JP2014234557A - Method for manufacturing carbon fiber - Google Patents

Method for manufacturing carbon fiber Download PDF

Info

Publication number
JP2014234557A
JP2014234557A JP2013115331A JP2013115331A JP2014234557A JP 2014234557 A JP2014234557 A JP 2014234557A JP 2013115331 A JP2013115331 A JP 2013115331A JP 2013115331 A JP2013115331 A JP 2013115331A JP 2014234557 A JP2014234557 A JP 2014234557A
Authority
JP
Japan
Prior art keywords
fiber bundle
temperature
carbonization
carbon fiber
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013115331A
Other languages
Japanese (ja)
Inventor
明人 畑山
Akihito Hatayama
明人 畑山
宏子 松村
Hiroko Matsumura
宏子 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2013115331A priority Critical patent/JP2014234557A/en
Publication of JP2014234557A publication Critical patent/JP2014234557A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength carbon fiber suitable for a composite material requiring high composite performance.SOLUTION: The method for manufacturing a carbon fiber comprises: flameproofing a carbon fiber precursor acrylic fiber bundle at a temperature of 200-300°C in an acidified atmosphere; pre-carbonizing the obtained flameproof fiber bundle at the maximum temperature of 500-900°C in an inert atmosphere; and carbonizing the obtained pre-carbonized fiber bundle at the maximum temperature of 1200-2500°C in an inert atmosphere. The pre-carbonization introduces the flameproof fiber bundle into a pre-carbonization furnace filled with an inert atmosphere. A period of time for the flameproof fiber bundle to pass through the section of an inert atmosphere temperature of 200°C or more and less than 250°C is 6-10 seconds and a period of time for the flameproof fiber bundle to pass through the section of an inert atmosphere temperature of 250°C or more and 400°C or less is 18-36 seconds. The supply amount of inert gas supplied into the pre-carbonization furnace is 1.0-5.0 Nmto a flameproof fiber bundle of 1 kg introduced into the pre-carbonization furnace.

Description

本発明は高いコンポジット性能が求められる複合材料に適した、高強度炭素繊維束の製造方法に関する。   The present invention relates to a method for producing a high-strength carbon fiber bundle suitable for a composite material requiring high composite performance.

近年、炭素繊維複合材料が使用される分野はスポーツ・レジャー、産業用途、航空宇宙分野と多岐にわたる。特に航空宇宙分野は高性能化(高強度、高弾性率)に対する要求が強まっている。炭素繊維複合材料におけるコンポジット性能はマトリックス樹脂よりも炭素繊維自体の性能が大きく影響することがわかっており、炭素繊維の高強度化が求められている。   In recent years, carbon fiber composite materials are used in a wide variety of fields, such as sports and leisure, industrial applications, and aerospace. Particularly in the aerospace field, there is an increasing demand for high performance (high strength, high elastic modulus). It has been found that the performance of the carbon fiber itself is more influenced by the performance of the carbon fiber composite material than the matrix resin, and the strength of the carbon fiber is required to be increased.

耐炎化繊維を炭素化する工程において繊維から発生するタールが繊維に付着すると強度の低下を起こすため、従来からその防止策が提言されている。例えば特許文献1によると、400℃以上の不活性雰囲気を炭素化炉に供給する方法、または供給する耐炎化繊維に対して十分な不活性気体を供給する方法がある。   In the process of carbonizing the flame resistant fiber, when tar generated from the fiber adheres to the fiber, the strength is lowered. Therefore, a preventive measure has been conventionally proposed. For example, according to Patent Document 1, there is a method of supplying an inert atmosphere at 400 ° C. or higher to a carbonization furnace, or a method of supplying a sufficient inert gas to the flame resistant fiber to be supplied.

特開昭60−99010号公報JP 60-99010 A

しかしながら、昨今の航空宇宙分野に要求される炭素繊維の性能は非常に高く、供給する不活性気体の温度制御だけでは十分な性能が得られない。また、耐炎化繊維に対して供給する不活性気体を増やすことはコストアップにつながる。   However, the performance of carbon fibers required in the recent aerospace field is very high, and sufficient performance cannot be obtained only by controlling the temperature of the inert gas supplied. Moreover, increasing the inert gas supplied to the flameproof fiber leads to an increase in cost.

本発明は耐炎化繊維を不活性雰囲気で熱処理する際、繊維から発生するタールを繊維へ付着させることなく炭素化し、高強度の炭素繊維を得る方法を提供するものである。   The present invention provides a method for obtaining a high-strength carbon fiber by carbonizing a flame-resistant fiber without causing the tar generated from the fiber to adhere to the fiber when heat-treated in an inert atmosphere.

上記目的を達成する本発明は以下のものである。   The present invention for achieving the above object is as follows.

本発明の炭素繊維の製造方法は、炭素繊維前駆体アクリル繊維束を200℃〜300℃の酸性化雰囲気中を通過させて耐炎化繊維束を得る耐炎化処理、得られた耐炎化繊維束を最高温度が500℃〜900℃の不活性雰囲気中を通過させて熱処理する前炭素化処理、及び、得られた前炭素化処理繊維束を最高温度が1200℃〜2500℃の不活性雰囲気中を通過させて熱処理する炭素化処理を順に行う炭素繊維の製造方法において、該前炭素化処理が、該耐炎化繊維束を、不活性雰囲気が満たされた前炭素化炉内に導入し、不活性雰囲気の温度が200℃以上250℃未満の温度範囲内の区間の通過時間が6秒〜10秒、かつ不活性雰囲気の温度が250℃以上400℃以下の温度範囲内の区間の通過時間が18秒〜36秒であり、該前炭素化炉内へ供給する不活性気体の供給量が、該前炭素化炉内に導入する耐炎化繊維束1kgに対して1.0〜5.0Nm3である炭素繊維の製造方法である。 The method for producing carbon fiber of the present invention includes a flameproofing treatment in which a carbon fiber precursor acrylic fiber bundle is passed through an acidified atmosphere at 200 ° C. to 300 ° C. to obtain a flameproof fiber bundle. Pre-carbonization treatment in which heat treatment is performed by passing through an inert atmosphere having a maximum temperature of 500 ° C. to 900 ° C., and the obtained pre-carbonized fiber bundle is passed through an inert atmosphere having a maximum temperature of 1200 ° C. to 2500 ° C. In the carbon fiber manufacturing method in which the carbonization treatment is performed in order by passing through and heat-treating, the pre-carbonization treatment introduces the flame-resistant fiber bundle into a pre-carbonization furnace filled with an inert atmosphere, and is inert. The passage time in the section where the temperature of the atmosphere is 200 ° C. or more and less than 250 ° C. is 6 seconds to 10 seconds, and the passage time in the section where the temperature of the inert atmosphere is 250 ° C. or more and 400 ° C. or less is 18 Second to 36 seconds, the front charcoal The supply amount of the inert gas supplied into the reduction furnace, a method of producing a carbon fiber which is 1.0~5.0Nm 3 against oxidized fiber bundle 1kg introduced into the front carbonization furnace.

本発明によれば、炭素繊維へのタール付着を少なく抑えることが可能で、高強度の炭素繊維を得ることができる。   According to the present invention, tar adhesion to carbon fibers can be suppressed to a low level, and high-strength carbon fibers can be obtained.

本発明において用いられる前炭素化炉の一例の概略を示す側断面図である。It is a sectional side view which shows the outline of an example of the pre-carbonization furnace used in this invention.

以下本発明を詳細に説明する。
本発明において、炭素繊維前駆体アクリル繊維束は公知のものを使用できる。アクリル繊維束を構成するアクリロニトリル系ポリマーとしては、アクリロニトリルの単独重合体又はアクリロニトリルと他のモノマーとの共重合体を用いることができる。
The present invention will be described in detail below.
In the present invention, known carbon fiber precursor acrylic fiber bundles can be used. As the acrylonitrile-based polymer constituting the acrylic fiber bundle, an acrylonitrile homopolymer or a copolymer of acrylonitrile and another monomer can be used.

共重合体の場合、炭素化を良好に行う目的で、該共重合体を構成する全構成単位のうち、アクリロニトリルから誘導される構成単位の含有量が90質量%以上であることが好ましく、95質量%以上がより好ましい。アクリロニトリルと共重合可能な他のモノマーとしては、特に制限は無いが、例えば以下のものが挙げられる。アクリル酸メチル、アクリル酸エチルなどに代表されるアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチルなどに代表されるメタクリル酸エステル類;アクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリルアミド、スチレン、ビニルトルエンなどに代表される不飽和モノマー類;メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸及びこれらのアルカリ金属塩など。これらは、1種でもよく、2種以上の組み合わせでもよい。アクリロニトリル系ポリマーを溶媒に溶解した紡糸原液を溶媒中に乾湿式紡糸または湿式紡糸することで炭素繊維前駆体アクリル繊維束を製造することができる。   In the case of a copolymer, the content of a structural unit derived from acrylonitrile is preferably 90% by mass or more among all the structural units constituting the copolymer for the purpose of good carbonization. The mass% or more is more preferable. Although there is no restriction | limiting in particular as another monomer copolymerizable with acrylonitrile, For example, the following are mentioned. Acrylic acid esters represented by methyl acrylate, ethyl acrylate, etc .; Methacrylic acid esters represented by methyl methacrylate, ethyl methacrylate, etc .; Acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, styrene, Unsaturated monomers typified by vinyl toluene; methallyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, and alkali metal salts thereof. These may be one kind or a combination of two or more kinds. A carbon fiber precursor acrylic fiber bundle can be produced by dry-wet spinning or wet-spinning a spinning stock solution in which an acrylonitrile-based polymer is dissolved in a solvent.

炭素繊維前駆体アクリル繊維束には耐炎化処理での融着紡糸のため、油剤が付着される。油剤はシリコーン系、非シリコーン系いずれでもよいが、融着防止性能が高いシリコーン系が好ましい。   An oil agent is attached to the carbon fiber precursor acrylic fiber bundle for fusion spinning in flameproofing treatment. The oil agent may be either silicone-based or non-silicone-based, but is preferably a silicone-based material having high anti-fusing performance.

シリコーンは変性シリコーン、未変性シリコーンいずれでもよいが、変性シリコーンが好ましい。変性シリコーンの中でもエポキシ変性シリコーン、エチレンオキサイド変性シリコーン、ポリシロキサン、アミノ変性シリコーンが好ましく、アミノ変性シリコーンが特に好ましい。   Silicone may be modified silicone or unmodified silicone, but modified silicone is preferred. Among the modified silicones, epoxy-modified silicone, ethylene oxide-modified silicone, polysiloxane, and amino-modified silicone are preferable, and amino-modified silicone is particularly preferable.

アミノ変性シリコーンは、25℃における動粘度が50〜300mm2/秒であることが好ましい。動粘度が小さ過ぎると、耐熱性が低下し、耐炎化工程において油剤が多く飛散してしまうため、本来の融着防止の機能を果たさなくなる。また動粘度が大き過ぎると、炭素化工程での油剤飛散量が多くなり、排気管の閉塞等の問題を引き起こす。 The amino-modified silicone preferably has a kinematic viscosity at 25 ° C. of 50 to 300 mm 2 / sec. If the kinematic viscosity is too small, the heat resistance is lowered, and a large amount of oil is scattered in the flameproofing process, so that the original function of preventing fusion cannot be performed. On the other hand, if the kinematic viscosity is too large, the amount of oil scattered in the carbonization process increases, causing problems such as blockage of the exhaust pipe.

炭素繊維前駆体アクリル繊維束を200〜300℃の酸化性雰囲気中で加熱して耐炎化処理し、耐炎化繊維束を得る。酸化性雰囲気としては、空気、酸素、二酸化窒素等公知の酸化性雰囲気を採用できるが、経済性の面から空気が好ましい。耐炎化処理の時間は、炭素繊維の生産性及び性能を高める観点から30〜120分が好ましい。耐炎化処理の時間を30分以上とすることで耐炎化反応が十分となり、斑を生じにくくなり、また後に行われる炭素化工程で毛羽、束切れを生じにくくなり、結果的に生産性が向上する。一方、耐炎化処理の時間を120分以下とすることで、耐炎化装置を大型化したり耐炎化処理速度を下げたりする必要がなくなり、生産性が向上する。   The carbon fiber precursor acrylic fiber bundle is heated in an oxidizing atmosphere at 200 to 300 ° C. to be flameproofed to obtain a flameproof fiber bundle. As the oxidizing atmosphere, known oxidizing atmospheres such as air, oxygen and nitrogen dioxide can be adopted, but air is preferable from the viewpoint of economy. The flameproofing treatment time is preferably 30 to 120 minutes from the viewpoint of improving the productivity and performance of the carbon fiber. By setting the flameproofing treatment time to 30 minutes or more, the flameproofing reaction becomes sufficient, and it becomes difficult to produce spots, and it becomes difficult to cause fluff and bundle breakage in the subsequent carbonization process, resulting in improved productivity. To do. On the other hand, by setting the flameproofing treatment time to 120 minutes or less, it is not necessary to increase the size of the flameproofing device or reduce the flameproofing treatment speed, thereby improving productivity.

前炭素化処理における最高温度は500〜900℃であることが好ましく、さらに600〜800℃であることがさらに好ましい。500℃以上であると炭素繊維の強度及び弾性率の発現性が良好となる。900℃以下であれば前炭素化処理炉のコストを低減しやすくなり、工業的に有利である。前炭素化処理における処理時間は0.5〜2.0分であることが好ましい。0.5分以上であれば工程通過性が良好で、十分な物性が得られやすくなり、2.0分以下であれば前炭素化処理炉の大型化を防げるので工業的に有利である。   The maximum temperature in the pre-carbonization treatment is preferably 500 to 900 ° C, and more preferably 600 to 800 ° C. When the temperature is 500 ° C. or higher, the strength and elastic modulus of the carbon fiber are improved. If it is 900 degrees C or less, it will become easy to reduce the cost of a pre-carbonization processing furnace, and it is industrially advantageous. The treatment time in the pre-carbonization treatment is preferably 0.5 to 2.0 minutes. If it is 0.5 minutes or more, the process passability is good and sufficient physical properties are easily obtained, and if it is 2.0 minutes or less, the pre-carbonization furnace can be prevented from being enlarged, which is industrially advantageous.

炭素化処理の最高温度は1200〜2500℃の範囲であり、得ようとする炭素繊維の弾性率によって最高温度が決定される。炭素化処理における処理時間は0.5〜2.0分であることが好ましい。0.5分以上であると十分な物性が得られやすく、2.0分以下であれば炭素化処理炉が大型化してしまうことを抑えられる。   The maximum temperature of carbonization treatment is in the range of 1200 to 2500 ° C., and the maximum temperature is determined by the elastic modulus of the carbon fiber to be obtained. The treatment time in the carbonization treatment is preferably 0.5 to 2.0 minutes. If it is 0.5 minutes or longer, sufficient physical properties can be easily obtained, and if it is 2.0 minutes or less, the carbonization furnace can be prevented from becoming large.

前炭素化処理及び炭素化処理はいずれも不活性雰囲気中で実施される。不活性気体としては、窒素、アルゴン、ヘリウムなどが挙げられるが、経済性の面から窒素が好ましい。   Both the pre-carbonization treatment and the carbonization treatment are performed in an inert atmosphere. Examples of the inert gas include nitrogen, argon, and helium, but nitrogen is preferable from the viewpoint of economy.

前炭素化処理に使われる炉は特に限定されるものではないが、例えば図1のような炉が挙げられる。繊維束(被処理物)の入側と出側に不活性気体導入口を設け、炉内への酸素の混入を防いでいる。処理室の上下にヒーターが備えてあり、処理室の壁面に複数の熱電対を設置し、不活性雰囲気の温度コントロールを行う。また、シアン及びタール等の生成物質を除去するため、排気口を設けてある。   Although the furnace used for the pre-carbonization process is not particularly limited, for example, a furnace as shown in FIG. An inert gas inlet is provided on the entry side and the exit side of the fiber bundle (object to be treated) to prevent oxygen from entering the furnace. Heaters are provided above and below the processing chamber, and a plurality of thermocouples are installed on the wall of the processing chamber to control the temperature of the inert atmosphere. In addition, an exhaust port is provided to remove product substances such as cyan and tar.

前炭素化処理においては生成したタールが糸に再付着すると糸の膠着が起こり、そこが欠陥点となり炭素繊維の強度を低下させてしまう。そのため、発生したタールを糸へ再付着させないことが重要である。   In the pre-carbonization treatment, when the generated tar is reattached to the yarn, the yarn is stuck, which becomes a defect point and reduces the strength of the carbon fiber. For this reason, it is important that the generated tar is not reattached to the yarn.

タールが発生する初期段階では糸の温度が十分に上がっていない場合がある。糸の温度が十分に上がっていないと発生したタールが糸の上で凝縮を起こし、膠着及び強度低下を引き起こしてしまう。そのため、タールが発生する初期段階においては糸の温度を速やかに上げる必要がある。つまり、タールが発生する初期段階における昇温速度を大きくする必要がある。   In the initial stage where tar is generated, the yarn temperature may not be sufficiently increased. If the temperature of the yarn is not sufficiently increased, the generated tar will condense on the yarn, causing sticking and strength reduction. Therefore, it is necessary to quickly raise the yarn temperature in the initial stage where tar is generated. That is, it is necessary to increase the rate of temperature increase in the initial stage where tar is generated.

タールは前駆体繊維に付与される油剤が飛散して生成するタールと耐炎化繊維自身の分解反応によって生成されるタールの2種類がある。そのため、2種類のタール発生領域それぞれに適した昇温速度を設定する必要がある。   There are two types of tars: tars produced by scattering of the oil applied to the precursor fibers and tars produced by the decomposition reaction of the flame resistant fibers themselves. Therefore, it is necessary to set a temperature increase rate suitable for each of the two types of tar generation regions.

油剤由来のタール分凝縮を抑えるためには、200℃以上250℃未満の温度領域の通過時間を6秒以上10秒以下にする必要があり、7秒以上9秒以下がより好ましい。   In order to suppress tar content condensation derived from the oil agent, it is necessary to set the passage time in the temperature range of 200 ° C. or more and less than 250 ° C. to 6 seconds or more and 10 seconds or less, and more preferably 7 seconds or more and 9 seconds or less.

前記通過時間が6秒以上であれば、急激な繊維束の温度の上昇を抑えられ、繊維の緻密化を損ない難くなる。また、10秒以下であれば、油剤由来のタール分の凝縮を抑えやすくなる。   If the passage time is 6 seconds or more, a rapid increase in the temperature of the fiber bundle can be suppressed, and it becomes difficult to impair the densification of the fibers. Moreover, if it is 10 seconds or less, it will become easy to suppress the condensation of the tar part derived from an oil agent.

油剤由来のタール分の凝縮を抑えやすくするために、200℃以上250℃未満の温度領域における繊維束の任意の点の温度上昇速度は、300℃/分以上とすることが好ましい。   In order to make it easy to suppress the condensation of the tar component derived from the oil agent, the temperature increase rate at any point of the fiber bundle in the temperature region of 200 ° C. or higher and lower than 250 ° C. is preferably 300 ° C./min or higher.

不活性雰囲気の温度と繊維束の温度はほぼ同じとなるので、雰囲気温度と通過時間から繊維束の温度上昇速度を算術により求めることができる。   Since the temperature of the inert atmosphere and the temperature of the fiber bundle are almost the same, the temperature increase rate of the fiber bundle can be obtained by arithmetic operation from the atmosphere temperature and the passage time.

耐炎化繊維由来のタール分凝縮を抑えるためには、250℃以上400℃以下の温度領域における通過時間を18秒以上36秒以下にする必要があり、21秒以上35秒以下がより好ましく、24秒以上34秒以下がさらに好ましい。   In order to suppress tar condensation from the flame resistant fiber, it is necessary to set the passage time in the temperature range of 250 ° C. or more and 400 ° C. or less to 18 seconds or more and 36 seconds or less, more preferably 21 seconds or more and 35 seconds or less. More preferably, it is at least 34 seconds.

前記通過時間が18秒以上であれば、急激な繊維束の温度の上昇を抑えられ、繊維の緻密化を損ない難くなる。また、36秒以下であれば、耐炎化繊維由来のタール分の凝縮を抑えやすくなる。   If the passage time is 18 seconds or more, a rapid increase in the temperature of the fiber bundle can be suppressed, and it becomes difficult to impair the densification of the fibers. Moreover, if it is 36 seconds or less, it will become easy to suppress the condensation of the tar part derived from a flame-resistant fiber.

耐炎化繊維由来のタール分凝縮を抑えやすくするために、250℃以上400℃以下の温度領域における繊維束の任意の点の温度上昇速度は、250℃/分以上とすることが好ましい。   In order to make it easy to suppress the condensation of tar components derived from flame-resistant fibers, it is preferable that the rate of temperature increase at any point of the fiber bundle in the temperature range of 250 ° C. or more and 400 ° C. or less is 250 ° C./min or more.

また、過度に前炭素化処理における昇温速度を上げると繊維の緻密性を損ない、物性の低下を招くことが知られている。250℃以上400℃以下の温度領域における繊維束の任意の点における昇温速度は500℃/分以下が好ましく、450℃/分以下がより好ましく、400℃/分以下がさらに好ましい。   In addition, it is known that excessively increasing the temperature raising rate in the pre-carbonization treatment impairs the denseness of the fibers and causes a decrease in physical properties. The heating rate at any point of the fiber bundle in the temperature range of 250 ° C. or more and 400 ° C. or less is preferably 500 ° C./min or less, more preferably 450 ° C./min or less, and further preferably 400 ° C./min or less.

本発明において、前炭素化炉内に導入される耐炎化繊維1kgに対する前炭素化炉内への不活性気体の供給量は1.0〜5.0Nm3/kgである。炉内のタール濃度を低くすることもタールを凝縮させないために重要である。炉内のタール濃度を低くするためには耐炎化繊維の投入量に対する不活性気体の投入量を多くする必要がある。タール濃度を低下させる観点から不活性気体の供給量は1.0Nm3/kg以上であることが必要であり、2.0Nm3/kg以上であることが好ましい。一方、不活性気体の投入量の増加は製造コストアップにつながるため、5.0Nm3/kg以下であることが必要であり、4.0Nm3/kg以下であることが好ましい。 In this invention, the supply amount of the inert gas in the pre-carbonization furnace with respect to 1 kg of flameproofing fibers introduce | transduced in a pre-carbonization furnace is 1.0-5.0 Nm < 3 > / kg. Lowering the tar concentration in the furnace is also important in order not to condense the tar. In order to reduce the tar concentration in the furnace, it is necessary to increase the input amount of the inert gas with respect to the input amount of the flameproof fiber. The supply amount of the inert gas from the viewpoint of reducing the tar concentration is required to be 1.0 Nm 3 / kg or more, is preferably 2.0 Nm 3 / kg or more. Meanwhile, since the increase in the input amount of the inert gas lead to manufacturing cost, it is necessary that at most 5.0 nm 3 / kg, preferably at most 4.0 nm 3 / kg.

また、炉内の温度を低下させないために、供給する不活性気体の温度は、100℃以上、200℃以下とするのが好ましい。   Moreover, in order not to reduce the temperature in the furnace, the temperature of the inert gas supplied is preferably 100 ° C. or higher and 200 ° C. or lower.

前炭素化処理工程で処理された繊維束は、炭素化工程で最高温度1200〜2500℃の不活性雰囲気中で炭素化処理され、炭素繊維が製造される。   The fiber bundle treated in the pre-carbonization process is carbonized in an inert atmosphere having a maximum temperature of 1200 to 2500 ° C. in the carbonization process to produce carbon fibers.

[1.炭素繊維束の強度]
炭素繊維束の強度は、日本工業規格(JIS)−R−7601(改訂年1986年3月1日)「樹脂含浸ストランド試験法」に記載された手法により求める。ただし、測定する炭素繊維の樹脂含浸ストランドは、”BAKELITE”ERL4221(100質量部)/3フッ化ホウ素モノエチルアミン(3質量部)/アセトン(4質量部)の混合液を炭素繊維束に含浸させ、130℃、30分で硬化させて形成する。また、ストランドの測定本数は、6本とし、各測定結果の平均値を、その炭素繊維束の強度とする。
[1. Strength of carbon fiber bundle]
The strength of the carbon fiber bundle is determined by the method described in Japanese Industrial Standard (JIS) -R-7601 (Revised March 1, 1986) “Resin-impregnated strand test method”. However, the resin-impregnated strand of carbon fiber to be measured is obtained by impregnating a carbon fiber bundle with a mixed solution of “BAKELITE” ERL 4221 (100 parts by mass) / 3 boron trifluoride monoethylamine (3 parts by mass) / acetone (4 parts by mass). And cured at 130 ° C. for 30 minutes. In addition, the number of strands to be measured is 6, and the average value of each measurement result is the strength of the carbon fiber bundle.

[2.膠着数]
繊維の膠着を調査するため、以下の測定を行う。
炭素繊維束を3mmの長さに切断し、水200mlの入った容量500mlビーカー内に投入し、攪拌子により10分間攪拌し、光学顕微鏡にて20倍の倍率で観察することにより、繊維膠着箇所をカウントし膠着個数とする。
[2. Number of stalemates]
In order to investigate fiber sticking, the following measurements are made.
A carbon fiber bundle is cut into a length of 3 mm, placed in a 500 ml beaker containing 200 ml of water, stirred for 10 minutes with a stirrer, and observed with an optical microscope at a magnification of 20 times. Is counted as the number of stalemates.

[実施例1]
アクリロニトリル共重合体を乾湿式紡糸(ノズル数12000個)し、下記組成の油剤を付着させ、炭素繊維前駆体アクリル繊維束を得た。
(1)アミノ変性シリコーン;KF−865(信越化学工業(株)製、1級側鎖タイプ、粘度110cSt(25℃)、アミノ当量5,000g/mol)、85質量%、
(2)乳化剤;NIKKOL BL−9EX(日光ケミカルズ株式会社製、POE(9)ラウリルエーテル)、15質量%。
[Example 1]
The acrylonitrile copolymer was dry and wet spun (12,000 nozzles), and an oil agent having the following composition was adhered to obtain a carbon fiber precursor acrylic fiber bundle.
(1) Amino-modified silicone; KF-865 (manufactured by Shin-Etsu Chemical Co., Ltd., primary side chain type, viscosity 110 cSt (25 ° C., amino equivalent 5,000 g / mol), 85% by mass,
(2) Emulsifier: NIKKOL BL-9EX (manufactured by Nikko Chemicals, POE (9) lauryl ether), 15% by mass.

前記前駆体繊維束を初期温度230℃〜最終温度250℃の空気雰囲気中を通過させ、耐炎化繊維束を得た。耐炎化炉として熱風循環型の炉を使用し、耐炎化の処理時間は60分で行った。   The precursor fiber bundle was passed through an air atmosphere having an initial temperature of 230 ° C. to a final temperature of 250 ° C. to obtain a flame resistant fiber bundle. A hot air circulation type furnace was used as the flameproofing furnace, and the flameproofing treatment time was 60 minutes.

前炭素化処理は、前炭素化炉内を窒素雰囲気として、200℃以上250℃未満の温度領域における通過時間を8秒、250℃以上400℃以下の温度領域における通過時間を33秒とし、最高温度700℃で処理を行った。前炭素化炉全体の通過時間を1.0分とした。また、耐炎化繊維束の投入量に対して温度150℃の窒素を2.9Nm3/kgで前炭素化炉内に供給した。前炭素化炉は図1に示す構造のものを使用した。 In the pre-carbonization treatment, the inside of the pre-carbonization furnace is a nitrogen atmosphere, the passing time in the temperature range of 200 ° C. or higher and lower than 250 ° C. is 8 seconds, the passing time in the temperature range of 250 ° C. or higher and 400 ° C. or lower is 33 seconds, The treatment was performed at a temperature of 700 ° C. The passing time of the entire pre-carbonization furnace was 1.0 minute. Further, nitrogen at a temperature of 150 ° C. was supplied to the pre-carbonization furnace at a rate of 2.9 Nm 3 / kg with respect to the input amount of the flameproof fiber bundle. A pre-carbonization furnace having the structure shown in FIG. 1 was used.

炭素化処理は窒素雰囲気中で1000〜1500℃、2分間処理を行った。このようにして得られた12K(フィラメント12000本)の炭素繊維束の強度及び、炭素繊維の膠着数を測定した。その評価結果を表1に示した。   The carbonization treatment was performed at 1000 to 1500 ° C. for 2 minutes in a nitrogen atmosphere. The strength of the 12K (12,000 filaments) carbon fiber bundles thus obtained and the number of carbon fibers stuck were measured. The evaluation results are shown in Table 1.

[実施例2、比較例1〜3]
前炭素化処理における200℃以上250℃未満の温度領域における通過時間と250℃以上400℃以下の温度領域における通過時間を表1の通りに変更したこと以外は実施例1と同様にして炭素繊維を製造し、評価した。
[Example 2, Comparative Examples 1-3]
Carbon fiber in the same manner as in Example 1 except that the passage time in the temperature range of 200 ° C. or more and less than 250 ° C. and the passage time in the temperature region of 250 ° C. or more and 400 ° C. or less in the pre-carbonization treatment was changed as shown in Table 1. Were manufactured and evaluated.

[比較例4]
耐炎化繊維束の投入量に対する窒素投入量を表1の通りに変更したこと以外実施例1と同様にして炭素繊維を製造し、評価した。
[Comparative Example 4]
Carbon fibers were produced and evaluated in the same manner as in Example 1 except that the amount of nitrogen input relative to the amount of flameproofed fiber bundle was changed as shown in Table 1.

Figure 2014234557
Figure 2014234557

1 繊維束
2 不活性気体導入口(入口側)
3 不活性気体導入口(出口側)
4 排気口
5 加熱用ヒーター1
6 加熱用ヒーター2
7 加熱用ヒーター3
8 加熱用ヒーター4
9 炉本体
1 Fiber bundle 2 Inert gas inlet (inlet side)
3 Inert gas inlet (exit side)
4 Exhaust port 5 Heater 1 for heating
6 Heating heater 2
7 Heating heater 3
8 Heater 4
9 Furnace body

Claims (1)

炭素繊維前駆体アクリル繊維束を200℃〜300℃の酸性化雰囲気中を通過させて耐炎化繊維束を得る耐炎化処理、得られた耐炎化繊維束を最高温度が500℃〜900℃の不活性雰囲気中を通過させて熱処理する前炭素化処理、及び、得られた前炭素化処理繊維束を最高温度が1200℃〜2500℃の不活性雰囲気中を通過させて熱処理する炭素化処理を順に行う炭素繊維の製造方法において、
該前炭素化処理が、該耐炎化繊維束を、不活性雰囲気が満たされた前炭素化炉内に導入し、不活性雰囲気の温度が200℃以上250℃未満の温度範囲内の区間の通過時間が6秒〜10秒、かつ不活性雰囲気の温度が250℃以上400℃以下の温度範囲内の区間の通過時間が18秒〜36秒であり、該前炭素化炉内へ供給する不活性気体の供給量が、該前炭素化炉内に導入する耐炎化繊維束1kgに対して1.0〜5.0Nm3である炭素繊維の製造方法。
Flameproofing treatment for obtaining a flameproofed fiber bundle by passing the carbon fiber precursor acrylic fiber bundle through an acidified atmosphere at 200 ° C to 300 ° C. A pre-carbonization treatment in which heat treatment is performed by passing through an active atmosphere, and a carbonization treatment in which the obtained pre-carbonization fiber bundle is heat-treated by passing through an inert atmosphere having a maximum temperature of 1200 ° C. to 2500 ° C. are sequentially performed. In the carbon fiber manufacturing method to be performed,
The pre-carbonization treatment introduces the flame-resistant fiber bundle into a pre-carbonization furnace filled with an inert atmosphere, and passes through a section in a temperature range where the temperature of the inert atmosphere is 200 ° C. or more and less than 250 ° C. The inert gas supplied into the pre-carbonization furnace has a passage time of 18 seconds to 36 seconds in a time range of 6 seconds to 10 seconds and a temperature range of the inert atmosphere of 250 ° C. to 400 ° C. The manufacturing method of the carbon fiber whose supply amount of gas is 1.0-5.0Nm < 3 > with respect to 1 kg of flame-resistant fiber bundles introduce | transduced in this pre-carbonization furnace.
JP2013115331A 2013-05-31 2013-05-31 Method for manufacturing carbon fiber Pending JP2014234557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013115331A JP2014234557A (en) 2013-05-31 2013-05-31 Method for manufacturing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013115331A JP2014234557A (en) 2013-05-31 2013-05-31 Method for manufacturing carbon fiber

Publications (1)

Publication Number Publication Date
JP2014234557A true JP2014234557A (en) 2014-12-15

Family

ID=52137481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013115331A Pending JP2014234557A (en) 2013-05-31 2013-05-31 Method for manufacturing carbon fiber

Country Status (1)

Country Link
JP (1) JP2014234557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200061A1 (en) 2020-03-30 2021-10-07 東レ株式会社 Method for manufacturing carbon fiber bundle
CN117722848A (en) * 2024-02-07 2024-03-19 佛山市天禄智能装备科技有限公司 Thermal insulation system for pre-carbonization rotary furnace and control method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200061A1 (en) 2020-03-30 2021-10-07 東レ株式会社 Method for manufacturing carbon fiber bundle
CN115087769A (en) * 2020-03-30 2022-09-20 东丽株式会社 Method for producing carbon fiber bundle
KR20220155272A (en) 2020-03-30 2022-11-22 도레이 카부시키가이샤 Manufacturing method of carbon fiber bundle
CN115087769B (en) * 2020-03-30 2023-12-12 东丽株式会社 Method for producing carbon fiber bundle
CN117722848A (en) * 2024-02-07 2024-03-19 佛山市天禄智能装备科技有限公司 Thermal insulation system for pre-carbonization rotary furnace and control method thereof
CN117722848B (en) * 2024-02-07 2024-04-30 佛山市天禄智能装备科技有限公司 Thermal insulation system for pre-carbonization rotary furnace and control method thereof

Similar Documents

Publication Publication Date Title
KR101813433B1 (en) Carbon fiber bundle and method of producing carbon fibers
KR101656976B1 (en) Carbon fiber bundle and method of producing carbon fiber bundle
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
KR102194940B1 (en) Carbon fiber bundle and its manufacturing method
JP2014234557A (en) Method for manufacturing carbon fiber
JP6510299B2 (en) Flame-resistant fiber bundle, carbon fiber precursor fiber bundle, and method for producing carbon fiber comprising the same
CN103668561B (en) A kind of method by controlling pre-oxidized fibers structure to prepare high-performance carbon fibre
JP3002549B2 (en) Manufacturing method of graphite fiber
JP2013181264A (en) Carbon fiber bundle
JP2013023801A (en) Method for producing carbon fiber bundle
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP2001248025A (en) Method for producing carbon fiber
JP2002146681A (en) Method of producing carbon fiber and precursor thereof and method of applying finishing oil
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JP2007332498A (en) Method for producing carbon fiber bundle
JPH02264011A (en) Acrylic fiber for graphite fibers
JP4919410B2 (en) Carbon fiber manufacturing method
JPS58214518A (en) Acrylic precursor yarn bundle
JP2006169704A (en) Method for producing graphite fiber bundle
JP2000096353A (en) Production of carbon fiber
JP2018145561A (en) Carbon fiber precursor acrylic fiber bundle, carbon fiber bundle, and manufacturing method of carbon fiber bundle
JP2006169672A (en) Carbon fiber bundle and method for producing graphite fiber bundle by using the same
JP2023017173A (en) Carbon fiber bundle and method for producing the same
JP2006200078A (en) Flame-proof fiber bundle and method for producing the same and method for producing carbon fiber bundle
JP2006183174A (en) Method for producing flame resistant fiber