JP2008292072A - Level measuring method and device for ash melting furnace - Google Patents

Level measuring method and device for ash melting furnace Download PDF

Info

Publication number
JP2008292072A
JP2008292072A JP2007138887A JP2007138887A JP2008292072A JP 2008292072 A JP2008292072 A JP 2008292072A JP 2007138887 A JP2007138887 A JP 2007138887A JP 2007138887 A JP2007138887 A JP 2007138887A JP 2008292072 A JP2008292072 A JP 2008292072A
Authority
JP
Japan
Prior art keywords
electrode
furnace
back pressure
level
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007138887A
Other languages
Japanese (ja)
Other versions
JP5096797B2 (en
Inventor
Masaharu Ogami
雅晴 大上
Koutarou Katou
考太郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2007138887A priority Critical patent/JP5096797B2/en
Publication of JP2008292072A publication Critical patent/JP2008292072A/en
Application granted granted Critical
Publication of JP5096797B2 publication Critical patent/JP5096797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a level measuring method and a device applied to an ash melting furnace such as a plasma electric melting furnace which melts molten objects such as incinerated ash, reduced in initial cost and in running cost. <P>SOLUTION: The method comprises steps for measuring the back pressure of inactive gas A supplied into a furnace body 51 while moving an electrode 53 down in the ash melting furnace 50 supplying the inactive gas A into the furnace body 51 through a hollow hole 52 of the electrode 53 movable up and down, and detecting a molten slag level SL and a molten metal level ML from a change in the increasing rate of the back pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば焼却灰等の被溶融物を溶融するプラズマ式電気溶融炉等の灰溶融炉に適用されるレベル測定方法及びレベル測定装置の改良に関する。   The present invention relates to an improvement in a level measuring method and a level measuring apparatus applied to an ash melting furnace such as a plasma electric melting furnace that melts a material to be melted such as incinerated ash.

従来、灰溶融炉に於ける溶融スラグレベルや溶融メタルレベルを測定する方法としては、例えば特許文献1〜7に記載されたものが知られている。
又、灰溶融炉に用いられるものではないが、ガス管から送給されるガスの背圧の変化を検出して溶湯レベルを測定するものも知られている(特許文献8〜11参照)。
Conventionally, as a method for measuring a molten slag level or a molten metal level in an ash melting furnace, for example, those described in Patent Documents 1 to 7 are known.
Further, although not used in an ash melting furnace, there is also known one that detects a change in the back pressure of a gas fed from a gas pipe and measures a molten metal level (see Patent Documents 8 to 11).

特開平8−271319公報JP-A-8-271319 特開平8−320111公報JP-A-8-320111 特開平10−9555号公報Japanese Patent Laid-Open No. 10-9555 特開平10−122544公報JP 10-122544 A 特開平10−332268号公報JP 10-332268 A 特開2001−50528号公報JP 2001-50528 A 特開2003−42428号公報Japanese Patent Laid-Open No. 2003-42428 特開昭63−196820公報JP-A 63-196820 特開平6−588公報JP-A-6-588 特開平6−589公報JP-A-6-589 特開平9−126858公報JP-A-9-126858

然しながら、何れのものも、専用の測定装置を用いて測定するものであったので、それだけイニシャルコストやランニングコストが余分に掛かる難点があった。   However, since all of them were measured using a dedicated measuring device, there was a problem that the initial cost and the running cost were excessive.

本発明は、叙上の問題点に鑑み、これを解消する為に創案されたもので、その課題とする処は、イニシャルコストやランニングコストを削減できる様にした灰溶融炉のレベル測定方法及びレベル測定装置を提供するにある。   The present invention was devised in view of the above-mentioned problems, and was devised to solve this problem. The process to be performed is a method for measuring the level of an ash melting furnace capable of reducing initial costs and running costs, and To provide a level measuring device.

本発明の灰溶融炉のレベル測定方法は、昇降可能な電極の中空孔から炉本体内に不活性ガスを供給している灰溶融炉に於て、前記電極を降下させながら炉本体内に供給している不活性ガスの背圧を測定し、背圧の増加率の変化から溶融スラグレベルと溶融メタルレベルを検出する事に特徴が存する。   In the ash melting furnace according to the present invention, the level measurement method of the ash melting furnace supplies the inert gas to the furnace body while lowering the electrode in the ash melting furnace that supplies the inert gas into the furnace body from the hollow hole of the electrode that can be raised and lowered. The feature is that the back pressure of the inert gas is measured and the molten slag level and the molten metal level are detected from the change in the increase rate of the back pressure.

本発明の灰溶融炉のレベル測定装置は、炉本体に昇降可能に設けられて中空孔を備えた電極と、電極を昇降させる為の昇降手段と、電極の中空孔を介して炉本体内に不活性ガスを供給する為のガス供給手段と、不活性ガスの背圧を検出する為の背圧検出手段と、背圧検出手段に依る背圧の増加率の変化から溶融スラグレベルと溶融メタルレベルを演算する為の演算手段と、から構成した事に特徴が存する。   The level measuring apparatus for an ash melting furnace of the present invention is provided in the furnace main body through an electrode provided with a hollow hole that can be moved up and down in the furnace main body, a lifting means for moving the electrode up and down, and a hollow hole of the electrode. Gas supply means for supplying inert gas, back pressure detection means for detecting the back pressure of the inert gas, and the molten slag level and the molten metal from the change in the increase rate of the back pressure due to the back pressure detection means It is characterized by the fact that it is composed of calculation means for calculating the level.

液体に気体を吹き込むと、液体の比重と浸漬深さに応じて気体の背圧が変化する事が知られている。この原理を応用して、電極の先端から窒素等の不活性ガスを噴出させながら電極を降下させると、炉内ガスと溶融スラグと溶融メタルの比重の差で、ガス部と溶融スラグ、溶融スラグと溶融メタルの各境界層で不活性ガスの背圧の増加率が変化する。これらの変化点から溶融スラグレベルと溶融メタルレベルを検出する事ができる。   It is known that when a gas is blown into a liquid, the back pressure of the gas changes according to the specific gravity and immersion depth of the liquid. When this principle is applied and the electrode is lowered while injecting an inert gas such as nitrogen from the tip of the electrode, the gas part, the molten slag, and the molten slag are caused by the difference in specific gravity of the gas in the furnace, the molten slag, and the molten metal. The increase rate of the back pressure of the inert gas changes in each boundary layer of molten metal. The molten slag level and the molten metal level can be detected from these changing points.

溶融スラグ層の厚みは、溶融スラグレベルから溶融メタルレベルまでの電極の移動距離から算出する事ができる。
溶融メタル層の厚みは、スラグ流出口の高さを基準とし、電極下端からスラグ流出口の高さまでの距離と溶融メタルレベルまでの電極の移動距離から算出する事ができる。
The thickness of the molten slag layer can be calculated from the moving distance of the electrode from the molten slag level to the molten metal level.
The thickness of the molten metal layer can be calculated from the distance from the lower end of the electrode to the height of the slag outlet and the moving distance of the electrode to the molten metal level, based on the height of the slag outlet.

本発明に依れば、次の様な優れた効果を奏する事ができる。
(1) 昇降可能な電極の中空孔から炉本体内に不活性ガスを供給している灰溶融炉に於て、前記電極を降下させながら炉本体内に供給している不活性ガスの背圧を測定し、背圧の増加率の変化から溶融スラグレベルと溶融メタルレベルを検出する様にしたので、イニシャルコストやランニングコストが削減できる。
(2) 灰溶融炉の電極と昇降手段とガス供給手段を利用する様にしたので、灰溶融炉の構造が複雑化したり、設置スペースが余分に必要になったり、現場での作業等が増えたりする事がない。
According to the present invention, the following excellent effects can be achieved.
(1) Back pressure of inert gas supplied into the furnace body while lowering the electrode in an ash melting furnace that supplies inert gas into the furnace body from the hollow hole of the electrode that can be raised and lowered Since the molten slag level and the molten metal level are detected from the change in the increase rate of the back pressure, the initial cost and the running cost can be reduced.
(2) Since the ash melting furnace electrode, lifting and lowering means and gas supply means are used, the structure of the ash melting furnace is complicated, additional installation space is required, and work on site increases. There is nothing to do.

以下、本発明の実施の形態を、図面に基づいて説明する。
図1は、本発明のレベル測定装置を適用した灰溶融炉を示す概要図。図2は、本発明のレベル測定方法の概要を示す説明図。図3は、電極高さと窒素供給圧力との関係を示すグラフである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing an ash melting furnace to which a level measuring device of the present invention is applied. FIG. 2 is an explanatory diagram showing an overview of the level measurement method of the present invention. FIG. 3 is a graph showing the relationship between the electrode height and the nitrogen supply pressure.

レベル測定装置1は、プラズマ式電気溶融炉等の灰溶融炉50に適用される。
灰溶融炉50は、炉本体51と、炉本体51に昇降可能に設けられて中空孔52を備えた電極(主電極)53と、電極53を昇降させる為の昇降手段54と、電極53の中空孔52を介して炉本体51内に不活性ガスAを供給する為のガス供給手段55と、炉底に設置された炉底電極56と、被溶融物Bを炉本体51に供給する被溶融物供給手段57と、溶融スラグSを排出する流出口58と、始動時に使用するスタート電極59等から構成されている。
The level measuring device 1 is applied to an ash melting furnace 50 such as a plasma electric melting furnace.
The ash melting furnace 50 includes a furnace main body 51, an electrode (main electrode) 53 that is provided in the furnace main body 51 so as to be movable up and down and has a hollow hole 52, an elevating means 54 for elevating and lowering the electrode 53, A gas supply means 55 for supplying the inert gas A into the furnace main body 51 through the hollow hole 52, a furnace bottom electrode 56 installed at the furnace bottom, and a target for supplying the melt B to the furnace main body 51. It comprises a melt supply means 57, an outlet 58 for discharging the molten slag S, a start electrode 59 used at the start, and the like.

焼却灰等の被溶融物Bは、コンテナに貯えられてスクリューコンベヤ等の被溶融物供給手段57により炉本体51内へ連続的に投入される。炉本体51は、1800℃以上の高温に耐える耐火材により形成されると共に、その外周を断熱材で覆われており、更に、その外部に冷却ジャケットが設けられている。   A material B to be melted such as incinerated ash is stored in a container and continuously charged into the furnace main body 51 by a material to be melted supply means 57 such as a screw conveyor. The furnace main body 51 is formed of a refractory material that can withstand a high temperature of 1800 ° C. or higher, the outer periphery thereof is covered with a heat insulating material, and a cooling jacket is provided outside thereof.

炉本体51には、炉頂部から略垂直に昇降可能に挿入されて炉内の被溶融物Bとの間に一定の距離を保つ黒鉛主電極53(マイナス極)と、炉底に設置された炉底電極56(プラス極)とが設けられており、両電極53、56間に印加された直流電源装置(容量約600〜1000kWH/T・被溶融物)の直流電圧(200〜500V)により、電流が流れてプラズマアークが発生する。これによって被溶融物Bが1300℃〜1600℃に加熱され、順次溶融スラグSとなる。   A graphite main electrode 53 (minus electrode) that is inserted into the furnace main body 51 so as to be able to move up and down substantially vertically from the top of the furnace and maintain a certain distance from the melt B in the furnace, and installed at the furnace bottom. Furnace bottom electrode 56 (plus electrode) is provided, and the DC voltage (200 to 500 V) of the DC power supply (capacity: about 600 to 1000 kWH / T / melted material) applied between both electrodes 53 and 56 is provided. A current flows and a plasma arc is generated. As a result, the melt B is heated to 1300 ° C. to 1600 ° C., and becomes a molten slag S in sequence.

溶融前の被溶融物Bは、導電性が低いため、始動時にはスタート電極59を炉本体51内へ挿入してこれをプラス極とし、これと主電極53の間へ通電することにより被溶融物Bが溶融するのを待つ。そして、被溶融物Bが溶融するとその導電性が上昇するため、スタート電極59を炉底電極56へ切り換える。
炉本体51の内部は、溶融スラグSや主電極53等の酸化を防止するために還元性雰囲気に保持されており、ガス供給手段55からの窒素等の不活性ガスAが、中空筒状に形成した主電極53の中空孔52を通して、また覗き窓のパージとして炉本体51内へ連続的に供給されている。
Since the melted material B before melting has low electrical conductivity, the start electrode 59 is inserted into the furnace main body 51 at the time of start-up, and this is used as a positive electrode. Wait for B to melt. When the material to be melted B is melted, its conductivity increases, so that the start electrode 59 is switched to the furnace bottom electrode 56.
The inside of the furnace body 51 is maintained in a reducing atmosphere to prevent oxidation of the molten slag S, the main electrode 53 and the like, and an inert gas A such as nitrogen from the gas supply means 55 is formed in a hollow cylindrical shape. Through the hollow hole 52 of the main electrode 53 thus formed, it is continuously supplied into the furnace main body 51 as a peep window purge.

被溶融物Bが溶融すると、揮発成分や炭素はガス化し、一酸化炭素を含んだガスとなり、一方、鉄を始めとする金属、ガラス、砂等の不燃性成分は溶融状態となる。前記ガスは、出口ダクト60を経て燃焼室に入り、そこで、燃焼空気ファンにより送入された燃焼用空気によって未燃焼分を完全燃焼せしめられた後、燃焼室から排気されて冷却された後、フィルタを経て煙突に導かれる。   When the material to be melted B is melted, volatile components and carbon are gasified to become a gas containing carbon monoxide, while non-combustible components such as iron, metals, glass, sand and the like are in a molten state. The gas enters the combustion chamber via the outlet duct 60, where the unburned portion is completely burned by the combustion air sent by the combustion air fan, and then exhausted from the combustion chamber and cooled. It is led to the chimney through the filter.

被溶融物Bには、焼却灰、シリカ、アルミナ、カルシアや、鉄等が含まれているため、これが炉内で溶融されると、シリカ、アルミナ、カルシアを主成分とする溶融スラグが上方に浮上すると共に、鉄を主成分とする溶融金属が下方に沈下し、炉底から溶融メタル層Mと溶融スラグ層Sを順次形成し、分離された2層を形成する。
そして、溶融スラグ層Sは、流出口58から連続的に溢出し、水を満たしたスラグ水冷槽に落下して水砕スラグとなり、搬出コンベヤにより搬出される。
溶融メタル層Mは、炉底に蓄積したまま次第にその層厚を増し、炉底からの層厚が所定層厚を超えたときには、少なくともその一部が炉外へ排出されて所謂湯抜きが行われる。
Since the to-be-melted material B contains incinerated ash, silica, alumina, calcia, iron, and the like, when this is melted in the furnace, the molten slag mainly composed of silica, alumina, and calcia is upward. As it floats, the molten metal containing iron as a main component sinks downward, the molten metal layer M and the molten slag layer S are sequentially formed from the bottom of the furnace, and two separated layers are formed.
Then, the molten slag layer S continuously overflows from the outlet 58, falls into a slag water cooling tank filled with water, becomes a granulated slag, and is carried out by a carry-out conveyor.
The molten metal layer M gradually increases in thickness while accumulating in the furnace bottom. When the layer thickness from the furnace bottom exceeds a predetermined layer thickness, at least a part of the molten metal layer M is discharged to the outside of the furnace to perform so-called hot water removal. Is called.

レベル測定装置1は、この様な灰溶融炉50に適用され、炉本体51に昇降可能に設けられて中空孔52を備えた電極(主電極)53と、電極53を昇降させる為の昇降手段54と、電極53の中空孔52を介して炉本体51内に不活性ガスAを供給する為のガス供給手段55と、不活性ガスAの背圧を検出する為の背圧検出手段2と、背圧検出手段2に依る背圧の増加率の変化から溶融スラグレベルSLと溶融メタルレベルMLを演算する為の演算手段3とを備えている。
レベル測定装置1は、電極53の下端位置を検出する為の赤外線カメラ手段4も備えている。
The level measuring apparatus 1 is applied to such an ash melting furnace 50, and is provided in the furnace body 51 so as to be movable up and down, and has an electrode (main electrode) 53 provided with a hollow hole 52, and a lifting means for moving the electrode 53 up and down. 54, gas supply means 55 for supplying the inert gas A into the furnace body 51 through the hollow hole 52 of the electrode 53, and back pressure detection means 2 for detecting the back pressure of the inert gas A, The calculation means 3 for calculating the molten slag level SL and the molten metal level ML from the change in the increase rate of the back pressure due to the back pressure detection means 2 is provided.
The level measuring apparatus 1 also includes an infrared camera means 4 for detecting the lower end position of the electrode 53.

ガス供給手段55は、図略しているが、窒素等の不活性ガス源と減圧弁と定流量弁等を備えている。
背圧検出手段2は、ガス供給手段55の電極53側に接続して設けられている。
Although not shown, the gas supply means 55 includes an inert gas source such as nitrogen, a pressure reducing valve, a constant flow valve, and the like.
The back pressure detection means 2 is provided connected to the electrode 53 side of the gas supply means 55.

赤外線カメラ手段4は、流出口58側の炉本体51に設けられた覗き窓5の外側に設置されている。   The infrared camera means 4 is installed outside the viewing window 5 provided in the furnace body 51 on the outlet 58 side.

演算手段3は、昇降手段54からの信号と背圧検出手段2からの信号と赤外線カメラ手段4からの信号に依り溶融スラグレベルSLと溶融メタルレベルMLと溶融スラグ層Sの厚みSTと溶融メタル層Mの厚みMTとを演算する様になっている。   The calculation means 3 is based on the signal from the elevating means 54, the signal from the back pressure detection means 2, and the signal from the infrared camera means 4, and the molten slag level SL, the molten metal level ML, the thickness ST of the molten slag layer S, and the molten metal. The thickness MT of the layer M is calculated.

次に、この様な構成に基づいてその作用を述解する。
図2及び図3に示す如く、液体に気体を吹き込むと、液体の比重と浸漬深さに応じて気体の背圧が変化する事が知られている。
この原理を応用して、ガス供給手段55からの窒素等の不活性ガスAを電極53の中空孔52を介してその先端から噴出させながら、昇降手段54に依り電極53を降下させると、炉内ガスと溶融スラグSと溶融メタルMの比重の差で、ガス部と溶融スラグ、溶融スラグと溶融メタルの各境界層で不活性ガスAの背圧の増加率が変化する。そこで、この不活性ガスAの背圧を背圧検出手段2に依り計測して演算手段3に依り演算すると、これらの変化点から溶融スラグレベルSLと溶融メタルレベルMLを検出する事ができる。
Next, the operation will be described based on such a configuration.
As shown in FIGS. 2 and 3, it is known that when a gas is blown into a liquid, the back pressure of the gas changes according to the specific gravity and immersion depth of the liquid.
Applying this principle, when the electrode 53 is lowered by the elevating means 54 while the inert gas A such as nitrogen from the gas supply means 55 is ejected from the tip thereof through the hollow hole 52 of the electrode 53, the furnace The increase rate of the back pressure of the inert gas A changes in each boundary layer of the gas portion and the molten slag and the molten slag and the molten metal due to the difference in specific gravity between the inner gas, the molten slag S and the molten metal M. Therefore, when the back pressure of the inert gas A is measured by the back pressure detecting means 2 and calculated by the calculating means 3, the molten slag level SL and the molten metal level ML can be detected from these changing points.

溶融スラグ層Sの厚みSTは、溶融スラグレベルSLから溶融メタルレベルMLまでの電極53の移動距離から算出する事ができる。電極53の移動距離は、昇降手段54からの信号を演算手段3に依り演算して求める事ができる。   The thickness ST of the molten slag layer S can be calculated from the moving distance of the electrode 53 from the molten slag level SL to the molten metal level ML. The movement distance of the electrode 53 can be obtained by calculating a signal from the lifting / lowering means 54 using the calculation means 3.

溶融メタル層Mの厚みMTの算出には、基準高さが必要であり、本発明ではスラグ流出口の高さを用いる。溶融メタル層Mの厚みMTの算出は、例えば次の様にして行われる。
(1) 赤外線カメラ手段4の画像中で電極53の下端が判別できる高さまで、昇降手段54に依り電極53を上昇させる。
(2) 予め赤外線カメラ手段4の画像中でスラグ流出口の高さを設定する。炉底からスラグ流出口の高さまでの距離Cは既知である。スラグ流出口の高さから電極53の下端までの距離Dを赤外線カメラ手段4で測定する。よって、炉底からスラグ流出口の高さまでの距離Cと前記の距離Dの和が、炉底から電極53の下端までの距離C+Dとなる。
(3) 電極53を昇降手段54に依り降下させ、溶融メタルレベルMLを検出する。前記(1)の位置にある電極53の下端位置から溶融メタルレベルMLまでの電極移動距離をEとする。
(4) 前記(2)で算出した距離C+Dと、前記(3)の電極53の移動距離Eとの差を溶融メタル層Mの厚みMTとする(図1ではC+D−E)。
The calculation of the thickness MT of the molten metal layer M requires a reference height. In the present invention, the height of the slag outlet is used. The calculation of the thickness MT of the molten metal layer M is performed as follows, for example.
(1) The electrode 53 is raised by the elevating means 54 to a height at which the lower end of the electrode 53 can be discriminated in the image of the infrared camera means 4.
(2) The height of the slag outlet is set in advance in the image of the infrared camera means 4. The distance C from the furnace bottom to the height of the slag outlet is known. A distance D from the height of the slag outlet to the lower end of the electrode 53 is measured by the infrared camera means 4. Therefore, the sum of the distance C from the furnace bottom to the height of the slag outlet and the distance D is the distance C + D from the furnace bottom to the lower end of the electrode 53.
(3) The electrode 53 is lowered by the elevating means 54, and the molten metal level ML is detected. Let E be the electrode movement distance from the lower end position of the electrode 53 at the position (1) to the molten metal level ML.
(4) The difference between the distance C + D calculated in (2) and the movement distance E of the electrode 53 in (3) is defined as the thickness MT of the molten metal layer M (C + DE in FIG. 1).

本発明のレベル測定装置を適用した灰溶融炉を示す概要図。The schematic diagram which shows the ash melting furnace to which the level measuring apparatus of this invention is applied. 本発明のレベル測定方法の概要を示す説明図。Explanatory drawing which shows the outline | summary of the level measuring method of this invention. 電極高さと窒素供給圧力との関係を示すグラフ。The graph which shows the relationship between electrode height and nitrogen supply pressure.

符号の説明Explanation of symbols

1…レベル測定装置、2…背圧検出手段、3…演算手段、4…赤外線カメラ手段、5…覗き窓、50…灰溶融炉、51…炉本体、52…中空孔、53…電極(主電極)、54…昇降手段、55…ガス供給手段、56…炉底電極、57…被溶融物供給手段、58…流出口、59…スタート電極、60…出口ダクト、A…不活性ガス、B…被溶融物、C…炉底からスラグ流出口の高さまでの距離、D…電極の下端からスラグ流出口の高さまでの距離、E…電極の下端から溶融メタルレベルまでの距離、S…溶融スラグ(層)、M…溶融メタル(層)、SL…溶融スラグレベル、ML…溶融メタルレベル、ST…溶融スラグ層の厚み、MT…溶融メタル層の厚み。   DESCRIPTION OF SYMBOLS 1 ... Level measuring device, 2 ... Back pressure detection means, 3 ... Calculation means, 4 ... Infrared camera means, 5 ... Viewing window, 50 ... Ash melting furnace, 51 ... Furnace main body, 52 ... Hollow hole, 53 ... Electrode (main Electrode), 54 ... elevating means, 55 ... gas supply means, 56 ... furnace bottom electrode, 57 ... melt supply means, 58 ... outlet, 59 ... start electrode, 60 ... outlet duct, A ... inert gas, B ... melted material, C ... distance from the furnace bottom to the height of the slag outlet, D ... distance from the lower end of the electrode to the height of the slag outlet, E ... distance from the lower end of the electrode to the molten metal level, S ... melting Slag (layer), M ... Molten metal (layer), SL ... Molten slag level, ML ... Molten metal level, ST ... Thickness of molten slag layer, MT ... Thickness of molten metal layer.

Claims (2)

昇降可能な電極の中空孔から炉本体内に不活性ガスを供給している灰溶融炉に於て、前記電極を降下させながら炉本体内に供給している不活性ガスの背圧を測定し、背圧の増加率の変化から溶融スラグレベルと溶融メタルレベルを検出する事を特徴とする灰溶融炉のレベル測定方法。   In an ash melting furnace that supplies inert gas into the furnace body from the hollow hole of the electrode that can be raised and lowered, the back pressure of the inert gas supplied into the furnace body is measured while the electrode is lowered. A method for measuring the level of an ash melting furnace, characterized by detecting a molten slag level and a molten metal level from a change in the increase rate of back pressure. 炉本体に昇降可能に設けられて中空孔を備えた電極と、電極を昇降させる為の昇降手段と、電極の中空孔を介して炉本体内に不活性ガスを供給する為のガス供給手段と、不活性ガスの背圧を検出する為の背圧検出手段と、背圧検出手段に依る背圧の増加率の変化から溶融スラグレベルと溶融メタルレベルを演算する為の演算手段と、から構成した事を特徴とする灰溶融炉のレベル測定装置。


An electrode provided in the furnace body so as to be movable up and down and having a hollow hole, a lifting means for raising and lowering the electrode, a gas supply means for supplying an inert gas into the furnace body through the hollow hole of the electrode, And a back pressure detecting means for detecting the back pressure of the inert gas, and a calculating means for calculating the molten slag level and the molten metal level from the change in the increase rate of the back pressure due to the back pressure detecting means. An ash melting furnace level measuring device characterized by


JP2007138887A 2007-05-25 2007-05-25 Level measurement method for ash melting furnace Active JP5096797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007138887A JP5096797B2 (en) 2007-05-25 2007-05-25 Level measurement method for ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138887A JP5096797B2 (en) 2007-05-25 2007-05-25 Level measurement method for ash melting furnace

Publications (2)

Publication Number Publication Date
JP2008292072A true JP2008292072A (en) 2008-12-04
JP5096797B2 JP5096797B2 (en) 2012-12-12

Family

ID=40166980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138887A Active JP5096797B2 (en) 2007-05-25 2007-05-25 Level measurement method for ash melting furnace

Country Status (1)

Country Link
JP (1) JP5096797B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932879A (en) * 2021-09-26 2022-01-14 中国恩菲工程技术有限公司 Automatic detection device for high-temperature melt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324832B2 (en) * 2008-06-13 2013-10-23 株式会社タクマ Level measuring method and level measuring apparatus for ash melting furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175921A (en) * 1981-04-24 1982-10-29 Nippon Steel Corp Method for detecting interfacial boundary position between multiple layers of liquid
JPH109555A (en) * 1996-06-25 1998-01-16 Ishikawajima Harima Heavy Ind Co Ltd Method and device for sensing level of ash melting furnace
JPH10332268A (en) * 1997-06-02 1998-12-15 Hitachi Zosen Corp Molten metal sensing method for base metal in electric ash melting furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175921A (en) * 1981-04-24 1982-10-29 Nippon Steel Corp Method for detecting interfacial boundary position between multiple layers of liquid
JPH109555A (en) * 1996-06-25 1998-01-16 Ishikawajima Harima Heavy Ind Co Ltd Method and device for sensing level of ash melting furnace
JPH10332268A (en) * 1997-06-02 1998-12-15 Hitachi Zosen Corp Molten metal sensing method for base metal in electric ash melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932879A (en) * 2021-09-26 2022-01-14 中国恩菲工程技术有限公司 Automatic detection device for high-temperature melt

Also Published As

Publication number Publication date
JP5096797B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
KR101457368B1 (en) Induction Tapping Equipment and Method for Melt
KR100985099B1 (en) Vitrification furnace and method with dual heating means
JP4728165B2 (en) Skirt seal structure in converter exhaust gas treatment equipment
JP5324832B2 (en) Level measuring method and level measuring apparatus for ash melting furnace
WO2015046027A1 (en) Lance system, metallurgical furnace using the same, and lance positioning method
JP5096797B2 (en) Level measurement method for ash melting furnace
JP2008075950A (en) Furnace bottom monitoring method and device for melting furnace
JP3746921B2 (en) Operation method of electric melting furnace
JP5007094B2 (en) Control method of plasma melting furnace
JP2008116066A (en) Operating method of electric furnace
JP3970542B2 (en) Furnace wall structure of electric melting furnace and method for suppressing wear of furnace wall refractories
JP4949074B2 (en) Method and apparatus for controlling operation of plasma melting furnace
JP3590243B2 (en) Furnace wall cooling structure of electric melting furnace
JP4965890B2 (en) Electric melting furnace operation control method
JP3534693B2 (en) Operating method of plasma ash melting furnace
JP2003090524A (en) Molten metal temperature measuring device for melting furnace
JP3709945B2 (en) Level detection method and apparatus for ash melting furnace
JP5346625B2 (en) Melting furnace level measuring device
JP2000088632A (en) Method for measuring depth of molten slag in plasma type ash melting furnace
JP3576468B2 (en) Electric ash melting furnace and method for removing solids from electric ash melting furnace
JP4095774B2 (en) How to restart the plasma ash melting furnace
KR100481072B1 (en) Melting apparatus using electric resistance and method thereof
JP3542074B2 (en) Automatic controller for electric resistance melting furnace
JP2006132926A (en) Operation method for plasma type ash melting furnace
JP2004177080A (en) Dc electric resistance type melting furnace and its operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5096797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250