JP2008295220A - Sensorless control unit of permanent magnet synchronous electric motor - Google Patents

Sensorless control unit of permanent magnet synchronous electric motor Download PDF

Info

Publication number
JP2008295220A
JP2008295220A JP2007138509A JP2007138509A JP2008295220A JP 2008295220 A JP2008295220 A JP 2008295220A JP 2007138509 A JP2007138509 A JP 2007138509A JP 2007138509 A JP2007138509 A JP 2007138509A JP 2008295220 A JP2008295220 A JP 2008295220A
Authority
JP
Japan
Prior art keywords
phase
frequency
signal
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007138509A
Other languages
Japanese (ja)
Other versions
JP5098439B2 (en
Inventor
Yasuhiro Yamamoto
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007138509A priority Critical patent/JP5098439B2/en
Priority to CN2008800175390A priority patent/CN101682283B/en
Priority to PCT/JP2008/058805 priority patent/WO2008146598A1/en
Publication of JP2008295220A publication Critical patent/JP2008295220A/en
Application granted granted Critical
Publication of JP5098439B2 publication Critical patent/JP5098439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/11Determination or estimation of the rotor position or other motor parameters based on the analysis of high frequency signals

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of step-out in a current lead-in method that exists in a position sensorless control system of an AC synchronous electric motor. <P>SOLUTION: A high-frequency voltage coordinate conversion part coordinate-converts a high-frequency voltage component from a single-phase high-frequency voltage generating part, and the converted high-frequency voltage is combined with a voltage command from a current control part and is outputted to a reverse rotating coordinate converting part as a voltage command value. A single-phase axis phase signal is detected from detected current components of two axes, and a phase signal of high-frequency voltage is generated. The phase signal is set to be a phase signal at the coordinate conversion and is outputted to a stabilized frequency correcting part, and a correction signal is calculated, and a sum with a frequency command is set to be a reference phase signal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、永久磁石を磁界源とする同期電動機または発電機位置センサレス・速度センサレスによる可変速制御に係り、特に低速領域においても駆動を可能としたセンサレス制御装置に関するものである。   The present invention relates to a variable speed control using a synchronous motor or a generator position sensorless / speed sensorless using a permanent magnet as a magnetic field source, and more particularly to a sensorless control device that can be driven even in a low speed region.

センサレス制御方法については、特許文献1〜特許文献3などが公知となっている。特許文献1では、図11で示すように、回転座標系(32a,32b)において単相電圧高調波電圧Vdcを加え、発生する電流をこの単相電圧と平行成分(Idc)と直交成分(Iqc)に分離することが特徴となっている。そして、この電流を2軸に分離した成分から、位相差検出器33により高周波電圧に対する電圧高周波電流の発生位相誤差(θ)を検出し、推定磁極位相θ0に補正を加えている。このように、単相の高周波電圧を入力し、高周波電流をこの単相成分と同じ座標上で検出してから位相誤差を推定している。なお、30は電動機、31はインバータである。また、図11の単相高周波電圧成分と単相高周波電流成分の軸誤差を利用して、図12のように積分器34を設け、この積分器34により積分を行って磁極位相を推定している。   Regarding the sensorless control method, Patent Documents 1 to 3 and the like are publicly known. In Patent Document 1, as shown in FIG. 11, a single-phase voltage harmonic voltage Vdc is added in the rotating coordinate system (32a, 32b), and the generated current is converted into a parallel component (Idc) and an orthogonal component (Iqc). )). Then, a phase error detector 33 detects a phase error (θ) of a voltage high-frequency current with respect to a high-frequency voltage from a component obtained by separating the current into two axes, and corrects the estimated magnetic pole phase θ0. Thus, the phase error is estimated after the single-phase high-frequency voltage is input and the high-frequency current is detected on the same coordinates as the single-phase component. In addition, 30 is an electric motor and 31 is an inverter. Further, by utilizing the axial errors of the single-phase high-frequency voltage component and the single-phase high-frequency current component of FIG. 11, an integrator 34 is provided as shown in FIG. 12, and the magnetic pole phase is estimated by performing integration using this integrator 34. Yes.

この方式は、d軸とq軸のインダクタンスの違い(磁気的な突極性)を利用した方式で、d軸上のN極とS極を分離することができない。そのため、他の方法により、N極の位相をあらかじめ推定しておき、この初期位相に対して、モータが回転した場合には、前述の高周波電圧成分と高周波電流成分の位相差から、逐次、推定磁極位相を補正して追従させている。
また。単相高周波電圧を適切な位相に注入する機能と発生した単相高周波位相の発生軸を検出する機能のブロックと、これらの位相差から磁極軸を推定する2つの部分から構成されていることが特徴となっている。
図12の積分器34で直接、磁極位相を推定する方式は、速度がランプ状に加速するときに磁極推定位相に偏差が生じ、この磁極推定誤差により脱調が発生しやすい。
This method uses a difference in inductance between the d-axis and the q-axis (magnetic saliency) and cannot separate the N-pole and S-pole on the d-axis. For this reason, the phase of the N pole is estimated in advance by another method, and when the motor rotates with respect to the initial phase, the phase is sequentially estimated from the phase difference between the high-frequency voltage component and the high-frequency current component. The magnetic pole phase is corrected to follow.
Also. It is composed of a block of a function of injecting a single-phase high-frequency voltage into an appropriate phase, a function of detecting a generation axis of the generated single-phase high-frequency phase, and two parts for estimating the magnetic pole axis from these phase differences. It is a feature.
In the method of estimating the magnetic pole phase directly by the integrator 34 in FIG. 12, a deviation occurs in the magnetic pole estimation phase when the speed is accelerated in a ramp shape, and step-out easily occurs due to this magnetic pole estimation error.

特許文献2および特許文献3では、具体的な高周波の分離方式を提案しているだけでなく、さらに積分演算を追加し、上記の高周波電圧と電流の位相誤差成分を積分して一旦速度を計算し、さらにそれを積分して推定位相を演算している。この速度推定の積分を追加したことにより、速度のランプ変化に対しても磁極位相の定常偏差として推定誤差が発生しないため、脱調しにくくなる。   Patent Document 2 and Patent Document 3 not only propose a specific high-frequency separation method, but also add an integral operation to integrate the phase error component of the high-frequency voltage and current and calculate the speed once. Then, it is integrated to calculate the estimated phase. By adding this speed estimation integral, an estimation error does not occur as a steady-state deviation of the magnetic pole phase even with respect to a ramp change in speed, so that step-out is difficult.

上記した高周波法以外にも、従来からステッピングモータなどに利用されている方式として、強制的に一定の振幅の電流を発生させ、その電流位相を強制的に回転させて磁極を強引に追従させる方式もあるが、ここでは、この方式を電流引き込み法と呼ぶことにする。
電流引き込み法の制御ブロック図の一例を図13に示す。
なお、以下の説明では永久磁石を界磁とする回転界磁形の同期電動機と仮定し、また、電機子を固定子または固定座標(a,b軸)と仮定して、磁極側を回転子または回転座標(d,q軸)と呼称する。また、電流引き込みのために発生する電流指令の位相をγ軸およびそれに直交する軸をδ軸とする。
また、電流引き込みに使用する基本波成分と、高周波成分の電圧や電流とを区別するため、高周波成分の変数に”h”の添え字を追加する。
In addition to the high-frequency method described above, a method that has been used for stepping motors, etc., is a method that forcibly generates a constant amplitude current and forcibly rotates the current phase to force the magnetic pole to follow. However, here, this method is called a current drawing method.
An example of a control block diagram of the current drawing method is shown in FIG.
In the following description, it is assumed that the rotating field type synchronous motor uses a permanent magnet as a field, and the armature is assumed to be a stator or fixed coordinates (a, b axes), and the magnetic pole side is the rotor. Or it is called a rotation coordinate (d, q axis). Further, the phase of the current command generated for current drawing is defined as the γ axis, and the axis orthogonal thereto is defined as the δ axis.
Further, in order to distinguish a fundamental wave component used for current drawing from a high frequency component voltage or current, a subscript “h” is added to the variable of the high frequency component.

図13において、1は電流の振幅指令値であるγ軸電流指令で、回転座標系の直交2軸成分のうち、γ軸成分(iγ*)に電流振幅指令の値|I1*|を設定する。2は電流の振幅指令値であるδ軸電流指令で、回転座標系の直交2軸成分のうち、δ軸成分(iδ*)に零を設定する。
これら各電流の振幅指令値(iγ*,iδ*)と、回転座標変換部12からの2軸電流成分(iγ,iδ)は電流制御部5に入力され、この電流制御部5から電流指令に実電流が追従するように出力電圧(Vγ*,Vδ*)を出カする。この電流制御部5は、通常、電流指令と電流検出の差分演算都と、比例積分(PI)制御などにより構成されている。
In FIG. 13, reference numeral 1 denotes a γ-axis current command which is a current amplitude command value, and the current amplitude command value | I1 * | is set to the γ-axis component (iγ * ) of the orthogonal two-axis components of the rotating coordinate system. . Reference numeral 2 denotes a δ-axis current command which is a current amplitude command value, and sets zero to the δ-axis component (iδ * ) of the orthogonal two-axis components of the rotating coordinate system.
The amplitude command value (iγ * , iδ * ) of each current and the biaxial current component (iγ, iδ) from the rotation coordinate conversion unit 12 are input to the current control unit 5, and the current control unit 5 receives the current command. Output voltage (Vγ * , Vδ * ) is output so that the actual current follows. The current control unit 5 is generally configured by a difference calculation capital between current command and current detection, proportional integral (PI) control, and the like.

3は電流の回転速度指令で、引き込み用の電流を強制的に回転させる周波数(速度)指令ω1*を設定する。4は位相積分器で、速度指令3を積分して電流を発生させる基準位相θを出力する。このθは電機子巻線を基準とする位相角である。
基準位相θは、電流制御部5からの出力電圧(Vγ*,Vδ*)と共に逆回転座標変換部6に出力され、この逆回転座標変換部6において回転座標上の2軸成分の電圧指令(Vγ*,Vδ*)を、出力位相θで逆回転座標変換を行い、固定座標系の2軸電圧成分(Va*,Vb*)に変換する。
Reference numeral 3 denotes a current rotation speed command, which sets a frequency (speed) command ω1 * for forcibly rotating the drawing current. Reference numeral 4 denotes a phase integrator that outputs a reference phase θ that integrates the speed command 3 to generate a current. This θ is a phase angle with respect to the armature winding.
The reference phase θ is output to the reverse rotation coordinate conversion unit 6 together with the output voltages (Vγ * , Vδ * ) from the current control unit 5, and the reverse rotation coordinate conversion unit 6 uses voltage commands ( Vγ * , Vδ * ) is converted into a biaxial voltage component (Va * , Vb * ) in a fixed coordinate system by performing reverse rotation coordinate conversion with the output phase θ.

7は2相/3相変換部で、逆回転座標変換部6の出力である固定座標の直交2軸電圧成分を、120°位相差の3相交流電圧(Vu*,Vv*,Vw*)に変換し、PWM増幅部8でパルス幅変調(PWM)方式を利用して、電力増幅を行う。
モータ9は、ここでは、永久磁石を界磁源とするPMモータを仮定しており。d軸とq軸でインダクタンスが異なる磁気的な突極性を有するものを対象としている。モータ9への入力電流は電流検出器10により検出され、3相の検出電流(iu,iv,iw)は3相/2相変換部11に出力されて直交二軸電流成分(ia,ib)に変換される。検出電流は、実際には3相でなくてもよく、2相を検出して残りの1相はこの2相から演算により推定することもできる。
回転座標変換部12は、3相/2相変換部11の出力である直交二軸電流成分(ia,ib)を積分器4の位相θで回転座標変換を行い、回転座標系の2軸電流成分(iγ,iδ)に変換する。この変換後の検出電流は、電流制御部5の電流制御で使用する。
Reference numeral 7 denotes a two-phase / three-phase conversion unit, which is a three-phase AC voltage (Vu * , Vv * , Vw * ) having a 120 ° phase difference obtained by converting the orthogonal biaxial voltage component of fixed coordinates, which is the output of the reverse rotation coordinate conversion unit 6. And the PWM amplifier 8 performs power amplification using a pulse width modulation (PWM) method.
Here, the motor 9 is assumed to be a PM motor using a permanent magnet as a field source. The target is one having magnetic saliency with different inductance between the d-axis and the q-axis. The input current to the motor 9 is detected by the current detector 10, and the three-phase detection current (iu, iv, iw) is output to the three-phase / two-phase converter 11 to generate the orthogonal biaxial current component (ia, ib). Is converted to The detected current may not actually be three phases, but two phases can be detected and the remaining one phase can be estimated from these two phases by calculation.
The rotation coordinate conversion unit 12 performs rotation coordinate conversion on the orthogonal biaxial current component (ia, ib), which is the output of the three-phase / two-phase conversion unit 11, with the phase θ of the integrator 4, and the biaxial current in the rotation coordinate system. Convert to components (iγ, iδ). The detected current after conversion is used for current control of the current control unit 5.

以上が、高電流引き込み法の構成である。この構成により、電流振幅指令の値|I1*|でかつ周波数(速度)指令ω1*の電流が発生し、モータの回転子は、この電流に追従して回転する。
特開平7−245981 特開2003−153582 特開2003−348896
The above is the configuration of the high current drawing method. With this configuration, a current having a current amplitude command value | I1 * | and a frequency (speed) command ω1 * is generated, and the rotor of the motor rotates following this current.
JP 7-245981 A JP2003-153582 JP2003-348896

(1)高周波法の問題点について
高周波法は、単相高周波成分の電圧と電流の位相誤差を検出する部分と、その位相誤差情報から積分器などにより磁極位相を推定する部分の2つの部分が存在することを説明した。ここで、高周波法は原理に磁気的な突極性を利用しているため、N極とS極の判別機能がない。d軸に単相高周波電圧を注入すると、高周波電流の発生位相が高周波電圧位相と一致するように積分器で推定位相を補正することにより、磁極位相の推定(追従)を行っているが、N極でもS極でもこの位相誤差が零の状態が存在する。
(1) Problems with the high-frequency method The high-frequency method has two parts: a part that detects the phase error of the voltage and current of a single-phase high-frequency component, and a part that estimates the magnetic pole phase from the phase error information using an integrator. Explained that it exists. Here, since the high frequency method uses magnetic saliency in principle, there is no discrimination function between the N pole and the S pole. When a single-phase high-frequency voltage is injected into the d-axis, the magnetic pole phase is estimated (followed) by correcting the estimated phase with an integrator so that the generation phase of the high-frequency current matches the high-frequency voltage phase. There is a state where this phase error is zero in both the pole and the S pole.

そこで、別の磁気飽和を利用した方式などにより、最初にN極の位相を推定しておき、これに常に追従させて、N極とS極を区別している。
しかし、電流検出にノイズが混入し、高周波の電流と電圧位相差に誤差が発生して、磁極推定の積分器が180°程度誤って積分した場合には、S極に収束してしまい、N極に対して180°推定位相誤差が発生する。一度でも、N極からS極に推定誤りが発生すると、以降は正常に動作していてもN極を推定しているつもりでも常にS極を認識するようになる。
Therefore, the phase of the N pole is first estimated by another method using magnetic saturation, etc., and the N pole and the S pole are distinguished from each other by always following this.
However, when noise is mixed in the current detection, an error occurs between the high-frequency current and the voltage phase difference, and the magnetic pole estimation integrator is mistakenly integrated by about 180 °, it converges to the S pole, and N A 180 ° estimated phase error occurs with respect to the pole. Once an estimation error occurs from the N pole to the S pole, the S pole is always recognized even if the N pole is estimated even if it operates normally.

このように、高周波法は磁極のNS判定機能がないため、磁極位相の推定が脱調するとS極側をd軸と誤って推定するようになる。こうなると、速度制御系が想定している電流指令に対して180°反対方向に電流を発生させることになり、その結果、モータの発生トルクも逆極性になる。正転側のトルク指令を与えても、モータには逆転方向のトルクが発生して回転方向も逆転側に加速(零速なら逆転方向に加速、正転中なら減速)してしまう。   As described above, since the high frequency method has no NS determination function of the magnetic pole, if the estimation of the magnetic pole phase is stepped out, the S pole side is erroneously estimated as the d-axis. In this case, a current is generated in a direction opposite to 180 ° with respect to the current command assumed by the speed control system, and as a result, the generated torque of the motor also has a reverse polarity. Even if a forward torque command is given, torque in the reverse direction is generated in the motor and the rotational direction is also accelerated in the reverse direction (acceleration in the reverse direction at zero speed and deceleration in normal rotation).

さらに、速度検出と遠度指令との差分が大きくなるため、速度制御系が正方向にトルク指令を増大するため。モータは逆方向のトルクを増大させ。逆転方向の加速が強くなって最終的には逆転方向に暴走する。このように、高周波法は脱調が発生した場合には、推定磁極がN極とS極が入れ替わり、逆転側に暴走する可能性がある。この逆転暴走を防止するためには、磁極推定ゲインを適切に設定しなければならず、また、計測に使用する高周波電流も大きな値としてノイズなどの誤差成分を抑制させる必要がある。
(2)電流引き込み法の問題点について
電流引き込み法は強制的に電流を引き込むため、N極とS極を誤って判定することはない。しかし、周波数指令や負荷が変動すると振動が発生しやすく、また、負荷トルクが過大になると、脱調する問題がある。
同期機の界磁鉄心にダンパー巻線が存在しない場合には、磁極位相が振動的になることが知られている。また、電流振幅により発生できる最大トルクよりも負荷が超えると脱調する。この位相振動を考慮した上で、脱調しないようにするためには、通常、設定した電流指令で発生できる最大トルクに対して、約2/3程度の負荷トルクしか掛けることができない。
Furthermore, since the difference between the speed detection and the distance command becomes large, the speed control system increases the torque command in the positive direction. The motor increases the reverse torque. The acceleration in the reverse direction increases and eventually runs away in the reverse direction. As described above, in the high frequency method, when a step-out occurs, the estimated magnetic pole may be switched between the N pole and the S pole, and the runaway may occur on the reverse side. In order to prevent this reverse runaway, the magnetic pole estimation gain must be set appropriately, and the high-frequency current used for measurement must be a large value to suppress error components such as noise.
(2) Problems with the current drawing method Since the current drawing method forcibly draws current, the N pole and the S pole are not erroneously determined. However, if the frequency command or the load fluctuates, vibration is likely to occur, and if the load torque becomes excessive, there is a problem of stepping out.
It is known that the magnetic pole phase becomes oscillating when there is no damper winding in the field core of the synchronous machine. Further, the step-out occurs when the load exceeds the maximum torque that can be generated by the current amplitude. In order to prevent step-out in consideration of this phase vibration, normally, only about 2/3 of the load torque can be applied to the maximum torque that can be generated by the set current command.

2つの方式を比較すると、高周波法は磁極位相を推定して電流を制御しているため、発生トルクの比率が大きく振動も発生しない。また、過負荷時には速度が低下するが脱調しない利点がある。しかし、もし磁極推定が誤って脱調した時には逆転暴走してしまう問題がある。
電流引き込み法は、過渡的な振動や過負荷時の脱調問題があるが、脱調しても逆転暴走することはない。
そこで、本発明が目的とするところは、上記の2つの方式を組み合わせることにより、これらの問題点を改善する永久磁石同期電動機のセンサレス制御装置を提供することにある。
Comparing the two methods, since the high frequency method controls the current by estimating the magnetic pole phase, the ratio of the generated torque is large and no vibration is generated. In addition, there is an advantage that the speed decreases but does not step out during overload. However, if the magnetic pole estimation step out by mistake, there is a problem that reverse runaway occurs.
The current drawing method has a problem of stepping out during transient vibration or overloading, but it does not run out of control in reverse.
Accordingly, an object of the present invention is to provide a sensorless control device for a permanent magnet synchronous motor which improves these problems by combining the above two methods.

本発明の請求項1は、交流同期電動機の制御装置において、
制御装置に単相高周波電圧発生部を設け、この単相高周波電圧発生部からの高周波電圧成分を高周波電圧座標変換部により座標変換し、変換された高周波電圧と前記電流制御部からの電圧指令と合成して電圧指令値として前記逆回転座標変換部に出力すると共に、前記座標変換した2軸の電流検出成分を高周波通過フィルタを通した後に単相高周波電流位相検出部に入力して単相軸位相信号を検出し、この単相軸位相信号を磁極位相推定部に出力して高周波電圧の位相信号を生成し、この位相信号を前記高周波電圧座標変換部に出力して座標変換時の位相信号とし、且つ高周波電圧の位相信号を安定化周波数補正部に出力して補正信号を演算し、演算された補正信号と前記周波数指令の和を基準位相信号として前記逆回転座標変換部に出力するよう構成したことを特徴としたものである。
Claim 1 of the present invention is a control device for an AC synchronous motor,
The control device is provided with a single-phase high-frequency voltage generator, the high-frequency voltage component from the single-phase high-frequency voltage generator is coordinate-converted by a high-frequency voltage coordinate converter, the converted high-frequency voltage and the voltage command from the current controller Combined and output to the reverse rotation coordinate conversion unit as a voltage command value, and the coordinate-converted two-axis current detection component is input to the single-phase high-frequency current phase detection unit after passing through a high-frequency pass filter. A phase signal is detected, this single-phase axis phase signal is output to the magnetic pole phase estimation unit to generate a high-frequency voltage phase signal, and this phase signal is output to the high-frequency voltage coordinate conversion unit to generate a phase signal at the time of coordinate conversion In addition, the phase signal of the high frequency voltage is output to the stabilization frequency correction unit to calculate the correction signal, and the sum of the calculated correction signal and the frequency command is output to the reverse rotation coordinate conversion unit as a reference phase signal. It is obtained by characterized by being configured so.

本発明の請求項2は、前記単相高周波電圧発生部は、高周波の周波数指令を積分して高周波の基準位相信号を生成して高周波を含む波形信号を発生し、この信号に単相電圧の振幅指令を乗算して電圧の単振動を演算することを特徴としたものである。   According to a second aspect of the present invention, the single-phase high-frequency voltage generation unit generates a high-frequency reference phase signal by integrating a high-frequency frequency command to generate a waveform signal including a high frequency, and the single-phase voltage is generated in the signal. This is characterized in that simple oscillation of voltage is calculated by multiplying the amplitude command.

本発明の請求項3は、交流同期電動機の制御装置において、
制御装置に単相高周波電圧発生部を設け、この単相高周波電圧発生部からの高周波電圧成分を高周波電圧座標変換部により座標変換し、変換された高周波電圧と前記電流制御部からの電圧指令と合成して電圧指令値として前記逆回転座標変換部に出力すると共に、前記座標変換した2軸の電流検出成分を高周波通過フィルタを通した後に単相高周波電流位相検出部に入力して単相軸位相信号を検出し、この信号を磁極位相推定部に出力して高周波電圧の位相信号を生成し、この位相信号を前記高周波電圧座標変換部に出力して座標変換時の位相信号とし、且つ生成された位相信号と前記単相軸位相信号との差分を安定化周波数補正部に出力して補正信号を演算し、この補正信号と前記周波数指令の和を基準位相信号として前記逆回転座標変換部に出力するよう構成したことを特徴としたものである。
According to a third aspect of the present invention, in the control device for an AC synchronous motor,
The control device is provided with a single-phase high-frequency voltage generator, the high-frequency voltage component from the single-phase high-frequency voltage generator is coordinate-converted by a high-frequency voltage coordinate converter, the converted high-frequency voltage and the voltage command from the current controller Combined and output to the reverse rotation coordinate conversion unit as a voltage command value, and the coordinate-converted two-axis current detection component is input to the single-phase high-frequency current phase detection unit after passing through a high-frequency pass filter. Detects a phase signal, outputs this signal to the magnetic pole phase estimation unit to generate a high-frequency voltage phase signal, and outputs this phase signal to the high-frequency voltage coordinate conversion unit to generate and generate a phase signal at the time of coordinate conversion The difference between the measured phase signal and the single-phase axis phase signal is output to a stabilizing frequency correction unit to calculate a correction signal, and the reverse rotation coordinate transformation is performed using the sum of the correction signal and the frequency command as a reference phase signal. It is obtained by characterized by being configured to output to.

本発明の請求項4は、前記高周波電圧座標変換部に入力される信号は直交2成分信号で、そのうちの1軸成分は前記単相高周波電圧発生部からの高周波電圧成分とし、他の1軸成分は零としたことを特徴としたものである。   According to a fourth aspect of the present invention, the signal input to the high-frequency voltage coordinate conversion unit is an orthogonal two-component signal, one of which is a high-frequency voltage component from the single-phase high-frequency voltage generation unit, and the other one-axis The component is characterized by zero.

本発明の請求項5は、前記磁極位相推定部の出力信号は、単相高周波電流位相検出部の出力である高周波の電流軸位相信号から電圧軸位相信号を差し引き、これに比例ゲインを掛けて積分した信号であることを特徴としたものである。   According to a fifth aspect of the present invention, the output signal of the magnetic pole phase estimation unit is obtained by subtracting the voltage axis phase signal from the high frequency current axis phase signal that is the output of the single phase high frequency current phase detection unit, and multiplying this by a proportional gain. It is characterized by being an integrated signal.

以上のとおり、本発明によれば、
(1)電流引き込み法であるため、高周波法のように磁極の推定が外乱成分などにより、S極をN極と誤って推定することが無い。そのため、逆転暴走する現象が発生しない。
(2)周波数指令が急変した場合でも、出力周波数を脱調しないように自動補正するため、周波数指令の急変時での安定性が向上する。
(3)負荷が急変してモータ速度が急変しても、出カ周波数を脱調しないように自動補正するため、(2)と(3)より、単に振動抑制するだけでなく、過渡変動時に周波数を自動補正して安定性を維持する効果が得られる。
(4)高周波法は磁極推定ゲインを適切に設定しないと、応答遅れによる脱調やゲインが過大のため発生する脱調が起こる。そのため、運転しながら調整する場合には、初期値を適切に調整しなければならない。不適切な初期値では、ゲイン調整時に脱調することがある。
これに対して本発明では、基本的には電流引き込み法を使用しており、速度指令や負荷急変さえなければ安定である。そして、補正ゲインは、初めは零に設定しておき、遠度変動や負荷変動に応じて少しずつ増加していけばよく、そのため、調整も簡単であり、過渡現象のない用途では本発明を適用しないように設定することも可能となる。
As described above, according to the present invention,
(1) Since the current drawing method is used, the S pole is not erroneously estimated as the N pole due to disturbance components or the like unlike the high frequency method. Therefore, the phenomenon of reverse runaway does not occur.
(2) Even when the frequency command changes suddenly, the output frequency is automatically corrected so as not to step out, so the stability at the time of sudden change of the frequency command is improved.
(3) Even if the load changes suddenly and the motor speed changes suddenly, the output frequency is automatically corrected so as not to step out. From (2) and (3), not only vibration suppression but also transient fluctuation The effect of maintaining the stability by automatically correcting the frequency is obtained.
(4) If the magnetic pole estimation gain is not set appropriately in the high frequency method, a step out due to a response delay or a step out occurring due to an excessive gain occurs. Therefore, when adjusting while driving, the initial value must be adjusted appropriately. An inappropriate initial value may cause a step-out during gain adjustment.
On the other hand, in the present invention, the current drawing method is basically used, and it is stable if there is no speed command or sudden load change. The correction gain is initially set to zero, and may be increased little by little in accordance with distance fluctuations and load fluctuations. Therefore, the adjustment is easy, and the present invention is used in applications where there is no transient phenomenon. It can also be set not to apply.

本発明は、脱調したときに暴走をしないことを優先し、電流引き込み法を基本原理とする。そして、高周波法も併用し、これにより過渡時の振動を抑制させる機能を追加したものである。
従来の高周波法では、初期値のN極位相から始まって、常に前回の推定位相がN極であると仮定して相対的に位相補正を図っていたため、脱調してもNS極の変化が検出できなかった。そこで、高周波法の磁極位置推定の変化(微分に相当)を計算する。微分を行うと定常成分情報が失われる原理を利用して、電流引き込み法と、高周波法の磁極推位相の微分量をゲイン倍して速度推定に補正を組み合わせる方法を提供するものである。
The present invention gives priority to not running out of control when stepping out, and uses a current drawing method as a basic principle. A high-frequency method is also used in combination with this to add a function for suppressing vibration during transition.
In the conventional high frequency method, starting from the initial N-pole phase, and assuming that the previous estimated phase is always the N-pole, the phase correction is relatively performed. Could not be detected. Therefore, the change (corresponding to differentiation) of the magnetic pole position estimation of the high frequency method is calculated. By utilizing the principle that steady component information is lost when differentiation is performed, a method of combining correction with speed estimation by multiplying the differential amount of the magnetic pole thrust phase of the current method and the high-frequency method by gain is provided.

図1は、本発明の実施例を示す全体制御系の構成図を示す。このブロック図では、図13と同一部分、若しくは相当部分に同一符号を付してその説明を省略する。図1において、21は単相高周波電圧発生部で、高周波法の高周波電流を発生させるために注入する電圧指令を演算する。この単相高周波電圧発生部21は
高周波の周波数指令ωhv *を積分して高周波の基準位相θhv *を作成する積分手段と、関数発生手段及び乗算手段を有している。特定の高周波を含む波形を発生させる手段として、ここではcosin関数の例を示す。この高周波波形に、単相電圧の振幅指令vhv *を乗算して電圧の単振動を演算する。
FIG. 1 is a block diagram of an overall control system showing an embodiment of the present invention. In this block diagram, the same or corresponding parts as in FIG. In FIG. 1, reference numeral 21 denotes a single-phase high-frequency voltage generator that calculates a voltage command to be injected in order to generate a high-frequency current according to a high-frequency method. The single-phase high-frequency voltage generating portion 21 includes an integrating means for generating a high frequency reference phase theta hv * by integrating the high-frequency frequency command omega hv *, the function generating means and multiplying means. As a means for generating a waveform including a specific high frequency, an example of a cosin function is shown here. The high-frequency waveform is multiplied by a single phase voltage amplitude command v hv * to calculate a single oscillation of the voltage.

22は高周波電圧座標変換部で、単相高周波電圧発生部21の出力である単振動の高周波電圧成分を指定した磁極位相に一致させるようにこの座標変換部22を適用する。座標変換部22部の入力は、直交2軸成分の1軸成分が単振動電圧成分で、もう一方の軸は零としている。また、座標変換部22の位相は、磁極推定位相φd(=^φd)を使用している。   Reference numeral 22 denotes a high-frequency voltage coordinate conversion unit which applies the single-frequency high-frequency voltage component, which is the output of the single-phase high-frequency voltage generation unit 21, to match the designated magnetic pole phase. In the input of the coordinate conversion unit 22, one axis component of the orthogonal two-axis component is a single vibration voltage component, and the other axis is zero. The phase of the coordinate conversion unit 22 uses the magnetic pole estimation phase φd (= ^ φd).

この単相交流の電圧成分のベクトル軌跡と、これによって生じる単相交流電流の軌跡を図2に示す。図2は電機子巻線のU相を基準とする位相に対して。回転速度ω1 *で回転している磁極軸をd軸、それに直交する軸をq軸としている。
また、電流指令の電流ベクトル軸をγ軸、そしてその直交軸をδ軸としている。この電流指令により発生する電流ベクトルi1(iγ-0,iδ-0)とそのときの電圧v1(vγ-0,vδ-0)に対して、高周波電圧(vγ-h *,vδ-h *)を重畳させ、また、高周波電流(iγ-h,iδ-h)も電流に重畳されているものとして表している。
FIG. 2 shows a vector locus of the voltage component of the single-phase alternating current and a locus of the single-phase alternating current generated thereby. FIG. 2 shows the phase based on the U phase of the armature winding. The magnetic pole axis rotating at the rotational speed ω 1 * is the d-axis, and the axis orthogonal thereto is the q-axis.
The current vector axis of the current command is the γ axis, and its orthogonal axis is the δ axis. Current vector i 1 (iγ -0, iδ -0 ) generated by the current command and the voltage v 1 (vγ -0, vδ -0 ) at that time with respect to high-frequency voltage (vγ -h *,-h * ) Is superimposed, and the high-frequency current (iγ -h , iδ -h ) is also represented as being superimposed on the current.

また、高周波成分の位相関係を明確にするために、高周波成分の中心を一致させた拡大図が図3である。この図3では位相関係を明確にするため、電圧の高周波成分を電流高周波の中心と一致させるように平行移動して示している。電流発生軸γから、単相交流電圧を注入する軸までの位相角をφv、また、この高周波電圧により同じ周波数の単相電流が発生するが、この高周波電流の発生位相をφiとする。また、γ軸から磁極軸までの位相をφdとしている。   FIG. 3 is an enlarged view in which the centers of the high-frequency components are made coincident in order to clarify the phase relationship of the high-frequency components. In FIG. 3, in order to clarify the phase relationship, the high frequency component of the voltage is shown in parallel translation so as to coincide with the center of the current high frequency. The phase angle from the current generation axis γ to the axis for injecting the single-phase AC voltage is φv, and a single-phase current having the same frequency is generated by this high-frequency voltage, and the generation phase of this high-frequency current is φi. The phase from the γ axis to the magnetic pole axis is φd.

23は高周波電圧重畳部で、高周波電圧(vγ-h *,vδ-h *)を電流制御部5の出力電圧(vγ*,vδ*)に加算(重畳)する。24は電流指令位相演算用積分器で、電流指令は直流量の指令値|I1 *|と周波数指令ω1 *で与えられる。周波数指令ω1 *は安定化周波数補正部30の出力信号と加算され、加算した結果の補正後の周波数ω1を積分器24で積分し、電圧指令を電機子巻線の座標系に変換するための位相θを発生する。その位相を基準として逆回転座標変換変部6で座標変換後、2相/3相変換部7およびPWM増幅部8を介してPWM変調方式などによって電圧増幅してモータ9に対して電圧を出力する。 Reference numeral 23 denotes a high frequency voltage superimposing unit that adds (superimposes) the high frequency voltage (vγ− h * , vδ− h * ) to the output voltage (vγ * , vδ * ) of the current control unit 5. Reference numeral 24 denotes an integrator for calculating a current command phase, and the current command is given by a DC value command value | I 1 * | and a frequency command ω 1 * . The frequency command ω 1 * is added to the output signal of the stabilization frequency correction unit 30, the corrected frequency ω 1 of the addition result is integrated by the integrator 24, and the voltage command is converted into the coordinate system of the armature winding. Phase θ is generated. Based on the phase as a reference, the coordinate conversion unit 6 converts the coordinate and outputs the voltage to the motor 9 by amplifying the voltage by the PWM modulation method or the like via the 2-phase / 3-phase conversion unit 7 and the PWM amplification unit 8. To do.

25は高周波除去フィルタで、電流検出器10からは3相成分の電機子電流(iu,iv,iw)が得られるので、これを3相/2相変換部11および電流指令の基準位相θにより回転座標変換部12で変換して(iγ,iδ)を得る。電流制御には、この電流検出の高周波成分は不要であるため、この基本波成分と高周波成分を含む(iγ,iδ)から高周波除去フィルタ25で高周波成分を除去し、基本波電流成分のみを求める。   Reference numeral 25 denotes a high-frequency rejection filter, and since the current detector 10 obtains a three-phase component armature current (iu, iv, iw), this is determined by the three-phase / two-phase converter 11 and the reference phase θ of the current command. The rotation coordinate conversion unit 12 performs conversion to obtain (iγ, iδ). Since the current detection does not require the high-frequency component of current detection, the high-frequency removal filter 25 removes the high-frequency component from (iγ, iδ) including the fundamental wave component and the high-frequency component, and only the fundamental wave current component is obtained. .

26は高周波通過フィルタで、高周波除去フィルタ25とは逆に、磁極位相の推定には基本波電流成分が不要であるため、高域通過フィルタ26を用いて基本波成分を除去する。具体的な、高周波除去フィルタ25や高周波通過フィルタ26の構成例は、特許文献2において移動平均を利用した方法が説明されており、本発明はこのフィルタ部分は発明部分を限定するものではないため、ここでは、詳細な説明は省略し、図4、図5、図6に離散系で構成した例を示しておく。   Reference numeral 26 denotes a high-frequency pass filter. Contrary to the high-frequency rejection filter 25, the fundamental wave current component is not necessary for estimation of the magnetic pole phase, and therefore the high-pass filter 26 is used to remove the fundamental wave component. As a specific configuration example of the high-frequency rejection filter 25 and the high-frequency pass filter 26, a method using a moving average is described in Patent Document 2, and the present invention does not limit the invention portion of the filter portion. Here, detailed description is omitted, and an example of a discrete system is shown in FIGS. 4, 5, and 6.

図4は25,26のフィルタ部分の例で、1/Zは、ディジタル演算の1サンプル遅れを示し、Σは全入力の加算を示している。なお、ここでは、γ軸の1相分のみを示している。
高周波成分の1周期を8点の離散点で取り扱った場合には、8点の移動平均により高周波の中心を求めることができる。電流検出値からこの中心値を引けば高周波成分が抽出できる。高周波成分を除去した成分はこの8点の移動平均を用いてもよいが、電流変化時の検出遅れが大きい。そこで、1周期前の(8サンプル前)の高周波成分と今回の高周波成分は、高周波成分が等しく位相変化も少ないと仮定し、今回の検出値から1周期前の高周波成分を減算して高域除去成分としている。こうすれば、基本波成分の値が変化するときに検出ムダ時間が少なくなる。
FIG. 4 shows an example of 25 and 26 filter portions, where 1 / Z indicates a one-sample delay in digital calculation, and Σ indicates the addition of all inputs. Here, only one phase of the γ axis is shown.
When one period of the high frequency component is handled by 8 discrete points, the center of the high frequency can be obtained by a moving average of 8 points. By subtracting this center value from the detected current value, a high frequency component can be extracted. The component from which the high-frequency component has been removed may use the 8-point moving average, but the detection delay when the current changes is large. Therefore, it is assumed that the high frequency component of the previous cycle (8 samples before) and the current high frequency component are the same, and the phase change is small, and the high frequency component of the previous cycle is subtracted from the detected value. As a removal component. In this way, the detection waste time is reduced when the value of the fundamental wave component changes.

27は単相高周波電流発生位相検出部で、2軸成分の高周波単相交流電流成分である高周波通過フィルタ26の出力から、単相軸位相を検出する。この検出方式としては、図5のように90度位相の遅れたsin関数を利用して各軸の高周波成分を求め、これを1周期分移動平均した結果からarctan関数を使用して位相に変換すればよい。また図6のように、sin関数の代わりに高周波位相が0〜πなら1、π〜2πなら−1を出力する関数を利用しても同様に演算可能である。また,移動平均も半周期(図6の場合では4サンプルの移動平均)でも可能であるが、正負の非対称性によってリプル状の誤差成分が発生することがあるため、図6のように1周期分の移動平均の方が好ましい。この移動平均はIIR形のディジタルフィルタでも代用できる。後は上記と同様にarctan関数で位相を求める。   A single-phase high-frequency current generation phase detector 27 detects a single-phase axis phase from the output of the high-frequency pass filter 26, which is a two-axis high-frequency single-phase AC current component. As this detection method, as shown in FIG. 5, a high-frequency component of each axis is obtained by using a sin function delayed by 90 degrees, and converted into a phase by using an arctan function from the result of moving average for one cycle. do it. Further, as shown in FIG. 6, the same calculation can be performed by using a function that outputs 1 if the high-frequency phase is 0 to π, and -1 if π to 2π, instead of the sin function. Also, the moving average can be a half cycle (in the case of FIG. 6, a moving average of 4 samples), but a ripple-like error component may be generated due to positive and negative asymmetry, so that one cycle as shown in FIG. A moving average of minutes is preferred. This moving average can be substituted by an IIR type digital filter. After that, the phase is obtained by the arctan function in the same manner as described above.

28は磁極位相推定部で、モータの磁気突極性により直軸インダクタンスLdと横軸インダクタンスLqの関係が(Ld<Lq)となっている場合には,位相検出部27の電流高周波の発生位相は、高周波単相電圧軸と実磁極軸の位相間に高周波単相電流位相が存在する特性がある。そこで、この高周波の電流軸位相φiから電圧軸位相φvを差し引いて、これに比例ゲインを掛けた後、積分する。そして、この積分出力を新たな高周波電圧の出力位相φvとする。このように磁極位相の推定と、高周波電圧の発生位相にフィードバックすることにより、電圧位相と電流位相が一致するようになり、また、このときには磁極軸φdと高周波電圧の位相φvが一致する。   Reference numeral 28 denotes a magnetic pole phase estimation unit. When the relationship between the direct-axis inductance Ld and the horizontal-axis inductance Lq is (Ld <Lq) due to the magnetic saliency of the motor, the generation phase of the current high frequency of the phase detection unit 27 is The high-frequency single-phase current phase exists between the high-frequency single-phase voltage axis and the actual magnetic pole axis. Therefore, the voltage axis phase φv is subtracted from the high-frequency current axis phase φi, multiplied by a proportional gain, and then integrated. This integrated output is set as a new high-frequency voltage output phase φv. Thus, by estimating the magnetic pole phase and feeding back to the generation phase of the high-frequency voltage, the voltage phase and the current phase coincide with each other. At this time, the magnetic pole axis φd and the phase φv of the high-frequency voltage coincide.

29は磁極推定位相微分演算部である。磁極推定位相部28は、前述のように、電流検出ノイズなどによりN極とS極を過って収束させることがある。そこで、この磁極推定位相部28からの磁極位相信号を微分することにより偏差成分を除去した位相変化分を求める。   Reference numeral 29 denotes a magnetic pole estimation phase differential calculation unit. As described above, the magnetic pole estimation phase unit 28 sometimes converges over the N and S poles due to current detection noise or the like. Accordingly, the phase change from which the deviation component is removed is obtained by differentiating the magnetic pole phase signal from the magnetic pole estimation phase unit 28.

30は安定化周波数補正部である。正転(ω1 *>0)の場合を考えると、微分演算部29により推定磁極位相の変化分が求まったので、これに比例した周波数補正を追加する。負荷トルクが大きくなるとモータの磁極位相は電流ベクトルに対して遅れる。この遅れが大きくなる時には微分演算部29の位相変化成分は負になる。そのため、出カ周波数は低下し電流位相θと磁極位相の差Φdの増加を抑制するように動作する。ここで周波数補正演算には、磁極推定位相の微分に比例ゲインを乗算する他に、過大な成分を抑制するリミッタや高周波数成分のノイズを除去する低域通過フィルタなども必要に応じて適用するとよい。
以上の構成からなる実施例1によれば、高周波電圧や電流を使用して磁極位相を推定し、その推定位相の微分成分を用いて周波数補正することにより、ダンパー巻線のない同期電動機に電流引き込み法を適用しても、振動が抑制できるようになる。
Reference numeral 30 denotes a stabilization frequency correction unit. Considering the case of forward rotation (ω 1 * > 0), since the amount of change in the estimated magnetic pole phase has been obtained by the differential operation unit 29, frequency correction proportional to this is added. When the load torque increases, the magnetic pole phase of the motor is delayed with respect to the current vector. When this delay increases, the phase change component of the differential calculation unit 29 becomes negative. Therefore, the output frequency is lowered, and the operation is performed so as to suppress the increase in the difference Φd between the current phase θ and the magnetic pole phase. Here, in addition to multiplying the derivative of the magnetic pole estimation phase by a proportional gain, a limiter that suppresses excessive components and a low-pass filter that removes high-frequency component noise are applied to the frequency correction calculation as necessary. Good.
According to the first embodiment configured as described above, a magnetic pole phase is estimated using a high-frequency voltage or current, and a frequency correction is performed using a differential component of the estimated phase, whereby a current is supplied to a synchronous motor without a damper winding. Even if the pull-in method is applied, vibration can be suppressed.

実施例1では、磁極推定位相微分演算部29により磁極位相の推定結果を微分したが、磁極位相推定部28で(φi一φv)成分を積分した後で、さらに微分している。この2つの積分と微分成分は打ち消すことができるため、図7のようなブロック図に等価変換できる。他は実施例1と同様で原理は同一である。
実施例1では磁極推定位相を微分演算しているが、この実施例によれば、磁極推定演算の内部データを利用することにより演算量を削減している。
In the first embodiment, the estimation result of the magnetic pole phase is differentiated by the magnetic pole estimation phase differentiation calculation unit 29, but is further differentiated after the (φi 1 φv) component is integrated by the magnetic pole phase estimation unit 28. Since these two integral and differential components can be canceled, equivalent conversion can be made to a block diagram as shown in FIG. Others are the same as Example 1, and the principle is the same.
In the first embodiment, the magnetic pole estimation phase is differentiated, but according to this embodiment, the amount of calculation is reduced by using the internal data of the magnetic pole estimation calculation.

図8は、図13で示す従来の電流引き込み法による動作をシミュレーションした結果の特性図である。このシミュレーションは、本発明との比較のために実施したもので、安定化周波数補正部30におけるKωφを、Kωφ=0と設定した場合である。 FIG. 8 is a characteristic diagram as a result of simulating the operation by the conventional current drawing method shown in FIG. This simulation is performed for comparison with the present invention, and is a case where K ωφ in the stabilization frequency correction unit 30 is set as K ωφ = 0.

<1>評価条件(電流引き込み法で本発明の補償機能なし)
(a)電流指令の振幅はモータ定格の100%に設定。
(b)電流指令の周波数は、0s〜0.1s間に速度指令を0%〜5%に変更、1.0s〜1.1s間に速度指令を5%〜10%に変更。
(c)負荷変動0s〜2s間は負荷トルク無し、2s以降は70%の負荷トルクをステップ状にかけている。
<1> Evaluation condition (no current compensation method and compensation function of the present invention)
(A) The amplitude of the current command is set to 100% of the motor rating.
(B) For the frequency of the current command, the speed command is changed to 0% to 5% between 0s and 0.1s, and the speed command is changed to 5% to 10% between 1.0s and 1.1s.
(C) No load torque is applied between 0 s and 2 s of load fluctuation, and 70% of load torque is applied stepwise after 2 s.

<2>結果
(a)モータ速度は振動的であり、また、2sで負荷が掛かるとモータ遠度が低下して脱調を起こしている。
(b)電流ベクトルとd軸との位相差φdも振動的であり、また負荷時に脱調している。
(c)発生トルクも、上記の速度と電流と同様に振動的であり、負荷を加えると脱調している。
<2> Result (a) The motor speed is oscillating, and when a load is applied in 2 s, the motor distance decreases and step-out occurs.
(B) The phase difference φd between the current vector and the d-axis is also oscillating, and stepped out when loaded.
(C) The generated torque is also oscillating like the speed and current described above, and steps out when a load is applied.

図9は本発明を適用した場合のシミュレーションによる特性図(周波数指令および負荷の急変時の安定性改善効果)で、実施例2のシステムにおいて、Kωφを有効な値に設定して制御機能を動作させた場合である。 FIG. 9 is a characteristic diagram by simulation when the present invention is applied (the effect of improving the stability when the frequency command and the load suddenly change). In the system of the second embodiment, the control function is set by setting Kωφ to an effective value. This is the case when it is operated.

<1’>評価条件(電流引き込み法:本発明の補償機能有効、それ以外は図8と同一条件)
(a’)電流指令の振幅はモータ定格の100%に設定。
(b’)電流指令の周波数は、0s〜0.1s間に速度指令を0%〜5%に変更、1.0s〜1.1s間に速度指令を5%〜10%に変更。
(c’)負荷変動0s〜2s間は負荷トルク無し。2s以降は70%の負荷トルクをステップ状にかけている。
<1 '> Evaluation conditions (current drawing method: the compensation function of the present invention is valid, otherwise the same conditions as in FIG. 8)
(A ') The amplitude of the current command is set to 100% of the motor rating.
(B ′) The frequency of the current command is changed from 0% to 5% between 0s and 0.1s, and the speed command is changed between 5% and 10% between 1.0s and 1.1s.
(C ′) No load torque between load fluctuations 0 s and 2 s. After 2 s, a load torque of 70% is applied stepwise.

<2’>結果
(a’)周波数指令ω1 *が変化しても、モータ速度の応答遅れがあれば電流出力周波数ω1は加速を抑制している。負荷時は、モータ遠度の低下に追従して、電流出力周波数ω1は自動的に周波数を低減して脱調を防止している。また、時間が立つと、元の速度に復帰する。
(b’)電流d軸との位相差φdは振動が無く安定になっている。負荷時にも振動は発生していない。
(c’)発生トルクも、上記の速度と電流と同様に安定であり、加速や負荷に対応したトルクが発生できている。
<2 ′> Result (a ′) Even if the frequency command ω 1 * changes, the current output frequency ω 1 suppresses acceleration if there is a response delay in the motor speed. At the time of load, the current output frequency ω 1 automatically decreases the frequency following the decrease in the motor distance to prevent the step-out. Moreover, when time stands, it will return to the original speed.
(B ′) The phase difference φd from the current d-axis is stable without vibration. There is no vibration even when loaded.
(C ′) The generated torque is stable similarly to the above speed and current, and torque corresponding to acceleration and load can be generated.

図10は本発明を適用した場合の効果(検出ノイズによる高周波法の磁極がNSを誤って収束した場合)を確認するためのシミュレーションによる特性図で、
時間1sの⇒で示した部分に磁極位相推定に対する外乱を入力した場合の応答を示している。
FIG. 10 is a characteristic diagram by simulation for confirming the effect when the present invention is applied (when the magnetic pole of the high frequency method due to detection noise converges NS incorrectly)
The response when a disturbance to the magnetic pole phase estimation is input in the portion indicated by ⇒ of time 1 s is shown.

<3>評価条件(電流引き込み法:本発明による補償機能有効、図9と制御的には同一条件)
(a)電流指令の振幅はモータ定格の100%に設定。
(b)電流指令の周波数は、0s〜0.1s間に速度指令を0%〜5%に変更、あとは一定に設定。
(c)負荷変動0s〜2s間は負荷トルク無し、2s〜3sの期間のみ70%の負荷トルクをステップ状に印加。
(d)位相推定外乱を1.0〜1.01sの期間に注入。
外乱は、積分するとちょうど180°(πrad)だけ磁極位相が変化するような大きさを設定。
<3> Evaluation conditions (current draw-in method: compensation function is valid according to the present invention, the same control as FIG. 9)
(A) The amplitude of the current command is set to 100% of the motor rating.
(B) The frequency of the current command is changed from 0% to 5% between 0s and 0.1s, and then set to a constant value.
(C) No load torque is applied between 0 s and 2 s of load fluctuation, and 70% load torque is applied stepwise only during the period of 2 s to 3 s.
(D) Injection of phase estimation disturbance in a period of 1.0 to 1.01 s.
The magnitude of the disturbance is set so that the magnetic pole phase changes by exactly 180 ° (π rad) when integrated.

<4>結果
(a)1sの時点で、磁極位相の外乱により磁極推定位相は180°反転している。つまりN極を推定していたが、外乱により、急にS極を推定するような誤動作状態になっている。
(b)しかし、モータ速度ωrや電流とd軸間の位相−φdは、過渡的な変動はあるが、元の安定な状態に戻っている。
(d)発生トルクも、この付近で安定である。
<4> Result (a) At the time of 1 s, the magnetic pole estimation phase is inverted by 180 ° due to the magnetic pole phase disturbance. That is, although the N pole was estimated, a malfunction has occurred in which the S pole is suddenly estimated due to a disturbance.
(B) However, although the motor speed ω r and the phase −φd between the current and the d axis have transient fluctuations, they have returned to the original stable state.
(D) The generated torque is also stable in this vicinity.

磁極推定に対する外乱により磁極推定位相Φvは180°急変している。従来の高周波法であれば、これによりN極とS極を誤って検出したことになり逆転暴走が発生する。
しかし、本発明によれば、図10で示したようにノイズ(⇒部)により変動成分は存在するが逆転暴走には至っておらず、安定性が改善できている。
以上に示した結果をまとめると実施例1および実施例2に共通な効果として下記の項目がある。
The magnetic pole estimation phase Φv is suddenly changed by 180 ° due to the disturbance to the magnetic pole estimation. In the case of the conventional high-frequency method, this causes erroneous detection of the N pole and the S pole, and reverse runaway occurs.
However, according to the present invention, as shown in FIG. 10, there is a fluctuation component due to noise (⇒ portion), but no reverse runaway has occurred, and stability can be improved.
Summarizing the results shown above, the following items are common effects in the first and second embodiments.

(1)逆転現象の防止
電流引き込み法であるため、高周波法のように磁極の推定が外乱成分などにより、S極をN極と誤って推定することが無い。そのため、逆転暴走する現象が発生しない。
(1) Since it is a current pull-in method that prevents reverse rotation, there is no possibility that the S pole is erroneously estimated as the N pole due to a disturbance component or the like, unlike the high frequency method. Therefore, the phenomenon of reverse runaway does not occur.

(2)周波数指令の急変時の安定性
周波数指令が急変した場合でも、出力周波数を脱調しないように自動補正する。 (3)負荷急変時の安定性
負荷が急変してモータ速度が急変しても、出カ周波数を脱調しないように自動補正する。(2)と(3)より、単に振動抑制するだけでなく、過渡変動時に周波数を自動補正して安定性を維持する効果が得られている。
なお、設定した電流指令で発生可能な最大トルクを超えた負荷トルクがかかった場合には脱調する。特許文献1〜3のように高周波法とベクトル制御を利用した場合には、過負荷時でも速度は低下するが脱調することはない。しかし、最大トルク以内であれば、振動も無く、かつ過渡的にも安定な制御系が実現できるので、電流を大きめに設定すれば対処できる。
(2) Stability when frequency command suddenly changes Even when the frequency command suddenly changes, the output frequency is automatically corrected so as not to step out. (3) Stability during sudden load changes Even if the load changes suddenly and the motor speed changes suddenly, the output frequency is automatically corrected so as not to step out. From (2) and (3), not only vibration suppression but also the effect of maintaining the stability by automatically correcting the frequency at the time of transient fluctuation is obtained.
If a load torque exceeding the maximum torque that can be generated with the set current command is applied, the step-out will occur. When the high-frequency method and vector control are used as in Patent Documents 1 to 3, the speed is reduced even when overloaded, but no step-out occurs. However, if it is within the maximum torque, it is possible to realize a control system that does not vibrate and is transiently stable, and can be dealt with by setting a larger current.

(4)ゲイン調整の簡易化効果
高周波法は磁極推定ゲインを適切に設定しないと、応答遅れによる脱調やゲインが過大のため発生する脱調が起こる。そのため、運転しながら調整する場合には、初期値を適切に調整しなければならない。不適切な初期値では。ゲイン調整時に脱調することがある。
これに対して本発明では、基本的には電流引き込み法を使用しており、速度指令や負荷急変さえなければ安定である。そして、補正ゲインは、初めは零に設定しておき、遠度変動や負荷変動に応じて少しずつ増加していけばよい。そのため、調整も簡単であり、過渡現象のない用途では本発明を適用しないように設定することも可能である。
(4) Simplification effect of gain adjustment In the high frequency method, if the magnetic pole estimation gain is not set appropriately, a step out due to a response delay or a step out due to an excessive gain occurs. Therefore, when adjusting while driving, the initial value must be adjusted appropriately. With an inappropriate initial value. There may be a step-out during gain adjustment.
On the other hand, in the present invention, the current drawing method is basically used, and it is stable if there is no speed command or sudden load change. The correction gain is initially set to zero, and may be increased little by little according to the distance fluctuation or load fluctuation. Therefore, the adjustment is easy, and it is possible to set so that the present invention is not applied in an application without a transient phenomenon.

本発明の実施形態を示す構成図。The block diagram which shows embodiment of this invention. 基本波成分と高周波成分の電圧・電流ベクトル図。Voltage / current vector diagram of fundamental wave component and high frequency component. 単相高周波成分の軌跡拡大図。The locus enlarged view of a single phase high frequency component. 高周波除去フィルタ及び低域通過フィルタの構成図。The block diagram of a high frequency removal filter and a low-pass filter. 高周波単相電流の発生位相検出部の構成図。The block diagram of the generation | occurrence | production phase detection part of a high frequency single phase electric current. 他の高周波単相電流の発生位相検出部の構成図。The block diagram of the generation | occurrence | production phase detection part of another high frequency single phase electric current. 本発明の他の実施形態を示す構成図。The block diagram which shows other embodiment of this invention. シミュレーションによる従来の電流引き込み法の特性図で、(a)は周波数成分波形、(b)は位相成分波形、(c)はモータトルク波形。FIG. 6 is a characteristic diagram of a conventional current drawing method by simulation, where (a) is a frequency component waveform, (b) is a phase component waveform, and (c) is a motor torque waveform. シミュレーションによる本発明の特性図で、(a)は周波数成分波形、(b)は位相成分波形、(c)はモータトルク波形。In the characteristic diagram of the present invention by simulation, (a) is a frequency component waveform, (b) is a phase component waveform, and (c) is a motor torque waveform. 本発明における磁極位相推定への外乱注入時の特性図で(a)は周波数成分波形、(b)は位相成分波形、(c)はモータトルク波形。In the present invention, (a) is a frequency component waveform, (b) is a phase component waveform, and (c) is a motor torque waveform. 従来のセンサレス制御装置の構成図。The block diagram of the conventional sensorless control apparatus. 他の従来のセンサレス制御装置の構成図。The block diagram of the other conventional sensorless control apparatus. 従来の電流引き込み法によるセンサレス制御装置の構成図。The block diagram of the sensorless control apparatus by the conventional electric current drawing method.

符号の説明Explanation of symbols

1… γ電流指令
2… δ電流指令
3… 周波数指令
4… 積分器
5… 電流制御部
6… 逆回転座標変換部
7… 2相/3相変換部
8… PWM増幅部
9… モータ
10… 電流検出器
11… 3相/2相変換部
12… 回転座標変換部
21… 単相高周波電圧発生部
22… 高周波電圧座標変換部
23… 高周波電圧重畳部
24… 電流指令位相演算用積分器
25… 高周波除去フィルタ
26… 高周波通過フィルタ
27… 単相高周波電流発生位相検出部
28… 磁極位相推定部
29… 磁極推定位相微分演算部
30… 安定化周波数補正部
DESCRIPTION OF SYMBOLS 1 ... γ current command 2 ... δ current command 3 ... Frequency command 4 ... Integrator 5 ... Current control unit 6 ... Reverse rotation coordinate conversion unit 7 ... 2-phase / 3-phase conversion unit 8 ... PWM amplification unit 9 ... Motor 10 ... Current Detector 11 ... Three-phase / two-phase converter 12 ... Rotating coordinate converter 21 ... Single-phase high-frequency voltage generator 22 ... High-frequency voltage coordinate converter 23 ... High-frequency voltage superposition unit 24 ... Current command phase calculation integrator 25 ... High frequency Removal filter 26 ... High-frequency pass filter 27 ... Single-phase high-frequency current generation phase detection unit 28 ... Magnetic pole phase estimation unit 29 ... Magnetic pole estimation phase differential operation unit 30 ... Stabilization frequency correction unit

Claims (5)

交流同期電動機の制御装置において、
制御装置に単相高周波電圧発生部を設け、この単相高周波電圧発生部からの高周波電圧成分を高周波電圧座標変換部により座標変換し、変換された高周波電圧と前記電流制御部からの電圧指令と合成して電圧指令値として前記逆回転座標変換部に出力すると共に、
前記座標変換した2軸の電流検出成分を高周波通過フィルタを通した後に単相高周波電流位相検出部に入力して単相軸位相信号を検出し、この単相軸位相信号を磁極位相推定部に出力して高周波電圧の位相信号を生成し、この位相信号を前記高周波電圧座標変換部に出力して座標変換時の位相信号とし、且つ高周波電圧の位相信号を安定化周波数補正部に出力して補正信号を演算し、演算された補正信号と前記周波数指令の和を基準位相信号として前記逆回転座標変換部に出力するよう構成したことを特徴とした永久磁石同期電動機のセンサレス制御装置。
In the control device for an AC synchronous motor,
The control device is provided with a single-phase high-frequency voltage generator, the high-frequency voltage component from the single-phase high-frequency voltage generator is coordinate-converted by a high-frequency voltage coordinate converter, the converted high-frequency voltage and the voltage command from the current controller Combined and output as a voltage command value to the reverse rotation coordinate conversion unit,
The coordinate-converted two-axis current detection component is input to a single-phase high-frequency current phase detection unit after passing through a high-frequency pass filter to detect a single-phase axis phase signal, and this single-phase axis phase signal is input to a magnetic pole phase estimation unit. To generate a phase signal of the high-frequency voltage, output this phase signal to the high-frequency voltage coordinate conversion unit to be a phase signal at the time of coordinate conversion, and output the phase signal of the high-frequency voltage to the stabilization frequency correction unit A sensorless control device for a permanent magnet synchronous motor, wherein a correction signal is calculated, and a sum of the calculated correction signal and the frequency command is output to the reverse rotation coordinate conversion unit as a reference phase signal.
前記単相高周波電圧発生部は、高周波の周波数指令を積分して高周波の基準位相信号を生成して高周波を含む波形信号を発生し、この信号に単相電圧の振幅指令を乗算して電圧の単振動を演算することを特徴とした請求項2記載の永久磁石同期電動機のセンサレス制御装置。 The single-phase high-frequency voltage generation unit integrates a high-frequency frequency command to generate a high-frequency reference phase signal to generate a waveform signal including the high frequency, and multiplies this signal by a single-phase voltage amplitude command to 3. A sensorless control device for a permanent magnet synchronous motor according to claim 2, wherein simple vibration is calculated. 交流同期電動機の制御装置において、
制御装置に単相高周波電圧発生部を設け、この単相高周波電圧発生部からの高周波電圧成分を高周波電圧座標変換部により座標変換し、変換された高周波電圧と前記電流制御部からの電圧指令と合成して電圧指令値として前記逆回転座標変換部に出力すると共に、
前記座標変換した2軸の電流検出成分を高調波通過フィルタを通した後に単相高周波電流位相検出部に入力して単相軸位相信号を検出し、この信号を磁極位相推定部に出力して高周波電圧の位相信号を生成し、この位相信号を前記高周波電圧座標変換部に出力して座標変換時の位相信号とし、且つ生成された位相信号と前記単相軸位相信号との差分を安定化周波数補正部に出力して補正信号を演算し、この補正信号と前記周波数指令の和を基準位相信号として前記逆回転座標変換部に出力するよう構成したことを特徴とした永久磁石同期電動機のセンサレス制御装置。
In the control device for an AC synchronous motor,
The control device is provided with a single-phase high-frequency voltage generator, the high-frequency voltage component from the single-phase high-frequency voltage generator is coordinate-converted by a high-frequency voltage coordinate converter, the converted high-frequency voltage and the voltage command from the current controller Combined and output as a voltage command value to the reverse rotation coordinate conversion unit,
The coordinate-converted two-axis current detection component is input to a single-phase high-frequency current phase detection unit after passing through a harmonic pass filter to detect a single-phase axis phase signal, and this signal is output to the magnetic pole phase estimation unit. Generates a phase signal of the high frequency voltage, outputs this phase signal to the high frequency voltage coordinate conversion unit as a phase signal at the time of coordinate conversion, and stabilizes the difference between the generated phase signal and the single phase axis phase signal A sensorless permanent magnet synchronous motor characterized in that a correction signal is calculated by outputting to a frequency correction unit, and the sum of the correction signal and the frequency command is output as a reference phase signal to the reverse rotation coordinate conversion unit. Control device.
前記高周波電圧座標変換部に入力される信号は直交2成分信号で、そのうちの1軸成分は前記単相高周波電圧発生部からの高周波電圧成分とし、他の1軸成分は零としたことを特徴とした請求項1乃至3記載の永久磁石同期電動機のセンサレス制御装置。 The signal input to the high-frequency voltage coordinate conversion unit is an orthogonal two-component signal, one of which is a high-frequency voltage component from the single-phase high-frequency voltage generation unit, and the other one-axis component is zero. 4. A sensorless control device for a permanent magnet synchronous motor according to claim 1. 前記磁極位相推定部の出力信号は、単相高周波電流位相検出部の出力である高周波の電流軸位相信号から電圧軸位相信号を差し引き、これに比例ゲインを掛けて積分した信号であることを特徴とした請求項1乃至4記載の永久磁石同期電動機のセンサレス制御装置。 The output signal of the magnetic pole phase estimation unit is a signal obtained by subtracting the voltage axis phase signal from the high frequency current axis phase signal which is the output of the single phase high frequency current phase detection unit and multiplying it by a proportional gain and integrating it. The sensorless control device for a permanent magnet synchronous motor according to claim 1.
JP2007138509A 2007-05-25 2007-05-25 Sensorless control device for permanent magnet synchronous motor Active JP5098439B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007138509A JP5098439B2 (en) 2007-05-25 2007-05-25 Sensorless control device for permanent magnet synchronous motor
CN2008800175390A CN101682283B (en) 2007-05-25 2008-05-14 Sensor-less control device for permanent-magnet synchronous electric motor
PCT/JP2008/058805 WO2008146598A1 (en) 2007-05-25 2008-05-14 Sensor-less control device for permanent-magnet synchronous electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138509A JP5098439B2 (en) 2007-05-25 2007-05-25 Sensorless control device for permanent magnet synchronous motor

Publications (2)

Publication Number Publication Date
JP2008295220A true JP2008295220A (en) 2008-12-04
JP5098439B2 JP5098439B2 (en) 2012-12-12

Family

ID=40074865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138509A Active JP5098439B2 (en) 2007-05-25 2007-05-25 Sensorless control device for permanent magnet synchronous motor

Country Status (3)

Country Link
JP (1) JP5098439B2 (en)
CN (1) CN101682283B (en)
WO (1) WO2008146598A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223123A (en) * 2011-06-17 2011-10-19 大连尚能科技发展有限公司 Method and system for controlling sensorless motor
JP2012055041A (en) * 2010-08-31 2012-03-15 Hitachi Industrial Equipment Systems Co Ltd Vector controller and motor control system
WO2012153794A1 (en) * 2011-05-10 2012-11-15 株式会社明電舎 Position sensorless control device for permanent magnet synchronous motor
WO2013136829A1 (en) * 2012-03-13 2013-09-19 株式会社 日立産機システム Electric power conversion device, electric motor drive system, transport machine, and lifting device
KR101449872B1 (en) 2013-11-25 2014-10-13 경성대학교 산학협력단 A modified current control scheme of Permanent Magnet Synchronous Motor
CN109600095A (en) * 2018-10-22 2019-04-09 北京航空航天大学 A kind of disconnected phase fault-tolerant control system and method for the permanent magnet synchronous motor based on four-leg inverter
JP2019088096A (en) * 2017-11-07 2019-06-06 株式会社コロナ Motor control device and air conditioning device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129423A1 (en) * 2010-04-17 2011-10-20 日本電産株式会社 Rotor phase/velocity estimation device for alternating-current motor
CN102545740A (en) * 2012-01-09 2012-07-04 南京航空航天大学 Low-speed position sensorless control method for surface mounted permanent magnet synchronous motor
JP6401495B2 (en) 2014-05-02 2018-10-10 キヤノン株式会社 Motor control device
WO2016038992A1 (en) * 2014-09-12 2016-03-17 三菱電機株式会社 Ac rotating machine control device and method for calculating magnetic pole position correction amount
CN104767435B (en) * 2015-04-27 2017-03-08 山东大学 Non sensor brushless motor commutation phase place real-time correction method based on neutral point voltage
CN110389343B (en) * 2018-04-20 2023-07-21 上海无线通信研究中心 Ranging method, ranging system and three-dimensional space positioning system based on acoustic wave phase
CN112087175B (en) * 2020-08-31 2021-10-22 东南大学 Speed identification method for permanent magnet synchronous motor
CN114050755B (en) * 2022-01-12 2022-03-29 希望森兰科技股份有限公司 Permanent magnet synchronous motor position observation improved algorithm based on high-frequency rotating voltage injection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078391A (en) * 2000-08-30 2002-03-15 Hitachi Ltd Drive system of ac motor
JP2003348896A (en) * 2002-05-24 2003-12-05 Meidensha Corp Control unit for pm motor
JP2005160287A (en) * 2003-10-29 2005-06-16 Daikin Ind Ltd Method and arrangement for annular rotational position estimation as well as control method of motor control arrangement of motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078391A (en) * 2000-08-30 2002-03-15 Hitachi Ltd Drive system of ac motor
JP2003348896A (en) * 2002-05-24 2003-12-05 Meidensha Corp Control unit for pm motor
JP2005160287A (en) * 2003-10-29 2005-06-16 Daikin Ind Ltd Method and arrangement for annular rotational position estimation as well as control method of motor control arrangement of motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055041A (en) * 2010-08-31 2012-03-15 Hitachi Industrial Equipment Systems Co Ltd Vector controller and motor control system
CN102386837A (en) * 2010-08-31 2012-03-21 株式会社日立产机系统 Vector control apparatus and motor control system
WO2012153794A1 (en) * 2011-05-10 2012-11-15 株式会社明電舎 Position sensorless control device for permanent magnet synchronous motor
JP5633643B2 (en) * 2011-05-10 2014-12-03 株式会社明電舎 Position sensorless control device for permanent magnet synchronous motor
CN102223123A (en) * 2011-06-17 2011-10-19 大连尚能科技发展有限公司 Method and system for controlling sensorless motor
WO2013136829A1 (en) * 2012-03-13 2013-09-19 株式会社 日立産機システム Electric power conversion device, electric motor drive system, transport machine, and lifting device
KR101449872B1 (en) 2013-11-25 2014-10-13 경성대학교 산학협력단 A modified current control scheme of Permanent Magnet Synchronous Motor
JP2019088096A (en) * 2017-11-07 2019-06-06 株式会社コロナ Motor control device and air conditioning device
CN109600095A (en) * 2018-10-22 2019-04-09 北京航空航天大学 A kind of disconnected phase fault-tolerant control system and method for the permanent magnet synchronous motor based on four-leg inverter

Also Published As

Publication number Publication date
WO2008146598A1 (en) 2008-12-04
JP5098439B2 (en) 2012-12-12
CN101682283A (en) 2010-03-24
CN101682283B (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5098439B2 (en) Sensorless control device for permanent magnet synchronous motor
JP4687846B2 (en) Magnetic pole position estimation method and control apparatus for synchronous motor
JP3860031B2 (en) Synchronous motor control device and control method of synchronous motor
JP4989075B2 (en) Electric motor drive control device and electric motor drive system
JP4284355B2 (en) High response control device for permanent magnet motor
EP2424105B1 (en) Vector control apparatus and motor control system
TWI654827B (en) Converter control device and motor driving system
KR102108911B1 (en) Drive system and inverter device
US20170264227A1 (en) Inverter control device and motor drive system
JP2003061386A (en) Synchronous motor drive system
JP2008167568A (en) Beatless control device of permanent magnet motor
JPWO2016121751A1 (en) Inverter control device and motor drive system
JP5717808B2 (en) Current control device for synchronous motor
JP6075090B2 (en) Motor control device
JP2004048886A (en) Drive controller for synchronous motor
JP3894286B2 (en) Control device for permanent magnet synchronous motor
JP4583257B2 (en) AC rotating machine control device
JP2004297966A (en) Ac motor controlling device
JP2014110708A (en) Magnetic pole position detection device for synchronous motor
JP5277724B2 (en) Control device for permanent magnet type synchronous motor
JP5473289B2 (en) Control device and control method for permanent magnet type synchronous motor
JP4639832B2 (en) AC motor drive device
JP5104213B2 (en) Control device for permanent magnet type synchronous motor
JP2006074902A (en) Control unit for rotary machine
JP5055835B2 (en) Synchronous motor drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150