JP2008297674A - Acrylic fiber for producing carbon fiber - Google Patents

Acrylic fiber for producing carbon fiber Download PDF

Info

Publication number
JP2008297674A
JP2008297674A JP2007146946A JP2007146946A JP2008297674A JP 2008297674 A JP2008297674 A JP 2008297674A JP 2007146946 A JP2007146946 A JP 2007146946A JP 2007146946 A JP2007146946 A JP 2007146946A JP 2008297674 A JP2008297674 A JP 2008297674A
Authority
JP
Japan
Prior art keywords
mass
fiber
acrylic
fibers
acrylic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007146946A
Other languages
Japanese (ja)
Inventor
Isao Nishimura
功 西村
Hisao Saeki
尚郎 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2007146946A priority Critical patent/JP2008297674A/en
Publication of JP2008297674A publication Critical patent/JP2008297674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide acrylic fibers for producing carbon fibers capable of preventing agglutination between mutual flameproofed fibers in a flameproofing step, having good bundling properties of the flameproofed fibers during running and further preventing formation of pollutants in a baking furnace in a carbonizing step when the carbon fibers are produced from the acrylic fibers. <P>SOLUTION: The acrylic fibers for producing the carbon fibers are obtained by applying moisture in an amount of 20-60 mass% based on the mass of the acrylic fibers having 5-20 μm fiber diameter. Furthermore, based on the acrylic fibers, a calcium component (A) within the range of 5-50 mass ppm, a sodium component (B) within the range of 0-50 mass ppm, a magnesium component (C) within the range of 0-50 mass ppm, the (A)+(B)+(C) within the range of 5-100 mass ppm and an aminosilicone within the range of 0.02-2.0 mass% are applied. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭素繊維製造用アクリロニトリル繊維(アクリル繊維)に関する。更に詳述すれば、本発明は、耐炎化工程では耐炎化繊維相互の融着(膠着)を防止しつつ繊維を集束させ、炭素化工程では焼成炉内汚染物質の発生の少ない炭素繊維製造用アクリル繊維に関する。   The present invention relates to acrylonitrile fibers (acrylic fibers) for producing carbon fibers. More specifically, the present invention focuses on fibers while preventing fusion (sticking) between the flame-resistant fibers in the flame-proofing process. In the carbonization process, the present invention is for carbon fiber production with less generation of contaminants in the firing furnace. Related to acrylic fiber.

従来、炭素繊維製造用にアクリル繊維を使用し、耐炎化処理及び炭素化処理を経て高性能炭素繊維が得られることは広く知られており、工業的に実施されている。   Conventionally, it has been widely known and industrially implemented that high-performance carbon fibers can be obtained by using acrylic fibers for producing carbon fibers and undergoing flameproofing treatment and carbonization treatment.

特に近年は、炭素繊維の用途はスポーツ・レジャー用品用途から航空宇宙分野、特に航空機の一次構造材にまで用途展開している。さらに、炭素繊維の高い比強度、比弾性の特性を生かして製品の軽量化を図ることにより省エネルギー化を図り、これにより排出CO2 の削減に寄与すべく各産業界が注目し、研究している。これに伴い、高性能、低コスト、更に取扱性に優れる高品質な性能の炭素繊維が要求されている。このような、高性能炭素繊維の製造において、原料繊維であるアクリル繊維の特性は目的物である炭素繊維の性能に直接影響する。従って、高性能・低コストで且つ取扱性の改善がなされた炭素繊維用アクリル繊維の開発が望まれている。 In particular, in recent years, the use of carbon fibers has expanded from sports / leisure products to aerospace, particularly to primary structural materials for aircraft. In addition, by utilizing the high specific strength and specific elasticity characteristics of carbon fiber to reduce the weight of the product, energy saving is achieved, and various industries pay attention to and research to contribute to the reduction of CO 2 emissions. Yes. Accordingly, there is a demand for high-quality carbon fibers with high performance, low cost, and excellent handling properties. In the production of such high-performance carbon fibers, the characteristics of the acrylic fiber as the raw fiber directly affect the performance of the target carbon fiber. Therefore, it is desired to develop an acrylic fiber for carbon fiber that has high performance, low cost, and improved handling.

一般にアクリル繊維から炭素繊維を製造する場合、通常200〜300℃の酸化性ガス雰囲気中で、いわゆる耐炎化処理を行い、次いで、350℃以上の不活性ガス雰囲気中で炭素化処理又は黒鉛化処理を行う。この場合200〜300℃における耐炎化処理時に、ストランド(数百本乃至数万本の単繊維からなる繊維束)を構成する単繊維相互の膠着が発生し易く、この発生を防止することが製造上重要である。   In general, when carbon fibers are produced from acrylic fibers, a so-called flameproofing treatment is usually carried out in an oxidizing gas atmosphere at 200 to 300 ° C., and then carbonization treatment or graphitization treatment in an inert gas atmosphere at 350 ° C. or higher. I do. In this case, during the flameproofing treatment at 200 to 300 ° C., the single fibers constituting the strands (fiber bundles composed of hundreds to tens of thousands of single fibers) are likely to stick to each other, and the production of this can be prevented. Top is important.

このため、各種のシリコン系油剤(処理剤)を付与する方法(例えば、特許文献1、2参照)が提案されており、特に、アミノシリコーン系油剤を付与する方法は周知である。しかしながらアミノシリコーン系油剤を用いる場合、耐炎化時の膠着発生の防止には効果があるが、耐炎化工程後の炭素化工程において、焼成炉内に、処理剤の分解による酸化珪素や窒化珪素等の汚染物質が生成し、堆積する。このため、焼成炉内の清掃を頻繁に行う必要があり、生産性を著しく低下させている。   For this reason, methods for applying various silicone oils (treatment agents) (see, for example, Patent Documents 1 and 2) have been proposed, and in particular, methods for applying aminosilicone oils are well known. However, when aminosilicone-based oil is used, it is effective in preventing the occurrence of sticking at the time of flame resistance, but in the carbonization step after the flame resistance step, silicon oxide, silicon nitride, etc. due to decomposition of the treatment agent in the firing furnace Pollutants are generated and deposited. For this reason, it is necessary to frequently clean the inside of the firing furnace, which significantly reduces productivity.

上記問題を解決するため、従来、潤滑剤としてシリコーンを含有しない処理剤の使用が提案されている。例えば、潤滑剤として、
(1) ビスフェノールAのアルキレンオキサイド付加物の脂肪酸エステルと、アミド化合物のアルキレンオキサイド付加物との混合物を含有するもの(例えば、特許文献3参照)、
(2) 二塩基酸とオキシアルキレン単位を有するポリオールの縮合物と脂肪族アルカノールアミドとを反応させて得られる末端にアミド基を有する化合物と、アミド化合物のアルキレンオキサイド付加物との混合物を含有するもの(例えば、特許文献4参照)
がある。ところが、これらの処理剤は、炭素化工程において焼成炉内汚染物質を発生しないが、炭素化工程前の耐炎化工程において、耐炎化繊維相互の融着を充分に阻止できないという欠点がある。
特公昭52−24136号公報 (特許請求の範囲) 特開昭61−167024号公報 (第3頁左上欄第9行〜右上欄第6行) 特開平9−78340号公報 (特許請求の範囲) 特開平9−78341号公報 (特許請求の範囲)
In order to solve the above problem, conventionally, the use of a treatment agent containing no silicone as a lubricant has been proposed. For example, as a lubricant,
(1) A mixture containing a fatty acid ester of an alkylene oxide adduct of bisphenol A and an alkylene oxide adduct of an amide compound (see, for example, Patent Document 3),
(2) Contains a mixture of a compound having an amide group at the terminal obtained by reacting a condensate of a polyol having a dibasic acid and an oxyalkylene unit with an aliphatic alkanolamide, and an alkylene oxide adduct of the amide compound. Things (for example, see Patent Document 4)
There is. However, these treatment agents do not generate firing furnace contaminants in the carbonization step, but have a drawback in that the fusion between the flameproof fibers cannot be sufficiently prevented in the flame resistance step before the carbonization step.
Japanese Patent Publication No. 52-24136 (Claims) JP-A-61-167024 (page 3, upper left column, line 9 to upper right column, line 6) JP-A-9-78340 (Claims) JP-A-9-78341 (Claims)

本発明者等は上記問題を解消するため検討を重ねた結果、アクリル繊維に対して付着せしめる、水分量、カルシウム成分量、ナトリウム成分量、マグネシウム成分量、アミノシリコーン量を適正化することによって、耐炎化工程での膠着防止と集束性の向上、並びに炭素化炉内における汚染物質の発生を阻止し、炭素化炉の閉塞を遅延しうることを見出し本発明に至った。   As a result of repeated examinations to solve the above problems, the present inventors have adhered to the acrylic fiber, by optimizing the amount of water, the amount of calcium component, the amount of sodium component, the amount of magnesium component, the amount of aminosilicone, The inventors have found that it is possible to prevent sticking and improve convergence in the flameproofing process, prevent the generation of contaminants in the carbonization furnace, and delay the blockage of the carbonization furnace.

本発明が解決しようとする課題は、従来の処理剤での問題、即ちアクリル繊維から炭素繊維を製造する際、耐炎化工程で耐炎化繊維相互が融着する問題と、走行中耐炎化繊維の集束性が不良となる問題の両者を解消でき、更に炭素化工程で焼成炉内汚染物質が発生する問題を同時に且つ充分に解消できる炭素繊維製造用アクリル繊維を提供することである。   The problem to be solved by the present invention is a problem with conventional treatment agents, that is, when carbon fiber is produced from acrylic fiber, the problem that the flame resistant fibers are fused together in the flame resistance process, An object of the present invention is to provide an acrylic fiber for producing carbon fibers, which can solve both of the problems of poor convergence and, at the same time, can sufficiently solve the problem of generation of contaminants in the firing furnace in the carbonization step.

上記目的を達成する本発明は、以下に記載のものである。   The present invention for achieving the above object is as follows.

〔1〕 繊維径が5〜20μmのアクリル繊維を複数本束ねたアクリル繊維ストランドに、前記アクリル繊維ストランドの質量に対して、下記成分(1)〜(5)[但し、成分(A)+(B)+(C)の合計は5〜100質量ppmである]、
(1) 水を20〜60質量%、
(2) カルシウム成分(A)をカルシウム元素として5〜50質量ppm、
(3) ナトリウム成分(B)をナトリウム元素として0〜50質量ppm、
(4) マグネシウム成分(C)をマグネシウム元素として0〜50質量ppm、
(5) アミノシリコーンを0.02〜2.0質量%、
付着させてなる炭素繊維製造用アクリル繊維。
[1] To an acrylic fiber strand in which a plurality of acrylic fibers having a fiber diameter of 5 to 20 μm are bundled, the following components (1) to (5) [provided that the component (A) + ( B) + (C) total is 5-100 ppm by mass]
(1) 20-60% by weight of water,
(2) 5-50 mass ppm with calcium component (A) as calcium element,
(3) 0-50 mass ppm of sodium component (B) as sodium element,
(4) 0-50 mass ppm with magnesium component (C) as magnesium element,
(5) 0.02-2.0% by mass of aminosilicone,
Acrylic fiber for carbon fiber production made to adhere.

〔2〕 アクリル繊維ストランドが、アクリル繊維を1000〜50000本束ねてなる〔1〕に記載の炭素繊維製造用アクリル繊維。   [2] The acrylic fiber for producing carbon fiber according to [1], wherein the acrylic fiber strand is a bundle of 1000 to 50000 acrylic fibers.

本発明の炭素繊維製造用アクリル繊維は、繊維径が5〜20μmのアクリル繊維の質量に対して、水分が20〜60質量%付着されているので、耐炎化工程までの繊維の集束性を高めることができる。その結果、耐炎化工程前及び耐炎化工程通過時に発生する繊維の切断や繊維のローラーへの巻付き等が減少し、走行安定性が向上し、生産性の向上によるコストダウンにつながる。   Since the acrylic fiber for producing carbon fibers of the present invention has 20 to 60% by mass of water attached to the mass of the acrylic fiber having a fiber diameter of 5 to 20 μm, it improves the fiber convergence until the flameproofing step. be able to. As a result, the cutting of the fiber and the winding of the fiber around the roller before the flameproofing process and when passing through the flameproofing process are reduced, the running stability is improved, and the cost is reduced by improving the productivity.

且つ、アクリル繊維に対して、カルシウム成分(A)が5〜50質量ppm及び/又はナトリウム成分(B)が50質量ppm以下及び/又はマグネシウム成分(C)が50質量ppm以下であり、(A)+(B)+(C)が5〜100質量ppmの範囲で付着されてなるので、十分な繊維の集束性を高め、膠着を防止する。   And with respect to the acrylic fiber, the calcium component (A) is 5 to 50 mass ppm and / or the sodium component (B) is 50 mass ppm or less and / or the magnesium component (C) is 50 mass ppm or less, (A ) + (B) + (C) is adhered in the range of 5 to 100 mass ppm, so that sufficient fiber convergence is improved and sticking is prevented.

上記水分、カルシウム成分等が付着されてなるアクリル繊維は、更にアミノシリコーンを、アクリル繊維の質量に対して0.02〜2.0質量%付着せしめており、水分、カルシウム成分等を付着せずにアミノシリコーンのみを付着した場合に問題となる炭素化工程での焼成炉内汚染物質の発生も低減できる。   The acrylic fiber to which the moisture, calcium component and the like are attached has further attached aminosilicone in an amount of 0.02 to 2.0% by mass with respect to the mass of the acrylic fiber, and does not attach moisture, calcium component and the like. It is also possible to reduce the occurrence of contaminants in the firing furnace in the carbonization step, which becomes a problem when only aminosilicone is adhered to the substrate.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の特徴は、アクリル繊維を複数本束ねたアクリル繊維ストランドに、前記アクリル繊維ストランドに対して、水分、カルシウム成分、ナトリウム成分、マグネシウム成分、アミノシリコーンを上記所定範囲で付着させるところにある。本発明において、アクリル繊維とは、アクリロニトリルのホモポリマー又はコモノマーを少量共重合させたコポリマーを紡糸して製造した繊維である。コモノマーとしては、通常知られているアクリル酸、メタクリル酸、イタコン酸、及びこれらの塩類などを0.1〜9.0質量%共重合したコポリマーが好ましい。   A feature of the present invention is that moisture, calcium component, sodium component, magnesium component, and aminosilicone are adhered to the acrylic fiber strand in which the acrylic fibers are bundled in a predetermined range. In the present invention, the acrylic fiber is a fiber produced by spinning a acrylonitrile homopolymer or a copolymer obtained by copolymerizing a small amount of a comonomer. As the comonomer, a copolymer obtained by copolymerizing 0.1 to 9.0% by mass of generally known acrylic acid, methacrylic acid, itaconic acid, and salts thereof is preferable.

本発明の炭素繊維製造用アクリル繊維は、水分、カルシウム成分、ナトリウム成分、マグネシウム成分を付着させることにより、耐炎化工程に至るまでは、水分が集束剤として働き、炭素繊維製造用アクリル繊維がローラー等との接触による損傷を低減する。耐炎化炉においては、水分はすぐに蒸発してなくなるが、残ったカルシウム、ナトリウム及び/又はマグネシウム成分が繊維表面に点在して、適度な繊維の集束性と膠着防止効果を発現する。   The acrylic fiber for carbon fiber production according to the present invention has moisture, calcium component, sodium component, and magnesium component attached thereto, so that the moisture acts as a sizing agent until the flameproofing process, and the acrylic fiber for carbon fiber production is a roller. Reduce the damage caused by contact with etc. In the flameproofing furnace, the water is not immediately evaporated, but the remaining calcium, sodium and / or magnesium components are scattered on the surface of the fiber, and appropriate fiber convergence and anti-sticking effect are exhibited.

アクリル繊維の質量に対して付着させる水分は、20〜60質量%、好ましくは23〜55質量%の範囲である。水分が20質量%未満の場合、十分な集束効果が得られず、耐炎化工程に至るまでの、ローラー等との接触による損傷を十分に防ぐことができない。水分が60質量%を超えるときは、十分な集束性は得られるが、炭素繊維の強度が低下する。   The moisture to be attached to the mass of the acrylic fiber is 20 to 60% by mass, preferably 23 to 55% by mass. When the moisture is less than 20% by mass, a sufficient focusing effect cannot be obtained, and damage due to contact with a roller or the like up to the flameproofing process cannot be sufficiently prevented. When the water content exceeds 60% by mass, sufficient convergence is obtained, but the strength of the carbon fiber is lowered.

本発明の炭素繊維製造用アクリル繊維は、カルシウム成分(A)が5〜50質量ppm、及び/又は、ナトリウム成分(B)が50質量ppm以下、及び/又は、マグネシウム成分(C)が50質量ppm以下の範囲で、アクリル繊維に対して付着されてなる。   In the acrylic fiber for producing carbon fiber of the present invention, the calcium component (A) is 5 to 50 ppm by mass, and / or the sodium component (B) is 50 ppm by mass or less, and / or the magnesium component (C) is 50 masses. In the range of ppm or less, it adheres to the acrylic fiber.

カルシウム成分(A)の付着量が5質量ppm未満の場合は、繊維表面に点在する量が少なすぎるため、十分な集束効性と膠着防止効果が得られない。他方、カルシウム成分(A)、ナトリウム成分(B)又はマグネシウム成分(C)の付着量が50質量ppmを超える場合は、十分な集束性は得られるが、炭素繊維の強度が低下する。   When the adhesion amount of the calcium component (A) is less than 5 ppm by mass, the amount scattered on the fiber surface is too small, so that sufficient focusing effect and anti-sticking effect cannot be obtained. On the other hand, when the adhesion amount of the calcium component (A), the sodium component (B), or the magnesium component (C) exceeds 50 mass ppm, sufficient convergence can be obtained, but the strength of the carbon fiber is lowered.

付着させる成分は、カルシウム成分(A)、ナトリウム成分(B)、マグネシウム成分(C)の内、1成分だけでも、2成分の組合せでも、3成分全てでも良い。また、本発明においては、(A)+(B)+(C)が5〜100質量ppm、好ましくは10〜60質量ppmの範囲である。(A)+(B)+(C)が5質量ppm未満の場合は、繊維表面に点在する各成分量が少なすぎるため、十分な集束効性と膠着防止効果が得られない。逆に100質量ppmを超えると、十分な集束性は得られるが、炭素繊維の強度が低下する。   The component to be adhered may be only one component, a combination of two components, or all three components among the calcium component (A), sodium component (B), and magnesium component (C). Moreover, in this invention, (A) + (B) + (C) is 5-100 mass ppm, Preferably it is the range of 10-60 mass ppm. When (A) + (B) + (C) is less than 5 ppm by mass, the amount of each component scattered on the fiber surface is too small, and sufficient focusing effect and anti-sticking effect cannot be obtained. On the other hand, if it exceeds 100 ppm by mass, sufficient convergence can be obtained, but the strength of the carbon fiber is lowered.

