JP2008297874A - Energy saving building - Google Patents

Energy saving building Download PDF

Info

Publication number
JP2008297874A
JP2008297874A JP2007148167A JP2007148167A JP2008297874A JP 2008297874 A JP2008297874 A JP 2008297874A JP 2007148167 A JP2007148167 A JP 2007148167A JP 2007148167 A JP2007148167 A JP 2007148167A JP 2008297874 A JP2008297874 A JP 2008297874A
Authority
JP
Japan
Prior art keywords
air
building
ventilation
floor
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007148167A
Other languages
Japanese (ja)
Other versions
JP5370880B2 (en
Inventor
Fujinori Hanawa
藤徳 塙
Takeshi Morikawa
岳 森川
Shizuo Numajiri
静雄 沼尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUKUBA HOME KK
Forestry and Forest Products Research Institute
Original Assignee
TSUKUBA HOME KK
Forestry and Forest Products Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUKUBA HOME KK, Forestry and Forest Products Research Institute filed Critical TSUKUBA HOME KK
Priority to JP2007148167A priority Critical patent/JP5370880B2/en
Publication of JP2008297874A publication Critical patent/JP2008297874A/en
Application granted granted Critical
Publication of JP5370880B2 publication Critical patent/JP5370880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that an air stream running counter to the natural principle of causing warm air to form an ascending flow and cool air to form a descending flow cannot be formed well in a conventional double ventilation house. <P>SOLUTION: An energy saving house of an attic ventilation structure wherein an eaves ventilation port 5b and a ridge ventilation port 5c are connected with an attic ventilation passage 5a includes a ridge neighborhood ventilation passage switching unit 4 enabling switching to an air passage connecting the ventilation passage 5c with an attic space 16 (in a case wherein a ceiling is installed in the uppermost story) or an indoor space 14 (in a case wherein a gradient ceiling is installed in the uppermost story) to introduce air flowing in from the eaves to the attic space 16 or the indoor space 14 and an air passage discharging the air from the attic space 16 or the indoor space 14 through the ridge ventilation port 5c provided in the ridge. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、棟付近に取り付けられた棟付近通気路切替装置とシンプルな換気装置を巧みに組み合わせることで、建物内部に空気の循環をつくり通気性を高めることで、建物内部の温熱環境を均一に保ち、結露を防止し、木造住宅の超寿命化を図ると同時に、自然エネルギーを効率的に利用し、冷暖房にできるだけ頼らなくても済む省エネルギー建物に関する。   The present invention makes it possible to create a uniform thermal environment inside the building by skillfully combining the near-building airway switching device attached to the vicinity of the building and a simple ventilation device to create air circulation inside the building and improve air permeability. It is related to an energy-saving building that uses natural energy efficiently and avoids relying on cooling and heating as much as possible, while keeping it at the same time, preventing condensation and extending the life of wooden houses.

省エネルギーを推進するために、建物を気密化・断熱化させ、冷暖房の効率を高める建築工法が近年盛んに提案されている。   In order to promote energy saving, building construction methods that enhance the efficiency of air conditioning by making buildings airtight and insulated have been actively proposed in recent years.

気密性・断熱性を高めた建物を建築するにあたり完全には避けることのできない断熱の途切れは熱橋となり、この部分において、躯体内および室内において結露が生じ、木材の腐朽と建物の劣化を促進することが指摘されている。   Insulation breaks that cannot be completely avoided when building buildings with enhanced airtightness and heat insulation become thermal bridges, where condensation forms in the enclosure and indoors, accelerating wood decay and building deterioration. It has been pointed out to do.

そこで、この問題を解決するために、建物躯体内を通気させる工法が種々提案されている。   In order to solve this problem, various methods for ventilating the building enclosure have been proposed.

一方、より積極的な省エネルギー化の方法として、建物に照射される太陽エネルギーを利用したパッシブソーラーシステム、あるいは、さらにこれを押し進めたアクティブソーラーシステムと上述の通気構造を組み合わせた建物が建築されている。   On the other hand, as a more proactive method of energy saving, a passive solar system using solar energy applied to the building, or a building that combines the above-described ventilation structure with an active solar system that further promotes this is being built. .

ところで、上述したいずれの構造にあっても、夏における床下の冷気あるいは冬における建物に降り注ぐ太陽熱の利用が不十分であったり、あるいは冬季のみにしか利用できない大掛かりな集熱装置やダクトを利用したシステムが必要であったりするため、非効率的な部分が多い。以下に例を示して説明する。   By the way, in any of the structures described above, the use of large-scale heat collectors and ducts that are not enough to use the cold air under the floor in summer or the solar heat that pours onto the building in winter, or that can only be used in winter There are many inefficient parts because a system is necessary. An example will be described below.

例1として、躯体内の通気性を高め、結露を防止し建物の耐久性を高めようとする方法の一つに、屋根材および外壁材と断熱材の間に通気層(外通気層)を設けると共に、断熱材と内壁材の間にも通気層(内通気層)を設け、建物の基礎部分と小屋裏に外気と内通気層をつなぐ開閉可能なダンパーを設けた外断熱二重通気工法(特許文献1)が知られている。   As an example, one way to increase the air permeability of the enclosure, prevent condensation and increase the durability of the building is to install a ventilation layer (outer ventilation layer) between the roofing material and the outer wall material and the heat insulating material. In addition to providing a ventilation layer (inner ventilation layer) between the heat insulating material and the inner wall material, an outer heat insulation double ventilation method with an openable and closable damper connecting the outside air and the inner ventilation layer to the base of the building and the back of the hut (Patent Document 1) is known.

例2として、冬の太陽エネルギーを積極的に室内に取り入れる方法の一つとして屋根に設置した特殊集熱装置で集めた熱を機械的な手段を用いてダクトを通して床下に導く工法がある(特許文献2、3)。   As an example 2, there is a construction method in which the heat collected by a special heat collector installed on the roof is guided under the floor through a duct using mechanical means as one of the methods of actively taking winter solar energy into the room (Patent) Literature 2, 3).

例3として、躯体内の通気性を高め、結露を防止し建物の耐久性を高めさらに太陽熱も利用するパッシブソーラー工法の一つに、エアサイクル工法がある。この工法は、屋根材および外壁材と断熱材の間に設けた通気層(外通気層)と断熱材と内壁材の間に設けた通気層(内通気層)を設け、上昇気流のみ通す特殊な通気孔あるいは一定の温度で開閉する特殊な通気孔を断熱材に埋め込み、外通気層と内通気層を連絡することで、冬季において太陽熱により暖められた建物南面の空気を内気通気層に取り込み、さらには対流により建物南面の暖かい空気を北面の内通気層を通して床下に導き、建物全体を暖めようとするものである。なお、基礎部分には、床下に導入された暖かい空気を逃がさない工夫として、内側に向けてのみ開口する特殊な通気路が設けられている。   As an example 3, there is an air cycle construction method as one of the passive solar construction methods that enhances the air permeability in the housing, prevents condensation, enhances the durability of the building, and uses solar heat. This construction method is specially designed to provide a ventilation layer (outer ventilation layer) provided between the roofing material and the outer wall material and the heat insulating material, and a ventilation layer (inner ventilation layer) provided between the heat insulating material and the inner wall material, allowing only upward air flow to pass. Air in the south side of the building heated by solar heat in the winter is taken into the inside air ventilation layer by embedding a special ventilation hole or a special ventilation hole that opens and closes at a certain temperature in the heat insulating material and connecting the outer ventilation layer and the inner ventilation layer Furthermore, the warm air on the south side of the building is guided under the floor through the inner ventilation layer on the north side by convection to warm the whole building. In addition, the special ventilation path which opens only toward the inner side is provided in the foundation part as an idea which does not escape the warm air introduced under the floor.

例4として、躯体内の通気性を高め、結露を防止し建物の耐久性を高めさらに太陽熱も利用するパッシブソーラー工法の一つに、屋根材および外壁材と断熱材の間に設けた通気層(外通気層)と断熱材と内壁材の間に設けた通気層(内通気層)を設け、さらに建物の棟部分に設けた集熱ボックスにより、冬季は建物南面に照射された熱を内通気層に導入し、夏季には外通気層ならびに内通気層から棟排気路を通して熱を排出する工法がある(特許文献4)。
特公平6−35731号公報 特開昭63−165633号公報 特開昭64−75852号公報 特許第2934159号公報
Example 4 is one of the passive solar construction methods that increase the air permeability in the enclosure, prevent condensation, increase the durability of the building, and also use solar heat. (Outer ventilation layer), a ventilation layer (inner ventilation layer) provided between the heat insulating material and the inner wall material, and a heat collection box provided in the ridge part of the building keeps the heat irradiated to the south surface of the building in winter There is a method of introducing heat into the ventilation layer and discharging heat from the outer ventilation layer and the inner ventilation layer through the building exhaust path in the summer (Patent Document 4).
Japanese Patent Publication No. 6-35731 JP 63-165633 A Japanese Unexamined Patent Publication No. 64-75852 Japanese Patent No. 2934159

上述の例1に示す外断熱二重通気工法は、夏に床下の冷たい空気を利用しようとしている点で優れているが、床下ダンパーの位置が内通気層に近いため、基礎立ち上がり内部の地面或いはべた基礎直上にある床下における最も冷たい空気と外気が混合されないまま内気通気層に導入されている可能性がある。あるいは、自然界においては、冷たい空気は降下する性質があるため、床下の冷たい空気が内通気層を通じで建物の上部に持ち上げられることは無いものと考えられる。また冬においては、建物の断熱性能に基づく暖房に関する消費エネルギーは節約可能であるが、建物に降り注ぐ太陽熱を室内に導入し利用することができない。したがって本工法は、躯体内の通気工法としては意味があるが、地熱・太陽熱の効率的利用には至っていない。   The outer heat insulation double ventilation method shown in the above-mentioned Example 1 is excellent in that it tries to use cold air under the floor in summer. However, since the position of the under floor damper is close to the inner ventilation layer, There is a possibility that the coldest air under the floor just above the solid foundation and the outside air are introduced into the inside air ventilation layer without being mixed. Alternatively, in the natural world, since cold air has a property of descending, it is considered that cold air under the floor is not lifted to the upper part of the building through the inner ventilation layer. In winter, energy consumption related to heating based on the thermal insulation performance of the building can be saved, but solar heat falling on the building cannot be introduced and used indoors. Therefore, although this construction method is meaningful as a ventilation method in the enclosure, it has not led to efficient use of geothermal and solar heat.

上述の例2に示す方法は、特別な集熱器の設置と大掛かりなダクト等の必要性であり高価である。また夏季においては太陽熱を室内に導入するわけには行かないので、換気システムとしても作用する大掛かりな通気システムを働かせることができない。このため、住宅を気密・断熱化することが難しい。さらには、夏季における床下冷気の利用ができない。   The method shown in Example 2 is expensive because it requires a special heat collector and a large duct. In summer, solar heat cannot be introduced indoors, so a large ventilation system that also functions as a ventilation system cannot be operated. For this reason, it is difficult to make a house airtight and insulated. Furthermore, underfloor cold air cannot be used in summer.

上述の例3に示す方法では、夏に建物の軒近くにおいて熱い外気を断熱材の内側に取り入れてしまう欠点が有る。また、断熱面にいくつも設けた通気孔により、気密性がとりづらい(計画換気を行いづらい)。さらに、冬においても、建物南面の上昇気流と風だけでは建物北面の下降気流は弱く、暖かい空気は上昇すると言う自然の摂理に反しているため、建物南面で暖められた空気を建物北面を通して床下基礎内部に効率的に送ることができない。   In the method shown in Example 3 described above, there is a drawback that hot outside air is taken inside the heat insulating material near the eaves of a building in summer. In addition, it is difficult to achieve airtightness due to a number of ventilation holes on the heat insulation surface (difficult to perform planned ventilation). Furthermore, even in the winter, the updraft and wind on the south side of the building alone are weak against the natural providence that the downdraft on the north side of the building is weak and warm air rises. It cannot be sent efficiently inside the foundation.

上述の例4に示す工法では、冬季においてせっかく内通気層に導入された暖気を室内に導く方法が考慮されていないため、暖気は建物の上部に留まり、下部に位置する室内を暖めることはない。また本工法においては、床下に断熱材を設置する床断熱工法であるため、夏季において基礎立ち上がり部分の内部に貯えられた冷気を積極的に利用することができない。   In the construction method shown in Example 4 above, since the method of guiding the warm air introduced into the inner ventilation layer into the room in winter is not considered, the warm air stays at the upper part of the building and does not warm the room located at the lower part. . Moreover, in this construction method, since it is a floor insulation construction method in which a heat insulating material is installed under the floor, the cold air stored inside the foundation rising portion cannot be used positively in summer.

すなわち、上述の従来の通気工法では、「暖かい空気は上昇し、冷たい空気は下降するという自然の原理」に反する空気の流れが、基礎部分や小屋裏などに空気出入口を取り付けるのみで起こるとするなどの理論的ではない場合が殆どであり、夏における床下の冷気あるいは冬における建物に降り注ぐ太陽熱の利用が不十分か全く利用されていないものが多く、また冬季のみにしか利用できない大掛かりな集熱装置やダクトを利用したシステムが必要であったりして非効率的な部分が多い。   In other words, in the conventional ventilation method described above, it is assumed that the air flow contrary to the “natural principle that warm air rises and cold air descends” occurs only by attaching an air inlet / outlet to the foundation or the back of the hut. In many cases it is not theoretical, such as underfloor cold in the summer or solar heat falling on the building in the winter is insufficient or not used at all, and large heat collection that can be used only in the winter There are a lot of inefficiencies because a system using equipment or ducts is necessary.

本出願に係る発明は、上述の従来の通気工法に見られる欠点を改善し、建物内部(断熱材と内壁材の間に内通気路が形成される場合は、これらの躯体内通気空間と室内空間を含む)に、単純で安価な換気装置を組み合わせることで、冬季においては建物に照射される太陽エネルギーや地熱を、夏季においては、地熱や放射冷却などの冷たいエネルギーに基づく外気より冷たい空気を最大限に室内に取り入れる空気の循環を形成することで、結露を防止し、木造住宅の長寿命化を図ると同時に、冷暖房にできるだけ頼らなくても済む省エネルギー建物を提供することを目的としている。   The invention according to the present application improves the above-described drawbacks found in the conventional ventilation method, and the interior of the building (when the internal ventilation path is formed between the heat insulating material and the internal wall material, these internal ventilation spaces and indoors Combined with a simple and inexpensive ventilation device, the solar energy and geothermal energy radiated on the building in winter, and in the summer, air that is cooler than the outside air based on cold energy such as geothermal and radiant cooling is used. The objective is to provide an energy-saving building that minimizes the need to rely on cooling and heating as well as preventing condensation and extending the life of a wooden house by creating a maximum circulation of air taken into the room.

本発明の目的を実現する省エネルギー建物の第1の構成は、請求項1に記載したように、軒先と棟にそれぞれ設けた通気口を屋根材下に形成した屋根下通気路で繋ぐ屋根下通気工法を用いた省エネルギー建物において、棟付近にて、前記屋根下通気路と小屋裏(最上階に天井がある場合)あるいは室内(最上階が勾配天井の場合)空間を繋ぎ、軒先から流入した空気を小屋裏あるいは室内空間に導入することを可能とする空気流路と、前記小屋裏あるいは室内空間からの空気を前記棟通気口より排出することを可能とする空気流路を切替可能とする棟付近通気路切替装置と、断熱性および気密性を高めた建物の内部に設置し、前記棟付近通気路切替装置直下の建物内部空間の最頂部付近と、基礎断熱工法の場合では床下空間、床下断熱工法の場合では床材と床材の下部に設置した断熱材の間に形成された空間とを繋ぎ、上下端をそれぞれ該空間の最頂部付近および床下空間もしくは床材と床材の下部に設置した断熱材の間に形成された空間に開放した筒状の空気流通筒と、前記空気流通筒内を上から下方向および下から上方向への空気の流れを選択的に形成可能な送風手段と、最上部に近い位置において前記空気流通筒の内部を上下方向に仕切って空気の流れを調節・遮断する頂部開閉弁と、前記頂部開閉弁の下部に設けられ、前記空気流通筒の内外を開閉可能に繋ぐ室内通気口と、を有する空気流通装置と、のうち、少なくとも前記棟付近通気切替装置を設置したことを特徴とする。   According to a first configuration of an energy-saving building that realizes the object of the present invention, as described in claim 1, the under-ventilation ventilation connects the vent holes provided in the eaves and the ridge with the under-roof air passage formed under the roof material. In an energy-saving building using a construction method, near the ridge, the air that flows in from the eaves connecting the space between the under-air vent and the roof (if the top floor has a ceiling) or indoor (when the top floor is a gradient ceiling) That can be switched between an air flow path that allows air to be introduced into the back of a shed or indoor space, and an air flow path that allows air from the shed or indoor space to be discharged from the wing vent. Installed in the vicinity of the near-airway switching device and the building with enhanced heat insulation and airtightness, near the top of the building internal space directly below the near-airway airway switching device, and in the case of the basic thermal insulation method, underfloor space, underfloor Insulation method In this case, the space formed between the flooring and the heat insulating material installed at the lower part of the flooring is connected, and the upper and lower ends are respectively installed near the top of the space and under the floor or the flooring and the lower part of the flooring. A cylindrical air circulation cylinder opened in a space formed between the materials, and a blowing means capable of selectively forming an air flow from the top to the bottom and from the bottom to the top in the air circulation cylinder, A top opening / closing valve that regulates and shuts off the air flow by dividing the inside of the air circulation cylinder in the vertical direction at a position close to the top, and a lower part of the top opening / closing valve, which can be opened and closed inside and outside the air circulation cylinder And an air circulation device having an indoor vent connected to the at least one of the ridges near the air flow switching device.

本発明の目的を実現する省エネルギー建物の第2の構成は、請求項2に記載したように、上記第1の構成で、床下断熱工法を採用し、基礎部分を除く外周垂直面、最上階の天井面もしくは屋根下勾配面、最下部の階の床下面に施工した断熱材と、柱や梁等の構造材を隠す形で施工されている室内側の外周部の壁材、天井材あるいは勾配天井材および床材との間に形成し互いに連通させた空間である躯体内通気層を有し、前記空気流通装置を設置しない場合は前記躯体内通気層を前記棟通気口にまで繋げ、前記空気流通装置を設置した場合には、前記躯体内通気層の最頂部付近にて該躯体内通気層から前記棟付近通気路切替装置方向への空気の流路を遮断し、前記躯体内通気層と前記室内空間との間をガラリ等の通気手段を適宜に配して連結したことを特徴とする。   The second configuration of the energy-saving building that realizes the object of the present invention is the above-described first configuration, wherein the second configuration adopts an underfloor heat insulation method, and the outer peripheral vertical surface excluding the foundation portion, the top floor Wall materials, ceiling materials, or gradients on the indoor side that are constructed in a manner that hides the structural materials such as pillars and beams, and the heat insulating material that is constructed on the ceiling surface or the slope below the roof, the bottom floor of the lowest floor It has a housing ventilation layer that is a space formed between the ceiling material and the floor material and communicated with each other, and when the air circulation device is not installed, the housing ventilation layer is connected to the building vent, In the case where an air circulation device is installed, the air flow path from the internal body ventilation layer to the vicinity of the ridge near the airway switching device is blocked near the top of the internal body ventilation layer, and the internal ventilation layer A ventilation means such as a louver is appropriately disposed between and connected to the indoor space. It is characterized in.

本発明の目的を実現する省エネルギー建物の第3の構成は、請求項3に記載のように、上記第1の構成で、基礎断熱工法を採用し、基礎立上がり部分を含む外周垂直面、最上階の天井面もしくは屋根下勾配面に施工した断熱材と、前記小屋裏あるいは室内空間側の壁材、天井材あるいは勾配天井材との間に形成し互いに連通させた空間である躯体内通気層を有し、前記空気流通装置を設置しない場合は前記躯体内通気層を前記棟通気口にまで繋げ、前記空気流通装置を設置した場合には、前記躯体内通気層の最頂部付近にて該躯体内通気層から前記棟付近通気路切替装置方向への空気の流路を遮断し、前記躯体内通気層ならびに床下空間と前記室内空間との間をガラリ等の通気手段を適宜に配して連結したことを特徴とする。   The third configuration of the energy-saving building that realizes the object of the present invention is the first configuration as described in claim 3, adopting the basic heat insulation method, and including the vertical vertical surface including the foundation rising portion, the top floor A ventilation layer which is a space formed between the heat insulating material constructed on the ceiling surface or the sloped surface of the roof and the wall material on the back of the shed or indoor space, the ceiling material or the sloped ceiling material and communicated with each other. And when the air circulation device is not installed, the enclosure ventilation layer is connected to the building vent, and when the air circulation device is installed, the enclosure is located near the top of the enclosure ventilation layer. Block the air flow path from the inner ventilation layer to the vicinity of the building near the ridge ventilation switching device, and connect the enclosure ventilation layer and the underfloor space and the indoor space by appropriately arranging ventilation means such as louvers. It is characterized by that.

本発明の目的を実現する省エネルギー建物の第4の構成は、請求項4に記載のように、上記第2または第3の構成で示した建物のうち、前記空気流通装置を備えていて、室内側に柱・梁などの構造体を顕わしにした構造で施工することにより建物内部の空気の流動性を高めたことを特徴とする。   A fourth configuration of an energy-saving building that realizes the object of the present invention includes the air circulation device of the buildings shown in the second or third configuration, as described in claim 4, and includes a room. It is characterized by improving the fluidity of the air inside the building by constructing it with a structure that reveals structures such as columns and beams inside.

本発明の目的を実現する省エネルギー建物の第5の構成は、請求項5に記載のように、上記いずれかの構成で、屋根下勾配面および建物最上階の天井面に断熱材を設置したことを特徴とする。   According to a fifth configuration of the energy-saving building that realizes the object of the present invention, the heat insulating material is installed on the sloped surface below the roof and the ceiling surface of the top floor of the building as described in claim 5. It is characterized by.

本発明の目的を実現する省エネルギー建物の第6の構成は、請求項6に記載のように、上記第2から第5の構成で示した建物のうち、前記空気流通装置を設置していて該空気流通装置の空気流通筒の上端を前記屋根下通気路から小屋裏もしくは室内空間へ空気を導く通気路へ直結させることを特徴とする。   According to a sixth configuration of the energy-saving building that realizes the object of the present invention, among the buildings shown in the second to fifth configurations, the air circulation device is installed, and The upper end of the air circulation tube of the air circulation device is directly connected to an air passage that guides air from the air passage under the roof to the back of the shed or the indoor space.

請求項1に係る発明によれば、棟付近通気路切替装置に付随する切替弁を閉じることにより冬の日射しのある日中において屋根に降り注ぐ太陽エネルギーよって暖められた屋根下通気層内の空気を室内に取込むための空気流路を確保する効果、および、装置に付随する切替弁を開くことにより夏の日中に建物内部の頂部に集まる熱気を効率的に排出するための空気流路を確保する効果、ならびに、夏の夜に屋根からの放射冷却により冷やされることで形成される屋根下通気層の冷気を室内に取込むための空気流路を確保する効果がある。この場合、切替弁は、開閉のどちらか高率のよい状態とする。   According to the first aspect of the present invention, the air in the underfloor ventilation layer heated by the solar energy that falls on the roof during the day with winter sunlight is closed by closing the switching valve associated with the near-building ventilation path switching device. An effect of securing an air flow path for taking in the room, and an air flow path for efficiently discharging hot air collected at the top of the building during the summer day by opening a switching valve attached to the apparatus. This has the effect of securing the air flow path for taking in the cold air of the underfloor ventilation layer formed by being cooled by radiative cooling from the roof in summer night. In this case, the switching valve is in a state with a higher rate of opening and closing.

また、空気流通装置を設置し、これに僅かなエネルギーを投入することで、「暖かい空気は上昇し冷たい空気は下降するという自然の原理」に逆らう形で、上記棟付近通気路切替装置より流入する「冬の日射によって暖められた屋根下通気層内の暖気」を床下空間もしくは床材と床材の下部に設置した断熱材の間に形成された空間である躯体内通気層に効率的に送る効果、夏の日中、床下の冷気を持ち上げ建物内部に効率的に送る効果、および夏の夜に屋根からの放射冷却により屋根下通気層内に形成された冷気を床下空間もしくは床下に形成された躯体内通気層に送る効果が得られる。   Also, by installing an air flow device and putting a little energy into it, it flows from the airflow switching device near the ridge in the form against the natural principle that warm air rises and cold air descends The "warm air in the under-floor ventilation layer warmed by solar radiation in the winter" is efficiently applied to the under-floor space or the space formed between the flooring and the insulation material under the flooring. The effect of sending, the effect of lifting the cool air under the floor during the summer day, efficiently sending it to the inside of the building, and the cool air formed in the underfloor ventilation layer by radiative cooling from the roof in the summer night is formed in the underfloor space or under the floor The effect of sending to the ventilated layer inside the housing is obtained.

請求項2に係る発明によれば、床下断熱工法の建物においては、外周垂直面・最上階の天井面もしくは屋根下勾配面・最下部の階の床下面に施工した断熱材と室内との間にそれぞれが柱・梁などの構造材を隠す形で施工された内壁(いわゆる大壁)・天井もしくは勾配天井・床を設け、これらと断熱材の間にできる空間を互いに連通させた躯体内通気層を棟付近通気路切替装置にまで繋なげ、ガラリなどを利用して当該躯体内通気層と室内空間と適度に連結させ、これに例えば室内空間の換気の為に設置される排気ファンを連動させること、あるいは当該躯体内通気層の最頂部付近にて当該躯体内通気層から前記棟付近通気路切替装置方向への空気の流路を遮断した上で前記空気流通装置を設置し付随する送風手段を作動させ、かつガラリなどを利用して当該躯体内通気層と室内空間と適度に連結させることにより、冬の日射しのある日中において屋根に降り注ぐ太陽エネルギーよって暖められた屋根下通気層内の空気、および夏の夜に屋根からの放射冷却により冷やされることで形成される屋根下通気層の冷気を室内に取込むこと、および躯体内通気層を含めた室内の空気の循環を作り出すこと、を微弱なエネルギーを投入することで効率的に行うことで、自然エネルギーを効率的に利用する効果、ならびに構造材を長寿命化する効果がある。   According to the invention which concerns on Claim 2, in the building of an underfloor heat insulation construction method, between the room | chamber interior with the heat insulating material constructed | assembled on the outer peripheral vertical surface, the ceiling surface of the uppermost floor or the underfloor slope surface, the floor lower surface of the lowermost floor The interior wall (so-called large wall), ceiling or sloped ceiling / floor constructed to conceal the structural materials such as pillars and beams are installed in the interior, and the space created between them and the heat insulating material communicates with each other. The layer is connected to the ventilation switching device near the building, and the internal ventilation layer and the indoor space are appropriately connected using a louver or the like, and for example, an exhaust fan installed for ventilation of the indoor space is linked to this Or by blocking the air flow path from the enclosure vent layer to the vicinity of the ridge near the ridge ventilation switch in the vicinity of the top of the enclosure vent layer and installing the air flow device and accompanying air flow Actuating means and glaring The air in the underfloor ventilation layer warmed by solar energy falling on the roof during the day of winter sunshine, and the summer night Weak energy is applied to the intake of cold air from the underfloor ventilation layer formed by cooling by radiative cooling from the roof, and the creation of indoor air circulation including the ventilation layer inside the enclosure. By doing so efficiently, there is an effect of efficiently using natural energy and an effect of extending the life of the structural material.

請求項3に係る発明に示された基礎断熱工法の建物においては、床下断熱工法における床と床下断熱材の間に形成される通気層は床下空間に置き換わるが、この方が外気よりも冬暖かく夏涼しい地熱の影響を受ける床下空間の空気を利用できるため、自然エネルギーの効率的利用上より効果的となる。また夏の日中においては、前記空気流通装置に付随する頂部遮断弁および室内通気口を各々閉じおよび開きかつ付随する送風装置を上向きに作動させることにより、地熱により冷却された床下の空気を室内空間に導入することで、より快適な居住環境を作り出す効果を高めることができる。   In the building of the basic heat insulation method shown in the invention according to claim 3, the ventilation layer formed between the floor and the underfloor heat insulating material in the underfloor heat insulation method is replaced with the underfloor space. Since the air in the underfloor space that is affected by cool geothermal heat can be used, it is more effective for efficient use of natural energy. Also, during the summer day, the top shut-off valve and the indoor vent associated with the air circulation device are closed and opened, and the associated air blower is operated upward, so that the underfloor air cooled by the geothermal heat is moved indoors. By introducing it into the space, the effect of creating a more comfortable living environment can be enhanced.

請求項4に係る発明によれば以下の効果を有する。躯体内通気層を設けない一般的な大壁工法の建物では、建物外周部の断熱材と大壁の間に形成される空気の流れのない密閉された空間が結露の原因となることから、躯体内通気層をもつ建物が提案されたが、本発明によれば建物内部の空気のよどみをさらに小さくするために、請求項2または3に係る発明の建物から大壁を取り去り、柱・梁などの構造材を顕わしにすることにより、室内の空気の流動性をより高める効果がある。   The invention according to claim 4 has the following effects. In a building with a general large wall construction method that does not have a ventilation layer inside the enclosure, a sealed space with no air flow formed between the heat insulating material on the outer periphery of the building and the large wall causes condensation. A building having a ventilation layer in the enclosure has been proposed. According to the present invention, in order to further reduce the stagnation of air inside the building, a large wall is removed from the building of the invention according to claim 2 or 3, and By revealing the structural material such as, there is an effect of further improving the fluidity of the indoor air.

請求項5に係る発明によれば、断熱材を屋根下勾配面ならびに建物最上階の天井に共に施工する建物の場合、夏の強い日射による熱を建物内部に入り込ませないために屋根下勾配面のみに断熱材を施工する場合に必要とされる断熱材の厚み(住宅金融公庫次世代省エネ基準では、同基準に定める地域II−Vにおいて高性能の断熱材を用いても90mm 必要とされる)の為に問題となるビスの長さを短縮する効果が得られるとともに、断熱材の切れ目をなくし施工性を上げることができる効果、屋根下勾配面と建物最上階の天井に施工された断熱材の間の小屋裏空間に形成された空気の層を断熱層として利用することで、より高い断熱効果を得る効果がある。   According to the invention which concerns on Claim 5, in the case of constructing a heat insulating material on the roof bottom slope surface as well as the ceiling of the top floor of the building, the roof bottom slope surface prevents heat from strong summer sunlight from entering the building. The thickness of the heat insulating material required when installing the heat insulating material only (In the Housing Finance Corporation Next Generation Energy Saving Standard, 90 mm is required even if high performance heat insulating material is used in the region II-V defined in the same standard. The effect of shortening the length of the screw, which is a problem), and the effect of improving the workability by eliminating the cut of the heat insulating material, the heat insulation constructed on the sloped surface of the roof and the ceiling of the top floor of the building By using the air layer formed in the attic space between the materials as a heat insulating layer, there is an effect of obtaining a higher heat insulating effect.

請求項6に係る発明によれば、屋根下通気路と前記空気流通装置を直結するため、日射のある冬の日中に屋根下通気路に形成された暖気、および晴れた夏の夜に放射冷却により屋根下通気路に形成された冷気を、小屋裏もしくは室内空間へより効率的に導入することが可能となる。   According to the invention which concerns on Claim 6, in order to connect an underfloor air passage and the said air circulation apparatus directly, the warm air formed in the underfloor air passage during the daytime of winter with a solar radiation, and radiation | emission at the night of the sunny summer It becomes possible to more efficiently introduce the cool air formed in the under-air ventilation passage by cooling into the cabin or indoor space.

なお、上記構成の建物においては、外周垂直面において断熱材と外壁材の間に通気層を設け、軒部分で屋根下通気層と連結させ、軒先通気口の代わりあるいは軒先通気層に加えて外通気層下部に設けた通気口から棟通気口までの通気路を設けた外通気工法の建物と、当該外通気層を設けない建物があるが、当該外通気層を設けた建物においては、冬の日中、屋根面に加えて外壁に照射される太陽エネルギーにより暖められる外通気層内の空気を室内に取込むこと可能となること、および夏季において外壁垂直面に照射される太陽熱を当該通気層により遮る効果があることから、対応する外通気層を設けない建物よりも自然エネルギーの効率的利用が可能となる。   In the building with the above configuration, a ventilation layer is provided between the heat insulating material and the outer wall material on the outer peripheral vertical surface, and is connected to the under-air ventilation layer at the eave portion, and is installed outside the eaves ventilation hole or in addition to the eaves ventilation layer. There are buildings with an external ventilation method that provide an air passage from the ventilation hole provided at the lower part of the ventilation layer to the building ventilation hole, and buildings that do not have the external ventilation layer. During the day, it becomes possible to take in the air in the outer ventilation layer heated by the solar energy irradiated to the outer wall in addition to the roof surface into the room, and the solar heat irradiated to the outer wall vertical surface in summer Since there is an effect of shielding by the layer, natural energy can be used more efficiently than a building without a corresponding outer ventilation layer.

以上のように、本発明によれば、最低限の動力換気装置を躯体内を含む建物内部の空気の循環と連動させる形で用いることにより、自然エネルギーを利用する上で重要な「暖かい空気は上昇し冷たい空気は下降するという自然の原理」に逆らった空気の流れをごく微弱なエネルギーを投入することで作り出し、投入したエネルギー以上の冷暖房効果をあげようとするものである。同時に本発明は、従来のパッシブエアサイクル系の住宅や二重通気工法の住宅おいて基礎部分や建物の上部などに出入り口を取り付けるのみで起こるとされてきた「暖かい空気は上昇し冷たい空気は下降するという自然の原理」に反する空気の流れの理論矛盾を解決するものである。   As described above, according to the present invention, “warm air is important in utilizing natural energy by using the minimum power ventilation device in a form linked with the circulation of air inside the building including the enclosure. It creates air flow against the natural principle of rising and cooling air descending by applying very weak energy, and tries to increase the air-conditioning effect beyond the input energy. At the same time, the present invention has been considered to occur only by attaching doorways to the base part or the upper part of the building in conventional passive air cycle houses and double ventilated houses, "warm air rises and cold air falls It solves the theoretical contradiction of air flow that violates the "natural principle of doing".

以下本発明を図面に示す実施例に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

第1実施例
図1は本発明の第1実施例を示し、図1(a)は、棟付近通気路切替装置の軒先と棟を結ぶ面の垂直断面図、図1(b)は図1(a)を軒側から見た図である。図3A,図3Bは図1の棟付近通気路切替装置を備えた建物の縦断面図を示す。
First Embodiment FIG. 1 shows a first embodiment of the present invention. FIG. 1 (a) is a vertical sectional view of a plane connecting the eaves and the ridge of the near-airway switching device, and FIG. 1 (b) is FIG. It is the figure which looked at (a) from the eaves side. 3A and 3B are longitudinal sectional views of a building equipped with the near-building air passage switching device of FIG.

本実施例による棟付近通気路切替装置4は、例えば図3に示すように配置される。なお、いずれの図においても同じ部材には同一の符号を付して重複した説明は省略する。   The building vicinity ventilation path switching device 4 according to the present embodiment is arranged as shown in FIG. 3, for example. In any of the drawings, the same members are denoted by the same reference numerals, and redundant description is omitted.

図3を参照すると、この建物は、断熱材と内壁材との間に空間である躯体内通気層13を形成している。そして、軒先に設けた軒通気口5bと、棟に設けた棟通気口5cの間を繋ぐように屋根下通気路をなす屋根下通気層5aを形成している。この屋根下通気層5aは、屋根下断熱材2bと、屋根材3の下に施工された二層目野地板1bの間に形成されている。なお、屋根材3としてはアスファルトルーフィングも含む。   Referring to FIG. 3, this building forms a housing ventilation layer 13 which is a space between the heat insulating material and the inner wall material. And the under-floor ventilation layer 5a which makes a under-floor air passage is formed so that the eaves vent 5b provided in the eaves and the ridge vent 5c provided in the ridge may be connected. The under-floor ventilation layer 5 a is formed between the under-floor heat insulating material 2 b and the second-layer field base plate 1 b constructed under the roof material 3. The roof material 3 includes asphalt roofing.

棟付近通気路切替装置4は、棟通気口5c側において屋根下通気層5aとの連通を開閉するが、棟付近通気路切替装置4のスライド弁 4aが閉状態であっても屋根下通気層5aと躯体内通気層13における一層目野地板1aと天井(又は勾配天井)9bとの間に形成された通気層部分(屋根下躯体内通気層13b)との間は常に連通している。また、屋根下空気層5aと常に連通しているこの屋根下躯体内通気層13bは例えば室内の通気口である天井面ガラリ11dに臨んでいる。なお、図3中、左右方向を南北方向とすると、棟付近通気路切替装置4を東西方向に沿って適宜の個数配置している。   The building vicinity ventilation path switching device 4 opens and closes the communication with the roof bottom ventilation layer 5a on the building ventilation port 5c side, but the roof bottom ventilation layer even if the slide valve 4a of the building vicinity ventilation path switching device 4 is closed. 5a and a ventilation layer portion (under-floor enclosure ventilation layer 13b) formed between the first base plate 1a and the ceiling (or gradient ceiling) 9b in the enclosure ventilation layer 13 are always in communication. Further, this under-floor interior ventilation layer 13b that is always in communication with the under-roof air layer 5a faces, for example, a ceiling surface gallery 11d that is an indoor vent. In FIG. 3, assuming that the left-right direction is the north-south direction, an appropriate number of ridge-side airway switching devices 4 are arranged along the east-west direction.

この棟付近通気路切替装置4は、棟に近い部分で一層目野地板1aと屋根下断熱材2bの一部を切取り、削除した部分の棟側に軒先側と棟側の屋根下通気層5aを繋ぐ空気流路4cを確保できる通気口をなす開口部を備えた木材,発泡プラスチックなどの断熱性能が高い素材で形成されたスライド弁支持枠4bを対向配置し、対向配置するスライド弁支持枠4bの間に空気流路4cを塞ぐことが可能な平板状のスライド弁4aを気密性を保持して設置した構成としている。   This building vicinity ventilation path switching device 4 cuts a part of the joint base plate 1a and the roof under heat insulating material 2b in a portion close to the building and removes the deleted portion of the building side and the roof side ventilation layer 5a on the eaves side and the building side. The slide valve support frame 4b is formed by opposingly arranging the slide valve support frame 4b formed of a material having a high heat insulating performance such as wood, foamed plastic, etc., having an opening that forms a vent that can secure the air flow path 4c that connects the two. A flat slide valve 4a capable of closing the air flow path 4c between 4b is installed while maintaining airtightness.

図1(b)に示すように、屋根下断熱材2bと、その上方にある二層目野地板1bの間に形成された屋根下通気層5aは、二層目垂木6bの高さと同じ高さを持ち、対向するスライド弁支持枠4bの間に密着させて施工したスライド弁4aを上下にスライドさせることで、棟付近通気路切替装置4内の流路4cを開閉し、屋根下通気層5aおよび室内から棟への空気の流れを切り替える。6aは一層目垂木を示す。   As shown in FIG. 1 (b), the under-floor ventilation layer 5a formed between the under-floor heat insulating material 2b and the second-layer field base plate 1b located above is as high as the second-layer rafter 6b. The slide valve 4a constructed in close contact with the opposing slide valve support frame 4b is slid up and down to open and close the flow path 4c in the near-building air passage switching device 4, thereby opening the under-floor ventilation layer 5a and the air flow from the room to the building are switched. 6a shows a single layer rafter.

なお、本発明の棟付近通気路切替装置はこの構成に限定されるものではなく、屋根下通気層5aの軒先側から(躯体内通気層を含む)室内もしくは小屋裏空間への空気の流れと、(躯体内通気層を含む)室内から棟通気口5cへの空気の流れを切替可能な装置であればこのような形状に限定されるものではなく、例えば屋根下通気層5a内に設置した板状の回転式弁や、適度な厚みを持つ中空の円筒形発泡プラスチック製の円筒の内部に内部の直径と同じサイズの発泡プラスチック製の円筒を埋め込んだ3方コック式の屋根下通気層流路切替装置などでも良い。   Note that the near-building air passage switching device of the present invention is not limited to this configuration, and the flow of air from the eaves side of the under-air ventilation layer 5a to the room or the attic space (including the inside ventilation layer) The device is not limited to such a shape as long as it is a device that can switch the flow of air from the room (including the ventilation layer inside the building) to the building vent 5c. For example, the device is installed in the ventilation layer 5a under the roof. A three-way cock-type under-floor air flow with a plate-like rotary valve or a hollow cylindrical foam plastic cylinder with an appropriate thickness embedded in a foam plastic cylinder of the same size as the inside diameter A road switching device or the like may be used.

上記した構成の本実施例による棟付近通気路切替装置4の使用方法を以下に説明する。   A method of using the near-building air passage switching device 4 according to this embodiment having the above-described configuration will be described below.

冬の日中(昼)に太陽エネルギーよって暖められた屋根下通気層5a内の暖気、および夏の夜に屋根からの放射冷却により冷やされることで形成される屋根下通気層5aの冷気、を室内に取込みたい場合は、スライド弁4aを押し上げて流路4cを閉じることで、屋根下通気層5aと躯体内通気層を含む室内あるいは小屋裏空間の流路を確保する。   The warm air in the underfloor ventilation layer 5a heated by solar energy during the daytime of winter (noon), and the cool air of the underfloor ventilation layer 5a formed by being cooled by radiant cooling from the roof in the summer night. In order to take in the room, the slide valve 4a is pushed up to close the flow path 4c, thereby securing a flow path in the room or the attic space including the under-floor ventilation layer 5a and the enclosure ventilation layer.

一方、夏の日中(昼)に室内の熱気を排除したい場合は、スライド弁4aを引き下げて流路4cを開くことで、室内あるいは小屋裏空間からの流路を棟通気口5cに接続し、暖められて上昇力を持った屋根下通気層5a内の熱気と共に棟通気口5cより排出する。   On the other hand, when it is desired to exclude hot air in the room during summer daytime (noon), the flow path from the room or the attic space is connected to the building vent 5c by lowering the slide valve 4a and opening the flow path 4c. Then, it is discharged from the building vent 5c together with the hot air in the underfloor vent layer 5a that has been warmed and has a rising force.

第2実施例
図2は本発明の第2実施例を示す。
Second Embodiment FIG. 2 shows a second embodiment of the present invention.

図4A,図4Bは図2の縦方向における空気の流通を行う空気流通装置である空気循環装置7を備えた建物の縦断面図を示す。   4A and 4B are longitudinal sectional views of a building including an air circulation device 7 which is an air circulation device that circulates air in the vertical direction of FIG.

図2において、本実施例による空気循環装置7は、上下両端がそれぞれ開口した筒部材により構成された空気流通筒をなす空気循環筒7bを例えば図4に示すように建物内に縦方向に配置している。この空気循環筒7bは、例えば図4に示す床下空間15と室内空間14および小屋裏空間16をそれぞれ通り、頂部通気口8aを貫通し、例えば図1で説明した棟付近通気路切替装置4に対向する位置まで延びている。   In FIG. 2, the air circulation device 7 according to the present embodiment has an air circulation cylinder 7b that forms an air circulation cylinder composed of cylindrical members that are open at both upper and lower ends, for example, as shown in FIG. is doing. This air circulation cylinder 7b passes through, for example, the underfloor space 15, the indoor space 14, and the cabin space 16 shown in FIG. 4 and penetrates the top vent 8a. It extends to the opposite position.

この空気循環筒7b内の下部には送風ファン7aを、上部には頂部開閉弁7dを設けており、空気循環筒7bの側壁面には室内通気口7cが形成されている。この室内通気口7cは、室内に臨むように開口されている。   A blower fan 7a is provided at the lower part of the air circulation cylinder 7b, and a top opening / closing valve 7d is provided at the upper part. An indoor vent 7c is formed on the side wall surface of the air circulation cylinder 7b. The indoor vent 7c is opened to face the room.

送風ファン7aは、建物の内部容積により、毎時内部容積の半分程度の最大送風量を持ち逆送可能なものとするが、風量調節も可能なものが望ましい。空気循環筒7bは、合板、グラスファイバーなど適度な強度を持つ材質で出来ており、内部に発泡プラスチックなどの断熱材を持つものが望ましい。室内通気口7cは、プラスチック製もしくは金属製のスライド式あるいは回転式の開閉可能窓あるいはガラリとする。頂部開閉弁7dは、例えばスライド式あるいは回転式であり、発泡プラスチックもしくは木材などの比較的軽量の素材が望ましい。   The blower fan 7a has a maximum blown amount of about half of the internal volume per hour depending on the internal volume of the building and can be fed back, but it is desirable that the air volume can be adjusted. The air circulation cylinder 7b is made of a material having an appropriate strength such as plywood or glass fiber, and preferably has a heat insulating material such as foamed plastic inside. The indoor vent 7c is made of a plastic or metal sliding or rotating openable / closable window or a louver. The top opening / closing valve 7d is, for example, a slide type or a rotary type, and a relatively lightweight material such as foamed plastic or wood is desirable.

上記した構成の本実施例による空気循環装置7の使用方法を以下に説明する。   A method of using the air circulation device 7 according to this embodiment having the above-described configuration will be described below.

冬の日中、太陽エネルギーよって暖められた屋根下通気層5a内の暖気、および夏の夜に屋根からの放射冷却により冷やされることで形成される屋根下通気層5a内の冷気を取込みたい場合は、頂部開閉弁7dを開き、送風ファン7aを上から下方向順方向で作動させるものとする。   When it is desired to capture the warm air in the underfloor ventilation layer 5a warmed by solar energy during the winter day and the cool air in the underfloor ventilation layer 5a formed by cooling by radiant cooling from the roof in the summer night Open the top on-off valve 7d and operate the blower fan 7a in the forward direction from the top to the bottom.

この場合、頂部開閉弁7dが開放しているので、屋根下通気層5a内の暖気あるいは冷気が、送風ファン7aにより空気循環筒7b内を下方に向けて強制的に流され、床と床下断熱材との間に形成された床下躯体内通気層13cあるいは床下空間15に送られた後、外周垂直面躯体内通気層13a、屋根下躯体内通気層13bや床に設けられたガラリ等を通して室内に送風される。   In this case, since the top opening / closing valve 7d is opened, warm air or cold air in the under-floor ventilation layer 5a is forced to flow downward in the air circulation cylinder 7b by the blower fan 7a, and the floor and under-floor heat insulation. After being sent to the underfloor enclosure vent layer 13c or the underfloor space 15 formed between the floor and the interior of the room, it is passed through the outer peripheral vertical plane enclosure vent layer 13a, the roof underbody vent layer 13b, the louver provided on the floor, etc. To be blown.

一方、夏の日中、床下の冷気を室内に送りたい時は、頂部開閉弁7dを閉じ、室内通気口7cを開放し、送風ファン7aを逆方向で作動させるものとする。   On the other hand, when it is desired to send the cold air under the floor into the room during the summer, the top opening / closing valve 7d is closed, the indoor vent 7c is opened, and the blower fan 7a is operated in the reverse direction.

この場合、床下の冷気が送風ファン7aにより空気循環筒7b内を上昇するが、上部の頂部開閉弁7dは閉じているので、室内通気口7cを通して室内に冷気が送風される。   In this case, the cold air under the floor rises in the air circulation cylinder 7b by the blower fan 7a, but since the top top opening / closing valve 7d is closed, the cold air is blown into the room through the indoor vent 7c.

第3実施例
図3Aは本発明の第3実施例を示す。
Third Embodiment FIG. 3A shows a third embodiment of the present invention.

図3Aに示す本実施例の建物は、図1に示した棟付近通気路切替装置4を備えると共に、躯体内通気層13を備えた床下断熱建物で、(a)は冬の昼、(b)は冬の夜、(c)は夏の昼、(d)は夏の夜での使用方法を示す。なお、図3から図6において、図中、建物の左側を南、右側を北とする。また、図3〜図6において、図中空気の流れを流線で示し、その方向は矢印の向きとする。   The building of this embodiment shown in FIG. 3A is an underfloor heat insulation building provided with the ventilation passage switching device 4 near the building shown in FIG. ) Is a winter night, (c) is a summer day, and (d) is a summer night. 3 to 6, in the drawings, the left side of the building is south and the right side is north. Moreover, in FIGS. 3-6, the flow of air is shown with a flow line in the figure, and the direction is taken as the direction of an arrow.

さらに、図3〜図6中の棟付近通気路切替装置4のスライド弁 4a,送風ファン7a,室内通気口7c,頂部開閉弁7d,通気口7e,下部開閉弁7f,頂部通気口8a,排気ファン10a,機械式床下給気ファン10c,壁面ガラリ11a,床面ガラリ11b,床下断熱材面ガラリ11c,天井面ガラリ11dの開閉、運転状態を、図3から図6の(a)〜(d)に対応して下記の表1に示す(一部の装置・部材は後述)。   Further, the slide valve 4a, the blower fan 7a, the indoor vent 7c, the top opening / closing valve 7d, the vent 7e, the lower opening / closing valve 7f, the top vent 8a, the exhaust of the near-ridge ventilation path switching device 4 in FIGS. The opening / closing and operating states of the fan 10a, the mechanical underfloor air supply fan 10c, the wall surface louver 11a, the floor surface louver 11b, the underfloor heat insulating surface louver 11c, and the ceiling surface louver 11d are shown in FIGS. ) In the following Table 1 (some devices and members will be described later).

表1において、開閉可能な通気口・通気弁・ガラリ等に関しては、開け放した状態をO,閉じた状態をC、半開の状態をMとした。また排気ファン・給気ファン・送風ファンに関しては、その運転状況および開閉状態は、強く運転した状態をF、停止し閉じた状態をS、弱く運転した状態をMとした。   In Table 1, regarding openable / closable vents, vent valves, louvers, etc., the open state is O, the closed state is C, and the half-open state is M. Regarding the exhaust fan, air supply fan, and blower fan, the operating state and the open / closed state are F for a strongly operated state, S for a stopped and closed state, and M for a weakly operated state.

Figure 2008297874
Figure 2008297874

本実施例の建物は、布基礎もしくはベタ基礎12aの上に構造体12bを組み、その外側に外周垂直面断熱材2a、屋根下断熱材2bおよび床下断熱材2cを施工している。   In the building of the present embodiment, a structure 12b is assembled on a fabric foundation or a solid foundation 12a, and an outer peripheral vertical surface heat insulating material 2a, a roof under heat insulating material 2b, and an under floor heat insulating material 2c are installed on the outside thereof.

また、構造体12bの室内側には、柱・梁などの構造材を隠す形で施工された内壁(いわゆる大壁)9a,天井もしくは勾配天井9b および床9cが設けられ、これら内壁により室内空間14が形成され、さらに、これら内壁と断熱材(外周垂直面断熱材2a,屋根下断熱材2bおよび最下部の階の床下面断熱材2cからなる)の間に躯体内通気層13(外周垂直面躯体内通気層13a、屋根下躯体内通気層13bおよび床下躯体内通気層13cからなる)を形成している。そして、躯体内通気装置13は棟付近通気路切替装置4にまで繋げられている。   Further, an inner wall (a so-called large wall) 9a, a ceiling or a sloped ceiling 9b and a floor 9c are provided on the indoor side of the structural body 12b so as to conceal a structural material such as a pillar or a beam. 14 is formed between the inner wall and the heat insulating material (consisting of the outer peripheral vertical surface heat insulating material 2a, the roof under heat insulating material 2b, and the bottom floor heat insulating material 2c of the lowermost floor). The inner casing ventilation layer 13a, the lower roof casing ventilation layer 13b, and the under floor casing ventilation layer 13c) are formed. The enclosure ventilation device 13 is connected to the near-building ventilation path switching device 4.

躯体内通気層13は、壁面ガラリ11a、床面ガラリ11b、および天井面ガラリ11dなどを利用して室内空間14と適度に連結されている。また、室内空間14と屋外との間で換気を行うための排気ファン10aを適宜に設置している。   The inside ventilation layer 13 is appropriately connected to the indoor space 14 using the wall surface louver 11a, the floor surface louver 11b, the ceiling surface louver 11d, and the like. Moreover, the exhaust fan 10a for ventilating between the indoor space 14 and the outdoors is appropriately installed.

さらに、床下空間15と屋外との換気を行う床下給気口10bを適宜に設けている。なお、床下給気口10bには、建物の大きさ・形状・立地条件などにより、排気ファン10aの働きを補助するための機械式床下給気ファン10cを取り付けても良い。機械式床下給気ファン10cは、開閉可能な構成としている。   Furthermore, an underfloor air supply port 10b for ventilating the underfloor space 15 and the outside is provided as appropriate. A mechanical underfloor air supply fan 10c for assisting the function of the exhaust fan 10a may be attached to the underfloor air supply port 10b depending on the size, shape, location, etc. of the building. The mechanical underfloor air supply fan 10c is configured to be openable and closable.

なお、排気ファン10aは、個別の部屋ごとに設けても良いし、一台の送風機にダクトをつないで各部屋の排気を行うタイプでも良い。   The exhaust fan 10a may be provided for each individual room, or may be of a type that exhausts each room by connecting a duct to a single blower.

また、本実施例では、床下空間15と床下躯体内通気層13cを繋ぐ床下断熱材面ガラリ11c、並びに建物頂部において屋根下躯体内通気層13bと室内空間14および小屋裏空間16をそれぞれ繋ぐ頂部通気口8a、ならびに屋根下躯体内通気層13bの南側(図中左側)の最上部に軒方向からの空気は流すが、棟方向からの空気の流入を防止する逆止弁8bを設けているが、頂部通気口8aは冬の昼には閉じておく。   Further, in this embodiment, the underfloor heat insulating material surface gallery 11c that connects the underfloor space 15 and the underfloor interior ventilation layer 13c, and the top portion that connects the underfloor interior ventilation layer 13b, the indoor space 14, and the attic space 16 at the top of the building, respectively. Although the air from the eave direction flows to the uppermost part on the south side (left side in the figure) of the vent hole 8a and the roof underbody ventilation layer 13b, a check valve 8b for preventing the inflow of air from the ridge direction is provided. However, the top vent 8a is closed during winter daytime.

なお、図3Aから後記する図6Bの各図においては、外周垂直面において断熱材と外壁材の間に設けた外通気層がある場合の外壁材、外通気層および外通気層下部の通気口、ならびに外周垂直面において断熱材と外壁材の間に設けた外通気層がない場合の外壁材は、図を簡略化するために省略している。   In FIG. 6B, which will be described later from FIG. 3A, the outer wall material, the outer ventilation layer, and the lower vent of the outer ventilation layer when there is an outer ventilation layer provided between the heat insulating material and the outer wall material on the outer peripheral vertical surface In addition, the outer wall material in the case where there is no outer ventilation layer provided between the heat insulating material and the outer wall material on the outer peripheral vertical surface is omitted for simplification of the drawing.

上記した本実施例の建物における棟付近通気路切替装置4、室内排気ファン10a、頂部通気口8a等の使用方法を図3A(a)に示す冬の昼、(b)に示す冬の夜、(c)に示す夏の昼、(d)に示す夏の夜についてそれぞれ以下に説明する。   In the building of this embodiment described above, the use method of the near-airway airway switching device 4, the indoor exhaust fan 10a, the top vent 8a, etc. is shown in FIG. 3A (a) in the winter day, (b) in the winter night, The summer day shown in (c) and the summer night shown in (d) will be described below.

図3A(a)に示す冬の昼(日中)において、屋根面に照射される太陽エネルギーを利用したい場合は、棟付近通気路切替装置4のスライド弁4aを押し上げて流路4cを閉じることで、屋根下通気層5aから北面の屋根下躯体内通気層13bを通り外周垂直面躯体内通気層13a・床下躯体内通気層13cなどの躯体内通気層 13、床面ガラリ11a・壁面ガラリ11a・天井面ガラリ11dを通して室内空間14および小屋裏空間16へと続く流路を確保する。   In the winter daytime (daytime) shown in FIG. 3A (a), when the solar energy irradiated on the roof surface is to be used, the slide valve 4a of the near-building airway switching device 4 is pushed up to close the flow path 4c. Then, the air vent layer 13a such as the outer peripheral vertical surface air vent layer 13a and the under floor housing air vent layer 13c through the north roof under air vent layer 5a from the under roof air vent layer 5a, the floor surface gall 11a, and the wall surface gall 11a. -The flow path which leads to the indoor space 14 and the hut space 16 through the ceiling surface gall 11d is secured.

そして、室内排気ファン10aを作動せることで、室内空間14内を陰圧とし、屋根下通気層5aに形成された暖気を上記で確保された通気経路を通り室内空間14および小屋裏空間16内に取込み、最終的に、排気ファン10aより屋外に排出する。この際、躯体内通気層13内における空気の流れを確保するために、床下断熱材面ガラリ11cは閉じておく。なお、床下給気口10bは開放しておいて構わないが、地面からの防湿措置が取られていて床下空間15において結露の恐れがない場合には閉じておいた方が地熱の有効利用が可能である。   Then, by operating the indoor exhaust fan 10a, the inside of the indoor space 14 is set to a negative pressure, and the warm air formed in the underfloor ventilation layer 5a passes through the ventilation path secured as described above, and the inside of the indoor space 14 and the attic space 16 And finally discharged to the outside from the exhaust fan 10a. At this time, the underfloor heat insulating material surface gallery 11c is closed in order to ensure the flow of air in the inside ventilation layer 13. The underfloor air supply port 10b may be left open, but if moisture-proofing from the ground is taken and there is no risk of condensation in the underfloor space 15, it is more effective to use geothermal heat. Is possible.

図3A(b)に示す冬の夜において、図3A(a)に示す状態と異なるのは、床下断熱材面ガラリ11cを開放する点で、他の部分の設定は冬の昼の設定のままにしておく。そして、室内排気ファン10aを作動せることで陰圧となった室内空間14に対し、開放している床面ガラリ11bと床下断熱材面ガラリ11cを介して床下空間15から室内への空気の取込みを確保する。これにより、放射冷却により冷える屋根下通気層5aからの外気の取込みを避ける。なお、機械式床下給気ファン10cを備えた建物の場合、これを作動させることで、室内排気ファン10aを補助することもできる。   In the winter night shown in FIG. 3A (b), the difference from the state shown in FIG. 3A (a) is that the under-floor heat insulating surface gall 11c is opened, and the settings of the other parts remain the same as the settings of the winter day. Keep it. Then, air is taken into the room from the underfloor space 15 through the open floor louver 11b and the underfloor heat insulating surface louver 11c with respect to the indoor space 14 that has become negative pressure by operating the indoor exhaust fan 10a. Secure. This avoids the intake of outside air from the under-air ventilation layer 5a that is cooled by radiation cooling. In addition, in the case of the building provided with the mechanical underfloor air supply fan 10c, the indoor exhaust fan 10a can also be assisted by operating this.

図3A(c)に示す夏の日中(昼)において、棟付近通気路切替装置4のスライド弁4aを下げて流路4cを確保する一方、頂部通気口8aおよび床下断熱材面ガラリ11cを開放する。これにより、床下空間15から躯体内通気層13および室内空間14と小屋裏空間16を通って棟通気口5cに抜ける通気路をそれぞれ形成し、煙突効果による建物内部の換気を図ることで床下空間15の冷気を室内空間14に導入する。   During summer daytime (daytime) shown in FIG. 3A (c), the slide valve 4a of the near-building air passage switching device 4 is lowered to secure the flow passage 4c, while the top air vent 8a and the underfloor insulation surface gall 11c are provided. Open. As a result, air passages extending from the underfloor space 15 through the enclosure vent layer 13 and the indoor space 14 and the hut space 16 to the building vent 5c are formed, and the interior of the building is ventilated by the chimney effect. Fifteen cold air is introduced into the indoor space 14.

この際、室内排気ファン10aは、煙突効果による床下の冷気を室内に取込むための補助としてに作動させるが、煙突効果による冷気の取込みが十分な場合は止めてもよい。また機械式床下給気ファン10cを備えた建物の場合、これを作動させることで、換気効果を高めることが可能である。   At this time, the indoor exhaust fan 10a is operated as an auxiliary for taking in cold air under the floor due to the chimney effect into the room, but may be stopped when the cold air intake due to the chimney effect is sufficient. Moreover, in the case of the building provided with the mechanical underfloor air supply fan 10c, the ventilation effect can be enhanced by operating this building.

図3A(d)に示す夏の夜において、図3A(c)に示す状態と異なるのは、床下断熱材面ガラリ11cを基本的には閉じておく点にある。この場合、頂部通気口8aを開放しているので、屋根下通気層5aは、室内空間14および小屋裏空間16に対して開放されている。この状態で室内排気ファン10aを作動させると、室内空間14が陰圧になるため、放射冷却により冷えた屋根下通気層5aの空気が室内空間14に導入されることになる。   In the summer night shown in FIG. 3A (d), the difference from the state shown in FIG. 3A (c) is that the underfloor heat insulating material surface gallery 11c is basically closed. In this case, since the top ventilation opening 8a is opened, the under-floor ventilation layer 5a is opened to the indoor space 14 and the cabin space 16. When the indoor exhaust fan 10a is operated in this state, the indoor space 14 becomes negative pressure, so that the air in the underfloor ventilation layer 5a cooled by radiation cooling is introduced into the indoor space 14.

この際、床下断熱材面ガラリ11cは基本的には閉じておくが、床下空間15の温度の方が屋根下通気層5aの温度よりも低い場合は、床下断熱材面ガラリ11cを開放しておいても良い。すなわち、放射冷却により冷えた屋根下通気層5aの空気をより多く利用するか、地熱を利用して冷やした床下の空気をより多く利用するかは、個々の建物の形状・立地条件による温熱環境に依存するが、本発明の建物では、機械換気の送風量やガラリの開閉具合を調整することで、最適の条件を得ることができる。   At this time, the underfloor heat insulating material surface gallery 11c is basically closed. However, when the temperature of the underfloor space 15 is lower than the temperature of the underfloor ventilation layer 5a, the underfloor heat insulating material surface gallery 11c is opened. You can leave it. In other words, whether to use more air in the underfloor ventilation layer 5a cooled by radiant cooling or more underfloor air cooled using geothermal heat depends on the thermal environment depending on the shape and location of each building. However, in the building of the present invention, the optimum condition can be obtained by adjusting the ventilation amount of mechanical ventilation and the opening / closing state of the louver.

第4実施例
図3Bは本発明の第4実施例を示す。
Fourth Embodiment FIG. 3B shows a fourth embodiment of the present invention.

図3Bに示す本実施例の建物は、図1に示した棟付近通気路切替装置4を備えると共に、躯体内通気層13を備えた基礎断熱建物で、(a)は冬の昼、(b)は冬の夜、(c)は夏の昼、(d)は夏の夜での使用方法を示す。   The building of the present embodiment shown in FIG. 3B is a basic heat insulating building provided with the near-building air passage switching device 4 shown in FIG. 1 and the enclosure ventilation layer 13, wherein (a) is a daytime in winter, (b ) Is a winter night, (c) is a summer day, and (d) is a summer night.

図3Bに示す本実施例の建物は基礎断熱構造のため、図3Aに示す床断熱構造の建物と異なるのは、床下断熱材2cおよび床下断熱材面ガラリ11cが無く、外周垂直面断熱材2aが布基礎もしくはベタ基礎12aの基礎立ち上がり部分にまで達している点にあり、他の構造は図3Aに示した床下断熱建物と同じである。なお、棟付近通気路切替装置4は、冬の時期はスライド弁4aを閉じた状態、夏の時期はスライド弁4aを開いた状態に維持する点は、図3Aと同様で、図4〜図6に示す実施例の場合でも同様である。   The building of the present embodiment shown in FIG. 3B has a basic heat insulation structure, and therefore, the floor insulation structure 2c and the underfloor insulation material surface louver 11c are different from the building of the floor insulation structure shown in FIG. Has reached the foundation rising portion of the fabric foundation or the solid foundation 12a, and the other structure is the same as the underfloor insulation building shown in FIG. 3A. The air passage switching device 4 near the ridge is similar to FIG. 3A in that the slide valve 4a is closed during the winter and the slide valve 4a is opened during the summer. The same applies to the embodiment shown in FIG.

本実施例の基礎断熱建物は、冬の日中に床下に放出される暖気が外周垂直面断熱材2aで囲まれた基礎コンクリート12aに蓄熱され、夜間に放出される利点ならびに、床下空間15が外気と遮断されているために床断熱工法の建物よりも冷たい床下空間15の空気を夏に利用できる利点がある。   In the basic heat insulation building of this embodiment, warm air discharged under the floor during the winter day is stored in the basic concrete 12a surrounded by the outer peripheral vertical surface heat insulating material 2a and released at night, and the underfloor space 15 Since it is shielded from the outside air, there is an advantage that the air in the underfloor space 15 that is cooler than the floor insulation building can be used in summer.

上記した本実施例の建物における棟付近通気路切替装置4、室内排気ファン10a、頂部通気口8a等の使用方法を図3B(a)に示す冬の昼、(b)に示す冬の夜、(c)に示す夏の昼、(d)に示す夏の夜についてそれぞれ以下に説明する。   3B (a) shows the usage of the near-airway airway switching device 4, the indoor exhaust fan 10a, the top vent 8a, etc. in the building of this embodiment described above, and the winter night shown in FIG. 3B. The summer day shown in (c) and the summer night shown in (d) will be described below.

図3B(a)に示す冬の日中において、屋根面に照射される太陽エネルギーを利用したい場合は、図3A(a)に示す床下断熱建物の冬の日中の設定と基本的に同じだが、無くなった床下断熱材2cおよび床下断熱材面ガラリ11cの代わりに床下給気口10bを閉じ状態とし、機械式床下給気ファン10cを閉じておき、この部分から床下空間15内への外気の流入を防ぐ。   If you want to use the solar energy applied to the roof during the winter day shown in Fig. 3B (a), it is basically the same as the winter day setting of the underfloor insulation building shown in Fig. 3A (a). The underfloor air inlet 10b is closed instead of the lost underfloor heat insulating material 2c and the underfloor heat insulating surface gall 11c, the mechanical underfloor air supply fan 10c is closed, and the outside air flows into the underfloor space 15 from this portion. Prevent inflow.

この場合、日射により暖められた屋根下通気層5aの暖気は、北面の屋根下躯体内通気層13bおよび外周垂直面躯体内通気層13aを通して床下空間15に導入され、床下の外気よりも暖かい空気と混合した上で室内空間14に導入されるため、冷たい冬の外気と混ざることはない。   In this case, the warm air of the underfloor ventilation layer 5a heated by solar radiation is introduced into the underfloor space 15 through the north roof underbody ventilation layer 13b and the outer peripheral vertical plane ventilation layer 13a, and is warmer than the underfloor outside air. Since it is introduced into the indoor space 14 after being mixed, it is not mixed with the cold winter outside air.

図3B(b)に示す冬の夜の設定は、図3A(b)に示す床下断熱工法建物の冬の夜の設定と基本的に同じだが、無くなった床下断熱材2cおよび床下断熱材面ガラリ11cの代わりに、床下給気口10bを開放するか、もしくは機械式床下給気ファン10cを作動させる。   The setting of the winter night shown in FIG. 3B (b) is basically the same as the setting of the winter night of the underfloor insulation construction method building shown in FIG. 3A (b), but the underfloor insulation 2c and the underfloor insulation surface gall are lost. Instead of 11c, the underfloor air supply port 10b is opened, or the mechanical underfloor air supply fan 10c is operated.

これにより、放射冷却の起こる屋根面の下にある屋根下通気層5aからの空気の取込みを減らすと共に、外気を一旦床下に導入し、地熱を利用して暖めたものを室内空間に導入することで、自然エネルギーを有効に利用する。なお、屋根面の下にある屋根下通気層5aからの空気の取込みをなくするために、床下から導入する空気の量は、建物の形状によっても異なるが、室内排気ファン10aの排気量と見合うだけの給気を機械式床下給気ファン10cで給気すれば、理論的には屋根面の下の屋根下通気層5aからの冷気の取込は無くなる。   This reduces the intake of air from the under-floor ventilation layer 5a under the roof surface where radiation cooling occurs, and introduces the outside air into the indoor space once introduced under the floor and heated using geothermal heat. And use natural energy effectively. In order to eliminate the intake of air from the underfloor ventilation layer 5a under the roof surface, the amount of air introduced from under the floor varies depending on the shape of the building, but is commensurate with the exhaust amount of the indoor exhaust fan 10a. If only the supply air is supplied by the mechanical underfloor air supply fan 10c, the intake of cold air from the underfloor ventilation layer 5a under the roof surface is theoretically eliminated.

図3B(c)に示す夏の昼の設定は、図3A(c)に示す床下断熱建物の夏の昼の設定と基本的に同じだが、無くなった床下断熱材2cおよび床下断熱材面ガラリ11cの代わりに床下給気口10bを開放するか、もしくは機械式床下給気ファン10cを弱く作動させる。   The setting of summer daytime shown in FIG. 3B (c) is basically the same as the setting of summer daytime of the underfloor heat insulation building shown in FIG. 3A (c), but the underfloor heat insulation material 2c and the underfloor heat insulation surface gall 11c are lost. Instead, the underfloor air supply port 10b is opened, or the mechanical underfloor air supply fan 10c is operated weakly.

これにより、外気を一旦床下空間15に導入し、地熱を利用して冷やした空気を煙突効果や機械送風により室内空間14に導入することで、自然エネルギーを有効に利用する。   Thereby, natural energy is effectively utilized by introducing outside air into the underfloor space 15 and introducing air cooled by using geothermal heat into the indoor space 14 by a chimney effect or mechanical ventilation.

図3B(d)に示す夏の夜の設定は、図3A(d)に示す床下断熱建物の夏の夜の設定と基本的に同じだが、無くなった床下断熱材2cおよび床下断熱材面ガラリ11cの代わりに、床下給気口10bを開放するか、もしくは機械式床下給気ファン10cを弱く作動させ、外気を一旦床下空間15に導入し、地熱を利用して冷やした空気を室内空間に導入するとともに、室内排気ファン10aを作動させ室内を陰圧にすることで、放射冷却により冷えた屋根下通気層5の空気を室内に導入する。   The setting for the summer night shown in FIG. 3B (d) is basically the same as the setting for the summer night of the underfloor insulation building shown in FIG. 3A (d), but the underfloor insulation 2c and the underfloor insulation surface gall 11c are lost. Instead, the underfloor air inlet 10b is opened, or the mechanical underfloor air fan 10c is operated weakly, the outside air is once introduced into the underfloor space 15, and the cooled air using geothermal heat is introduced into the indoor space. At the same time, the indoor exhaust fan 10a is operated to create a negative pressure in the room, thereby introducing the air in the underfloor ventilation layer 5 cooled by radiation cooling into the room.

この際、放射冷却により冷えた屋根下通気層5aの空気をより多く利用するか、地熱を利用して冷やした床下空間15の空気をより多く利用するかは、個々の建物の形状・立地条件による温熱環境に依存するが、本発明の建物にでは、機械換気の送風量やガラリの開閉具合を調整することで、最適の条件を得ることができる。   At this time, whether to use more air in the underfloor ventilation layer 5a cooled by radiation cooling or more air in the underfloor space 15 cooled by using geothermal heat depends on the shape and location conditions of each building. Although it depends on the thermal environment, the optimum condition can be obtained in the building of the present invention by adjusting the ventilation amount of mechanical ventilation and the opening / closing state of the louver.

第5実施例
図4Aは本発明の第5実施例を示す。
Fifth Embodiment FIG. 4A shows a fifth embodiment of the present invention.

図4Aに示す本実施例の建物は、図1に示した棟付近通気路切替装置4および図2に示す空気循環装置7を備えると共に、躯体内通気層13を備えた床下断熱建物で、(a)は冬の昼、(b)は冬の夜、(c)は夏の昼、(d)は夏の夜での使用方法を示す。   The building of the present embodiment shown in FIG. 4A is an underfloor heat insulation building including the near-building air passage switching device 4 shown in FIG. 1 and the air circulation device 7 shown in FIG. (a) shows the usage in winter daytime, (b) in winter night, (c) in summer daytime, and (d) in summer nighttime.

図4Aにおいて、本実施例の床下断熱建物は図3Aと同様の躯体内通気層13を有し、図2に示した空気循環装置7を構成する空気循環筒7bが床下断熱材2cを貫通して床下空間15内に達すると共に、頂部通気口8aを貫通して躯体内通気層13の棟側の最頂部に達する縦方向に配置されている。   4A, the underfloor heat insulation building of the present embodiment has a housing ventilation layer 13 similar to FIG. 3A, and an air circulation cylinder 7b constituting the air circulation device 7 shown in FIG. 2 penetrates the underfloor heat insulation 2c. In addition to reaching the underfloor space 15, it is arranged in the vertical direction to penetrate the top vent 8 a and reach the topmost part of the building ventilation layer 13 on the ridge side.

本実施例ではこの空気循環筒7bの周壁に床下躯体内通気層通気層13cに繋がる通気口7eを形成し、また空気循環筒7b内には、前記通気口7eの下方に床下空間15と空気循環装置7の繋がりを遮断できる下部開閉弁7fを取り付けている。   In this embodiment, a vent hole 7e connected to the underfloor internal ventilation layer vent layer 13c is formed on the peripheral wall of the air circulation cylinder 7b, and the underfloor space 15 and the air are formed in the air circulation cylinder 7b below the vent hole 7e. A lower on-off valve 7f that can interrupt the connection of the circulation device 7 is attached.

また、躯体内通気層13の最頂部には、頂部通気口8aを含む最頂通気層部8dが閉鎖部材8cにより仕切られて形成され、躯体内通気層13において最頂通気層部8dが躯体内通気層13の他の通気層部と仕切られた構造として存在している。なお、この最頂通気層部8dと屋根下通気層5aとは繋がっている。以上が本実施例の特徴的な構成で、他の構成は図3Aに示す床下断熱建物と同様である。   Further, an uppermost vent layer portion 8d including the upper portion vent hole 8a is formed by being partitioned by a closing member 8c at the uppermost portion of the inner vent layer 13, and the uppermost vent layer portion 8d in the inner vent layer 13 is formed of the casing. It exists as a structure partitioned off from other air-permeable layer portions of the inner air-permeable layer 13. In addition, this topmost ventilation layer part 8d and the under roof ventilation layer 5a are connected. The above is the characteristic configuration of this embodiment, and the other configurations are the same as those of the underfloor heat insulating building shown in FIG. 3A.

上記した本実施例の建物の使用方法を図3A(a)に示す冬の昼、(b)に示す冬の夜、(c)に示す夏の昼、(d)に示す夏の夜についてそれぞれ以下に説明する。   The method of using the building of this embodiment described above is shown for the winter day shown in FIG. 3A (a), the winter night shown in (b), the summer day shown in (c), and the summer night shown in (d). This will be described below.

図4A(a)に示す冬の日中において、屋根面に照射される太陽エネルギーを利用したい場合は空気循環装置7の頂部開閉弁7dを開き、下部開閉弁7fを閉じ、室内通気口7cおよび床下躯体内通気層13cにつながる通気口7eを開いた状態で、送風ファン7aを上から下の順方向で作動させる。   In the winter day shown in FIG. 4A (a), when it is desired to use solar energy irradiated on the roof surface, the top opening / closing valve 7d of the air circulation device 7 is opened, the lower opening / closing valve 7f is closed, the indoor vent 7c and The blower fan 7a is operated in the forward direction from top to bottom with the vent 7e connected to the underfloor enclosure vent layer 13c opened.

この空気循環装置7の動作により、太陽エネルギーで暖められた屋根下通気層5a内の暖気を床下躯体内通気層13cに放出し、躯体内通気層13のその他の部分を経て室内空間14にガラリ11aおよび11bなどから導入する。この際、床下断熱材面ガラリ11cは閉じておく。   Due to the operation of the air circulation device 7, the warm air in the underfloor ventilation layer 5 a heated by solar energy is discharged to the underfloor housing ventilation layer 13 c, and then gushed to the indoor space 14 through other portions of the enclosure ventilation layer 13. It introduces from 11a and 11b. At this time, the underfloor heat insulating material surface gallery 11c is closed.

この設定で空気循環装置7を作動することにより、空気循環装置7の室内通気口7cより取込まれた建物の高い位置に集まった暖気も同時に床下に運ばれるため、建物内部の温度差が解消される利点もある。   By operating the air circulation device 7 with this setting, the warm air gathered at a high position in the building taken from the indoor vent 7c of the air circulation device 7 is also carried under the floor at the same time, eliminating the temperature difference inside the building. There are also benefits.

また、空気循環装置7の頂部開閉弁7dと室内通気口7cの開き具合は、屋根下通気層5aと室内空間14の上部にたまった暖かい空気のどちらをどれだけ床下に移動させたいかによって、また建物の形状・立地条件などを顧慮して適切に調整するものとする。   Further, the opening degree of the top opening / closing valve 7d and the indoor vent 7c of the air circulation device 7 depends on how much of the warm air accumulated in the upper part of the under-air ventilation layer 5a or the indoor space 14 is to be moved below the floor. In addition, it shall be adjusted appropriately taking into account the shape and location of the building.

本実施例による建物は、空気循環装置7を作動さることにより、より効率的に屋根下通気層5a内の暖気を建物の下部に運ぶことができるため、空気循環装置7を持たず、躯体内通気層13のみで空気を循環させる図3に示すタイプの建物よりも自然エネルギー利用上有利である。   Since the building according to the present embodiment can carry the warm air in the underfloor ventilation layer 5a to the lower part of the building more efficiently by operating the air circulation device 7, it does not have the air circulation device 7, It is more advantageous in using natural energy than a building of the type shown in FIG. 3 in which air is circulated only by the ventilation layer 13.

図4A(b)に示す冬の夜においては、空気循環装置7の頂部開閉弁7dおよび下部開閉弁7fを閉じ、空気循環装置7の室内通気口7cおよび床下躯体内通気層13cに繋がる通気口7eを開いた状態として送風ファン7aを上から下の順方向で作動させる。   On the winter night shown in FIG. 4A (b), the top on-off valve 7d and the lower on-off valve 7f of the air circulation device 7 are closed, and the air vent connected to the indoor vent 7c and the underfloor interior vent layer 13c of the air circulation device 7. 7b is opened and the blower fan 7a is operated in the forward direction from top to bottom.

これにより、室内空間14の高い位置に集まった暖気を床下に運ぶことになり、建物内部の温度差を解消しつつ、屋根面の放射冷却により冷やされた屋根下通気層5aの冷気を取込むのを回避する。   Thereby, the warm air gathered at a high position in the indoor space 14 is carried under the floor, and the cold air of the under-floor ventilation layer 5a cooled by radiation cooling of the roof surface is taken in while eliminating the temperature difference inside the building. To avoid.

また本実施例では、図3A(b)に示す冬の夜と同様に、室内排気ファン10aを作動せることで陰圧となった室内空間14に対し、床下給気口10b、床面ガラリ11bおよび床下断熱材面ガラリ11cを開放することで、地熱により暖められた比較的暖かい床下の空気を室内空間14に導入することができる。   Further, in the present embodiment, similarly to the winter night shown in FIG. 3A (b), the underfloor air inlet 10b and the floor surface gallery 11b are applied to the indoor space 14 that has become negative pressure by operating the indoor exhaust fan 10a. And by opening the underfloor heat insulating material surface louver 11c, it is possible to introduce relatively warm underfloor air heated by geothermal heat into the indoor space 14.

なお、機械式床下給気ファン10cを備えた建物の場合、これを作動させることで、室内排気ファン10aを補助することも可能である。本実施例の建物は、空気循環装置7の頂部開閉弁7dを閉じることで、放射冷却により冷やされた屋根下通気層5aからの外気を空気循環装置7を介して室内空間14内に取り込むのを完全に避けることができる。このため、空気循環装置7を持たず、躯体内通気層13のみで空気を循環させる図3に示すタイプの建物よりも自然エネルギー利用上有利である。   In addition, in the case of the building provided with the mechanical underfloor air supply fan 10c, it is also possible to assist the indoor exhaust fan 10a by operating this. In the building of the present embodiment, by closing the top opening / closing valve 7d of the air circulation device 7, the outside air from the underfloor ventilation layer 5a cooled by radiation cooling is taken into the indoor space 14 via the air circulation device 7. Can be completely avoided. For this reason, it is more advantageous in utilizing natural energy than a building of the type shown in FIG. 3 that does not have the air circulation device 7 and circulates air only by the internal ventilation layer 13.

図4A(c)に示す夏の昼においては、空気循環装置7の頂部開閉弁7dを閉じ、下部開閉弁7fを開き、室内通気口7cを開き床下躯体内通気層13cに繋がる通気口7eを閉じた状態で、送風ファン7aを下から上へと逆方向で作動させる。   In the summer daytime shown in FIG. 4A (c), the top on-off valve 7d of the air circulation device 7 is closed, the lower on-off valve 7f is opened, the indoor vent 7c is opened, and the vent 7e connected to the underfloor interior vent layer 13c is opened. In the closed state, the blower fan 7a is operated in the reverse direction from the bottom to the top.

これにより、外気より冷たい床下空間15の空気を空気循環装置7の室内通気口7cから室内空間14の高い位置に放出し、室内空間14を冷却すると共に、頂部通気口8a、壁面ガラリ11aおよび床面ガラリ11bを開放することで床下から棟通気口5cに繋がる通気層を形成し、煙突効果による床下の冷たい空気の室内へ導入する。   As a result, the air in the underfloor space 15 that is cooler than the outside air is discharged from the indoor vent 7c of the air circulation device 7 to a higher position in the indoor space 14 to cool the indoor space 14, and the top vent 8a, the wall surface gallery 11a, and the floor By opening the surface louver 11b, a vent layer connected from the under floor to the building vent 5c is formed and introduced into the cold air room under the floor due to the chimney effect.

また、煙突効果により十分な換気が期待できる建物においては、排気ファン10aは、微弱ではあるがエネルギー資源の無駄遣いを減じるため、弱運転もしくは停止してもよい。   In a building where sufficient ventilation can be expected due to the chimney effect, the exhaust fan 10a may be weakly operated or stopped in order to reduce waste of energy resources although it is weak.

本実施例の建物は、冷たく重たい床下の空気を建物の内部空間の上部に運ぶことができる空気循環装置7を備えているため、空気循環装置7を持たず、躯体内通気層13のみで空気を循環させる図3に示すタイプの建物よりも自然エネルギー利用上有利である。   The building of the present embodiment includes the air circulation device 7 that can carry cold and heavy air under the floor to the upper part of the interior space of the building. It is more advantageous in using natural energy than a building of the type shown in FIG.

図4A(d)に示す夏の夜においては、空気循環装置7の頂部開閉弁7dを閉じ、下部開閉弁7fを開き、室内通気口7cを開き、床下躯体内通気層13cに繋がる通気口7eを閉じた状態で、送風ファン7aを下から上へと逆方向で作動させる。   On the summer night shown in FIG. 4A (d), the top on-off valve 7d of the air circulation device 7 is closed, the lower on-off valve 7f is opened, the indoor vent 7c is opened, and the vent 7e connected to the underfloor enclosure vent layer 13c. With the closed, the blower fan 7a is operated in the reverse direction from the bottom to the top.

これにより、外気より冷たい床下空間15の空気を空気循環装置7の室内通気口7cから室内空間14の高い位置に放出し、室内空間14を冷却する。   Thereby, the air in the underfloor space 15 that is cooler than the outside air is discharged from the indoor vent 7c of the air circulation device 7 to a higher position in the indoor space 14, and the indoor space 14 is cooled.

この際、頂部通気口8aを開き(夏季では開いている)、床面ガラリ11bを半閉じあるいは閉じた状態とし、排気ファン10aを作動させることで、外気より冷たい床下空間15および、屋根面の放射冷却により冷やされた屋根下通気層5aの空気を室内空間14にそれぞれ頂部通気口8aおよび床面ガラリ11bと床下断熱材面ガラリ11cを通して導入する。なお、放射冷却により冷えた屋根下通気層5aの空気をより多く利用するか、地熱を利用して冷やした床下の空気をより多く利用するかは、個々の建物の形状・立地条件による温熱環境に依存するが、本実施例の建物では、機械換気の送風量やガラリの開閉具合を調整することで、最適の条件を得ることができる。   At this time, the top vent 8a is opened (open in the summer), the floor louver 11b is semi-closed or closed, and the exhaust fan 10a is operated so that the underfloor space 15 cooler than the outside air and the roof surface The air in the underfloor ventilation layer 5a cooled by the radiant cooling is introduced into the indoor space 14 through the top vent 8a, the floor surface gallery 11b, and the underfloor heat insulating surface gallery 11c. Whether to use more air in the underfloor ventilation layer 5a cooled by radiant cooling or more underfloor air cooled using geothermal heat depends on the thermal environment depending on the shape and location of each building. However, in the building of the present embodiment, the optimum condition can be obtained by adjusting the ventilation amount of mechanical ventilation and the opening / closing state of the louver.

第6実施例
図4Bは本発明の第6実施例を示す。
Sixth Embodiment FIG. 4B shows a sixth embodiment of the present invention.

図4Bに示す本実施例の建物は、図1に示した棟付近通気路切替装置4および図2に示す空気循環装置7を備えると共に、躯体内通気層13を備えた基礎断熱建物で、(a)は冬の昼、(b)は冬の夜、(c)は夏の昼、(d)は夏の夜での使用方法を示す。本実施例において、この空気循環装置7は、図2に示す通りの構成で、下部開閉弁7fおよび床下躯体内通気層13cに繋がる通気口7eは設けられていない。   The building of the present embodiment shown in FIG. 4B is a basic heat insulating building including the near-building air passage switching device 4 shown in FIG. 1 and the air circulation device 7 shown in FIG. (a) shows the usage in winter daytime, (b) in winter night, (c) in summer daytime, and (d) in summer nighttime. In the present embodiment, the air circulation device 7 has a configuration as shown in FIG. 2 and is not provided with a vent 7e connected to the lower on-off valve 7f and the underfloor interior vent layer 13c.

図4Bにおいて、本実施例の基礎断熱建物は図3Bと同様の躯体内通気層13を有し、図2に示した空気循環装置7を構成する空気循環筒7bが床9cを貫通して床下空間15内に達すると共に、頂部通気口8aを貫通して躯体内通気層13の棟側の最頂部に達する縦方向に配置されている。   4B, the basic heat insulation building of the present embodiment has the same interior ventilation layer 13 as FIG. 3B, and the air circulation cylinder 7b constituting the air circulation device 7 shown in FIG. While reaching the space 15, it is arranged in the vertical direction so as to pass through the top vent 8 a and reach the topmost part of the building vent layer 13 on the ridge side.

図4Bに示す本実施例の建物は、図3Bと同様の基礎断熱構造のため、床下断熱材2cおよび床下断熱材面ガラリ11cが無く、外周垂直面断熱材2aが基礎立ち上がり部分にまでおりて来ている。したがって、本実施例の建物は、図4Aに示す床下断熱工法の建物よりも構成がシンプルになる利点がある。また、冬の日中に床下に放出される暖気が断熱材で囲まれた基礎コンクリートに蓄熱され、夜間に放出される利点、ならびに床下空間15が外気と遮断されているために床断熱工法の建物よりも冷たい床下空間15の空気を夏に利用できる利点がある。   The building of the present embodiment shown in FIG. 4B has the same basic heat insulating structure as FIG. 3B, and therefore there is no underfloor heat insulating material 2c and underfloor heat insulating material surface gallery 11c, and the outer peripheral vertical surface heat insulating material 2a reaches the foundation rising portion. It is coming. Therefore, the building of the present embodiment has an advantage that the configuration is simpler than the building of the underfloor heat insulation method shown in FIG. 4A. In addition, the warm air released under the floor during the winter day is stored in the foundation concrete surrounded by the heat insulating material and released at night, and the underfloor space 15 is shielded from the outside air. There is an advantage that the air in the underfloor space 15 that is cooler than the building can be used in summer.

さらに、本実施例の建物は、躯体内通気層13の最頂部には、図4Aの建物と同様に頂部通気口8aを含む最頂通気層部8dが閉鎖部材8cにより仕切られて形成され、躯体内通気層13において最頂通気層部8dが躯体内通気層13の他の通気層部と仕切られた構造となっている。なお、この最頂通気層部8dと屋根下通気層5aとは繋がっている。以上が本実施例の特徴的な構成で、他の構成は図3Bに示す基礎断熱建物と同様である。   Further, in the building of the present embodiment, the topmost ventilation layer 8d including the top ventilation hole 8a is partitioned by the closing member 8c at the topmost portion of the ventilation layer 13 in the housing, similarly to the building of FIG. 4A. In the housing air-permeable layer 13, the topmost air-permeable layer portion 8 d is partitioned from the other air-permeable layer portions of the housing air-permeable layer 13. The topmost ventilation layer portion 8d and the under roof ventilation layer 5a are connected. The above is the characteristic configuration of the present embodiment, and the other configurations are the same as those of the basic heat insulation building shown in FIG. 3B.

上記した本実施例の建物の使用方法を図4B(a)に示す冬の昼、(b)に示す冬の夜、(c)に示す夏の昼、(d)に示す夏の夜についてそれぞれ以下に説明する。   The method of using the building of this embodiment described above is shown for the winter day shown in FIG. 4B (a), the winter night shown in (b), the summer day shown in (c), and the summer night shown in (d). This will be described below.

図4B(a)に示す冬の日中において、屋根面に照射される太陽エネルギーを利用したい場合は、空気循環装置7の頂部開閉弁7dと室内通気口7cを開いた状態で、送風ファン7aを上から下の順方向で作動させることで、太陽エネルギーで暖められた屋根下通気層5a内の暖気を床下空間15に放出し、床面ガラリ11bから室内空間14へ導入するとともに、一部の熱を基礎コンクリート12aに蓄熱する。この際、床下給気口10bあるいは機械式床下給気ファン10cは閉じておき、暖気の外部への流出を防ぐ。   In the winter day shown in FIG. 4B (a), when it is desired to use solar energy irradiated on the roof surface, the blower fan 7a is opened with the top opening / closing valve 7d and the indoor vent 7c of the air circulation device 7 open. Is operated in the forward direction from top to bottom to release the warm air in the underfloor ventilation layer 5a heated by solar energy into the underfloor space 15 and introduce it into the indoor space 14 from the floor surface gall 11b. Is stored in the basic concrete 12a. At this time, the underfloor air supply port 10b or the mechanical underfloor air supply fan 10c is closed to prevent warm air from flowing out to the outside.

この設定では、空気循環装置7を作動することにより、空気循環装置7の室内通気口7cより取込まれた建物の高い位置に集まった暖気も同時に床下に運ばれるため、建物内部の温度差が解消される利点もある。また空気循環装置7の最下部より床下に放出される暖気は、一部床下の土間コンクリートやベタ基礎スラブコンクリートに蓄熱され、夜間に放出されることで、室内を暖める作用がある。   In this setting, by operating the air circulation device 7, the warm air gathered at a high position in the building taken in from the indoor vent 7c of the air circulation device 7 is also carried under the floor at the same time. There is also an advantage that is eliminated. Moreover, the warm air discharged | emitted under the floor from the lowermost part of the air circulation apparatus 7 has the effect | action which warms a room | chamber interior by storing heat | fever in the soil concrete and solid foundation slab concrete partly under the floor, and releasing at night.

さらに本実施例の建物は、空気循環装置7を作動さることにより、より効率的に屋根下通気層5a内の軽い暖気を建物の下部に運ぶことができるため、対応する空気循環装置7を持たない躯体内通気層13のみを空気が循環する図3Bに示す建物よりも自然エネルギー利用上有利である。   Furthermore, the building of the present embodiment has a corresponding air circulation device 7 because the warm air in the underfloor ventilation layer 5a can be more efficiently conveyed to the lower part of the building by operating the air circulation device 7. It is more advantageous in using natural energy than the building shown in FIG.

図4B(b)に示す冬の夜においては、空気循環装置7の頂部開閉弁7dを閉じ、空気循環装置7の室内通気口7c開いた状態で、送風ファン7aを上から下の順方向で作動させて室内空間14の高い位置に集まった暖気を床下に運ぶことにより、建物内部の温度差を解消しつつ、屋根面の放射冷却により冷やされた屋根下通気層5aの冷気を取込むのを回避する。また、図3B(b)に示す冬の夜と同様に、室内排気ファン10aを作動せることで陰圧となった室内空間に対し、床面ガラリ11bを開放し床下から室内への空気の取込みを確保することで、比較的暖かい床下の空気を室内空間14に床面ガラリ11bを通して導入することができる。   On the winter night shown in FIG. 4B (b), the top opening / closing valve 7d of the air circulation device 7 is closed, the indoor vent 7c of the air circulation device 7 is opened, and the blower fan 7a is moved in the forward direction from top to bottom. By operating the warm air gathered at a high position in the indoor space 14 under the floor, the cold air of the underfloor ventilation layer 5a cooled by radiation cooling of the roof surface is taken in while eliminating the temperature difference inside the building. To avoid. Further, similarly to the winter night shown in FIG. 3B (b), the floor surface gall 11b is opened and the air is taken into the room from under the floor in the indoor space that has become negative pressure by operating the indoor exhaust fan 10a. By ensuring the above, it is possible to introduce relatively warm underfloor air into the indoor space 14 through the floor surface 11b.

なお、機械式床下給気ファン10cを備えた建物の場合、これを作動させることで、室内排気ファン10aを補助することも可能である。   In addition, in the case of the building provided with the mechanical underfloor air supply fan 10c, it is also possible to assist the indoor exhaust fan 10a by operating this.

本実施例の建物は、空気循環装置7に附随する頂部開閉弁7dを遮断することにより、放射冷却により冷える屋根下通気層5aからの外気の取込を完全に避けることができるので、空気循環装置7を持たない躯体内通気層13のみを空気が循環する図3Aおよび図3Bに示す実施例の建物よりも自然エネルギー利用上有利である。   Since the building of the present embodiment can completely avoid the intake of outside air from the underfloor ventilation layer 5a that is cooled by radiation cooling by blocking the top opening / closing valve 7d associated with the air circulation device 7, the air circulation 3A and 3B in which the air circulates only through the inside ventilation layer 13 that does not have the device 7, it is advantageous in terms of utilization of natural energy.

図4B(c)に示す夏の昼においては、空気循環装置7の頂部開閉弁7dを閉じ、空気循環装置7の室内通気口7cを開いた状態で、送風ファン7aを下から上への逆方向で作動させる。   4B (c), the top opening / closing valve 7d of the air circulation device 7 is closed and the air vent 7c of the air circulation device 7 is opened, and the blower fan 7a is reversed from bottom to top. Operate in direction.

これにより、外気より冷たい床下空間15の空気を空気循環装置7により室内空間14の高い位置に放出し室内空間14を冷却する。   Thus, the air in the underfloor space 15 that is cooler than the outside air is discharged to a higher position in the indoor space 14 by the air circulation device 7 to cool the indoor space 14.

また、頂部通気口8a、壁面ガラリ11aおよび床面ガラリ11bを開放することで床下から棟通気口5cに繋がる通気層を形成し、煙突効果により床下の冷たい空気を室内へ導入する。   Further, by opening the top vent 8a, the wall louver 11a, and the floor louver 11b, a vent layer connected from the under floor to the building vent 5c is formed, and cold air under the floor is introduced into the room by a chimney effect.

さらに、煙突効果により十分な換気が期待できる建物においては、排気ファン10aは、微弱ではあるがエネルギー資源の無駄遣いを減じるため、弱運転もしくは停止してもよい。   Further, in a building where sufficient ventilation can be expected due to the chimney effect, the exhaust fan 10a may be weakly operated or stopped in order to reduce waste of energy resources although it is weak.

本実施例の建物は、冷たく重たい床下の空気を建物の内部空間の上部に運ぶことができる空気循環装置7を備えているため、空気循環装置7を持たない対応する図3B(c)に示す建物よりも自然エネルギー利用上有利である。   Since the building of the present embodiment includes the air circulation device 7 that can carry cold and heavy air under the floor to the upper part of the interior space of the building, the air circulation device 7 is not provided and the corresponding building is shown in FIG. 3B (c). It is more advantageous in using natural energy than buildings.

図4B(d)に示す夏の夜においては、空気循環装置7の頂部開閉弁7dを閉じ、空気循環装置7の室内通気口7cを開いた状態で、送風ファン7aを下から上への逆方向で作動させる。   In the summer night shown in FIG. 4B (d), the top opening / closing valve 7d of the air circulation device 7 is closed, the indoor vent 7c of the air circulation device 7 is opened, and the blower fan 7a is reversed from bottom to top. Operate in direction.

これにより、外気より冷たい床下空間15の空気を空気循環装置7より室内空間14の高い位置に放出し室内空間14を冷却する。   Thus, the air in the underfloor space 15 that is cooler than the outside air is discharged from the air circulation device 7 to a higher position in the indoor space 14 to cool the indoor space 14.

また、頂部通気口8aを開き、床面ガラリ11bを開いた状態で、排気ファン10aを作動させることで、外気より冷たい床下空間15および、屋根面の放射冷却により冷やされた屋根下通気層5aの空気を室内空間14にそれぞれ頂部通気口8aおよび床面ガラリ11bを通して導入する。   Further, by operating the exhaust fan 10a with the top vent 8a opened and the floor louver 11b opened, the underfloor space 15 that is cooler than the outside air and the underfloor vent layer 5a that is cooled by radiation cooling of the roof surface. Are introduced into the indoor space 14 through the top vent 8a and the floor louver 11b, respectively.

なお、放射冷却により冷えた屋根下通気層5aの空気をより多く利用するか、地熱を利用して冷やした床下の空気をより多く利用するかは、個々の建物の形状・立地条件による温熱環境に依存するが、本発明の建物では、機械換気の送風量やガラリの開閉具合を調整することで、最適の条件を得ることができる。   Whether to use more air in the underfloor ventilation layer 5a cooled by radiant cooling or more underfloor air cooled using geothermal heat depends on the thermal environment depending on the shape and location of each building. However, in the building of the present invention, the optimum condition can be obtained by adjusting the ventilation amount of mechanical ventilation and the opening / closing state of the louver.

第7実施例
図5Aは本発明の第7実施例を示す。
Seventh Embodiment FIG. 5A shows a seventh embodiment of the present invention.

図3および図4に示す実施例では、構造体12bの室内側に躯体内通気層13を形成するように内壁を設けていたが、本実施例では、柱・梁などの構造体12bを顕わにした床下断熱建物となっている。   In the embodiment shown in FIGS. 3 and 4, the inner wall is provided so as to form the housing ventilation layer 13 on the indoor side of the structure 12b. However, in this embodiment, the structure 12b such as a column / beam is exposed. It is an underfloor heat insulation building.

本実施例の床下断熱建物の基本的構成は、例えば図4Aに示す構造材を隠す形で施工された内壁(いわゆる大壁)9a、天井もしくは勾配天井9bおよび壁面ガラリ11a等がなく、頂部通気口8aの南北方向の両端が屋根下勾配面に接触して設置されていることの他は、図4Aに示された大壁工法による床下断熱建物の構成と同様である。   The basic structure of the underfloor heat insulation building of this embodiment is, for example, that there is no inner wall (so-called large wall) 9a, ceiling or sloped ceiling 9b, wall surface gallery 11a, etc. constructed so as to hide the structural material shown in FIG. Except that both ends in the north-south direction of the mouth 8a are installed in contact with the sloped surface under the roof, the configuration is the same as the structure of the underfloor heat insulation building by the large wall method shown in FIG. 4A.

また,自然エネルギー利用および建物内部の換気・通気に関する設定も、図4A(a)-4A(d)に示された大壁工法の建物と同一である。   In addition, the settings relating to the use of natural energy and the ventilation / ventilation inside the building are the same as those of the large wall construction building shown in FIGS. 4A (a) -4A (d).

しかし、本実施例では構造材を隠す形で施工された内壁(いわゆる大壁)9a、天井もしくは勾配天井9bおよび壁面ガラリ11a等が無いため、構造材が露出し、結露の心配がなくなることがから、住宅の長寿命化がより期待できるものとなっている。   However, in this embodiment, since there is no inner wall (so-called large wall) 9a, ceiling or sloped ceiling 9b, wall surface gallery 11a, etc. constructed so as to hide the structural material, the structural material is exposed and there is no risk of condensation. Therefore, it is possible to expect a longer life of the house.

第8実施例
図5Bは本発明の第8実施例を示す。
Eighth Embodiment FIG. 5B shows an eighth embodiment of the present invention.

本実施例の建物は、柱・梁などの構造体12bを顕わにした基礎断熱建物である。   The building of the present embodiment is a basic heat insulating building that reveals a structure 12b such as a pillar or a beam.

本実施例の基礎断熱建物は、その基本的構成は、構造材12bを隠す形で施工された内壁(いわゆる大壁)9a、天井もしくは勾配天井9bおよび壁面ガラリ11a等がなく、頂部通気口8aの南北方向の両端が屋根下勾配面に接触して設置されていることの他は、図4Bに示した大壁工法による床下断熱建物の構成と同様である。   The basic thermal insulation building of the present embodiment has no basic structure such as an inner wall (so-called large wall) 9a constructed so as to conceal the structural material 12b, a ceiling or sloped ceiling 9b, a wall surface gallery 11a, etc., and a top vent 8a. Except that both ends in the north-south direction are installed in contact with the sloped surface below the roof, it is the same as the structure of the underfloor heat insulation building by the large wall construction method shown in FIG. 4B.

また、自然エネルギー利用および建物内部の換気・通気に関する設定も、図4B(a)-4B(d)に示した大壁工法の建物と同一である。   In addition, the settings relating to the use of natural energy and the ventilation / ventilation inside the building are the same as those of the large wall construction building shown in FIGS. 4B (a) -4B (d).

しかし本実施例では、構造材12bを隠す形で施工された内壁(いわゆる大壁)9a、天井もしくは勾配天井9bおよび壁面ガラリ11a等が無いため、構造材12bが露出し、結露の心配がなくなることがから、住宅の長寿命化がより期待できるものとなっている。   However, in this embodiment, since there is no inner wall (so-called large wall) 9a, ceiling or sloped ceiling 9b, wall surface gallery 11a, etc. constructed in a manner concealing the structural material 12b, the structural material 12b is exposed and there is no risk of condensation. For this reason, it is possible to expect a longer life of the house.

また、本実施例の建物は基礎断熱工法のため、対応する図5Aに示した建物よりも地熱を夏も冬も有効利用できる点で優れている。   In addition, the building of this example is superior in that it can effectively use geothermal heat in summer and winter than the corresponding building shown in FIG.

第9実施例
図6Aは本発明の第9実施例を示す。
Ninth Embodiment FIG. 6A shows a ninth embodiment of the present invention.

本実施例の建物は、基礎断熱構造の建物で、柱・梁などの構造体を顕わにした建物の実施例である。   The building according to the present embodiment is a building having a basic heat insulation structure and a structure in which structures such as columns and beams are revealed.

本実施例の建物の基本的構成は、屋根下勾配面断熱材を設置する場合において次世代省エネ基準を満たす断熱材の厚み(住宅金融公庫次世代省エネ基準では、同基準で定める地域II−Vにおいて、高性能の断熱材を用いても90mm必要とされる)の半分程度の厚みに相当する断熱材を屋根下勾配面と最上階の天井面に分けて設置していること、および頂部通気口8aを天井に設置された断熱面に室内空間14と小屋裏空間16を繋ぐように設置したこと以外は、図5Bに示した基礎断熱構造で、かつ柱・梁などの構造体12bを顕わにした建物であって、建物の軒より上部に於いては屋根下勾配面のみに屋根下断熱材2bを設置した建物と同じ構成となっている。(なお、切褄など屋根の形状によっては、建物の軒より上部にある小屋裏外周部の垂直面などにも断熱材が施工されている。)
また、自然エネルギー利用および建物内部の換気・通気に関する設定も、図5B(a)-5B(d)に示す場合と同様である。
The basic structure of the building of this example is the thickness of the heat insulating material that satisfies the next-generation energy saving standard when installing a sloped surface insulating material under the roof (in the Housing Finance Corporation Next-Generation Energy Saving Standard, the region II-V defined by the same standard) In addition, heat insulation equivalent to about half the thickness of 90 mm (even if high-performance insulation is used) is installed separately on the sloped surface below the roof and the ceiling on the top floor, and the top ventilation Except that the opening 8a is installed on the heat insulating surface installed on the ceiling so as to connect the indoor space 14 and the cabin space 16, the basic heat insulating structure shown in FIG. The wardrobe building has the same configuration as that of the building where the roof under heat insulating material 2b is installed only on the slope surface under the roof above the eaves of the building. (In addition, depending on the shape of the roof, such as a cutting wall, heat insulating material is also applied to the vertical surface of the outer periphery of the hut behind the eaves of the building.)
Further, the settings relating to the use of natural energy and the ventilation / ventilation inside the building are the same as those shown in FIGS. 5B (a) -5B (d).

さらに、本実施例では構造材12bを隠す形で施工された内壁(いわゆる大壁)9a、天井もしくは勾配天井9bおよび壁面ガラリ11a等が無いため、構造材12bが露出し、結露の心配がなくなることから、住宅の長寿命化がより期待できるものとなっている。   Further, in this embodiment, since there is no inner wall (so-called large wall) 9a, ceiling or sloped ceiling 9b, and wall surface glazing 11a constructed so as to hide the structural material 12b, the structural material 12b is exposed and there is no risk of condensation. For this reason, it is possible to expect a longer life of the house.

また、屋根下勾配面と最上階天井部分に屋根下断熱材2b、天井断熱材2dがそれぞれ設置されており、これらの断熱材2a、2dで囲まれた小屋裏空間16の空気をさらなる断熱層として利用できるため、より一層の断熱効果が期待できる。   Further, a roof under heat insulating material 2b and a ceiling heat insulating material 2d are respectively installed on the sloped surface of the roof and the ceiling of the uppermost floor, and the air in the cabin space 16 surrounded by these heat insulating materials 2a and 2d is further heat insulating layer. Therefore, a further heat insulation effect can be expected.

本実施例が前述の各実施例よりも最も自然エネルギーを効率的に利用し、かつ建物の長寿命化を図れるものとなっている。この構造の場合、図には示されていないが、屋根下通気層5aに形成された暖気をより効率的に床下空間15に導くために、空気流通装置7の上部と棟付近通気路切替装置4をダクトを介して連結するのも良い。   This embodiment is the most efficient use of natural energy than the previous embodiments, and can extend the life of the building. In the case of this structure, although not shown in the drawing, in order to more efficiently guide the warm air formed in the underfloor ventilation layer 5a to the underfloor space 15, the upper part of the air circulation device 7 and the near-building airway switching device 4 may be connected through a duct.

第10実施例
図6Bは本発明の第10実施例を示す。
Tenth Embodiment FIG. 6B shows a tenth embodiment of the present invention.

本実施例の建物は、基礎断熱構造でかつ大壁工法を採用して躯体内通気層13を持つものである。   The building of the present embodiment has a basic heat insulating structure and a large-wall construction method and has a ventilation layer 13 in the housing.

本実施例による建物の基本的構成は、構造材12aを隠す形で施工された内壁(いわゆる大壁)9aおよび壁面ガラリ11a等と、これらによって形成される躯体内通気層13があることの他は、図6Aに示した柱・梁などの構造体を顕わにした基礎断熱構造の建物で、かつ屋根下勾配面および最上階の天井面に設置した頂部通気口8aを室内空間14と小屋裏空間16を繋ぐように設置したものと同じである。   The basic structure of the building according to the present embodiment is that there are an inner wall (so-called large wall) 9a and a wall surface gallery 11a constructed so as to conceal the structural material 12a, and the inside ventilation layer 13 formed by these. 6A is a building having a basic heat insulating structure that reveals a structure such as a column and a beam shown in FIG. 6A, and the top vent 8a installed on the sloped surface below the roof and the ceiling surface of the uppermost floor is connected to the indoor space 14 and the cabin. It is the same as what was installed so that the back space 16 might be connected.

また、自然エネルギー利用および建物内部の換気・通気に関する設定も、図6A(a)- 6A(d)に示された建物と同様である。   Further, the settings relating to the use of natural energy and the ventilation / ventilation inside the building are the same as those of the building shown in FIGS. 6A (a) -6A (d).

しかし、構造材12aを隠す形で施工された内壁(いわゆる大壁)9a、天井もしくは勾配天井9bおよび壁面ガラリ11a等があるため、構造材12aが露出とならないことから、躯体内の通気性は確保されているが、図6Aに示す建物に比べて若干の結露が発生する心配がある。   However, since there is an inner wall (so-called large wall) 9a, a ceiling or a sloped ceiling 9b, a wall surface gallery 11a, etc. constructed so as to conceal the structural material 12a, the structural material 12a is not exposed. Although secured, there is a concern that some condensation may occur compared to the building shown in FIG. 6A.

しかしながら、本実施例の建物は、図6A(a)-6A(d)に示した建物と同様に最も自然エネルギーを効率的に利用でき、かつ大壁工法であることから、構造材に見た目の美しいものを使う必要がなくなることから、建築費の抑制が期待されるものとなっている。   However, the building of the present embodiment can use natural energy most efficiently as in the building shown in FIGS. 6A (a) -6A (d) and is a large wall construction method. Since it is no longer necessary to use beautiful items, construction costs are expected to be reduced.

また、この構造の場合においても、図には示していないが、屋根下通気層5aに形成された暖気をより効率的に床下空間15に導くために、空気循環装置7の上部と棟付近通気路切替装置4をダクトを介して連結するのも良い。   Even in the case of this structure, although not shown in the drawing, in order to guide the warm air formed in the under-floor ventilation layer 5a to the under-floor space 15 more efficiently, the air circulation device 7 and the vicinity of the building are ventilated. It is also possible to connect the path switching device 4 via a duct.

以上の各実施例において、図6Aおよび図6Bに示した基礎断熱構造の建物構成を、それぞれ図5Aおよび図4Aに示した床断熱構造の建物の構成に適用しても良い。   In each of the embodiments described above, the building configuration of the basic heat insulation structure shown in FIGS. 6A and 6B may be applied to the building configuration of the floor heat insulation structure shown in FIGS. 5A and 4A, respectively.

また、以上の各実施例に示す建物において、屋根材としては、例えば瓦・スレート・金属鋼鈑・太陽光発電モジュールなどが、外壁材としては例えば、モルタル・サイディング・金属鋼鈑などが、断熱材としては、基礎以外の部分には、発泡スチレンや発泡フェノールなど発泡プラスチック系のものが、基礎立ち上がり部分には発泡プラスチック系のものに加えて泡ガラス等が、内装材としては、石膏ボード系のものや木材などが用いられる。   Further, in the buildings shown in the above embodiments, as roofing materials, for example, tiles, slate, metal steel plates, solar power generation modules, etc., and as outer wall materials, for example, mortar, siding, metal steel plates, etc. Materials other than the foundation include foamed plastics such as foamed styrene and foamed phenol, foam rising glass in addition to foamed plastics for the base riser, and interior materials such as gypsum board And wood are used.

本発明の第1実施例を示す棟付近通気路切替装置を示し、(a)は軒先と棟を結ぶ線に直角な面の断面図、(b)は(a)の棟付近通気路切替装置を軒側より見た図。1 shows a near-building air passage switching device according to a first embodiment of the present invention, in which (a) is a cross-sectional view of a plane perpendicular to the line connecting the eaves and the wing, and (b) is a near-building air passage switching device of (a) Figure viewed from the eaves side. 本発明の第2実施例を示す空気循環装置の該略図。The schematic of the air circulation apparatus which shows 2nd Example of this invention. 本発明の第3実施例を示す建物の概略図で、(a)〜(d)はそれぞれ冬の昼・冬の夜・夏の昼・夏の夜に対応した使用状況を示す。In the schematic diagram of the building which shows the 3rd example of the present invention, (a)-(d) shows the use situation corresponding to winter daytime, winter night, summer daytime, and summer night, respectively. 本発明の第4実施例を示す建物の概略図で、(a)〜(d)はそれぞれ冬の昼・冬の夜・夏の昼・夏の夜に対応した使用状況を示す。In the schematic diagram of the building which shows the 4th example of the present invention, (a)-(d) shows the use situation corresponding to winter daytime, winter night, summer daytime, and summer night, respectively. 本発明の第5実施例を示す建物の概略図で、(a)〜(d)はそれぞれ冬の昼・冬の夜・夏の昼・夏の夜に対応した使用状況を示す。In the schematic of the building which shows 5th Example of this invention, (a)-(d) shows the use condition corresponding to winter daytime, winter night, summer daytime, and summer night, respectively. 本発明の第6実施例を示す建物の概略図で、(a)〜(d)はそれぞれ冬の昼・冬の夜・夏の昼・夏の夜に対応した使用状況を示す。In the schematic diagram of the building which shows the 6th example of the present invention, (a)-(d) shows the use situation corresponding to winter daytime, winter night, summer daytime, and summer night, respectively. 本発明の第7実施例を示す建物の概略図で、(a)〜(d)はそれぞれ冬の昼・冬の夜・夏の昼・夏の夜に対応した使用状況を示す。In the schematic of the building which shows the 7th example of the present invention, (a)-(d) shows the use situation corresponding to winter daytime, winter night, summer daytime, and summer night, respectively. 本発明の第8実施例を示す建物の概略図で、(a)〜(d)はそれぞれ冬の昼・冬の夜・夏の昼・夏の夜に対応した使用状況を示す。In the schematic diagram of the building which shows the 8th example of the present invention, (a)-(d) shows the use situation corresponding to winter daytime, winter night, summer daytime, and summer night, respectively. 本発明の第9実施例を示す建物の概略図で、(a)〜(d)はそれぞれ冬の昼・冬の夜・夏の昼・夏の夜に対応した使用状況を示す。In the schematic of the building which shows the 9th Example of this invention, (a)-(d) shows the use condition corresponding to winter daytime, winter night, summer daytime, and summer night, respectively. 本発明の第10実施例を示す建物の概略図で、(a)〜(d)はそれぞれ冬の昼・冬の夜・夏の昼・夏の夜に対応した使用状況を示す。In the schematic diagram of the building which shows the 10th example of the present invention, (a)-(d) shows the use situation corresponding to winter noon, winter night, summer day, and summer night, respectively.

符号の説明Explanation of symbols

1a 一層目野地板
1b 二層目野地板
2a 外周垂直面断熱材
2b 屋根下断熱材
2c 床下断熱材
2d 天井断熱材
3 屋根材
4 棟付近通気路切替装置
4a スライド弁
4b スライド弁支持枠
4c 流路
5a 屋根下通気層
5b 軒先通気口
5c 棟通気口
6a 一層目垂木
6b 二層目垂木
7 空気循環装置
7a 送風ファン
7b 空気循環筒
7c 室内通気口
7d 頂部開閉弁
7e 通気口
7f 下部開閉弁
8a 頂部通気口
8b 逆止弁
8c 頂部閉鎖部材
8d 最頂通気層部
9a 内壁(大壁)
9b 天井もしくは勾配天井
9c 床
10a 排気ファン
10b 床下給気口
10c 機械式床下給気ファン
11a 壁面ガラリ
11b 床面ガラリ
11c 床下断熱材面ガラリ
11d 天井面ガラリ
12a 布基礎もしくはベタ基礎
12b 構造体
13 躯体内通気層
13a 外周垂直面躯体内通気層
13b 屋根下躯体内通気層
13c 床下躯体内通気層
14 室内空間
15 床下空間
16 小屋裏空間
DESCRIPTION OF SYMBOLS 1a First layer base plate 1b Second layer field base plate 2a Outer peripheral vertical surface heat insulating material 2b Roof under heat insulating material 2c Under floor heat insulating material 2d Ceiling heat insulating material 3 Roof material 4 Near building air passage switching device 4a Slide valve 4b Slide valve support frame 4c Flow Road 5a Roof under vent 5b Eaves vent 5c Building vent 6a Single layer rafter 6b Second layer rafter 7 Air circulation device 7a Blower fan 7b Air circulation cylinder 7c Indoor vent 7d Top open / close valve 7e Vent 7f Lower open / close valve 8a Top vent 8b Check valve 8c Top closing member 8d Top vent layer 9a Inner wall (large wall)
9b Ceiling or Gradient ceiling 9c Floor 10a Exhaust fan 10b Underfloor air supply port 10c Mechanical underfloor air supply fan 11a Wall gutter 11b Floor gutter 11c Underfloor insulation surface gutter 11d Ceiling gutter 12a Fabric foundation or solid foundation 12b structure 13 Inner ventilation layer 13a Peripheral vertical plane Housing ventilation layer 13b Roofing housing ventilation layer 13c Underfloor housing ventilation layer 14 Indoor space 15 Underfloor space 16 Hut space

Claims (6)

軒先と棟にそれぞれ設けた通気口を屋根材下に形成した屋根下通気路で繋ぐ屋根下通気工法を用いた省エネルギー建物において、
棟付近にて、前記屋根下通気路と小屋裏(最上階に天井がある場合)あるいは室内(最上階が勾配天井の場合)空間を繋ぎ、軒先から流入した空気を小屋裏あるいは室内空間に導入することを可能とする空気流路と、前記小屋裏あるいは室内空間からの空気を前記棟通気口より排出することを可能とする空気流路を切替可能とする棟付近通気路切替装置と、
断熱性および気密性を高めた建物の内部に設置し、前記棟付近通気路切替装置直下の建物内部空間の最頂部付近と、基礎断熱工法の場合では床下空間、床下断熱工法の場合では床材と床材の下部に設置した断熱材の間に形成された空間とを繋ぎ、上下端をそれぞれ該空間の最頂部付近および床下空間もしくは床材と床材の下部に設置した断熱材の間に形成された空間に開放した筒状の空気流通筒と、前記空気流通筒内を上から下方向および下から上方向への空気の流れを選択的に形成可能な送風手段と、最上部に近い位置において前記空気流通筒の内部を上下方向に仕切って空気の流れを調節・遮断する頂部開閉弁と、前記頂部開閉弁の下部に設けられ、前記空気流通筒の内外を開閉可能に繋ぐ室内通気口と、を有する空気流通装置と、
のうち、少なくとも前記棟付近通気切替装置を設置したことを特徴とする省エネルギー建物。
In an energy-saving building using the under-floor ventilation method that connects the vents provided at the eaves and the ridge with the under-floor air passage formed under the roof material,
In the vicinity of the building, connect the under-air ventilation path and the attic (if the top floor has a ceiling) or the interior (if the top floor is a sloped ceiling) space, and introduce the air flowing from the eaves into the attic or indoor space An air flow path switching device that enables switching between an air flow path that enables the air flow path that enables the air flow path that allows the air from the back of the shed or the indoor space to be discharged from the wing vent;
Installed inside a building with enhanced heat insulation and airtightness, near the top of the building internal space directly below the airway switching device near the building, and under floor space in the case of the basic heat insulation method, floor material in the case of the under floor heat insulation method And the space formed between the heat insulating materials installed in the lower part of the flooring, and the upper and lower ends are respectively near the top of the space and between the flooring and the heat insulating material installed in the lower part of the flooring. A cylindrical air circulation cylinder that is open to the formed space, a blower that can selectively form an air flow in the air circulation cylinder from top to bottom and from bottom to top, and close to the top. A top opening / closing valve that regulates and shuts off the air flow by vertically dividing the interior of the air circulation cylinder at a position, and an indoor ventilation that is provided below the top opening / closing valve so as to open and close the inside and outside of the air circulation cylinder An air flow device having a mouth;
Among them, an energy-saving building characterized in that at least a ventilation switching device in the vicinity of the building is installed.
床下断熱工法を採用し、基礎部分を除く外周垂直面、最上階の天井面もしくは屋根下勾配面、最下部の階の床下面に施工した断熱材と、柱や梁等の構造材を隠す形で施工されている室内側の外周部の壁材、天井材あるいは勾配天井材および床材との間に形成し互いに連通させた空間である躯体内通気層を有し、前記空気流通装置を設置しない場合は前記躯体内通気層を前記棟通気口にまで繋げ、前記空気流通装置を設置した場合には、前記躯体内通気層の最頂部付近にて該躯体内通気層から前記棟付近通気路切替装置方向への空気の流路を遮断し、前記躯体内通気層と前記室内空間との間をガラリ等の通気手段を適宜に配して連結したことを特徴とする請求項1に記載の省エネルギー建物。   Adopting the underfloor insulation method, concealing the insulation material constructed on the outer peripheral vertical surface excluding the foundation part, the top floor ceiling surface or roof bottom slope surface, the bottom floor surface of the bottom floor, and structural materials such as columns and beams The air circulation device is installed in the interior air-permeable layer which is a space formed between the wall material, the ceiling material or the sloped ceiling material and the floor material on the outer periphery of the indoor side which is constructed in If not, the enclosure ventilation layer is connected to the building vent, and if the air flow device is installed, the ventilation passage near the building is located near the top of the enclosure ventilation layer from the enclosure ventilation layer. The air flow path in the direction of the switching device is blocked, and a ventilation means such as a louver is appropriately arranged and connected between the internal ventilation layer and the indoor space. Energy saving building. 基礎断熱工法を採用し、基礎立上がり部分を含む外周垂直面、最上階の天井面もしくは屋根下勾配面に施工した断熱材と、前記小屋裏あるいは室内空間側の壁材、天井材あるいは勾配天井材との間に形成し互いに連通させた空間である躯体内通気層を有し、前記空気流通装置を設置しない場合は前記躯体内通気層を前記棟通気口にまで繋げ、前記空気流通装置を設置した場合には、前記躯体内通気層の最頂部付近にて該躯体内通気層から前記棟付近通気路切替装置方向への空気の流路を遮断し、前記躯体内通気層ならびに床下空間と前記室内空間との間をガラリ等の通気手段を適宜に配して連結したことを特徴とする請求項1に記載の省エネルギー建物。   Adopting the basic heat insulation method, heat insulating material installed on the outer peripheral vertical surface including the foundation rising part, the ceiling surface of the top floor or the sloped surface under the roof, and the wall material, ceiling material or gradient ceiling material on the back of the shed or indoor space The internal ventilation layer is a space formed between and communicated with each other, and when the air circulation device is not installed, the internal ventilation layer is connected to the building vent and the air circulation device is installed. If this is the case, the air flow path from the enclosure ventilation layer to the vicinity of the building ventilation passage switching device is blocked near the top of the enclosure ventilation layer, and the enclosure ventilation layer, the underfloor space, and the 2. The energy-saving building according to claim 1, wherein ventilation means such as louvers are appropriately arranged and connected to the indoor space. 請求項2または請求項3に示した建物のうち、前記空気流通装置を備えていて、室内側に柱・梁などの構造体を顕わしにした構造で施工することにより建物内部の空気の流動性を高めたことを特徴とする省エネルギー建物。   Flow of air inside the building by providing the air circulation device of the building shown in claim 2 or claim 3 and constructing it with a structure revealing a structure such as a pillar / beam on the indoor side An energy-saving building characterized by enhanced performance. 屋根下勾配面および建物最上階の天井面に断熱材を設置したことを特徴とする請求項1から4のいずれかに記載の省エネルギー建物。   The heat-saving building according to any one of claims 1 to 4, wherein a heat insulating material is installed on the sloped surface below the roof and the ceiling surface of the top floor of the building. 請求項2から請求項5のいずれかに示した建物のうち、前記空気流通装置を設置していて該空気流通装置の空気流通筒の上端を前記屋根下通気路から小屋裏もしくは室内空間へ空気を導く通気路へ直結させたことを特徴とする省エネルギー建物。   The building according to any one of claims 2 to 5, wherein the air circulation device is installed, and the upper end of the air circulation tube of the air circulation device is air-flowed from the under roof air passage to the shed or indoor space. An energy-saving building characterized by being directly connected to the air passage that leads to.
JP2007148167A 2007-06-04 2007-06-04 Energy saving building Expired - Fee Related JP5370880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007148167A JP5370880B2 (en) 2007-06-04 2007-06-04 Energy saving building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007148167A JP5370880B2 (en) 2007-06-04 2007-06-04 Energy saving building

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012288030A Division JP5653413B2 (en) 2012-12-28 2012-12-28 Energy saving building

Publications (2)

Publication Number Publication Date
JP2008297874A true JP2008297874A (en) 2008-12-11
JP5370880B2 JP5370880B2 (en) 2013-12-18

Family

ID=40171633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007148167A Expired - Fee Related JP5370880B2 (en) 2007-06-04 2007-06-04 Energy saving building

Country Status (1)

Country Link
JP (1) JP5370880B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068340A (en) * 2011-09-21 2013-04-18 Rengoh Sekkei Kk Air conditioning system and air conditioning method using the same
CN106088314A (en) * 2016-07-20 2016-11-09 聂玲 A kind of energy saving building
CN106193647A (en) * 2016-07-20 2016-12-07 聂玲 A kind of high-strength energy-saving building
CN106193648B (en) * 2016-07-20 2018-05-22 天津美新建筑设计有限公司 A kind of environment protection building
JP2018141281A (en) * 2017-02-27 2018-09-13 パナソニックホームズ株式会社 Housing
JP2022043431A (en) * 2020-09-04 2022-03-16 株式会社カネコ Dwelling house with air purification function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618210U (en) * 1984-06-19 1986-01-18 一義 大下 Soffit ventilation with check valve
JPS63125749A (en) * 1986-11-13 1988-05-28 土屋 喬雄 Natural heat utilizing building
JPH06220948A (en) * 1993-01-26 1994-08-09 Tategu Sogo Shosha Futaba:Kk Roof structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618210U (en) * 1984-06-19 1986-01-18 一義 大下 Soffit ventilation with check valve
JPS63125749A (en) * 1986-11-13 1988-05-28 土屋 喬雄 Natural heat utilizing building
JPH06220948A (en) * 1993-01-26 1994-08-09 Tategu Sogo Shosha Futaba:Kk Roof structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068340A (en) * 2011-09-21 2013-04-18 Rengoh Sekkei Kk Air conditioning system and air conditioning method using the same
CN106088314A (en) * 2016-07-20 2016-11-09 聂玲 A kind of energy saving building
CN106193647A (en) * 2016-07-20 2016-12-07 聂玲 A kind of high-strength energy-saving building
CN106193648B (en) * 2016-07-20 2018-05-22 天津美新建筑设计有限公司 A kind of environment protection building
CN106088314B (en) * 2016-07-20 2018-06-08 广东卓正建设工程有限公司 A kind of energy saving building
CN106193647B (en) * 2016-07-20 2018-09-14 江西弘磊建设工程集团有限公司 A kind of high-strength energy-saving building
JP2018141281A (en) * 2017-02-27 2018-09-13 パナソニックホームズ株式会社 Housing
JP2022043431A (en) * 2020-09-04 2022-03-16 株式会社カネコ Dwelling house with air purification function
JP7131849B2 (en) 2020-09-04 2022-09-06 株式会社カネコ House with air purification function
JP7131849B6 (en) 2020-09-04 2022-10-07 株式会社カネコ House with air purification function

Also Published As

Publication number Publication date
JP5370880B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5432240B2 (en) New sustainable architectural model
JP2014051874A (en) Energy-saving ventilation system for air-tightness house
CN101187488A (en) Double layer glass curtain aeration technology and method and structure
JP5370880B2 (en) Energy saving building
JP2009127921A (en) Cold taking-in system
JP2009235677A (en) Thermal environment improving system
JP4171014B2 (en) Pneumatic collector and pneumatic solar collector ventilation system
JP2007085603A (en) Building air conditioning system
JP2012220131A (en) Solar heating and cooling ventilator, and solar heating and cooling ventilation method using the same
JP3944181B2 (en) Building air conditioning system
CN110594918B (en) Environment-friendly energy-saving airflow channel structure
JP2009084936A (en) Thermal insulation dwelling house and ventilation system
JP5653413B2 (en) Energy saving building
JP2954872B2 (en) House
JP2007092323A (en) Roof structure with venting skin and building having roof structure with venting skin
JP5084407B2 (en) Building air conditioning system
JP2010189949A (en) Ventilation structure of building
JP6748904B2 (en) Operating method of multi-function double skin system with vertical opening/closing mechanism
JPH0712869U (en) Solar-powered building
JP3123276U (en) Housing structure
JP2007182691A (en) Building
JP2005163482A (en) Ventilation system for building
JP3727229B2 (en) Air circulation type air conditioning system
JP2018080904A (en) Urban type passive design
JPH09280665A (en) House

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees