JP2007051392A - Flame-resistant yarn - Google Patents

Flame-resistant yarn Download PDF

Info

Publication number
JP2007051392A
JP2007051392A JP2005237205A JP2005237205A JP2007051392A JP 2007051392 A JP2007051392 A JP 2007051392A JP 2005237205 A JP2005237205 A JP 2005237205A JP 2005237205 A JP2005237205 A JP 2005237205A JP 2007051392 A JP2007051392 A JP 2007051392A
Authority
JP
Japan
Prior art keywords
flame
yarn
fiber
resistant yarn
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005237205A
Other languages
Japanese (ja)
Inventor
Shingo Sakaguchi
伸吾 阪口
Sunao Toba
直 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005237205A priority Critical patent/JP2007051392A/en
Publication of JP2007051392A publication Critical patent/JP2007051392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame-resistant yarn having high shape-retention to carbonization or exposure to flame and high processability. <P>SOLUTION: The flame-resistant yarn has a flame shrink-retention of ≥90% and a specific gravity of 1.40-1.44 and has ≥10 wrinkles having a groove depth of ≥0.15 μm and essentially continuously formed along the longitudinal direction of the yarn. The yarn can be produced by properly controlling the atmosphere temperature, retention time, etc., in the flame-resisting treatment of a precursor fiber to change the thermal history, residual elongation, etc., of the fiber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、形態保持性が高く、かつ加工性の高い耐炎糸に関する。   The present invention relates to a flame resistant yarn having high form retention and high workability.

耐炎糸は、アクリロニトリル系繊維、セルロース系繊維、フェノール系繊維、ピッチ系繊維等を原料とし、通常200℃〜300℃の空気中で加熱することによって得られる酸化繊維糸であり、耐熱性、耐炎性に優れているために断熱材、充填材、強化材、耐熱材やスパッターシートなどとして使われている。また、該酸化繊維を炭素化して得られる炭素繊維は比強度や比弾性率に優れていることから、スポーツ用具、航空・宇宙基材、CNGタンク、フライホイール、風車、道路・橋脚等の各種構造基材あるいはそれらの部材・部品の材料として多用されている。   The flame resistant yarn is an oxidized fiber yarn obtained by heating in air at 200 ° C. to 300 ° C. using acrylonitrile fiber, cellulose fiber, phenol fiber, pitch fiber, etc. as a raw material. Because of its excellent properties, it is used as a heat insulating material, filler, reinforcing material, heat-resistant material, and sputter sheet. In addition, carbon fibers obtained by carbonizing the oxidized fibers are excellent in specific strength and specific elastic modulus. Therefore, various kinds of sports equipment, aerospace / base materials, CNG tanks, flywheels, windmills, roads / piers, etc. It is widely used as a material for structural substrates or their members / parts.

このような耐炎糸は、織物や不織布として用いられることが多く、このため十分な加工性を持つとともに、加工後の実使用において炎への曝露または炭化焼成の際に型くずれを起こすことなくその形態を保持することが求められている。形態保持性を向上させるには単糸レベルで炎曝露時の収縮維持性、すなわち炎下に曝された前後での耐収縮性(収縮防止性)を高めることが有効である。この収縮維持性を高めるために糸断面方向における耐炎化の進行度をより深くすることが一般に行われるが、これを深くしすぎると糸が脆くなり、加工に耐えなくなる。しかしながらかかる耐炎化の進行度を浅くすると収縮維持性は低くなり、形態保持性が低下する。従来、このトレードオフ関係が問題となっていた。   Such a flame resistant yarn is often used as a woven fabric or a non-woven fabric. Therefore, it has sufficient processability, and in its actual use after processing, its form is not caused by exposure to flame or carbonization firing. Is required to hold. In order to improve the shape retention, it is effective to improve the shrinkage maintenance property at the time of flame exposure at the single yarn level, that is, the shrinkage resistance (shrinkage prevention property) before and after being exposed to the flame. In order to enhance this shrinkage maintenance property, the progress of flame resistance in the yarn cross-sectional direction is generally made deeper. However, if this is made too deep, the yarn becomes brittle and cannot withstand processing. However, if the progress of such flame resistance is made shallow, the shrinkage maintenance property is lowered, and the form retention property is lowered. Conventionally, this trade-off relationship has been a problem.

例えば、加工性を高める手段として原糸に金属イオンを含有させて酸化処理する方法があるが(例えば、特許文献1参照)、この場合得られる耐炎糸に不純物が増え、炭化焼成時の性能低下を引き起こす。また、紡績糸においては繊維と繊維あるいは金属との摩擦性能を制御することで製織性を制御する方法も提案されているが(例えば、特許文献2参照)、加工後の形態維持について直接考慮されていないため、製織後の高温での使用時や炭素化時の形態維持性について問題があった。
特公昭63−047808号公報 特開2004−124309号公報
For example, as a means for improving workability, there is a method in which a metal ion is contained in a raw yarn and an oxidation treatment is performed (for example, refer to Patent Document 1). cause. In spun yarn, a method for controlling the weaving property by controlling the friction performance between the fiber and the fiber or metal has been proposed (for example, see Patent Document 2). As a result, there was a problem with the form maintainability during use at high temperatures after weaving and during carbonization.
Japanese Patent Publication No. 63-047808 JP 2004-124309 A

本発明の目的は、炭化、あるいは炎への曝露に対する形態保持性が高く、かつ加工性の高い耐炎糸を提供することにある。   An object of the present invention is to provide a flame-resistant yarn having high form-retaining property against carbonization or exposure to a flame and high workability.