なお、通常の紡糸方法により製造したアクリル繊維中のカルシウム成分は1〜4質量ppm、ナトリウム成分は1〜2質量ppm、マグネシウム成分は1〜2質量ppmが一般的である。   In general, the calcium component in the acrylic fiber produced by a usual spinning method is 1 to 4 ppm by mass, the sodium component is 1 to 2 ppm by mass, and the magnesium component is 1 to 2 ppm by mass.

本発明の炭素繊維製造用アクリル繊維は、アミノシリコーンを付着させてなる。その付着量は、アクリル繊維の質量に対し0.02〜2.0質量%であり、好ましくは0.15〜1.0質量%である。このアミノシリコーンとしては、炭素繊維製造用アクリル繊維の集束剤(処理剤)として広く知られているものが好ましい。特に、下記構造式(一般式1)に示されるものが、耐炎化の際の膠着防止効果が高い。   The acrylic fiber for producing carbon fiber of the present invention is formed by attaching aminosilicone. The adhesion amount is 0.02 to 2.0 mass%, preferably 0.15 to 1.0 mass%, based on the mass of the acrylic fiber. As this amino silicone, those widely known as sizing agents (treatment agents) for acrylic fibers for producing carbon fibers are preferable. In particular, those represented by the following structural formula (general formula 1) have a high anti-sticking effect during flame resistance.

Figure 2008297674
Figure 2008297674

m及びnは、それぞれ1〜100000の数、m+nは10以上の数、R1及びR2はそれぞれ同一又は異なる炭素数1〜10のアルキレン基又はアリーレン基である。 m and n are each a number of 1 to 100,000, m + n is a number of 10 or more, and R 1 and R 2 are the same or different alkylene groups or arylene groups having 1 to 10 carbon atoms.

アミノシリコーンの繊維に対する付着量が0.02質量部より少ない場合は、耐炎化工程での膠着防止や集束作用が不足する。一方、2.0質量部を超える付着量であると炭素化炉の閉塞が早くなり、炭素化炉内の清掃を頻繁に行う必要があり、生産性が低下する。   When the amount of aminosilicone adhered to the fiber is less than 0.02 parts by mass, the anti-sticking and focusing action in the flameproofing process is insufficient. On the other hand, if the adhesion amount exceeds 2.0 parts by mass, the carbonization furnace is quickly closed, and the inside of the carbonization furnace needs to be frequently cleaned, resulting in decreased productivity.

本発明のアクリル繊維にアミノシリコーンを付着させる際、アミノシリコーンの25℃における粘度は500〜5000cSt(センチストークス)が好ましい。特に1000〜3000センチストークスであることが好ましい。粘度が500センチストークス未満の場合、耐熱性が低く、耐炎化炉で飛散するため、単糸間の融着を防止できないことがある。一方、粘度が5000センチストークスを超える場合、水中での分散が難しいので、後述するエマルジョン形態の処理剤の製造が難しくなり、或は溶解性の優れた溶媒を見つけることが難しくなり、その結果アクリル繊維単糸の表面に処理剤を均一に付与することが困難となる。   When aminosilicone is attached to the acrylic fiber of the present invention, the viscosity of aminosilicone at 25 ° C. is preferably 500 to 5000 cSt (centistokes). In particular, it is preferably 1000 to 3000 centistokes. When the viscosity is less than 500 centistokes, the heat resistance is low and the particles are scattered in a flameproofing furnace, so that fusion between single yarns may not be prevented. On the other hand, when the viscosity exceeds 5000 centistokes, it is difficult to disperse in water, making it difficult to produce a treatment agent in the form of an emulsion, which will be described later, or finding a solvent with excellent solubility. It becomes difficult to uniformly apply the treatment agent to the surface of the fiber single yarn.

また、アミノシリコーン成分は、撥水性であるため、アクリル繊維をスチーム延伸する場合、繊維の水分率が不均一になり、延伸処理が不均一になるなどの不都合が起き易い。このため、吸湿剤を加えてもよい。吸湿剤としては、ジアルキルスルフォサクシネート、ポリオキシエチレン(POE)アルキルエーテルやアルキルアミンオキサイド等が挙げられる。吸湿剤の配合比は、前記アミノシリコーンの質量を基準として10〜60質量%が好ましく、更に好ましくは30〜50質量%である。   In addition, since the aminosilicone component is water repellent, when the acrylic fiber is subjected to steam stretching, inconveniences such as non-uniformity of the moisture content of the fiber and non-uniform stretching treatment are likely to occur. For this reason, you may add a hygroscopic agent. Examples of the hygroscopic agent include dialkyl sulphosuccinate, polyoxyethylene (POE) alkyl ether and alkylamine oxide. The mixing ratio of the hygroscopic agent is preferably 10 to 60% by mass, more preferably 30 to 50% by mass based on the mass of the aminosilicone.

水、カルシウム成分、ナトリウム成分、マグネシウム成分、アミノシリコーンを付着せしめるアクリル繊維ストランドは、アクリル繊維を1000〜50000本束ねてなるものが好ましい。   The acrylic fiber strand to which water, calcium component, sodium component, magnesium component and aminosilicone are attached is preferably a bundle of 1000 to 50000 acrylic fibers.

処理剤をアクリル繊維に付与する際は、湿式紡糸したゲル状のアクリル繊維又は紡糸原液を一旦気体中に吐出後凝固浴中に導入して浴中延伸したゲル状のアクリル繊維に処理剤を付与せしめる。この後、乾燥、延伸処理し、炭素繊維前駆体繊維を得る。通常の処理剤付与方法は、処理剤のエマルジョンに該ゲル状繊維を浸漬せしめる方法等を例示できる。   When applying the treatment agent to acrylic fibers, the wet-spun gel acrylic fiber or spinning solution is once discharged into the gas, then introduced into the coagulation bath, and the treatment agent is applied to the gel acrylic fiber stretched in the bath. Let me. Thereafter, drying and stretching are performed to obtain a carbon fiber precursor fiber. Examples of the usual treatment agent application method include a method of immersing the gel fiber in an emulsion of the treatment agent.

本発明のアクリル系繊維を用いて炭素繊維を製造する方法は、通常採用されている方法が採用できる。即ち、空気中200〜300℃で耐炎化した後、不活性ガス中300〜2000℃で炭素化し、必要により表面処理を施した後、サイジング剤を付与し、該炭素繊維を得る。得られた炭素繊維は、良好な物性及び良好な取扱性を示し、本発明の目的を満足しうる製造が可能となる。   As a method for producing a carbon fiber using the acrylic fiber of the present invention, a generally adopted method can be adopted. That is, after flameproofing at 200 to 300 ° C. in air, carbonizing at 300 to 2000 ° C. in an inert gas, and after performing surface treatment as necessary, a sizing agent is applied to obtain the carbon fiber. The obtained carbon fiber exhibits good physical properties and good handleability, and can be manufactured to satisfy the object of the present invention.

以下、本発明を実施例により具体的に説明する。炭素繊維製造用アクリル繊維、耐炎化繊維、及び炭素繊維を、以下の実施例及び比較例の条件により作製した。尚、炭素繊維製造用アクリル繊維、耐炎化繊維及び炭素繊維の諸物性値、並びに、実施例中の付着処理剤量、耐炎化糸の集束性、炭素化工程でのSi化合物発生量を、次の方法により測定した。   Hereinafter, the present invention will be specifically described by way of examples. Acrylic fibers for producing carbon fibers, flameproofed fibers, and carbon fibers were produced under the conditions of the following Examples and Comparative Examples. In addition, various physical property values of acrylic fiber for carbon fiber production, flame-resistant fiber and carbon fiber, adhesion treatment agent amount in examples, bundling property of flame-resistant yarn, Si compound generation amount in carbonization process are as follows: It measured by the method of.

(1) アミノシリコーン付着量
エタノールとベンゼンの混合液により炭素繊維製造用アクリロニトリル繊維より処理剤を抽出した後、混合液を留去し、得られた固形分を秤量した。
(1) Aminosilicone adhesion amount After extracting the treating agent from the acrylonitrile fiber for carbon fiber production with a mixed solution of ethanol and benzene, the mixed solution was distilled off and the obtained solid content was weighed.

(2) カルシウム、ナトリウム、マグネシウムの付着量
乾燥した炭素繊維製造用アクリロニトリル繊維を、超音波振動をかけながら、蒸留水で抽出し、抽出した成分をIPC質量分析法(JIS K0102)法で定量化した。
(2) Calcium, sodium, and magnesium deposits Dry acrylonitrile fiber for carbon fiber production is extracted with distilled water while applying ultrasonic vibration, and the extracted components are quantified by IPC mass spectrometry (JIS K0102). did.

(3) 耐炎化糸の集束性
空気中250℃で炭素繊維製造用アクリロニトリル繊維ストランド(単繊維12,000本)を耐炎化せしめた後、該ストランドを10cmに切断し、手でストランドを開繊させてその時の触感にて判断した。集束性の評価は下記評価
×:集束性が全く無く、簡単に開繊する状態
△:若干の集束性がある状態 (×と○の中間の状態)
〇:繊維が集束し、力を加えないと開繊しない状態
で判断した。
(3) Convergence of flame resistant yarn After making acrylonitrile fiber strands (12,000 single fibers) for carbon fiber production flame resistant at 250 ° C. in air, the strands are cut into 10 cm, and the strands are opened by hand. I was allowed to judge from the tactile sensation at that time. Evaluation of convergence is as follows: X: No convergence, easy opening △: Slight convergence (between × and ○)
◯: Judgment was made in a state in which the fibers converge and do not open unless force is applied.

(4) 炭素繊維の強度
JIS R−7601に準じてエポキシ樹脂含浸ストランドの強度を測定し、測定回数4回の平均値で示した。
(4) Strength of carbon fiber The strength of the epoxy resin-impregnated strand was measured according to JIS R-7601, and the average value of the number of measurements was four.

(5) 膠着数
各種フィラメントストランド、即ち耐炎化繊維ストランド又は炭素繊維ストランドを3mmの長さに切断し、アセトン10mlの入った100mlビーカーに投入し、超音波振動を10秒間以上付与し、光学顕微鏡にて20倍の倍率で観察することにより、融着箇所をカウントし膠着数とした。
(5) Number of sticking Various filament strands, that is, flame-resistant fiber strands or carbon fiber strands, are cut to a length of 3 mm, put into a 100 ml beaker containing 10 ml of acetone, and subjected to ultrasonic vibration for 10 seconds or more. By observing at a magnification of 20 times, the number of fusion points was counted to determine the number of sticking.

(6) 炭素化炉内のSi化合物発生量
炭素化炉内で生成したSi化合物を収集し、アクリル繊維1トン当たりに発生するSi化合物量を計算し、これを発生量とした。
(6) Si compound generation amount in the carbonization furnace The Si compound generated in the carbonization furnace was collected, the amount of Si compound generated per ton of acrylic fiber was calculated, and this was used as the generation amount.

[実施例1、3及び比較例2]
アクリロニトリル97質量%、アクリル酸メチル3質量%を共重合させて、平均分子量78000のポリアクリロニトリルを得た。このポリアクリロニトリルを60質量%の塩化亜鉛系水溶液に溶解して、ポリアクリロニトリル濃度8質量%の紡糸原液を調製した。この紡糸原液を孔数12000個のノズルを使用して、10℃、25質量%の塩化亜鉛系水溶液中に吐出して凝固糸を得た。該凝固糸を15〜95℃の温水中で洗浄しながら、合計3.2倍の多段延伸を行い、水分率170質量%の水膨潤アクリル系繊維ストランドを得た。
[Examples 1 and 3 and Comparative Example 2]
97% by mass of acrylonitrile and 3% by mass of methyl acrylate were copolymerized to obtain polyacrylonitrile having an average molecular weight of 78,000. This polyacrylonitrile was dissolved in a 60% by mass zinc chloride aqueous solution to prepare a spinning dope having a polyacrylonitrile concentration of 8% by mass. This spinning dope was discharged into a zinc chloride aqueous solution at 10 ° C. and 25% by mass using a nozzle having 12,000 holes to obtain a coagulated yarn. While washing the coagulated yarn in warm water at 15 to 95 ° C., a total of 3.2 times of multi-stage drawing was performed to obtain a water-swollen acrylic fiber strand having a moisture content of 170 mass%.

脂肪族リン酸エステル4g/L濃度の水溶液とアミノシリコーン(25℃での粘度:1000cSt、アミノ当量2000)2g/Lの乳化物を混合した処理浴を調製した。この処理剤浴に、前述の水膨潤アクリル系繊維ストランドを浸漬して、ディップ−ニップ式で塗布した。   A treatment bath was prepared by mixing an aqueous solution of 4 g / L aliphatic phosphate ester and an emulsion of aminosilicone (viscosity at 25 ° C .: 1000 cSt, amino equivalent 2000) 2 g / L. The water-swelled acrylic fiber strand described above was immersed in this treatment agent bath and applied by a dip-nip method.

次いで70〜150℃のサクションドラム乾燥機を用いて水分率が1質量%以下になるまで乾燥緻密化した。その後、80℃の熱水浴を通過させた後、0.07MPaの飽和水蒸気中4.5倍の再延伸を行い、ケンス内に振込み、1dtex(0.9デニール)、12000本のアクリル繊維ストランドを得た。このアクリル繊維ストランド中のカルシウムは2質量ppm、ナトリウムは1質量ppm、マグネシウムは1質量ppmであった。   Subsequently, it dried and densified until the moisture content became 1 mass% or less using the 70-150 degreeC suction drum dryer. Then, after passing through a hot water bath at 80 ° C., the film was redrawn 4.5 times in saturated steam of 0.07 MPa, transferred into a can, 1 dtex (0.9 denier), 12,000 acrylic fiber strands Got. The calcium in the acrylic fiber strand was 2 mass ppm, sodium was 1 mass ppm, and magnesium was 1 mass ppm.

次に、蒸留水に、カルシウム、ナトリウム、マグネシウム(関東化学株式会社製)を溶解させ処理水を作製し、アクリル繊維を、この処理水中にディップ−ニップ式で通過させて炭素繊維製造用アクリル繊維を得た。カルシウムとナトリウムとマグネシウム付着量の分析結果、及び、水分量を表1に示す。また、得られたアクリル繊維のアミノシリコーン付着量は、すべてアクリル繊維100質量部に対して0.15質量部であった。   Next, calcium, sodium, and magnesium (manufactured by Kanto Chemical Co., Inc.) are dissolved in distilled water to prepare treated water, and acrylic fiber is passed through the treated water by a dip-nip method to produce carbon fiber acrylic fiber. Got. Table 1 shows the analysis results of the amounts of calcium, sodium, and magnesium, and the water content. Moreover, the aminosilicone adhesion amount of the obtained acrylic fiber was all 0.15 mass parts with respect to 100 mass parts of acrylic fibers.

その後、このアクリル繊維を、常法により240〜270℃の範囲内の温度勾配を有する熱風循環式耐炎化炉で40分間連続的に耐炎化処理した。次いで、窒素気流中300〜1300℃の温度勾配を有する炭素化炉で5分間処理して、炭素繊維とした。得られた結果を表1及び表2に示す。   Thereafter, this acrylic fiber was subjected to a flameproofing treatment continuously for 40 minutes in a hot air circulation type flameproofing furnace having a temperature gradient within a range of 240 to 270 ° C. by a conventional method. Subsequently, it processed in the carbonization furnace which has a temperature gradient of 300-1300 degreeC in nitrogen stream for 5 minutes, and was set as carbon fiber. The obtained results are shown in Tables 1 and 2.

[実施例2]
脂肪族リン酸エステル4g/L濃度の水溶液とアミノシリコーン(25℃での粘度:1000cSt、アミノ当量2000)4g/Lの乳化物を混合した処理浴を調製した。この処理剤浴に、前述の実施例1、3及び比較例2で作製した水膨潤アクリル系繊維ストランドを浸漬して、ディップ−ニップ式で塗布した。
[Example 2]
A treatment bath was prepared by mixing an aqueous solution of 4 g / L aliphatic phosphate and an emulsion of aminosilicone (viscosity at 25 ° C .: 1000 cSt, amino equivalent 2000) 4 g / L. The water-swelled acrylic fiber strands prepared in Examples 1 and 3 and Comparative Example 2 were immersed in this treatment agent bath and applied by a dip-nip method.

次いで70〜150℃のサクションドラム乾燥機を用いて水分率が1質量%以下になるまで乾燥緻密化した。その後、80℃の熱水浴を通過させた後、0.07MPaの飽和水蒸気中4.5倍の再延伸を行い、ケンス内に振込み、1dtex(0.9デニール)、12000本のアクリル繊維ストランドを得た。このアクリル繊維ストランド中のカルシウムは2質量ppm、ナトリウムは1質量ppm、マグネシウムは1質量ppmであった。   Subsequently, it dried and densified until the moisture content became 1 mass% or less using the 70-150 degreeC suction drum dryer. Then, after passing through a hot water bath at 80 ° C., the film was redrawn 4.5 times in saturated steam of 0.07 MPa, transferred into a can, 1 dtex (0.9 denier), 12,000 acrylic fiber strands Got. The calcium in the acrylic fiber strand was 2 mass ppm, sodium was 1 mass ppm, and magnesium was 1 mass ppm.

次に、蒸留水に、カルシウム、ナトリウム、マグネシウム(関東化学株式会社製)を溶解させ処理水を作製し、アクリル繊維を、この処理水中にディップ−ニップ式で通過させて炭素繊維製造用アクリル繊維を得た。カルシウムとナトリウムとマグネシウム付着量の分析結果、及び、水分量を表1に示す。また、得られたアクリル繊維のアミノシリコーン付着量は、すべてアクリル繊維100質量部に対して1.15質量部であった。   Next, calcium, sodium, and magnesium (manufactured by Kanto Chemical Co., Inc.) are dissolved in distilled water to prepare treated water, and acrylic fiber is passed through the treated water by a dip-nip method to produce carbon fiber acrylic fiber. Got. Table 1 shows the analysis results of the amounts of calcium, sodium, and magnesium, and the water content. Moreover, the aminosilicone adhesion amount of the obtained acrylic fiber was all 1.15 mass parts with respect to 100 mass parts of acrylic fibers.

その後、このアクリル繊維を、常法により240〜270℃の範囲内の温度勾配を有する熱風循環式耐炎化炉で40分間連続的に耐炎化処理した。次いで、窒素気流中300〜1300℃の温度勾配を有する炭素化炉で5分間処理して、炭素繊維とした。得られた結果を表1に示す。   Thereafter, this acrylic fiber was subjected to a flameproofing treatment continuously for 40 minutes in a hot air circulation type flameproofing furnace having a temperature gradient within a range of 240 to 270 ° C. by a conventional method. Subsequently, it processed in the carbonization furnace which has a temperature gradient of 300-1300 degreeC in nitrogen stream for 5 minutes, and was set as carbon fiber. The obtained results are shown in Table 1.

[比較例1]
脂肪族リン酸エステル4g/L濃度の水溶液とアミノシリコーン(25℃での粘度:1000cSt、アミノ当量2000)1g/Lの乳化物を混合した処理浴を調製した。この処理剤浴に、前述の実施例1、3及び比較例2で作製した水膨潤アクリル系繊維ストランドを浸漬して、ディップ−ニップ式で塗布した。
[Comparative Example 1]
A treatment bath was prepared by mixing an aqueous solution of 4 g / L aliphatic phosphate and an emulsion of 1 g / L aminosilicone (viscosity at 25 ° C .: 1000 cSt, amino equivalent 2000). The water-swelled acrylic fiber strands prepared in Examples 1 and 3 and Comparative Example 2 were immersed in this treatment agent bath and applied by a dip-nip method.

次いで70〜150℃のサクションドラム乾燥機を用いて水分率が1質量%以下になるまで乾燥緻密化した。その後、80℃の熱水浴を通過させた後、0.07MPaの飽和水蒸気中4.5倍の再延伸を行い、ケンス内に振込み、1dtex(0.9デニール)、12000本のアクリル繊維ストランドを得た。このアクリル繊維ストランド中のカルシウムは2質量ppm、ナトリウムは1質量ppm、マグネシウムは1質量ppmであり、アクリル繊維のアミノシリコーン付着量は、アクリル繊維100質量部に対して0.08質量部であった。   Subsequently, it dried and densified until the moisture content became 1 mass% or less using the 70-150 degreeC suction drum dryer. Then, after passing through a hot water bath at 80 ° C., the film was redrawn 4.5 times in saturated steam of 0.07 MPa, transferred into a can, 1 dtex (0.9 denier), 12,000 acrylic fiber strands Got. The calcium in the acrylic fiber strand is 2 ppm by mass, sodium is 1 ppm by mass, and magnesium is 1 ppm by mass. The aminosilicone adhesion amount of the acrylic fiber is 0.08 parts by mass with respect to 100 parts by mass of the acrylic fiber. It was.

その後、このアクリル繊維を、常法により240〜270℃の範囲内の温度勾配を有する熱風循環式耐炎化炉で40分間連続的に耐炎化処理した。次いで、窒素気流中300〜1300℃の温度勾配を有する炭素化炉で5分間処理して、炭素繊維とした。得られた結果を表2に示す。   Thereafter, this acrylic fiber was subjected to a flameproofing treatment continuously for 40 minutes in a hot air circulation type flameproofing furnace having a temperature gradient within a range of 240 to 270 ° C. by a conventional method. Subsequently, it processed in the carbonization furnace which has a temperature gradient of 300-1300 degreeC in nitrogen stream for 5 minutes, and was set as carbon fiber. The obtained results are shown in Table 2.

[比較例3]
脂肪族リン酸エステル4g/L濃度の水溶液とアミノシリコーン(25℃での粘度:1000cSt、アミノ当量2000)8g/Lの乳化物を混合した処理浴を調製した。この処理剤浴に、前述の実施例1、3及び比較例2で作製した水膨潤アクリル系繊維ストランドを浸漬して、ディップ−ニップ式で塗布した。
[Comparative Example 3]
A treatment bath was prepared by mixing an aqueous solution of 4 g / L aliphatic phosphate ester and an emulsion of 8 g / L aminosilicone (viscosity at 25 ° C .: 1000 cSt, amino equivalent 2000). The water-swelled acrylic fiber strands prepared in Examples 1 and 3 and Comparative Example 2 were immersed in this treatment agent bath and applied by a dip-nip method.

次いで70〜150℃のサクションドラム乾燥機を用いて水分率が1質量%以下になるまで乾燥緻密化した。その後、80℃の熱水浴を通過させた後、0.07MPaの飽和水蒸気中4.5倍の再延伸を行い、ケンス内に振込み、1dtex(0.9デニール)、12000本のアクリル繊維ストランドを得た。このアクリル繊維ストランド中のカルシウムは2質量ppm、ナトリウムは1質量ppm、マグネシウムは1質量ppmであり、アクリル繊維のアミノシリコーン付着量は、アクリル繊維100質量部に対して0.60質量部であった。   Subsequently, it dried and densified until the moisture content became 1 mass% or less using the 70-150 degreeC suction drum dryer. Then, after passing through a hot water bath at 80 ° C., the film was redrawn 4.5 times in saturated steam of 0.07 MPa, transferred into a can, 1 dtex (0.9 denier), 12,000 acrylic fiber strands Got. The calcium in the acrylic fiber strand is 2 ppm by mass, sodium is 1 ppm by mass, and magnesium is 1 ppm by mass. The aminosilicone adhesion amount of the acrylic fiber is 0.60 parts by mass with respect to 100 parts by mass of the acrylic fiber. It was.

その後、このアクリル繊維を、常法により240〜270℃の範囲内の温度勾配を有する熱風循環式耐炎化炉で40分間連続的に耐炎化処理した。次いで、窒素気流中300〜1300℃の温度勾配を有する炭素化炉で5分間処理して、炭素繊維とした。得られた結果を表2に示す。   Thereafter, this acrylic fiber was subjected to a flameproofing treatment continuously for 40 minutes in a hot air circulation type flameproofing furnace having a temperature gradient within a range of 240 to 270 ° C. by a conventional method. Subsequently, it processed in the carbonization furnace which has a temperature gradient of 300-1300 degreeC in nitrogen stream for 5 minutes, and was set as carbon fiber. The obtained results are shown in Table 2.

[比較例4]
脂肪族リン酸エステル8g/L濃度の処理浴に、前述の実施例1、3及び比較例2で作製した水膨潤アクリル系繊維ストランドを浸漬して、ディップ−ニップ式で塗布した。
[Comparative Example 4]
The water-swelled acrylic fiber strands prepared in Examples 1 and 3 and Comparative Example 2 described above were immersed in a treatment bath having an aliphatic phosphate ester concentration of 8 g / L and applied by a dip-nip method.

次いで70〜150℃のサクションドラム乾燥機を用いて水分率が1質量%以下になるまで乾燥緻密化した。その後、80℃の熱水浴を通過させた後、0.07MPaの飽和水蒸気中4.5倍の再延伸を行い、ケンス内に振込み、1dtex(0.9デニール)、12000本のアクリル繊維ストランドを得た。このアクリル繊維ストランド中のカルシウムは2質量ppm、ナトリウムは1質量ppm、マグネシウムは1質量ppmであった。   Subsequently, it dried and densified until the moisture content became 1 mass% or less using the 70-150 degreeC suction drum dryer. Then, after passing through a hot water bath at 80 ° C., the film was redrawn 4.5 times in saturated steam of 0.07 MPa, transferred into a can, 1 dtex (0.9 denier), 12,000 acrylic fiber strands Got. The calcium in the acrylic fiber strand was 2 mass ppm, sodium was 1 mass ppm, and magnesium was 1 mass ppm.

次に、蒸留水に、カルシウム、ナトリウム、マグネシウム(関東化学株式会社製)を溶解させ処理水を作製し、アクリル繊維を、この処理水中にディップ−ニップ式で通過させて炭素繊維製造用アクリル繊維を得た。カルシウムとナトリウムとマグネシウム付着量の分析結果、及び、水分量を表2に示す。また、得られたアクリル繊維のアミノシリコーン付着量は、すべてアクリル繊維100質量部に対して0質量部であった。   Next, calcium, sodium, and magnesium (manufactured by Kanto Chemical Co., Inc.) are dissolved in distilled water to prepare treated water, and acrylic fiber is passed through the treated water by a dip-nip method to produce carbon fiber acrylic fiber. Got. Table 2 shows the results of analysis of the amount of calcium, sodium, and magnesium adhered, and the amount of water. Moreover, the aminosilicone adhesion amount of the obtained acrylic fiber was all 0 mass parts with respect to 100 mass parts of acrylic fibers.

その後、このアクリル繊維を、常法により240〜270℃の範囲内の温度勾配を有する熱風循環式耐炎化炉で40分間連続的に耐炎化処理した。次いで、窒素気流中300〜1300℃の温度勾配を有する炭素化炉で5分間処理して、炭素繊維とした。得られた結果を表2に示す。   Thereafter, this acrylic fiber was subjected to a flameproofing treatment continuously for 40 minutes in a hot air circulation type flameproofing furnace having a temperature gradient within a range of 240 to 270 ° C. by a conventional method. Subsequently, it processed in the carbonization furnace which has a temperature gradient of 300-1300 degreeC in nitrogen stream for 5 minutes, and was set as carbon fiber. The obtained results are shown in Table 2.

Figure 2008297674
Figure 2008297674

Figure 2008297674
Figure 2008297674

Claims (2)

繊維径が5〜20μmのアクリル繊維を複数本束ねたアクリル繊維ストランドに、前記アクリル繊維ストランドの質量に対して、下記成分(1)〜(5)[但し、成分(A)+(B)+(C)の合計は5〜100質量ppmである]、
(1) 水を20〜60質量%、
(2) カルシウム成分(A)をカルシウム元素として5〜50質量ppm、
(3) ナトリウム成分(B)をナトリウム元素として0〜50質量ppm、
(4) マグネシウム成分(C)をマグネシウム元素として0〜50質量ppm、
(5) アミノシリコーンを0.02〜2.0質量%、
付着させてなる炭素繊維製造用アクリル繊維。
To an acrylic fiber strand in which a plurality of acrylic fibers having a fiber diameter of 5 to 20 μm are bundled, the following components (1) to (5) with respect to the mass of the acrylic fiber strand [where component (A) + (B) + (C) total is 5 to 100 ppm by mass]
(1) 20-60% by weight of water,
(2) 5-50 mass ppm with calcium component (A) as calcium element,
(3) 0-50 mass ppm of sodium component (B) as sodium element,
(4) 0-50 mass ppm with magnesium component (C) as magnesium element,
(5) 0.02-2.0% by mass of aminosilicone,
Acrylic fiber for carbon fiber production made to adhere.
アクリル繊維ストランドが、アクリル繊維を1000〜50000本束ねてなる請求項1に記載の炭素繊維製造用アクリル繊維。 The acrylic fiber for producing carbon fibers according to claim 1, wherein the acrylic fiber strand is a bundle of 1000 to 50000 acrylic fibers.
JP2007146946A 2007-06-01 2007-06-01 Acrylic fiber for producing carbon fiber Pending JP2008297674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007146946A JP2008297674A (en) 2007-06-01 2007-06-01 Acrylic fiber for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146946A JP2008297674A (en) 2007-06-01 2007-06-01 Acrylic fiber for producing carbon fiber

Publications (1)

Publication Number Publication Date
JP2008297674A true JP2008297674A (en) 2008-12-11

Family

ID=40171443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146946A Pending JP2008297674A (en) 2007-06-01 2007-06-01 Acrylic fiber for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP2008297674A (en)

Similar Documents

Publication Publication Date Title
JP4801546B2 (en) Oil agent for carbon fiber precursor acrylic fiber
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP2589219B2 (en) Precursor for producing carbon fiber, method for producing the same, and method for producing carbon fiber from the precursor
JP2004211240A (en) Carbon fiber, acrylonitrile-based precursor fiber for the same, and method for producing the carbon fiber and the precursor fiber
JP6510299B2 (en) Flame-resistant fiber bundle, carbon fiber precursor fiber bundle, and method for producing carbon fiber comprising the same
JP2007113141A (en) Method for producing carbon fiber precursor fiber bundle
JP2004149983A (en) Acrylic fiber for carbon fiber production
JP4838595B2 (en) Carbon fiber bundle manufacturing method
JP4141035B2 (en) Method for producing acrylonitrile fiber for carbon fiber production
JP2008297674A (en) Acrylic fiber for producing carbon fiber
JP2016160560A (en) Method for manufacturing carbon fiber bundle
JP2006274507A (en) Flame resistant fiber
JP4942502B2 (en) Method for producing flame-resistant fiber bundle
JP2004149937A (en) Precursor fiber strand for carbon fiber and method for producing the same
JP2004169198A (en) Precursor fiber strand for carbon fiber and method for producing the same
JPH05140821A (en) Production of acrylic fiber for producing carbon fiber
JP2001248025A (en) Method for producing carbon fiber
JP2003201346A (en) Silicone lubricant, acrylic fiber as carbon fiber precursor, and method for manufacturing carbon fiber
JP2008280632A (en) Method for producing precursor fiber bundle of carbon fiber
JP2007051392A (en) Flame-resistant yarn
JP2014234557A (en) Method for manufacturing carbon fiber
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP4995754B2 (en) Carbon fiber precursor acrylic fiber bundle and method for producing the same
JP2001355120A (en) Large tow precursor, method for producing the same and method for producing carbon fiber
JP2004300606A (en) Flameproof fiber and method for producing the same