO 4), germanium lithium zinc (Lithium Zinc Germanium Oxide, Li 2 ZnGeO 4), lithium germanium cadmium (Lithium Cadmium Germanium Oxide, Li 2 CdGeO 4), lithium magnesium silicon acid (Lithium Magnesium Silicon Oxide, Li 2 MgSiO 4 ), Lithium Zinc Silicon Oxide, Li 2 ZnSiO 4 , Lithium Cadmium Silicon Oxide, Li 2 CdSiO 4 , Sodium Magnesium Germanate (Sodium) Magnesium Germanium Oxide, Na 2 MgGeO 4 ), Sodium Zinc Germanium Oxide (Na 2 ZnGeO 4 ) or Sodium Zinc Silicon Oxide (Na 2 ZnSiO 4 ) B) On the lithium aluminate substrate, epitaxial epitaxial layers are sequentially formed. Step 12: As shown in FIG. 3, a zinc oxide (ZnO) buffer layer 22 and a gallium nitride (GaN) nucleation layer 23, which are in the form of a single crystal, are grown on the lithium aluminate substrate 21 from bottom to top. The epitaxially grown GaN / ZnO / LiAlO 2 structure has multiple quantum wells (Multiple Wells).
Quantum Well, MQW) 24 and first metal electrode layer 25 are grown, and the multiple quantum well is a quantum well having one or more different well widths and barrier widths, and (C) the lithium aluminate substrate and the Step 13 of removing the zinc oxide buffer layer by etching: Step of immersing the epitaxial structure in an acidic solution and etching away the lithium aluminate substrate 21 and the zinc oxide buffer layer 22 as shown in FIG. The solution is nitric acid (HNO 3 ), hydrofluoric acid (HF), or acetic acid (CH 3 COOH). (D) Step 2 of growing the second metal electrode layer: As shown in FIG. A second metal electrode layer 26 is grown below the gallium nitride nucleation layer 23 to form a light emitting diode structure.

これにより、単結晶フィルム状である酸化亜鉛バッファ層22だけを利用して、該アルミン酸リチウム基板21上に、該窒化ガリウム核形成層23を生長させることを成功するだけでなく、窒化ガリウムの欠陥密度が低減され、優れた格子マッチングと結晶界面品質が得られ、また、発光効率と完成済みの素子機能が向上され、例えば、発光ダイオードやレーザダイオード及び電界効果トランジスタである。 Thus, not only the zinc oxide buffer layer 22 that is in the form of a single crystal film is used to successfully grow the gallium nitride nucleation layer 23 on the lithium aluminate substrate 21, Defect density is reduced, excellent lattice matching and crystal interface quality are obtained, and luminous efficiency and completed device function are improved, such as light emitting diodes, laser diodes and field effect transistors.

図6は、本発明の格子マッチング構造の概念図である。図のように、アルミン酸リチウム基板上に、単結晶フィルム状である酸化亜鉛バッファ層を形成すると、そのフィルム構造が、六角形柱状構造に変換し、また、ハニカム状に整然に配列され、該高い品質である酸化亜鉛バッファ層が、先に該アルミン酸リチウム基板上に生長するため、両者の間の格子ミスマッチング数が低く、より良い結晶界面品質が得られ、そして、発光効率が向上される。 FIG. 6 is a conceptual diagram of the lattice matching structure of the present invention. As shown in the figure, when a zinc oxide buffer layer that is in the form of a single crystal film is formed on a lithium aluminate substrate, the film structure is converted into a hexagonal columnar structure, and is arranged regularly in a honeycomb shape. Since a high quality zinc oxide buffer layer is first grown on the lithium aluminate substrate, the number of lattice mismatches between the two is low, a better crystal interface quality is obtained, and the luminous efficiency is improved. The

以上のように、本発明は、酸化亜鉛による発光ダイオードの作製方法であり、有効に従来の諸欠点を改善でき、窒化ガリウムの欠陥密度を低減して、優れた格子マッチングと結晶界面品質が得られ、また、発光効率と完成済みの素子機能が向上されるため、本発明は、より進歩的かつより実用的で、法に従って特許請求を出願する。 As described above, the present invention is a method for producing a light emitting diode using zinc oxide, which can effectively improve the conventional defects, reduce the defect density of gallium nitride, and obtain excellent lattice matching and crystal interface quality. In addition, because the light emission efficiency and completed device function are improved, the present invention is more progressive and more practical, and claims are filed according to law.

以上は、ただ、本発明のより良い実施例であり、本発明は、それによって制限されることが無く、本発明に係わる特許請求の範囲や明細書の内容に基づいて行った等価の変更や修正は、全てが、本発明の特許請求の範囲内に含まれる。 The above is merely a better embodiment of the present invention, and the present invention is not limited thereby, and equivalent changes made based on the scope of the claims and the description of the present invention. All modifications are within the scope of the claims of the present invention.

本発明の作製流れの概念図Conceptual diagram of the manufacturing flow of the present invention 本発明のアルミン酸リチウム基板の概念図Conceptual diagram of the lithium aluminate substrate of the present invention 本発明の順にエピタキシャルした後の構造概念図Structural conceptual diagram after epitaxial in the order of the present invention 本発明の基板とバッファ層に対してエッチングした後の構造概念図Structural conceptual diagram after etching the substrate and buffer layer of the present invention 本発明の発光ダイオードの構造概念図Structure conceptual diagram of light emitting diode of the present invention 本発明の格子マッチングの構造概念図Structural conceptual diagram of lattice matching of the present invention 従来の、基板上にMQWとp型電極層を生長させる時の構造概念図Conceptual diagram of conventional structure for growing MQW and p-type electrode layers on a substrate 従来の発光ダイオードの構造概念図Conventional light emitting diode structure concept 従来の格子ミスマッチングの概念図Conceptual diagram of conventional lattice mismatching

符号の説明Explanation of symbols

(本発明部分)
11〜14 ステップ
21 アルミン酸リチウム基板
22 酸化亜鉛バッファ層
23 窒化ガリウム核形成層
24 多重量子井戸
25 第1の金属電極層
26 第2の金属電極層
(従来部分)
31 サファイヤ基板
32 窒化ガリウム多重量子井戸
33 p型電極層
34 n型電極層
(Invention part)
11 to 14 Step 21 Lithium aluminate substrate 22 Zinc oxide buffer layer 23 Gallium nitride nucleation layer 24 Multiple quantum well 25 First metal electrode layer 26 Second metal electrode layer (conventional portion)
31 sapphire substrate 32 gallium nitride multiple quantum well 33 p-type electrode layer 34 n-type electrode layer

Claims (3)

少なくとも、(A)アルミン酸リチウム基板を用意するステップと、(B)該アルミン酸リチウム基板上に、順に酸化亜鉛バッファ層と窒化ガリウム核形成層とを生長させ、また、該エピタキシャルされた後のGaN/ZnO/LiAlO2構造に、多重量子井戸と第1の金属電極層を生長させるステップと、(C)上記の生長させた構造を酸性溶液に浸漬して、該アルミン酸リチウム基板と該酸化亜鉛バッファ層をエッチング除去するステップと、(D)該窒化ガリウム核形成層の下方に、第2の金属電極層を生長させ、発光装置の構造を形成するステップとが含有されることを特徴とする酸化亜鉛による発光ダイオードの作製方法。 At least (A) a step of preparing a lithium aluminate substrate; and (B) a zinc oxide buffer layer and a gallium nitride nucleation layer are sequentially grown on the lithium aluminate substrate, and Growing a multiple quantum well and a first metal electrode layer in a GaN / ZnO / LiAlO 2 structure; and (C) immersing the grown structure in an acidic solution to form the lithium aluminate substrate and the oxidation And (D) forming a second metal electrode layer below the gallium nitride nucleation layer to form a structure of a light emitting device. A method for manufacturing a light emitting diode using zinc oxide. 該アルミン酸リチウム基板は、没食子酸リチウムやシリコン酸リチウム、ゲルマニウム酸リチウム、アルミン酸ナトリウム、ゲルマニウム酸ナトリウム、シリコン酸ナトリウム、リン酸リチウム、ヒ酸リチウム、バナジウム酸リチウム、ゲルマニウム酸リチウムマグネシウム、ゲルマニウム酸リチウム亜鉛、ゲルマニウム酸リチウムカドミウム、シリコン酸リチウムマグネシウム、シリコン酸リチウム亜鉛、シリコン酸リチウムカドミウム、ゲルマニウム酸ナトリウムマグネシウム、ゲルマニウム酸ナトリウム亜鉛或いはシリコン酸ナトリウム亜鉛から構成される基板であることを特徴とする請求項1に記載の酸化亜鉛による発光ダイオードの作製方法。 The lithium aluminate substrate is composed of lithium gallate, lithium siliconate, lithium germanate, sodium aluminate, sodium germanate, sodium siliconate, lithium phosphate, lithium arsenate, lithium vanadate, lithium magnesium germanate, germanate A substrate composed of lithium zinc, lithium cadmium germanate, lithium magnesium siliconate, lithium zinc siliconate, lithium cadmium siliconate, sodium magnesium germanate, sodium zinc germanate, or sodium zinc siliconate. Item 2. A method for manufacturing a light-emitting diode using zinc oxide according to Item 1. 該酸性溶液は、硝酸や弗化水素酸或いは酢酸であることを特徴とする請求項1に記載の酸化亜鉛による発光ダイオードの作製方法。 2. The method of manufacturing a light emitting diode using zinc oxide according to claim 1, wherein the acidic solution is nitric acid, hydrofluoric acid, or acetic acid.
JP2007143428A 2007-05-30 2007-05-30 Method of manufacturing light-emitting diode using zinc oxide Pending JP2008300517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007143428A JP2008300517A (en) 2007-05-30 2007-05-30 Method of manufacturing light-emitting diode using zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007143428A JP2008300517A (en) 2007-05-30 2007-05-30 Method of manufacturing light-emitting diode using zinc oxide

Publications (1)

Publication Number Publication Date
JP2008300517A true JP2008300517A (en) 2008-12-11

Family

ID=40173766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007143428A Pending JP2008300517A (en) 2007-05-30 2007-05-30 Method of manufacturing light-emitting diode using zinc oxide

Country Status (1)

Country Link
JP (1) JP2008300517A (en)

Similar Documents

Publication Publication Date Title
JP5995302B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP4525500B2 (en) Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element
JP5932664B2 (en) Group III nitride semiconductor device and manufacturing method thereof
JP5673581B2 (en) Group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, lamp, and reticle
JP2007294972A (en) Light emitting element and method of manufacturing same
TWI343661B (en)
JP5306779B2 (en) Light emitting device and manufacturing method thereof
CN106057990B (en) A kind of production method of the epitaxial wafer of GaN base light emitting
TW201624761A (en) Light-emitting device and manufacturing method of the same
JP2007305909A (en) Production method of gallium nitride-based compound semiconductor, and production method of light-emitting element
JP2012142580A (en) Method for fabricating light emitting diode chip
JP2009009978A (en) Compound semiconductor device and lighting apparatus using the same, and method of manufacturing compound semiconductor device
JP2010021290A (en) Method for manufacturing quantum well structure
TWI774759B (en) Light-emitting device and manufacturing method thereof
JP4586934B2 (en) Semiconductor light emitting element and lighting device using the same
JP2005191519A (en) GaN SEMICONDUCTOR LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD
TW201706465A (en) Nitride semiconductor growth substrate and method for manufacturing same, and semiconductor device and method for manufacturing same
KR20120039324A (en) Gallium nitride type semiconductor light emitting device and method of fabricating the same
CN101330117B (en) Method for preparing illuminating device using zinc oxide
JP2006060197A (en) Group iii nitride semiconductor and group iii semiconductor luminous element, and manufacturing method thereof
JP5094493B2 (en) Group III nitride semiconductor light emitting device, method for manufacturing group III nitride semiconductor light emitting device, and lamp
JP2005252086A (en) Manufacturing method for semiconductor light emitting device, semiconductor light emitting device, integrated semiconductor light emitting device, manufacturing process thereof, graphic display device, manufacturing process thereof, illuminating device and manufacturing process thereof
JP5946333B2 (en) Group III nitride semiconductor device and manufacturing method thereof
JP2008300517A (en) Method of manufacturing light-emitting diode using zinc oxide
JP2004119964A (en) Method of manufacturing semiconductor light-emitting device, semiconductor light-emitting device, method of manufacturing integrated type semiconductor light-emitter, integrated type semiconductor light-emitting apparatus, method of manufacturing image display device, image display device, method of manufacturing illuminator, and illuminator.