上記の目的を達成する本発明は、次に記載するものである。すなわち、炎収縮維持率が90%以上、比重が1.40〜1.44であり、かつ糸長手方向に実質的に連続に形成された皺であり、その凹部の最大深さが0.15μm以上である皺を10本以上有する耐炎糸である。   The present invention that achieves the above object is as follows. That is, the flame shrinkage maintenance ratio is 90% or more, the specific gravity is 1.40 to 1.44, and the ridge is formed substantially continuously in the longitudinal direction of the yarn, and the maximum depth of the concave portion is 0.15 μm. It is a flame resistant yarn having 10 or more wrinkles as described above.

本発明によれば、以下に説明するとおり、形態保持性が高く、かつ加工性の高い耐炎糸を得ることができる。   According to the present invention, as described below, it is possible to obtain a flame resistant yarn having high form retention and high workability.

本発明において耐炎とは、「防炎」という用語と実質的に同義であり、「難撚」という用語の意味を含んで使用する。具体的に耐炎とは燃焼が継続しにくい、すなわち燃えにくい性質を示す総称である。   In the present invention, the term “flame resistance” is substantially synonymous with the term “flameproof” and includes the meaning of the term “hard twist”. Specifically, flame resistance is a general term indicating the property that combustion is difficult to continue, that is, the property of being difficult to burn.

本発明において、耐炎糸とは、ポリアクリロニトリル系繊維、レーヨン繊維、フェノール系繊維等の有機繊維やピッチ系繊維を前駆体繊維とし、耐炎化処理して得られるものをいう。たとえば、ポリアクリロニトリル系繊維は、一般的にアクリロニトリル重合体を紡糸し、凝固および延伸水洗し必要に応じて油剤を適宜付与することによって得ることができる。耐炎化処理は、通常、前記前駆体繊維を、空気等の酸化性雰囲気中200〜300℃に加熱処理することで行われる。   In the present invention, the flame resistant yarn refers to a fiber obtained by flameproofing an organic fiber such as polyacrylonitrile fiber, rayon fiber, or phenol fiber or pitch fiber as a precursor fiber. For example, a polyacrylonitrile fiber can be obtained by spinning an acrylonitrile polymer, coagulating and washing with drawing water, and appropriately applying an oil as necessary. The flameproofing treatment is usually performed by heat-treating the precursor fiber at 200 to 300 ° C. in an oxidizing atmosphere such as air.

本発明の耐炎糸は炎収縮維持率が90%以上である。ここで炎収縮維持率とは、炎下に曝された際の耐収縮性(収縮防止性)を意味し、具体的には炎下にさらす前後での形態保持率のことである。測定方法としては、ブンセンバーナーで耐炎化繊維束を熱し、その長さの維持率を求めることで炎収縮維持率とする。   The flame resistant yarn of the present invention has a flame shrinkage maintenance rate of 90% or more. Here, the flame shrinkage maintenance rate means the resistance to shrinkage (shrinkage prevention) when exposed to the flame, and specifically refers to the shape retention before and after the exposure to the flame. As a measuring method, the flame-resistant fiber bundle is heated with a Bunsen burner, and the maintenance rate of the length is obtained to obtain the flame shrinkage maintenance rate.

具体的には耐炎糸束を約400mm採取し、試長200mmとなるようにクリップなどの不燃物でマークをつける。次に、一端を固定し、もう一端に3300dtexあたり10gの張力をかけ、マークした試長間をブンセンバーナーの炎によって加熱する。この際、ブンセンバーナーの使用ガスはプロパンガス、炎の高さは約10cmとし、炎の上部約1/3の部分によって、マーク間を約20秒/200mmの速さで糸の長さ方向に1往復半移動させながら加熱する。その後、マーク間の長さを測定し、これをWb(mm)とし、炎収縮維持率(%)を以下の式に従い求める。
炎収縮維持率(%)=(Wb/200)×100
かかる炎収縮維持率が90%未満となると、加工後の実使用において炎への曝露、炭化焼成の際に不均一な収縮が発生し、その形態を安定に保つことが出来なくなるので好ましくない。
Specifically, a flame resistant yarn bundle of about 400 mm is sampled and marked with a non-combustible material such as a clip so that the test length is 200 mm. Next, one end is fixed, a tension of 10 g per 3300 dtex is applied to the other end, and the marked test length is heated by a Bunsen burner flame. At this time, the Bunsen burner gas used is propane gas, the flame height is about 10 cm, and the distance between the marks is about 20 seconds / 200 mm in the length direction of the yarn by the upper 1/3 portion of the flame. Heat while moving halfway back and forth. Then, the length between marks is measured, this is set to Wb (mm), and flame shrinkage maintenance rate (%) is calculated | required according to the following formula | equation.
Flame shrinkage maintenance rate (%) = (Wb / 200) × 100
When the flame shrinkage maintenance rate is less than 90%, non-uniform shrinkage occurs during exposure to flame and carbonization and firing in actual use after processing, and the form cannot be kept stable.

また、本発明の耐炎糸は比重が1.40〜1.44であることが重要である。かかる比重は、密度該知の液体中と大気中での浮力の差から求める浮力法(アルキメデス法)などにより求めることができる。ここで密度該知の液体とは特に限定されるものではないが、例えば耐炎糸の質量と、同体積の水の質量とを同時に測り、測定時の温度における水の密度の値ρを用いて求めることができる。実際にはJIS R−7601(1986)記載の方法に従った。具体的には、先ず1.0〜3.0gの繊維を採取し、120℃で2時間絶乾する。次に絶乾質量A(g)を測定した後、比重既知(比重ρ)の溶媒浴に含浸させ、溶媒浴中の繊維質量B(g)を測定し、繊維比重=(A×ρ)/(A−B)により繊維比重を求めることができる。   Moreover, it is important that the specific gravity of the flame resistant yarn of the present invention is 1.40 to 1.44. Such specific gravity can be obtained by the buoyancy method (Archimedes method) obtained from the difference in buoyancy between the density of the known liquid and the atmosphere. Here, the density of the known liquid is not particularly limited. For example, the mass of the flameproof yarn and the mass of water of the same volume are simultaneously measured, and the value ρ of the density of water at the temperature at the time of measurement is used. Can be sought. Actually, the method described in JIS R-7601 (1986) was followed. Specifically, 1.0 to 3.0 g of fiber is first collected and dried at 120 ° C. for 2 hours. Next, after measuring the absolute dry mass A (g), it was impregnated in a solvent bath having a known specific gravity (specific gravity ρ), and the fiber mass B (g) in the solvent bath was measured. Fiber specific gravity = (A × ρ) / The fiber specific gravity can be determined by (AB).

耐炎糸の比重が1.40未満であると、加工性が良好であっても、耐炎糸自体が十分な耐炎化能を有さないことがあり、加工品の防炎・スパッタ性能が不十分となったり、炭化して得られる炭化織布・不織布等の強度が低下したり、炭化中に着火する場合がある。また耐炎糸の比重が1.44を超えると、耐炎糸の脆性が高くなる。そのため、加工時に単糸切れが多発したり、加工品炭化後の炭素繊維強度が低くなり使用に適さない。   If the specific gravity of the flameproof yarn is less than 1.40, even if the workability is good, the flameproof yarn itself may not have sufficient flameproofing ability, and the flameproof / sputtering performance of the processed product is insufficient. Or the strength of carbonized woven fabric / nonwoven fabric obtained by carbonization may decrease, or ignition may occur during carbonization. When the specific gravity of the flame resistant yarn exceeds 1.44, the brittleness of the flame resistant yarn becomes high. For this reason, single yarn breakage frequently occurs during processing, and the carbon fiber strength after carbonization of the processed product is low, which is not suitable for use.

また、本発明の耐炎糸は糸長手方向に実質的に連続に形成された皺であり、その凹部の深さが0.15μm以上である皺を10本以上有する。ここで「実質的に連続に形成された」とは、糸長手方向に延びて形成される皺が糸全体に亘って完全に連続して形成されたことを条件とせず、皺が途切れた部分、または凹部の深さが0.15μm未満の部分があっても、全体として一つの皺として認識できるものであればよいことを意味する。また、皺の発生方向が必ずしも糸長手方向に平行であることを条件とせず、糸長手方向に亘って延びている皺と認識できるものであればよいことを意味する。ただし、例えば凹部の深さが0.15μm未満である部分が全体の3%を超えるものは、1本としてカウントしない。また、方向に統一性が見られないもの、例えば方向の変化が激しく、全体として糸長手方向に沿っていると到底認められないものは、1本としてカウントしない。皺の有無判定は、走査電子顕微鏡(SEM)を用いて繊維表面を7000倍の倍率で撮影した写真で観察される実質的に連続に繋がった皺を数えることで行うことができる。しかし、糸全体に亘って皺が実質的に連続か否かを判断することは現実的ではないので、任意の位置における3〜5点程度の写真を採り、その実質的連続性を確認する方法を採ってもよい。凹部の深さは、同様の方法で繊維断面を7000倍の倍率で撮影した写真で深さの最長部分を測定することが出来る。かかる皺を持つことで、炎への曝露、炭化焼成のような場合に生じる収縮挙動に対し、その形態による物理的な抵抗が発生することで剛直性が増し、同繊度の平滑な糸と比較して形態保持性が向上する。ただし、深さが0.15μm未満では抵抗効果は発現しないので、本数に入れない。この皺の数が9本以下ではその効果が不十分である。   In addition, the flame resistant yarn of the present invention is a cocoon formed substantially continuously in the longitudinal direction of the yarn, and has 10 or more cocoons having a depth of the concave portion of 0.15 μm or more. Here, “substantially continuously formed” means that the wrinkles are not formed on the condition that the wrinkles formed extending in the longitudinal direction of the yarn are formed completely continuously over the entire yarn. Or, even if there is a portion with a depth of less than 0.15 μm, it means that it can be recognized as a single wrinkle as a whole. In addition, it does not necessarily require that the direction in which the wrinkles are generated is parallel to the longitudinal direction of the yarn, and it means that it is sufficient if it can be recognized as a wrinkle extending in the longitudinal direction of the yarn. However, for example, a portion where the depth of the concave portion is less than 0.15 μm exceeds 3% is not counted as one. In addition, those in which the direction is not uniform, for example, those in which the change in direction is severe and cannot be recognized as being entirely along the longitudinal direction of the yarn as a whole, are not counted as one. The presence / absence determination of wrinkles can be performed by counting substantially continuous wrinkles observed with a photograph of the fiber surface taken at a magnification of 7000 times using a scanning electron microscope (SEM). However, since it is not realistic to determine whether wrinkles are substantially continuous over the entire yarn, a method of taking a photograph of about 3 to 5 points at an arbitrary position and confirming the substantial continuity May be taken. As for the depth of the recess, the longest part of the depth can be measured by a photograph obtained by photographing the fiber cross section at a magnification of 7000 times in the same manner. By having such wrinkles, the resistance to shrinkage that occurs when exposed to flames, carbonization and firing, increases the rigidity due to the physical resistance caused by the form, compared with a smooth yarn of the same fineness As a result, form retention is improved. However, if the depth is less than 0.15 μm, the resistance effect does not appear, so it cannot be counted. If the number of wrinkles is 9 or less, the effect is insufficient.

本発明の耐炎糸は、引張伸度が20〜30%であることが好ましい。ここで引張伸度とは、JIS L−1015(1999)に基づいて測定される。引張伸度が20%未満では、加工時に弱糸が発生して障害を起こすので好ましくない場合がある。一方、30%超では大きすぎて、耐炎糸生産時に緩みによる巻き付き等で糸切れが多発して生産性が劣る場合があり、好ましくない。   The flame resistant yarn of the present invention preferably has a tensile elongation of 20 to 30%. Here, the tensile elongation is measured based on JIS L-1015 (1999). If the tensile elongation is less than 20%, a weak yarn is generated during processing, which may cause a failure. On the other hand, if it exceeds 30%, it is too large, and it is not preferable because the thread breakage frequently occurs due to loose winding during the production of flame resistant yarn, resulting in poor productivity.

また、本発明の耐炎糸は、耐炎化処理前における繊維中のリン(以下、Pとする。)含有量が20重量ppm以下であることが好ましい。ここで、P含有量は一定量の試料を約650℃で灰化した後希硝酸へ溶解し、原子吸光法にて測定する。含有量が20重量ppm超であると、耐炎化時に不純物として加工品に求められる強伸度等の品質の発現を阻害する場合があり、好ましくない。   Further, the flame resistant yarn of the present invention preferably has a phosphorus (hereinafter referred to as P) content in the fiber before the flame resistance treatment of 20 ppm by weight or less. Here, the P content is measured by the atomic absorption method after ashing a certain amount of sample at about 650 ° C. and then dissolving in diluted nitric acid. If the content is more than 20 ppm by weight, the development of quality such as strength and elongation required for processed products as impurities during flame resistance may be inhibited, which is not preferable.

本発明においては、耐炎糸を加工するにあたって、耐炎糸のフィラメント数が20000〜100000、好ましくは30000〜80000の範囲にある束状であるのがよい。フィラメント数が30000未満では加工する際の生産性が低くなる一方、80000超では加工しにくくなる。   In the present invention, when the flame resistant yarn is processed, the number of filaments of the flame resistant yarn is preferably 20,000 to 100,000, preferably 30000 to 80,000. When the number of filaments is less than 30000, productivity at the time of processing decreases, whereas when it exceeds 80000, processing becomes difficult.

本発明においては、前駆体の単糸繊度が1.1〜3.3dtexの範囲にあるのがよい。基本的には、単糸繊度は小さい程耐炎化斑や繊維内の蓄熱発生による糸切れが少なく、また耐炎化糸の加工性が良好である。しかし、単糸繊度が小さすぎると生産性が低くなるので、1.1〜1.6dtex程度が適当である。一方、大きすぎると耐炎化斑や繊維内の蓄熱発生により生産中の糸切れが発生しやすくなる。   In the present invention, the single yarn fineness of the precursor is preferably in the range of 1.1 to 3.3 dtex. Basically, the smaller the single yarn fineness, the less the flame breakage spots and the yarn breakage due to the heat accumulation in the fibers, and the better the processability of the flame resistant yarn. However, if the single yarn fineness is too small, the productivity will be low, so about 1.1 to 1.6 dtex is appropriate. On the other hand, if it is too large, breakage of yarn during production is likely to occur due to flame-resistant spots and heat accumulation in the fiber.

上記した耐炎化繊維は、紡糸ジメチルスルホキシド(DMSO)水溶液のDMSO濃度、延伸倍率などを適切に制御して製糸することで得た前駆体繊維を耐炎化処理する際に、雰囲気温度、滞留時間などを適切に制御して繊維の熱履歴や残留伸度などを変化させることによって得ることができる。一般には、耐炎化処理時の雰囲気を、温度が200℃〜300℃の空気中とするのが良い。さらに、ポリアクリロニトリル系繊維を原料として耐炎糸を得る場合、好ましい温度範囲は220℃〜250℃である。220℃を下回る場合は必要な耐炎化能を得るために要する滞留時間が長くなる。また、250℃を上回る場合、滞留時間が長いと耐炎糸の伸度、その加工性が低下する場合があるため、好ましくない。特に、260℃で100分程度耐炎化した場合、得られる耐炎糸の加工性が悪化することがあるので好ましくない。そのような雰囲気中での滞留時間は、雰囲気温度によっても影響を受けるが、50〜300分、好ましくは60〜250分の範囲とするのが良い。滞留時間が50分を下回ると、本発明と同等の耐炎化能を得るために要する耐炎化温度が高温となり、繊維内の蓄熱による糸切れを発生させるため、生産が困難であり好ましくない。なお、温度範囲が200〜250℃の場合は、滞留時間が50分程度では加工品の形態保持性が十分ではない。また、滞留時間が300分を上回ると長時間の処理により耐炎糸の脆性化が進行し、加工時に単糸切れが発生して障害を起こすので好ましくない場合がある。   The above-mentioned flame-resistant fibers are used for flame-proofing the precursor fibers obtained by appropriately controlling the DMSO concentration of the spun dimethyl sulfoxide (DMSO) aqueous solution, the draw ratio, etc., and the atmospheric temperature, residence time, etc. Can be obtained by appropriately controlling the temperature and changing the thermal history and residual elongation of the fiber. In general, the atmosphere during the flameproofing treatment is preferably in the air at a temperature of 200 ° C to 300 ° C. Furthermore, when obtaining a flame resistant yarn from polyacrylonitrile fiber as a raw material, a preferable temperature range is 220 ° C to 250 ° C. When the temperature is lower than 220 ° C., the residence time required for obtaining the necessary flame resistance is increased. On the other hand, when the temperature exceeds 250 ° C., if the residence time is long, the elongation of the flame resistant yarn and its workability may be lowered, which is not preferable. In particular, when flame resistance is achieved at 260 ° C. for about 100 minutes, the workability of the resulting flame resistant yarn may be deteriorated, which is not preferable. The residence time in such an atmosphere is influenced by the ambient temperature, but it is preferably in the range of 50 to 300 minutes, preferably 60 to 250 minutes. If the residence time is less than 50 minutes, the flameproofing temperature required for obtaining the flameproofing ability equivalent to that of the present invention becomes high, and yarn breakage due to heat accumulation in the fiber occurs, which is difficult to produce and is not preferable. When the temperature range is 200 to 250 ° C., the shape retention of the processed product is not sufficient when the residence time is about 50 minutes. Further, if the residence time exceeds 300 minutes, the brittleness of the flame resistant yarn proceeds due to the long-time treatment, and a single yarn breakage occurs during processing, which may be undesirable.

以下、実施例を用いて、本発明をより具体的に説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely using an Example, this invention is not limited at all by these Examples.

本例において、炎収縮維持率、比重の測定は前述の方法に従って行った。   In this example, the measurement of the flame shrinkage maintenance rate and the specific gravity was performed according to the method described above.

また、本例においては、P測定は前述の方法で、日立180−80にて測定した。また、伸度は前述の方法で、TEXTECHNO社FAVIMATを使用して測定した。また、皺測定については、走査電子顕微鏡(SEM)を用いて繊維表面を7000倍の倍率で3〜5点の写真を撮影し、その写真から測定した。   Moreover, in this example, P measurement was measured by Hitachi 180-80 by the above-mentioned method. The elongation was measured by the method described above using TEXTTECHNO FAVIMAT. Moreover, about wrinkle measurement, the fiber surface was image | photographed with the magnification of 7000 times using the scanning electron microscope (SEM), and it measured from the photograph.

また、本例においては、加工性は、捲縮加工時における挫屈、糸割れ、また牽切加工時の撚り、割れ、操業性から判断した。   Further, in this example, workability was judged from buckling and yarn cracking at the time of crimping, and twisting, cracking and operability at the time of check-off.

また、炎曝露時、炭化焼成時の形態保持性は、織物加工品における炎曝露前あるいは炭化前の織物1mあたりの炎曝露後、炭化後のしわ状態を見て行った。例えば、炭化前のシートが縦100cm、横100cmである場合、炭化後のシートが縦98cm、横99cmでは形態に問題ないのに比べ、同92cm、90cmではしわが見受けられ、製品として形態保持性に起因する欠陥が発生したと判断される。
(実施例1)
アクリロニトリル(AN)/アクリル酸メチル(MEA)/メタクリルスルホン酸ナトリウム(SMAS)/イタコン酸(IA)=95.2/4.0/0.2/0.6(モル比)、極限粘度[η]=1.48からなるアクリル系共重合体をDMSO溶液に溶解し、30℃、60重量%DMSO水溶液中において湿式紡糸し、延伸倍率を5倍として延伸し、水洗、油剤付与等を行って単繊維繊度が1.4dtexでフィラメント数が48000本の前駆体繊維束を採取した。この繊維束に空気雰囲気中、温度220℃で滞留時間60分、更に温度250℃で滞留時間100分の耐炎化処理を加え、耐炎糸を得た。得られた耐炎糸の炎収縮維持率は98%、比重が1.42であり、糸長手方向に実質的に連続に形成された皺であり、凹部の深さが0.15μm以上である皺の数は10本であった。また、引張伸度は26%、耐炎化処理前における繊維中のP含有量は2重量ppmであった。この耐炎糸は加工性が極めて良好で、加工品の炎暴露時、炭化焼成時の形態保持性も高かった。
(実施例2)
単繊維繊度が2.7dtexであること以外は実施例1と同様にして採取した前駆体繊維に空気雰囲気中、温度200℃で滞留時間100分、更に温度230℃で滞留時間200分の耐炎化処理を加え、耐炎糸を得た。得られた耐炎糸の炎収縮維持率は97%、比重が1.41であり、糸長手方向に実質的に連続に形成された皺であり、凹部の深さが0.15μm以上である皺の数は20本であった。また、引張伸度は24%、耐炎化処理前における繊維中のP含有量は1重量ppmであった。この耐炎糸は加工性良好で、加工品の炎暴露時、炭化焼成時の形態保持性も高かった。
(比較例1)
耐炎化処理における滞留時間を温度220℃では60分、250℃では50分に変更した以外は、実施例1と同様にして耐炎糸を得た。得られた耐炎糸の炎収縮維持率は84%、比重が1.34であり、糸長手方向に実質的に連続に形成された皺であり、凹部の深さが0.15μm以上である皺の数は11本であった。また、引張伸度は28%、耐炎化処理前における繊維中のP含有量は10重量ppmであった。この耐炎糸は加工性は良好であったものの、加工品の炎暴露時、炭化焼成時の形態保持性は低く、実用には適さなかった。
(比較例2)
耐炎化処理における温度を初めの滞留時間60分では200℃、続く滞留時間100分では260℃に変更した以外は、実施例1と同様にして耐炎糸を得た。得られた耐炎糸の炎収縮維持率は99%、比重が1.48であり、糸長手方向に実質的に連続に形成された皺であり、凹部の深さが0.15μm以上である皺の数は11本であった。また、引張伸度は18%、耐炎化処理前における繊維中のP含有量は2重量ppmであった。この耐炎糸は加工時に単糸切れが多発し、生産に適さなかった。また加工品を作っても強度が低くなり、使用には適さなかった。
(比較例3)
前駆体採取における紡糸DMSO水溶液のDMSO濃度を80重量%に変更した以外は、実施例1と同様にして耐炎糸を得た。得られた耐炎糸の炎収縮維持率は90%、比重が1.42であり、糸長手方向に実質的に連続に形成された皺であり、凹部の深さが0.15μm以上である皺の数は7本であった。また、引張伸度は26%、耐炎化処理前における繊維中のP含有量は1重量ppmであった。この耐炎糸は加工性には問題ないが、加工品の炎暴露時、炭化焼成時の形態保持性は低く、実用には適さなかった。
(実施例3)
前駆体採取における延伸倍率を6倍に変更した以外は、実施例1と同様にして耐炎糸を得た。採取した前駆体繊維の単繊維繊度は1.2dtexであり、また得られた耐炎糸の炎収縮維持率は98%、比重が1.42であり、糸長手方向に実質的に連続に形成された皺であり、凹部の深さが0.15μm以上である皺の数は10本であった。また、引張伸度は17%、耐炎化処理前における繊維中のP含有量は2重量ppmであった。この耐炎糸は加工時に弱糸により加工に障害を起こすことがあったが、加工品の炎暴露時、炭化焼成時の形態保持性は高かった。
(実施例4)
前駆体採取における延伸倍率を3倍に変更した以外は、実施例1と同様にして耐炎糸を得た。採取した前駆体繊維の単繊維繊度は1.6dtexであり、また得られた耐炎糸の炎収縮維持率は96%、比重が1.42であり、糸長手方向に実質的に連続に形成された皺であり、凹部の深さが0.15μm以上である皺の数は10本であった。また、引張伸度は34%、耐炎化処理前における繊維中のP含有量は2重量ppmであった。この耐炎糸は耐炎化工程中で巻き付きが多発し、安定した生産が困難であったが、得られた耐炎糸については加工性が良好で、加工品の炎暴露時、炭化焼成時の形態保持性も高かった。
(実施例5)
実施例1と同様にして耐炎糸を得たが、前駆体繊維生産工程において、水洗時にオルト燐酸をPとして40重量ppm含む水を使用した。得られた耐炎糸の炎収縮維持率は98%、比重が1.42であり、糸長手方向に実質的に連続に形成された皺であり、凹部の深さが0.15μm以上である皺の数は10本であった。また、引張伸度は26%、耐炎化処理前における繊維中のP含有量は60重量ppmであった。この耐炎糸は加工性が極めて良好で、加工品の炎暴露時、炭化焼成時の形態保持性も高かったが、炭化後の強度が低かった。
Further, the shape retention at the time of flame exposure and carbonization firing was performed by observing the wrinkled state after carbonization after the flame exposure per 1 m 2 of the fabric before the flame exposure or before carbonization in the processed fabric. For example, when the sheet before carbonization is 100 cm long and 100 cm wide, there is no problem with the shape when the sheet after carbonization is 98 cm long and 99 cm wide. It is determined that a defect due to the occurrence has occurred.
Example 1
Acrylonitrile (AN) / Methyl acrylate (MEA) / Sodium methacryl sulfonate (SMAS) / Itaconic acid (IA) = 95.2 / 4.0 / 0.2 / 0.6 (molar ratio), intrinsic viscosity [η ] = 1.48 is dissolved in a DMSO solution, wet-spun in a DMSO solution at 30 ° C. and 60% by weight, stretched at a stretch ratio of 5 times, washed with water, oiled, etc. A precursor fiber bundle having a single fiber fineness of 1.4 dtex and a filament number of 48,000 was collected. This fiber bundle was subjected to a flameproofing treatment in an air atmosphere at a temperature of 220 ° C. for a residence time of 60 minutes and further at a temperature of 250 ° C. for a residence time of 100 minutes to obtain a flame resistant yarn. The flame-resistant yarn obtained has a flame shrinkage maintenance rate of 98%, a specific gravity of 1.42, a cocoon formed substantially continuously in the longitudinal direction of the yarn, and a depth of the recess of 0.15 μm or more. The number of was 10. The tensile elongation was 26%, and the P content in the fiber before the flameproofing treatment was 2 ppm by weight. This flame-resistant yarn had extremely good processability, and also had high form retention when the processed product was exposed to flame and carbonized.
(Example 2)
The precursor fiber collected in the same manner as in Example 1 except that the single fiber fineness is 2.7 dtex is flame resistant in an air atmosphere at a temperature of 200 ° C. for a residence time of 100 minutes, and further at a temperature of 230 ° C. for a residence time of 200 minutes. Treatment was applied to obtain a flame resistant yarn. The flame-resistant yarn obtained has a flame shrinkage maintenance rate of 97%, a specific gravity of 1.41, a cocoon formed substantially continuously in the longitudinal direction of the yarn, and a depth of the recess of 0.15 μm or more. The number of was 20. Further, the tensile elongation was 24% and the P content in the fiber before the flameproofing treatment was 1 ppm by weight. This flame-resistant yarn had good processability and high form retention when the processed product was exposed to flame and carbonized and fired.
(Comparative Example 1)
A flameproof yarn was obtained in the same manner as in Example 1 except that the residence time in the flameproofing treatment was changed to 60 minutes at a temperature of 220 ° C. and 50 minutes at a temperature of 250 ° C. The flame-resistant yarn obtained had a flame shrinkage maintenance rate of 84%, a specific gravity of 1.34, a cocoon formed substantially continuously in the longitudinal direction of the yarn, and a depth of the recess of 0.15 μm or more. The number of was 11. The tensile elongation was 28%, and the P content in the fiber before the flameproofing treatment was 10 ppm by weight. Although this flame-resistant yarn had good processability, it was not suitable for practical use because of its low form-retaining property when the processed product was exposed to flame and carbonized and fired.
(Comparative Example 2)
Flameproof yarn was obtained in the same manner as in Example 1 except that the temperature in the flameproofing treatment was changed to 200 ° C. for the first residence time of 60 minutes and 260 ° C. for the subsequent residence time of 100 minutes. The obtained flame resistant yarn has a flame shrinkage maintenance rate of 99%, a specific gravity of 1.48, a cocoon formed substantially continuously in the longitudinal direction of the yarn, and a depth of the concave portion of 0.15 μm or more. The number of was 11. The tensile elongation was 18%, and the P content in the fiber before flameproofing was 2 ppm by weight. This flame resistant yarn was not suitable for production because single yarn breakage occurred frequently during processing. Moreover, even if a processed product was made, the strength was low and it was not suitable for use.
(Comparative Example 3)
A flame resistant yarn was obtained in the same manner as in Example 1 except that the DMSO concentration of the spun DMSO aqueous solution in the precursor collection was changed to 80% by weight. The flame-resistant yarn obtained has a flame shrinkage maintenance ratio of 90%, a specific gravity of 1.42, a cocoon formed substantially continuously in the longitudinal direction of the yarn, and a depth of the recess of 0.15 μm or more. The number of was seven. The tensile elongation was 26%, and the P content in the fiber before the flameproofing treatment was 1 ppm by weight. Although this flame resistant yarn has no problem in workability, its shape retention at the time of exposure to flame and carbonization and firing of the processed product is low, and it was not suitable for practical use.
(Example 3)
A flame resistant yarn was obtained in the same manner as in Example 1 except that the draw ratio in collecting the precursor was changed to 6 times. The single fiber fineness of the collected precursor fiber is 1.2 dtex, the flame shrinkage retention rate of the obtained flame resistant yarn is 98%, the specific gravity is 1.42, and it is formed substantially continuously in the longitudinal direction of the yarn. The number of wrinkles in which the depth of the recesses was 0.15 μm or more was 10. The tensile elongation was 17%, and the P content in the fiber before the flameproofing treatment was 2 ppm by weight. Although this flame resistant yarn sometimes caused trouble in processing due to weak yarn at the time of processing, the shape retention at the time of carbonization firing was high when the processed product was exposed to flame.
Example 4
A flame resistant yarn was obtained in the same manner as in Example 1 except that the draw ratio in collecting the precursor was changed to 3 times. The single fiber fineness of the collected precursor fiber is 1.6 dtex, the flame shrinkage retention rate of the obtained flame resistant yarn is 96%, the specific gravity is 1.42, and it is formed substantially continuously in the longitudinal direction of the yarn. The number of wrinkles in which the depth of the recesses was 0.15 μm or more was 10. The tensile elongation was 34%, and the P content in the fiber before the flameproofing treatment was 2 ppm by weight. This flameproof yarn was frequently wound during the flameproofing process, and stable production was difficult, but the obtained flameproof yarn had good workability and retained its shape when the processed product was exposed to flame and carbonized and fired. The nature was also high.
(Example 5)
A flame resistant yarn was obtained in the same manner as in Example 1. In the precursor fiber production process, water containing 40 wt ppm of orthophosphoric acid as P was used during washing with water. The flame-resistant yarn obtained has a flame shrinkage maintenance rate of 98%, a specific gravity of 1.42, a cocoon formed substantially continuously in the longitudinal direction of the yarn, and a depth of the recess of 0.15 μm or more. The number of was 10. The tensile elongation was 26%, and the P content in the fiber before the flameproofing treatment was 60 ppm by weight. This flame-resistant yarn had very good workability and had high form-retaining properties when the processed product was exposed to flame and carbonized and fired, but the strength after carbonization was low.

Figure 2007051392
Figure 2007051392

Claims (3)

炎収縮維持率が90%以上、比重が1.40〜1.44であり、かつ糸長手方向に実質的に連続に形成された皺であり、その凹部の最大深さが0.15μm以上である皺を10本以上有する耐炎糸。   The flame shrinkage maintenance rate is 90% or more, the specific gravity is 1.40 to 1.44, and the ridge is formed substantially continuously in the longitudinal direction of the yarn, and the maximum depth of the concave portion is 0.15 μm or more. A flame resistant yarn having 10 or more wrinkles. 引張伸度が20〜30%である請求項1に記載の耐炎糸。   The flame resistant yarn according to claim 1, having a tensile elongation of 20 to 30%. 耐炎化処理前における繊維中のリン含有量が20重量ppm以下である繊維を耐炎化処理することで得られる請求項1〜2のいずれかに記載の耐炎糸。   The flameproof yarn according to any one of claims 1 to 2, which is obtained by flameproofing a fiber having a phosphorus content of 20 ppm by weight or less before the flameproofing treatment.
JP2005237205A 2005-08-18 2005-08-18 Flame-resistant yarn Pending JP2007051392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237205A JP2007051392A (en) 2005-08-18 2005-08-18 Flame-resistant yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237205A JP2007051392A (en) 2005-08-18 2005-08-18 Flame-resistant yarn

Publications (1)

Publication Number Publication Date
JP2007051392A true JP2007051392A (en) 2007-03-01

Family

ID=37916015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237205A Pending JP2007051392A (en) 2005-08-18 2005-08-18 Flame-resistant yarn

Country Status (1)

Country Link
JP (1) JP2007051392A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145561A (en) * 2017-03-07 2018-09-20 三菱ケミカル株式会社 Carbon fiber precursor acrylic fiber bundle, carbon fiber bundle, and manufacturing method of carbon fiber bundle
JP2019007129A (en) * 2013-08-01 2019-01-17 三菱ケミカル株式会社 Production method of carbon fiber
CN109402791A (en) * 2018-09-20 2019-03-01 北京化工大学 High-strength high-modules carbon fibre and preparation method thereof with regular table cross section structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007129A (en) * 2013-08-01 2019-01-17 三菱ケミカル株式会社 Production method of carbon fiber
JP2018145561A (en) * 2017-03-07 2018-09-20 三菱ケミカル株式会社 Carbon fiber precursor acrylic fiber bundle, carbon fiber bundle, and manufacturing method of carbon fiber bundle
CN109402791A (en) * 2018-09-20 2019-03-01 北京化工大学 High-strength high-modules carbon fibre and preparation method thereof with regular table cross section structure

Similar Documents

Publication Publication Date Title
JP5722991B2 (en) Carbon fiber manufacturing method and carbon fiber precursor fiber
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP2007051392A (en) Flame-resistant yarn
JP2008163537A (en) Method for producing carbon fiber
JP2004300600A (en) Flame-resistant fiber, carbon fiber and method for producing these fibers
JP4983709B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
JP4074820B2 (en) Polyacrylonitrile-based oxidized fiber spun yarn
JP2004060069A (en) Polyacrylonitrile-based carbon fiber, and method for producing the same
JP2012229509A (en) Meta-type whole aromatic polyamide fiber fabric
WO2020195476A1 (en) Carbon fiber bundle and production method thereof
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
CN101586308A (en) Method for preparing polyacrylonitrile-based flame-retardant fiber
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JPS58214518A (en) Acrylic precursor yarn bundle
WO2023140212A1 (en) Carbon fiber bundle
JP2013060680A (en) Method for producing carbon fiber
JP6547924B1 (en) Method of manufacturing flameproofed fiber bundle and carbon fiber bundle
JP2012117161A (en) Method for manufacturing carbon fiber bundle
JP2023017173A (en) Carbon fiber bundle and method for producing the same
JP2003268651A (en) Flameretardant woven fabric, carbonized woven fabric, and method for producing of them
Immanuel et al. Synthesis of carbon cloth by controlled pyrolysis of rayon cloth for aerospace and advanced engineering applications
JPS58214535A (en) Production of acrylic type carbon fiber
JP2007039843A (en) Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber