JP2006132926A - Operation method for plasma type ash melting furnace - Google Patents

Operation method for plasma type ash melting furnace Download PDF

Info

Publication number
JP2006132926A
JP2006132926A JP2005322485A JP2005322485A JP2006132926A JP 2006132926 A JP2006132926 A JP 2006132926A JP 2005322485 A JP2005322485 A JP 2005322485A JP 2005322485 A JP2005322485 A JP 2005322485A JP 2006132926 A JP2006132926 A JP 2006132926A
Authority
JP
Japan
Prior art keywords
melting furnace
furnace
ash
plasma
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005322485A
Other languages
Japanese (ja)
Other versions
JP4245600B2 (en
Inventor
Akira Noma
彰 野間
Yasuhiro Takatsudo
康弘 高津戸
Ichiro Yamashita
一郎 山下
Minoru Ike
稔 池
Tetsuo Sato
鉄雄 佐藤
Tatsuo Tazawa
辰夫 田澤
Keita Inoue
敬太 井上
Kentaro Saeki
健太郎 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005322485A priority Critical patent/JP4245600B2/en
Publication of JP2006132926A publication Critical patent/JP2006132926A/en
Application granted granted Critical
Publication of JP4245600B2 publication Critical patent/JP4245600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method for a plasma type ash melting furnace capable of preventing plasma arc from being eliminated when molten metal accumulated at the bottom part of the ash melting furnace is discharged while the ash melting furnace is operated. <P>SOLUTION: In this operation method for the plasma type ash melting furnace generating molten slag 23 by throwing incineration ash in the furnace chamber 6 of a furnace body 2 and heating and melting the incineration ash by the plasma arc, an arc length is obtained by using the level height of the slag and the height of the lower end part of a main electrode 4 as viewed by an infrared camera 17, and a length between the lower end part of the main electrode 4 and the level of the molten slag is adjusted to a prescribed value or within a prescribed range. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ごみ等の焼却灰を溶融処理してスラグ化した焼却灰を、資源化若しくは減量化するプラズマ式の灰溶融炉において、灰炉本体を焼却灰量に対応させて運転することができるプラズマ式灰溶融炉の運転方法に関する。   The present invention is a plasma-type ash melting furnace for recycling or reducing the amount of incineration ash obtained by melting slag by incineration ash such as garbage, and operating the ash furnace main body according to the amount of incineration ash. The present invention relates to a method for operating a plasma ash melting furnace.

灰溶融炉は、ごみ焼却灰の有効利用を図るためのものであり、灰溶融炉により溶融した焼却灰は、低沸点の揮散物や、金属類及びその他成分のスラグに分け、無害化するとともに、そのリサイクルを図っている。こうした焼却灰の溶融炉のニーズが増加してきている。これらの灰溶融炉には、焼却灰の溶融のために重油等を燃料にするバーナ式灰溶融炉や、電気抵抗式灰溶融炉及びプラズマ式灰溶融炉等のように電気を熱源として灰を溶融するものが知られている。   The ash melting furnace is intended for effective use of refuse incineration ash, and the incineration ash melted by the ash melting furnace is made harmless by separating it into low boiling point volatilized materials and slag of metals and other components. , We are trying to recycle it. The need for incinerator ash melting furnaces is increasing. In these ash melting furnaces, ash is produced using electricity as a heat source, such as burner ash melting furnaces that use heavy oil as fuel to melt incinerated ash, electric resistance ash melting furnaces, and plasma ash melting furnaces. Those that melt are known.

図4は従来のプラズマアーク式灰溶融炉51を示し、灰溶融炉51には、溶融炉本体52に囲まれた炉室56を設けている。灰溶融炉51には、主電極54、炉底電極57及び直流電源58等を備えたプラズマ装置が設けられ、主電極54は、溶融炉本体52の天井壁53を貫通して配設されるとともに、昇降装置65に支持されることにより炉室56を上下動できるように構成されている。主電極54の下端部には、その先端と対向する炉底壁55に炉底電極57を設置し、これらの電極54,57間に、プラズマ発生用の直流電源58を接続している。
溶融炉本体52は、外壁を鉄皮60で覆い、内壁61はレンガ等の耐火材で形成し、溶融炉本体52の周壁部には、溶融スラグ63の排出口である出滓口68が配設され、出滓口68には出滓樋69に接続されている。そして、出滓樋69の先端部の下方には出滓コンベア70上に載置されているモールド71が配設されている。
FIG. 4 shows a conventional plasma arc ash melting furnace 51, which is provided with a furnace chamber 56 surrounded by a melting furnace body 52. The ash melting furnace 51 is provided with a plasma device including a main electrode 54, a furnace bottom electrode 57, a DC power source 58, and the like, and the main electrode 54 is disposed through the ceiling wall 53 of the melting furnace body 52. In addition, the furnace chamber 56 can be moved up and down by being supported by the lifting device 65. At the lower end of the main electrode 54, a furnace bottom electrode 57 is installed on the furnace bottom wall 55 facing the front end thereof, and a DC power source 58 for plasma generation is connected between these electrodes 54, 57.
The melting furnace main body 52 has an outer wall covered with an iron skin 60, an inner wall 61 is formed of a refractory material such as brick, and a spout 68 serving as an outlet for the molten slag 63 is arranged on the peripheral wall of the melting furnace main body 52. The output port 68 is connected to the output port 69. A mold 71 placed on the feed conveyor 70 is disposed below the tip of the feed 69.

このような構成により、灰溶融炉51の炉室56には、図示しない焼却灰の投入口から炉底壁上に焼却灰が投入され、灰溶融炉51の炉室56を還元雰囲気にした状態で、直流電源58により電圧を電極54,57間に印加する。すると、該電極54,57間にプラズマアークが発生し、焼却灰は加熱されて溶融してスラグ63となり、焼却灰中に含まれているメタル成分が溶融して溶融メタル64となり炉底に沈む。溶融スラグ63が炉底に溜まり出滓口68の高さに達すると、スラグ63が出滓口68から溢れでて出滓樋69を通って、モールド71に供給され、スラグ63は冷却処理される。他方、溶融メタル64は、溶融炉本体51が傾倒式のものであれば、溶融炉本体を傾倒させて、出滓口から溶融メタルを排出し(例えば、特許文献1参照)、またマッドガン方式のものであれば、溶融炉本体の炉壁に孔を開けて溶融メタルを炉外に排出するようにしている。
特開平11−351544号公報
With such a configuration, incinerator ash is introduced into the furnace chamber 56 of the ash melting furnace 51 from the incinerator ash inlet (not shown) on the furnace bottom wall, and the furnace chamber 56 of the ash melting furnace 51 is in a reducing atmosphere. Thus, a voltage is applied between the electrodes 54 and 57 by the DC power source 58. Then, a plasma arc is generated between the electrodes 54 and 57, the incineration ash is heated and melted to form the slag 63, and the metal components contained in the incineration ash are melted to form the molten metal 64 and sink to the furnace bottom. . When the molten slag 63 accumulates in the furnace bottom and reaches the height of the outlet port 68, the slag 63 overflows from the outlet port 68 and is supplied to the mold 71 through the outlet 69, and the slag 63 is cooled. The On the other hand, if the melting furnace body 51 is tilted, the molten metal 64 tilts the melting furnace body and discharges the molten metal from the spout (see, for example, Patent Document 1). If it is a thing, a hole is made in the furnace wall of the melting furnace body, and the molten metal is discharged out of the furnace.
JP 11-351544 A

灰溶融炉の運転中は、プラズマ電極の主電極が消耗することから、その消耗量だけ、昇降装置を用いて、主電極を下降する必要がある。しかし、炉室内のプラズマアークのアーク長を可視カメラ等で計測しようとしても、炉内に浮遊する煤塵に遮られプラズマアークのアーク長を運転中に把握することができない。
したがって、経験値に基づいて電極消耗量を判断することとなるが、これは個人差や精度に問題があり、長時間連続運転してアーク長が長くなると、天井耐火物の高温化やスラグへの入熱効率の低下が生じたりする。反対に主電極がスラグ面より下に沈むと、液面が低温となりスラグの出滓不良が生じる。
Since the main electrode of the plasma electrode is consumed during the operation of the ash melting furnace, it is necessary to lower the main electrode by using the lifting device by the amount consumed. However, even if an attempt is made to measure the arc length of the plasma arc in the furnace chamber with a visible camera or the like, the arc length of the plasma arc cannot be grasped during operation because it is blocked by dust floating in the furnace.
Therefore, the amount of electrode consumption will be judged based on experience values, but this has problems with individual differences and accuracy, and if the arc length becomes long after continuous operation for a long time, the temperature of the ceiling refractory becomes higher and the slag increases. The heat input efficiency may be reduced. On the other hand, when the main electrode sinks below the slag surface, the liquid surface becomes low temperature, and slag outflow failure occurs.

灰溶融炉の炉室に投入される焼却灰の量が異なるような場合は、それに応じてプラズマ電極の出力を調整する必要があるが、処理物である焼却灰の性状変化や供給装置の不具合などにより電力が過剰となったときは、高温運転となり炉室を形成する耐火材の寿命が低下する。反対に、電力が不足したときは、低温運転となり、スラグが出滓口を閉塞して、灰溶融炉が運転不能になる。
一方、溶融スラグよりも比重の大きい溶融メタルは、溶融スラグ層の下に沈殿し、灰溶融炉の運転を長時間継続すると溶融メタル層が厚くなり、溶融スラグ層の割合が低くなる。スラグ層が薄くなると電源電圧が変動し、運転に支障をもたらしたりするため、溶融メタルの沈殿層が灰溶融炉の炉底に溜まった場合は、炉室外に排出するようにしている。従来では、溶融メタルを炉室から排出するときに、灰溶融炉を運転(プラズマアークを点灯)しながら排出する場合は、主電極と炉底電極との間の電圧値をほぼ一定にしながら、メタルの出湯を行っていた。しかしながら、電圧値では変動幅が大きいことから、電圧値が上昇しているのか上昇していないかの判断が困難であり、誤ってプラズマアークを切ってしまうこともある。
If the amount of incineration ash charged into the furnace chamber of the ash melting furnace is different, it is necessary to adjust the output of the plasma electrode accordingly. When the power becomes excessive due to the above, the life of the refractory material forming the furnace chamber is lowered due to high temperature operation. On the other hand, when the power is insufficient, the operation becomes low temperature, and the slag closes the tap and the ash melting furnace becomes inoperable.
On the other hand, the molten metal having a specific gravity larger than that of the molten slag precipitates under the molten slag layer, and when the operation of the ash melting furnace is continued for a long time, the molten metal layer becomes thick and the ratio of the molten slag layer decreases. When the slag layer becomes thin, the power supply voltage fluctuates, causing troubles in operation. Therefore, when a molten metal precipitation layer accumulates at the bottom of the ash melting furnace, it is discharged outside the furnace chamber. Conventionally, when discharging molten metal from the furnace chamber while discharging the ash melting furnace (turning on the plasma arc), while making the voltage value between the main electrode and the furnace bottom electrode substantially constant, I was out of metal. However, since the fluctuation range of the voltage value is large, it is difficult to determine whether the voltage value is rising or not, and the plasma arc may be cut off by mistake.

本発明はこのような事情に鑑みてなされたもので、焼却灰を溶融してスラグ化するために、過電力や電力不足がないように、一定条件すなわちプラズマ電極を一定電圧(一定アーク長)で運転することにより、各部温度を変えることなく該電圧を基準として溶融温度が低ければプラズマ電極に電流を多く流すことによりスラグの溶融温度を高くし、溶融温度が高ければプラズマ電極に電流を少なく流すことによりスラグの溶融温度を低くすることができ、さらには灰溶融炉の底部に溜まる溶融メタルなどを、灰溶融炉を運転しながら排出する場合に、プラズマアークが消失することのないプラズマ式灰溶融炉の運転方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and in order to melt the incineration ash to form slag, the constant voltage, that is, the plasma electrode is constant voltage (constant arc length) so that there is no overpower or power shortage. If the melting temperature is low with reference to the voltage without changing the temperature of each part, the slag melting temperature is increased by flowing a large amount of current through the plasma electrode, and if the melting temperature is high, the current is decreased to the plasma electrode. The slag melting temperature can be lowered by flowing, and furthermore, when discharging molten metal etc. accumulated at the bottom of the ash melting furnace while operating the ash melting furnace, a plasma type in which the plasma arc does not disappear It aims at providing the operating method of an ash melting furnace.

本発明は、上記目的を達成するために、焼却灰を炉本体の炉室内に投入し、該焼却灰をプラズマアークにより加熱して溶融することにより溶融スラグを生成するプラズマ式灰溶融炉の運転方法において、スラグの液面高さと、赤外線カメラで視た主電極の下端部の高さとから、アーク長を求め、上記主電極の下端部から溶融スラグ面までの長さを一定値または所定範囲内に調整するようにした。   In order to achieve the above object, the present invention operates a plasma ash melting furnace in which incinerated ash is charged into a furnace chamber of a furnace body, and the incinerated ash is heated and melted by a plasma arc to generate molten slag. In the method, the arc length is obtained from the liquid surface height of the slag and the height of the lower end portion of the main electrode viewed with an infrared camera, and the length from the lower end portion of the main electrode to the molten slag surface is a constant value or a predetermined range. Adjusted to within.

以上述べたように本発明によれば、赤外線カメラを介して、プラズマアークのアーク長を解析しているので、一定長さのアーク長にすることにより、炉内の各部温度を一定に維持することができる。これにより、アーク長の変動がないので、炉室内の溶融スラグの温度を必要以上に高くすることがなく、内壁の耐火材の寿命を長くするとともに無駄な電力を防止し、反対に溶融スラグの温度が低く出滓口を閉塞することもなくなる。
また、赤外線カメラを用いてアーク長を観察しているので、溶融メタルの排出時において、主電極の下端部と溶融スラグ面の距離を一定に維持することができ、プラズマアークの消失を防止することができる。
As described above, according to the present invention, since the arc length of the plasma arc is analyzed through the infrared camera, the temperature of each part in the furnace is kept constant by setting the arc length to a certain length. be able to. As a result, the arc length does not fluctuate, so that the temperature of the molten slag in the furnace chamber is not increased more than necessary, the life of the refractory material on the inner wall is lengthened, and unnecessary power is prevented. The temperature is low and the port is not blocked.
In addition, since the arc length is observed using an infrared camera, the distance between the lower end of the main electrode and the molten slag surface can be kept constant during the discharge of molten metal, thereby preventing the disappearance of the plasma arc. be able to.

以下、本発明の実施の形態による灰溶融炉の運転方法について図面を参照しながら説明する。
図1は、本発明に係る傾動式のプラズマアーク式灰溶融炉1を示し、この灰溶融炉1は内壁11に囲まれた炉室6を設け、内壁11は耐熱レンガ等の耐熱材により形成されている。また、灰溶融炉1には、炉室6側に配設される主電極4、炉室6の炉底壁5に配設される炉底電極7及び直流電源8等を備えたプラズマ装置が設けられている。主電極4は、溶融炉本体2の天井壁3を貫通して垂下されて配設されるとともに、昇降装置15に支持されることにより炉室6内を上下動できるように構成されている。主電極4は、金属または黒鉛製であり、内部にプラズマ用ガスを発生させる通路を形成した円筒形状のものが用いられている。主電極4の下端部には、その先端と対向する炉底壁5に炉底電極7が設置され、これらの電極4,7間に、プラズマ発生用の直流電源8を接続している。直流電源8は、炉底電極7側に+を接続し、主電極4側に−を接続している。
Hereinafter, the operation method of the ash melting furnace by embodiment of this invention is demonstrated, referring drawings.
FIG. 1 shows a tilting plasma arc ash melting furnace 1 according to the present invention. The ash melting furnace 1 is provided with a furnace chamber 6 surrounded by an inner wall 11, and the inner wall 11 is formed of a heat-resistant material such as a heat-resistant brick. Has been. Further, the ash melting furnace 1 includes a plasma apparatus including a main electrode 4 disposed on the furnace chamber 6 side, a furnace bottom electrode 7 disposed on the furnace bottom wall 5 of the furnace chamber 6, a DC power source 8, and the like. Is provided. The main electrode 4 is arranged so as to hang down through the ceiling wall 3 of the melting furnace main body 2 and is configured to be able to move up and down in the furnace chamber 6 by being supported by the lifting device 15. The main electrode 4 is made of metal or graphite, and has a cylindrical shape in which a passage for generating a plasma gas is formed. At the lower end of the main electrode 4, a furnace bottom electrode 7 is installed on the furnace bottom wall 5 facing the tip, and a DC power source 8 for plasma generation is connected between these electrodes 4, 7. The DC power source 8 is connected to + on the furnace bottom electrode 7 side and connected to-on the main electrode 4 side.

溶融炉本体2の壁部には覗き窓12が設けられ、覗き窓12の近傍には、可視カメラ13が配設され、内壁11には該内壁11の高さ位置を計測するための目盛りが表示されている。可視カメラ13は目盛りを視ることによりスラグの液面高さを計測することができる。
図2は、図1の溶融炉本体2を別角度から見た断面図である。図2に示すように、溶融炉本体2には内壁11及び鉄皮10を貫通する覗き窓16が設けられ、覗き窓16の外側には、赤外線カメラ17が配設されている。赤外線カメラ17の波長は、3μm以上のものが使用できるが、8μm以上のものが好ましい。この赤外線カメラ17は、主電極4の先端部に向けて配設され、覗き窓16を介してプラズマアークのアーク長をモニター等を介して観察することができる。
A viewing window 12 is provided in the wall portion of the melting furnace body 2, a visible camera 13 is disposed in the vicinity of the viewing window 12, and a scale for measuring the height position of the inner wall 11 is provided on the inner wall 11. It is displayed. The visible camera 13 can measure the liquid level of the slag by looking at the scale.
FIG. 2 is a cross-sectional view of the melting furnace main body 2 of FIG. 1 viewed from another angle. As shown in FIG. 2, the melting furnace main body 2 is provided with a viewing window 16 penetrating the inner wall 11 and the iron skin 10, and an infrared camera 17 is disposed outside the viewing window 16. The wavelength of the infrared camera 17 can be 3 μm or more, preferably 8 μm or more. The infrared camera 17 is arranged toward the tip of the main electrode 4 and can observe the arc length of the plasma arc through the observation window 16 through a monitor or the like.

溶融炉本体2の炉底5の一端には、油圧シリンダ25が設置され、シリンダ25の伸縮ロッド26の先端部が炉底5に枢支されている。また、このシリンダ25の取付部に対向して炉底5の他端側には、溶融炉本体2を傾動させるための中心軸となる回転軸27が設けられている。溶融炉本体2は、油圧シリンダ25の伸縮ロッド26を伸ばすことにより、溶融炉本体2の一端側が持ち上げられ、その結果、他端側の出滓口19側を低くすることができる。
溶融炉本体2の内壁11の周りには、図示しない冷却ジャケットが配設され、溶融炉本体2の下壁部には、溶融スラグ23の排出口である出滓口18が配設され、出滓口18には、出滓樋19が接続されている。この出滓口18及び出滓樋19は、耐火材で形成されている。出滓樋19の先端部の直下には出滓コンベア21上に載置されているモールド22を配設している。モールド22は、出滓樋19から流下する溶融スラグ23を回収するものである。
なお、この灰溶融炉1には、その他、図示されていない灰投入用のホッパー等の装備や、プラズマ等を制御する制御装置等が多数配設されているが、それらの詳細な説明は省略する。
A hydraulic cylinder 25 is installed at one end of the furnace bottom 5 of the melting furnace main body 2, and the distal end portion of the telescopic rod 26 of the cylinder 25 is pivotally supported by the furnace bottom 5. A rotating shaft 27 serving as a central axis for tilting the melting furnace main body 2 is provided on the other end side of the furnace bottom 5 so as to face the mounting portion of the cylinder 25. In the melting furnace main body 2, the one end side of the melting furnace main body 2 is lifted by extending the telescopic rod 26 of the hydraulic cylinder 25, and as a result, the outlet port 19 side on the other end side can be lowered.
A cooling jacket (not shown) is disposed around the inner wall 11 of the melting furnace body 2, and a spout 18 serving as a discharge port for the melting slag 23 is disposed on the lower wall portion of the melting furnace body 2. An output 19 is connected to the shed 18. The tap opening 18 and the tap bar 19 are made of a refractory material. A mold 22 placed on the feed conveyor 21 is disposed immediately below the tip of the feed 19. The mold 22 collects the molten slag 23 that flows down from the tap 19.
The ash melting furnace 1 is provided with a number of other equipment such as an ash charging hopper (not shown), a control device for controlling plasma, etc., but detailed description thereof is omitted. To do.

次に、本発明の実施の形態の作用について説明する。
図1に示すように、灰溶融炉1の炉室6には、焼却灰の図示しない投入口から炉底壁上に焼却灰が投入され、灰溶融炉1の炉室6を還元雰囲気にした状態で、直流電源8により電圧を電極4,7間に印加する。すると、該電極4,7間にプラズマアークが発生し、炉室6内が1000℃以上の雰囲気となり、焼却灰が溶融する。焼却灰は溶融してスラグ23となり、焼却灰中に含まれているメタル成分が溶融して溶融メタル24となり炉底に沈む。その上澄みの溶融スラグ23が炉底に溜まり出滓口18の高さに達すると、スラグ23が出滓口18から溢れでて出滓樋19を通って、出滓コンベア21に配設されている回収容器であるモールド22に供給され、スラグ23は空冷処理される。
Next, the operation of the embodiment of the present invention will be described.
As shown in FIG. 1, incineration ash is introduced into the furnace chamber 6 of the ash melting furnace 1 from a charging port (not shown) of the incineration ash onto the furnace bottom wall, and the furnace room 6 of the ash melting furnace 1 is made a reducing atmosphere. In this state, a voltage is applied between the electrodes 4 and 7 by the DC power supply 8. Then, a plasma arc is generated between the electrodes 4 and 7, the furnace chamber 6 has an atmosphere of 1000 ° C. or higher, and the incineration ash is melted. The incinerated ash is melted to form slag 23, and the metal component contained in the incinerated ash is melted to form molten metal 24 and sinks to the furnace bottom. When the molten slag 23 as a supernatant accumulates at the bottom of the furnace and reaches the height of the tap 18, the slag 23 overflows from the tap 18, passes through the tap 19 and is disposed on the tap conveyor 21. Then, the slag 23 is air-cooled.

この灰溶融炉1の運転中では、図2に示す赤外線カメラ17が、プラズマ電極の主電極4の先端部を撮影している。赤外線カメラ17はプラズマアークの形状を撮影するものであり、プラズマアークの形状をモニターで視ることができる。
よって、赤外線カメラ17が撮影した映像をモニターが写し出し、そのアーク形状を画像解析して、アーク長を導き出す。そして、焼却灰の溶融中は、主電極4を昇降装置により上下動させることにより、常時アーク長の長さを一定長さに維持するようにして主電極4の位置(スラグ面上の高さ)、及びこれにより各部温度を一定にする。これは、制御装置等により自動化してもよいし、手動でプラズマ装置の制御部により作業者が手動で行ってもよい。このように、主電極4のスラグ面上の高さを一定にすることにより、プラズマアークのアーク長を一定の長さに維持することができる。
During operation of the ash melting furnace 1, the infrared camera 17 shown in FIG. 2 captures the tip of the main electrode 4 of the plasma electrode. The infrared camera 17 captures the shape of the plasma arc, and the shape of the plasma arc can be viewed on a monitor.
Therefore, the video imaged by the infrared camera 17 is projected on the monitor, the arc shape is image-analyzed, and the arc length is derived. During melting of the incineration ash, the position of the main electrode 4 (the height on the slag surface) is constantly maintained by moving the main electrode 4 up and down by the lifting device so that the length of the arc length is constantly maintained. ), And this makes the temperature of each part constant. This may be automated by a control device or the like, or may be manually performed by an operator manually by a control unit of the plasma apparatus. Thus, by making the height on the slag surface of the main electrode 4 constant, the arc length of the plasma arc can be maintained at a constant length.

なお、スラグ23が出滓口18から排出されるようになった場合は、スラグ23の液面高さが出滓口18の高さとなるのでスラグ23の液面高さが分かり、また、主電極4の下端部の高さは赤外線カメラ17で視ることができ、赤外線カメラ17の取付角度と主電極4の位置を割り出すことにより、プラズマアークの形状を解析しなくとも正確にアーク長を求めることができる。   In addition, when the slag 23 comes to be discharged | emitted from the tap outlet 18, since the liquid level height of the slag 23 becomes the height of the tap outlet 18, the liquid level height of the slag 23 is known, The height of the lower end of the electrode 4 can be viewed with the infrared camera 17, and the arc length can be accurately determined without analyzing the shape of the plasma arc by determining the mounting angle of the infrared camera 17 and the position of the main electrode 4. Can be sought.

このように、主電極4とスラグ23面の距離、すなわちプラズマアークのアーク長を一定にすることにより、炉内温度分布を一定にすることができ、スラグ23の溶融温度が設定値よりも低いと判断すれば、溶融スラグ23の温度を上昇させて、制御装置等を介してプラズマ電極4,7の電流量を大きくしてプラズマ電極4,7の発熱量を増加し、焼却灰若しくは溶融スラグ23を加熱することができる。
また、スラグ23の溶融温度が設定値よりも高いと判断すれば、制御装置等を介してプラズマ電極の電流量を減らすことにより発熱量を減少し、溶融スラグ23の溶融温度を下げることができる。
Thus, by making the distance between the main electrode 4 and the slag 23 surface, that is, the arc length of the plasma arc constant, the furnace temperature distribution can be made constant, and the melting temperature of the slag 23 is lower than the set value. If so, the temperature of the molten slag 23 is increased, the current amount of the plasma electrodes 4 and 7 is increased through a control device or the like to increase the amount of heat generated by the plasma electrodes 4 and 7, and the incineration ash or molten slag is increased. 23 can be heated.
If it is determined that the melting temperature of the slag 23 is higher than the set value, the amount of heat generated can be reduced by reducing the current amount of the plasma electrode via a control device or the like, and the melting temperature of the molten slag 23 can be lowered. .

溶融炉本体2に溶融メタル24が溜まってきたような場合に、本実施の形態では、上述したように溶融炉本体2自身を傾動させて溶融メタル24を炉室6外に排出する。すなわち、図3に示すように、シリンダ25のロッド26を上方に伸ばすことにより、溶融炉本体2のシリンダ25側の位置を高くし、反対に出滓口18の位置を低くすることにより、溶融メタル24を炉室6外に排出する。
この際、溶融炉本体2から溶融メタル24を排出すると、溶融炉本体2が傾動するにしたがって、溶融メタル24が排出され主電極4の下端部と溶融スラグ23の表面の距離が大きくなり、プラズマアークの長さが長くなってプラズマアークが消失するおそれがある。本実施の形態では、図2に示す赤外線カメラ17によって、プラズマアークのアーク長を観察していることから、溶融炉本体2の傾動量が大きくなるにしたがって、主電極4を下降させて主電極4の下端部と溶融スラグ23面の距離を一定に維持することができる。
In the present embodiment, when the molten metal 24 has accumulated in the melting furnace body 2, the melting furnace body 2 itself is tilted as described above, and the molten metal 24 is discharged out of the furnace chamber 6. That is, as shown in FIG. 3, by extending the rod 26 of the cylinder 25 upward, the position of the melting furnace body 2 on the cylinder 25 side is increased, and on the contrary, the position of the tap hole 18 is decreased, The metal 24 is discharged out of the furnace chamber 6.
At this time, when the molten metal 24 is discharged from the melting furnace body 2, as the melting furnace body 2 tilts, the molten metal 24 is discharged and the distance between the lower end of the main electrode 4 and the surface of the molten slag 23 increases. There is a possibility that the plasma arc may disappear due to the length of the arc becoming longer. In the present embodiment, since the arc length of the plasma arc is observed by the infrared camera 17 shown in FIG. 2, the main electrode 4 is moved down as the tilting amount of the melting furnace body 2 increases. The distance between the lower end of 4 and the surface of the molten slag 23 can be kept constant.

溶融メタル24の排出作業が終了した場合は、溶融炉本体2を通常の直立状態に戻す。すなわち、シリンダ25のロッド26を縮めることにより、溶融炉本体2のシリンダ25側の位置を低くし、出滓口18の高さをもとに戻す。
この際、溶融炉本体2が直立状態に近づくにしたがって、主電極4の下端部と溶融スラグ23の表面の距離が変動するが、赤外線カメラ17によって、プラズマアークのアーク長を観察していることから、溶融炉本体2の傾倒量が小さくなるにしたがって、主電極4の高さを調整し、主電極4の下端部と溶融スラグ23面の距離を一定に維持することができる。よって、プラズマアークの消失を防止することができる。
When the discharge operation of the molten metal 24 is completed, the melting furnace body 2 is returned to the normal upright state. That is, by contracting the rod 26 of the cylinder 25, the position of the melting furnace body 2 on the cylinder 25 side is lowered, and the height of the spout 18 is restored.
At this time, the distance between the lower end of the main electrode 4 and the surface of the molten slag 23 varies as the melting furnace body 2 approaches an upright state, but the arc length of the plasma arc is observed by the infrared camera 17. Thus, as the tilting amount of the melting furnace body 2 decreases, the height of the main electrode 4 can be adjusted, and the distance between the lower end of the main electrode 4 and the surface of the molten slag 23 can be maintained constant. Therefore, disappearance of the plasma arc can be prevented.

以上説明したように、本実施の形態では、赤外線カメラ17によりプラズマアークのアーク長を計測して、主電極4の位置、及びこれにより各部温度を一定にすることができる。そして、その状態からスラグ温度に変化があればプラズマ電極4,7の電流値を変動させることにより、焼却灰の加熱の増減を炉室6の状態に応じて適温に行うことができる。これにより、炉室6内の溶融スラグ23の温度を必要以上に高くすることがなく、内壁11の耐火材の寿命を長くすることができるとともに無駄な電力を防止することができる。
また、溶融メタル24の排出時にプラズマアークを着火させたまま、溶融メタル24を排出することができ、プラズマアークの再着火の手間を省略することができる。
As described above, in the present embodiment, the arc length of the plasma arc is measured by the infrared camera 17, and the position of the main electrode 4 and thereby the temperature of each part can be made constant. If there is a change in the slag temperature from that state, the heating value of the incineration ash can be increased or decreased according to the state of the furnace chamber 6 by changing the current value of the plasma electrodes 4 and 7. As a result, the temperature of the molten slag 23 in the furnace chamber 6 is not increased more than necessary, and the life of the refractory material on the inner wall 11 can be extended and wasteful power can be prevented.
Further, the molten metal 24 can be discharged while the plasma arc is ignited when the molten metal 24 is discharged, and the trouble of reigniting the plasma arc can be omitted.

以上、本発明の実施の形態について説明したが、勿論、本発明はこれに限定されることなく本発明の技術的思想に基いて種々の変更が可能である。
例えば、本実施の形態では、溶融メタル24の排出を溶融炉本体2を傾倒させることによって、溶融メタル24を排出していたが、炉壁に排出口を穿設して溶融メタル24を排出するマッドガン方式による場合も、赤外線カメラ17を用いて、プラズマアークのアーク長を観察し、溶融メタル24の排出量に応じて主電極4を下降させることができる。
また、本願発明は交流アーク炉やツイントーチにも適用が可能である。
The embodiment of the present invention has been described above. Of course, the present invention is not limited to this, and various modifications can be made based on the technical idea of the present invention.
For example, in the present embodiment, the molten metal 24 is discharged by inclining the melting furnace body 2 to discharge the molten metal 24. However, the molten metal 24 is discharged by making a discharge port in the furnace wall. Also in the case of the mud gun method, the arc length of the plasma arc can be observed using the infrared camera 17 and the main electrode 4 can be lowered according to the discharge amount of the molten metal 24.
Further, the present invention can be applied to an AC arc furnace or a twin torch.

本発明のプラズマアーク式灰溶融炉の出滓口の断面を通る概略断面図である。It is a schematic sectional drawing which passes along the cross section of the tap outlet of the plasma arc type ash melting furnace of this invention. 図1の灰溶融炉を別の角度から見た概略断面図である。It is the schematic sectional drawing which looked at the ash melting furnace of Drawing 1 from another angle. 図1のプラズマアーク式灰溶融炉の傾倒させた状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which inclined the plasma arc type ash melting furnace of FIG. 従来のプラズマアーク式灰溶融炉の出滓口の断面を通る概略断面図である。It is a schematic sectional drawing which passes along the cross section of the tap outlet of the conventional plasma arc type ash melting furnace.

符号の説明Explanation of symbols

1 プラズマアーク式灰溶融炉
2 溶融炉本体
3 天井壁
4 主電極
5 炉底壁
6 炉室
7 炉底電極
8 直流電源
10 鉄皮
11 内壁
12,16 覗き窓
13 可視カメラ
15 昇降装置
17 赤外線カメラ
18 出滓口
19 出滓樋
21 出滓コンベア
22 モールド
23 溶融スラグ
24 溶融メタル
25 シリンダ
26 ロッド
27 回転軸
DESCRIPTION OF SYMBOLS 1 Plasma arc type ash melting furnace 2 Melting furnace main body 3 Ceiling wall 4 Main electrode 5 Furnace bottom wall 6 Furnace room 7 Furnace bottom electrode 8 DC power supply 10 Iron skin 11 Inner wall 12, 16 Viewing window 13 Visible camera 15 Lifting device 17 Infrared camera 18 Unloading port 19 Unloading 21 Unloading conveyor 22 Mold 23 Molten slag 24 Molten metal 25 Cylinder 26 Rod 27 Rotating shaft

Claims (1)

焼却灰を炉本体の炉室内に投入し、該焼却灰をプラズマアークにより加熱して溶融することにより溶融スラグを生成するプラズマ式灰溶融炉の運転方法において、スラグの液面高さと、赤外線カメラで視た主電極の下端部の高さとから、アーク長を求め、上記主電極の下端部から溶融スラグ面までの長さを一定値または所定範囲内に調整するようにしたことを特徴とする、プラズマ式灰溶融炉の運転方法。   In a method of operating a plasma ash melting furnace in which incinerated ash is put into a furnace chamber of a furnace body and the incinerated ash is heated and melted by a plasma arc to generate molten slag, the liquid level of the slag and an infrared camera The arc length is obtained from the height of the lower end portion of the main electrode viewed in Step 1, and the length from the lower end portion of the main electrode to the molten slag surface is adjusted to a constant value or within a predetermined range. , Operation method of plasma ash melting furnace.
JP2005322485A 2000-06-29 2005-11-07 Operating method of plasma ash melting furnace Expired - Fee Related JP4245600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005322485A JP4245600B2 (en) 2000-06-29 2005-11-07 Operating method of plasma ash melting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000196025 2000-06-29
JP2005322485A JP4245600B2 (en) 2000-06-29 2005-11-07 Operating method of plasma ash melting furnace

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001000962A Division JP3771800B2 (en) 2000-06-29 2001-01-09 Operating method of plasma ash melting furnace

Publications (2)

Publication Number Publication Date
JP2006132926A true JP2006132926A (en) 2006-05-25
JP4245600B2 JP4245600B2 (en) 2009-03-25

Family

ID=36726613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005322485A Expired - Fee Related JP4245600B2 (en) 2000-06-29 2005-11-07 Operating method of plasma ash melting furnace

Country Status (1)

Country Link
JP (1) JP4245600B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564152A (en) * 2012-01-04 2012-07-11 中国恩菲工程技术有限公司 Oxygen lance insertion depth control system for metallurgical furnace
KR101445090B1 (en) 2012-12-28 2014-09-30 (주)에스엔엔씨 Method for drain using electronic furnace having bottom taphole

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564152A (en) * 2012-01-04 2012-07-11 中国恩菲工程技术有限公司 Oxygen lance insertion depth control system for metallurgical furnace
CN102564152B (en) * 2012-01-04 2014-08-06 中国恩菲工程技术有限公司 Oxygen lance insertion depth control system for metallurgical furnace
KR101445090B1 (en) 2012-12-28 2014-09-30 (주)에스엔엔씨 Method for drain using electronic furnace having bottom taphole

Also Published As

Publication number Publication date
JP4245600B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP3284606B2 (en) Ash melting furnace
JP5261038B2 (en) In-furnace monitoring apparatus, in-furnace monitoring method, and furnace operation control method using the same
US6279494B1 (en) Method and apparatus for operation control of melting furnace
JP4245600B2 (en) Operating method of plasma ash melting furnace
JP3771800B2 (en) Operating method of plasma ash melting furnace
JP4191885B2 (en) Plasma ash melting furnace and operating method thereof
JP3746921B2 (en) Operation method of electric melting furnace
JP3722674B2 (en) Method and apparatus for lowering melting furnace
JP4917950B2 (en) Plant operation control method by omnidirectional monitoring
JP4667665B2 (en) Plasma ash melting furnace and operating method thereof
JP4949074B2 (en) Method and apparatus for controlling operation of plasma melting furnace
JP3806306B2 (en) Secondary combustion apparatus for ash melting furnace and method of operating secondary combustion apparatus
JP5007094B2 (en) Control method of plasma melting furnace
JP3576468B2 (en) Electric ash melting furnace and method for removing solids from electric ash melting furnace
JP3659903B2 (en) Plasma ash melting furnace
JP3534693B2 (en) Operating method of plasma ash melting furnace
JP3534695B2 (en) Operating method of plasma ash melting furnace
JP4249086B2 (en) Heating means output control method for melting furnace
JP2006112667A (en) Electric type ash melting furnace, and its operation method
JP2002013719A (en) Ash melting furnace and method of melting ashes
JP2002115838A (en) Electric ash melting furnace
JP2001141226A (en) Method and apparatus for tapping melting furnace
JP4185667B2 (en) Operating method of plasma ash melting furnace
JP2003042428A (en) Ash melting furnace and operation method for the ash melting furnace
JP2002098318A (en) Ash melting furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Ref document number: 4245600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees