JP2008288476A - High breakdown voltage ic - Google Patents

High breakdown voltage ic Download PDF

Info

Publication number
JP2008288476A
JP2008288476A JP2007133606A JP2007133606A JP2008288476A JP 2008288476 A JP2008288476 A JP 2008288476A JP 2007133606 A JP2007133606 A JP 2007133606A JP 2007133606 A JP2007133606 A JP 2007133606A JP 2008288476 A JP2008288476 A JP 2008288476A
Authority
JP
Japan
Prior art keywords
region
voltage
potential
semiconductor substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007133606A
Other languages
Japanese (ja)
Inventor
Yasumasa Watanabe
泰正 渡辺
Naoto Fujishima
直人 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2007133606A priority Critical patent/JP2008288476A/en
Publication of JP2008288476A publication Critical patent/JP2008288476A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high breakdown voltage semiconductor device capable of increasing dV/dt resistance and preventing malfunctions because of the latch-up of a parasitic element structure within a high potential island even in the case of using an insulation separation structure even when using a high breakdown voltage junction terminating structure which can be manufactured inexpensively. <P>SOLUTION: A high potential gate driving circuit part and a level shift circuit part are provided on the same other conductivity type semiconductor substrate 1, at least one lateral MOSFET is formed in the gate driving circuit part, and an embedded insulating film 3 for parasitic element suppression is provided selectively in a parallel direction on the main surface of the semiconductor substrate at the lower part of the source region 5 and drain region 7 of the lateral MOSFET. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、機能の異なる半導体素子を同一半導体基板上に搭載することによりワンチップ化すると共に、誘電体分離(SOI)技術を用いることにより、さらに高機能化を計った高耐圧ICに関する。   The present invention relates to a high withstand voltage IC which is made into one chip by mounting semiconductor elements having different functions on the same semiconductor substrate, and further increases the function by using dielectric isolation (SOI) technology.

各種モータの速度制御、照明装置の調光制御用途としてIGBTやパワーMOSFET等のパワーデバイスが一般的に使用されている。パワーデバイス自体は、従来、用途ごとに設けられる個別半導体素子や電子部品を組み合わせた電子回路により制御されていたが、パワーデバイスと電子回路とをモジュールとして同一パッケージに組み込んだパワーモジュールや、それらを同一半導体基板上に搭載した高耐圧ICが実用化されるようになってきた。これらの半導体技術により、高電圧変換技術や周波数変換技術を採用したコンバータやインバータでは、機器の小型化へのいっそうの進展が図られるようになった。   Power devices such as IGBTs and power MOSFETs are generally used for speed control of various motors and dimming control of lighting devices. Conventionally, the power device itself has been controlled by an electronic circuit combining individual semiconductor elements and electronic components provided for each application. However, a power module in which the power device and the electronic circuit are incorporated in the same package as a module, High voltage ICs mounted on the same semiconductor substrate have come into practical use. With these semiconductor technologies, converters and inverters that employ high-voltage conversion technology and frequency conversion technology have made further progress toward miniaturization of equipment.

従来、電源装置等の制御駆動用の高耐圧ドライバとして使用される集積回路などでは、高電位部と低電位部とを電気的に分離したレイアウトが採用されている。高電位部と低電位部との絶縁分離構造としては、pn接合を用いた構造(接合分離構造)と、SiO2等の誘電体を用いた構造(誘電体分離構造)などが一般的であり、さらに、接合分離構造の一種でコストダウンの図れる高耐圧接合終端構造による分離構造も開発されている。このような分離構造を有する半導体装置として、高電位部と低電位部とを有する集積回路であって、特に電源装置等の制御駆動用の高耐圧ドライバで構成された回路構成のものが知られている(特許文献2)。 Conventionally, a layout in which a high potential portion and a low potential portion are electrically separated is employed in an integrated circuit or the like used as a high voltage driver for control driving such as a power supply device. As the insulation isolation structure between the high potential part and the low potential part, a structure using a pn junction (junction isolation structure) and a structure using a dielectric such as SiO 2 (dielectric isolation structure) are generally used. In addition, a separation structure using a high-breakdown-voltage junction termination structure, which is a kind of junction separation structure and can reduce costs, has been developed. As a semiconductor device having such an isolation structure, an integrated circuit having a high potential portion and a low potential portion, particularly a circuit configuration composed of a high-voltage driver for control drive such as a power supply device is known. (Patent Document 2).

接合分離構造では、たとえば、p型半導体基板にn型エピタキシャル層を積層したウエハが用いられる。このn型エピタキシャル層内に形成されるp型半導体層に伴うpn接合によって、3次元的に形成されたp型半導体層の島とその島の中にさらに形成されるCMOS回路よりなるドライバ回路などが、電気的に分離される。n型エピタキシャル層とp型半導体基板とのpn接合に逆バイアス電圧が印加された場合、その接合容量によってp型半導体層の島が電気的に分離され、高耐圧が実現される。   In the junction isolation structure, for example, a wafer in which an n-type epitaxial layer is stacked on a p-type semiconductor substrate is used. A driver circuit comprising a p-type semiconductor layer island formed three-dimensionally by a pn junction accompanying the p-type semiconductor layer formed in the n-type epitaxial layer and a CMOS circuit further formed in the island. Are electrically separated. When a reverse bias voltage is applied to the pn junction between the n-type epitaxial layer and the p-type semiconductor substrate, the island of the p-type semiconductor layer is electrically isolated by the junction capacitance, thereby realizing a high breakdown voltage.

また、接合分離法では、素子の下部に埋めこみ領域を形成し、オンオフ時にpn接合にかかる急激なdV/dt変化に伴う変位電流を前記埋めこみ領域で吸収するため、dV/dt耐量は比較的に高いという利点があるが、逆バイアス電圧印加時、前記pn接合のフラットな底面では電界が均等に分担されるものの、接合端部の曲率部では電界が集中し易く、耐圧が低下し易いという問題がある。この接合端部における電界集中を緩和するために、図3に示される公知のRESURF(REduced SURface Electric Field)構造が採用されることも好ましい。   In the junction isolation method, a buried region is formed in the lower part of the device, and a displacement current accompanying a sudden change in dV / dt applied to the pn junction at the time of on / off is absorbed by the buried region. Therefore, the dV / dt resistance is relatively low. Although there is an advantage of high, when a reverse bias voltage is applied, the electric field is evenly shared on the flat bottom surface of the pn junction, but the electric field tends to concentrate on the curvature portion of the junction end, and the breakdown voltage tends to decrease. There is. In order to alleviate the electric field concentration at the junction end, it is also preferable to adopt a known RESURF (REduced SURface Electric Field) structure shown in FIG.

またさらに、一般に、集積回路を構成する種々のpn接合のそれぞれには、接合容量が存在する。このpn接合容量をコンデンサとみなすと、そのコンデンサに急峻な変化(dV/dt)波形を伴う電圧が印加されたときに、充電電流(変位電流)がpn接合の接合面全面に流れる。この変位電流が、半導体領域内に形成される寄生トランジスタを動作させ、回路の誤動作や素子破壊が引き起こされることも問題となる。   Furthermore, generally, each of the various pn junctions constituting the integrated circuit has a junction capacitance. When this pn junction capacitance is regarded as a capacitor, when a voltage with a sharp change (dV / dt) waveform is applied to the capacitor, a charging current (displacement current) flows over the entire junction surface of the pn junction. This displacement current causes a parasitic transistor formed in the semiconductor region to operate, causing a malfunction of the circuit and element destruction.

たとえば、大容量のインバータ装置では電位変化のレベル、すなわちdV/dtは、30kV/μs程度が一般的である。前記高耐圧ICでは、パワーデバイスのスイッチング時に高電位島の電位が前述のような電位変化レベルで変化すると、半導体基板の深さ方向に変位電流が生じ、高電位島内の寄生トランジスタがラッチアップし易くなる。
また、この接合分離構造においては、高価なエピタキシャルウエハを用いずに、安価な通常のシリコンウエハを用いて、イオン注入と熱拡散により形成したプレーナ接合によって接合分離を安価に製造できることを特長とする一種の自己分離構造とみなせる分離構造も開発されている(たとえば、特許文献1参照。)。以降、本明細書では、この安価に製造できる自己分離構造を高耐圧接合終端構造ということにする。
For example, in a large-capacity inverter device, the level of potential change, that is, dV / dt is generally about 30 kV / μs. In the high voltage IC, when the potential of the high potential island changes at the potential change level as described above during switching of the power device, a displacement current is generated in the depth direction of the semiconductor substrate, and the parasitic transistor in the high potential island is latched up. It becomes easy.
In addition, this junction isolation structure is characterized in that junction isolation can be manufactured at low cost by planar junction formed by ion implantation and thermal diffusion using an inexpensive normal silicon wafer without using an expensive epitaxial wafer. A separation structure that can be regarded as a kind of self-separation structure has also been developed (see, for example, Patent Document 1). Hereinafter, in this specification, the self-separation structure that can be manufactured at low cost will be referred to as a high-voltage junction termination structure.

一方、誘電体分離構造は、たとえば、シリコン基板上に形成したSiO2膜などのBOX層(埋め込み酸化膜)を介してその上に活性領域となるシリコン半導体層を堆積することによる積層構造を有し、さらに前記BOX層(埋め込み酸化膜)によって電気的に分離されたシリコン半導体層内に所定の機能回路を設けることにより、機能回路の電気的絶縁分離を行う構造(SOI構造)である。この誘電体分離構造によれば、絶縁分離されたシリコン半導体層毎に異なる基準電位で動作する回路を同一基板内に複数設けることができるので、高耐圧を含む回路を容易に設計できるという特長がある。さらに、この誘電体分離構造では、厚いSiO2膜を用いたSOI構造では、約50kV/μsのdV/dt耐量が容易に得られ、寄生サイリスタや寄生トランジスタを発生させないので、前述の寄生動作による誤動作などの問題がないという利点があるが、耐圧レベルが1000Vを超えるとμmオーダーの厚さのBOX層(埋め込み酸化膜)が必要となるため、貼り合わせ技術を用いた基板を用いざるを得なくなり、エピタキシャルウエハを用いる接合分離構造の場合と同様に、ウエハコストが高いという問題が避けられない。 On the other hand, the dielectric isolation structure has, for example, a laminated structure in which a silicon semiconductor layer serving as an active region is deposited thereon via a BOX layer (buried oxide film) such as a SiO 2 film formed on a silicon substrate. Further, a predetermined functional circuit is provided in a silicon semiconductor layer electrically isolated by the BOX layer (buried oxide film), thereby electrically isolating the functional circuit (SOI structure). According to this dielectric isolation structure, a plurality of circuits that operate at different reference potentials can be provided in the same substrate for each insulated silicon semiconductor layer, so that a circuit including a high breakdown voltage can be easily designed. is there. Further, in this dielectric isolation structure, the SOI structure using a thick SiO 2 film can easily obtain a dV / dt resistance of about 50 kV / μs, and does not generate a parasitic thyristor or a parasitic transistor. Although there is an advantage that there is no problem such as malfunction, a BOX layer (buried oxide film) with a thickness on the order of μm is required when the withstand voltage level exceeds 1000 V, so a substrate using a bonding technique must be used. As in the case of the junction separation structure using an epitaxial wafer, the problem of high wafer cost is inevitable.

また、近年、約100nm程度の薄い埋め込み酸化膜BOX(Buried Oxide)層を製造するSIMOX(Separated by Implanted Oxygen)技術が開発され、SOI基板を低コストで供給できるようになってきた。このSIMOX技術によれば、例えば、加速エネルギーを約200keVとし、ドーズ量が約2×1018atoms/cmの酸素原子をイオン注入して高温で熱処理することにより、埋め込み酸化膜(以下、BOX層という。)を形成することができる。このSIMOX法は、ドーズ量と注入エネルギーを精度よく制御できるため、BOX層の厚みやSOI層の膜厚を所要の厚みで均一に形成することができる。さらに、このSIMOX技術によれば、任意の領域に部分的に埋め込み酸化膜を形成することができるため、BOX層の容量の低減を図ることもできる。ただし、単にBOX層厚を薄くするだけでは耐圧の低下が問題になって高耐圧化が難しくなる。 In recent years, a SIMOX (Separated by Implanted Oxygen) technique for manufacturing a thin buried oxide (BOX) layer of about 100 nm has been developed, and an SOI substrate can be supplied at low cost. According to the SIMOX technology, for example, an acceleration energy is set to about 200 keV, oxygen atoms having a dose amount of about 2 × 10 18 atoms / cm 2 are ion-implanted, and heat treatment is performed at a high temperature to thereby form a buried oxide film (hereinafter referred to as BOX). Layer)). In this SIMOX method, the dose amount and the implantation energy can be accurately controlled, so that the thickness of the BOX layer and the thickness of the SOI layer can be uniformly formed with a required thickness. Further, according to this SIMOX technique, a buried oxide film can be partially formed in an arbitrary region, so that the capacity of the BOX layer can be reduced. However, simply reducing the thickness of the BOX layer causes a decrease in breakdown voltage, which makes it difficult to increase the breakdown voltage.

以下、半導体基板上に形成される絶縁分離構造として安価なプロセスの可能な前記高耐圧接合終端構造を用いた場合の課題について、具体的な回路構成例をあげて説明する。図2に、照明用インバータ装置の回路構成について、高耐圧IC部を用いた制御装置のブロック回路図を示す。このブロック回路は入出力端子I/Oからの信号を受けて、パワーデバイスである2個のIGBT Q1、Q2のオン、オフのタイミングを決める制御回路21と、低電位側IGBT Q2の低電位ゲート駆動回路GDUL22と、高電位側IGBT Q1を駆動する高電位ゲート駆動回路GDUH23と、この高電位側GDUH23への信号レベルを変換するためのレベルシフト回路24とから構成されている。IGBT Q1、Q2にはインダクタンス負荷時に発生する逆起電流を流すため、ダイオードD1、D2をそれぞれ並列に接続することによりハーフブリッジ回路を構成している。ここでは前記高電位ゲート駆動回路GDUH23とレベルシフト回路24とを高耐圧IC部25と称する。また、前記照明用インバータ装置のブロック回路のうち、ブリッジ回路の一相分の制御回路21と低電位ゲート駆動回路GDUL22と高耐圧IC部25とを同一半導体基板上に集積して高耐圧IC半導体基板としたものを図12に平面図として示す。実際のIC基板ではブリッジ回路の三相分が集積される。後述する本発明はこのうち、高耐圧IC部25に係わる。   Hereinafter, a specific circuit configuration example will be described with respect to a problem when the high-breakdown-voltage junction termination structure capable of an inexpensive process is used as an insulating isolation structure formed on a semiconductor substrate. FIG. 2 is a block circuit diagram of a control device using a high-breakdown-voltage IC unit for the circuit configuration of the lighting inverter device. This block circuit receives a signal from the input / output terminal I / O, and controls a control circuit 21 that determines the on / off timing of two IGBTs Q1 and Q2, which are power devices, and a low potential gate of the low potential side IGBT Q2. The driving circuit GDUL22, a high potential gate driving circuit GDUH23 for driving the high potential side IGBT Q1, and a level shift circuit 24 for converting the signal level to the high potential side GDUH23. Since the back electromotive force generated when the inductance is loaded flows through the IGBTs Q1 and Q2, diodes D1 and D2 are connected in parallel to form a half bridge circuit. Here, the high potential gate drive circuit GDUH 23 and the level shift circuit 24 are referred to as a high breakdown voltage IC unit 25. Further, among the block circuits of the lighting inverter device, the control circuit 21 for one phase of the bridge circuit, the low-potential gate drive circuit GDUL22, and the high-breakdown-voltage IC unit 25 are integrated on the same semiconductor substrate, and the high-breakdown-voltage IC semiconductor. FIG. 12 shows a plan view of the substrate. In an actual IC substrate, the three phases of the bridge circuit are integrated. Of these, the present invention to be described later relates to the high voltage IC section 25.

主電源電圧としては、通常直流の100〜400Vが使われる。主電源電圧Vccを400Vとすると、高電位側IGBT Q1のゲート電極に、たとえばゲート電圧VDD15Vを加えた415Vを印加した時にIGBT Q1がオンする。IGBT Q1をオフした後、低電位側のIGBT Q2をオンすることで、出力端子VOUTには、たとえばゲートのスイッチング周期に応じた交流の矩形波が生じる。 As the main power supply voltage, a direct current of 100 to 400 V is usually used. Assuming that main power supply voltage Vcc is 400 V, IGBT Q1 is turned on when, for example, 415 V including gate voltage V DD 15 V is applied to the gate electrode of high potential side IGBT Q1. After the IGBT Q1 is turned off, the low-potential-side IGBT Q2 is turned on, whereby an AC rectangular wave corresponding to, for example, the gate switching period is generated at the output terminal VOUT .

高電位側のIGBT Q1がオンした時は出力端子VOUTの電位は主電源電圧Vccの電位とほぼ等しくなり、またIGBT Q2がオンした時、出力端子VOUTの電位はGND電位とほぼ等しくなる。従って、高耐圧IC部25を構成する高電位ゲート駆動回路GDUH23と低耐圧の信号回路やドライブ回路などの他の制御回路ユニットとの間には、主電源電圧Vccとゲート駆動電圧を加えた絶縁耐圧が必要になる。所要の信号処理回路やドライブ回路などの制御回路21からの所定の制御信号が信号レベルシフト回路24を介してこの高電位島内に形成される高電位ゲート駆動回路GDUH23に送られ、高電位側IGBT Q1を前記所定の制御信号に合わせてオンオフさせる。
高耐圧IC部25が搭載される半導体基板内でこのような絶縁耐圧を可能にする高耐圧分離構造として、前述の誘電体分離構造、接合分離および高耐圧接合終端構造などを必要とする。
When the high potential side IGBT Q1 is turned on, the potential of the output terminal VOUT is substantially equal to the potential of the main power supply voltage Vcc, and when the IGBT Q2 is turned on, the potential of the output terminal VOUT is substantially equal to the GND potential. . Accordingly, the main power supply voltage Vcc and the gate drive voltage are added between the high-potential gate drive circuit GDUH 23 constituting the high-breakdown-voltage IC section 25 and other control circuit units such as a low-breakdown-voltage signal circuit and drive circuit. Pressure resistance is required. A predetermined control signal from the control circuit 21 such as a required signal processing circuit or drive circuit is sent to the high potential gate drive circuit GDUH 23 formed in this high potential island through the signal level shift circuit 24, and the high potential side IGBT Q1 is turned on / off in accordance with the predetermined control signal.
The above-described dielectric isolation structure, junction isolation, high voltage junction termination structure, and the like are required as a high voltage isolation structure that enables such a withstand voltage in a semiconductor substrate on which the high voltage IC portion 25 is mounted.

前記図2の照明用インバータ装置を示すブロック回路図中の高耐圧IC部25を、分離構造として高耐圧接合終端構造を用いた従来の高耐圧IC部25として構成した場合の半導体基板の断面図を図3に示す。図3における領域A−Bと領域A’−B’は、それぞれ高耐圧接合終端構造に相当する部分であり、前記図12の平面図に示すA−BとA’−B’に対応する。さらに、B−B’領域に位置する領域は、前記図12のB−B’に対応する高電位島(分離領域)である。この高電位島のnウエル領域から取り出される高電位側端子(VDH)の電位はその周囲を取り囲む前記高耐圧接合終端構造によって低電位側の半導体基板(Psub)1の電位(GND)とは電気的に分離されている。前記高電位島の高電位側の電位VDHは前記高電位島の他方の端子(Vout)である低電位側の電位VDLに対して、前述のようにIGBT Q1をオンさせるために約15Vのゲート電圧(VDD)分、高くされる。 2 is a cross-sectional view of a semiconductor substrate when the high voltage IC portion 25 in the block circuit diagram showing the lighting inverter device of FIG. 2 is configured as a conventional high voltage IC portion 25 using a high voltage junction termination structure as an isolation structure. Is shown in FIG. Regions AB and A′-B ′ in FIG. 3 are portions corresponding to the high-voltage junction termination structure, and correspond to AB and A′-B ′ shown in the plan view of FIG. Furthermore, the region located in the BB ′ region is a high potential island (isolation region) corresponding to BB ′ in FIG. The potential of the high potential side terminal (V DH ) taken out from the n-well region of this high potential island is the potential (GND) of the low potential side semiconductor substrate (Psub) 1 due to the high withstand voltage junction termination structure surrounding the periphery. Electrically separated. The potential V DH on the high potential side of the high potential island is about 15 V to turn on the IGBT Q1 as described above with respect to the potential V DL on the low potential side which is the other terminal (Vout) of the high potential island. The gate voltage (V DD ) is increased.

前記図3に示す高耐圧ICの中の高耐圧接合終端構造部であるA−B領域とA’−B’領域ではリサーフ構造として機能するp−オフセット領域16をnウエル領域(一導電型半導体領域)2内に設けることにより、接合終端部における電界集中を緩和することができるようにしている。
図7は前記高耐圧IC部25における高耐圧接合終端構造部であるA−B領域、A’−B’領域の一部を構成するレベルアップ素子部分の半導体基板の断面図であり、前記図12のD−D’断面を示す。
In the AB region and the A′-B ′ region, which are high breakdown voltage junction termination structures in the high breakdown voltage IC shown in FIG. 3, the p-offset region 16 functioning as a RESURF structure is formed as an n well region (one conductivity type semiconductor). By providing it in (region) 2, it is possible to alleviate electric field concentration at the junction termination portion.
FIG. 7 is a cross-sectional view of the semiconductor substrate of the level-up element portion that constitutes a part of the AB region and the A′-B ′ region, which are high breakdown voltage junction termination structures in the high breakdown voltage IC portion 25. 12 shows a DD ′ cross section.

低電位側(基準電位GND)の基板領域(Psub)1から前記図3に示す高電位島4側へ信号を伝達するために、図7に示すように、高耐圧接合終端構造部A−B、A’−B’の一部をドレインDrain−nドレイン領域11b−nウエル領域11a−nウエル領域2−pウエル領域10a−nソース領域13―ソースSからなるn型高耐圧MOSFETに置き換え、ゲート電圧をオンオフ信号として、図7では図示しない、図に向かって右側に位置する高電位島側では、ドレインDrainに接続した抵抗Rと電流との積すなわち電位差を、高電位島内の低耐圧回路部への入力信号とする。 In order to transmit a signal from the substrate region (Psub) 1 on the low potential side (reference potential GND) to the high potential island 4 side shown in FIG. 3, as shown in FIG. , A′-B ′ is partly formed into an n-type high breakdown voltage MOSFET composed of drain drain-n + drain region 11b-n well region 11a-n well region 2-p well region 10a-n + source region 13-source S. On the high-potential island side, which is not shown in FIG. 7 and is located on the right side in the figure, with the gate voltage as an on / off signal, the product of the resistance R and the current connected to the drain Drain, that is, the potential difference is reduced. An input signal to the withstand voltage circuit section.

図8は、ドレインDrain−pドレイン領域12a−pウエル領域8−pオフセット領域16−nウエル領域2−nウエル領域11−pソース領域13a−ソースSからなるp型MOSFETを用いて高電位島側から低電位側の基板領域への信号伝達を行うためのレベルダウン素子の断面図であり、前記図12のC−C’断面を示す。このレベルダウン素子(図8)と前記レベルアップ素子(図7)とは、一般的にレベルシフト回路(信号伝達回路)と呼ばれ、それぞれ高耐圧MOSFET構造を有する。 FIG. 8 shows a case where a p-type MOSFET composed of drain drain-p + drain region 12a-p well region 8-p offset region 16-n well region 2-n well region 11-p + source region 13a-source S is used. FIG. 13 is a cross-sectional view of a level-down element for transmitting a signal from a potential island side to a substrate region on a low potential side, and shows the CC ′ cross section of FIG. The level-down element (FIG. 8) and the level-up element (FIG. 7) are generally called a level shift circuit (signal transmission circuit) and each have a high breakdown voltage MOSFET structure.

高耐圧接合終端構造により電気的に分離された高電位島中の高電位ゲート駆動回路を高耐圧レベルシフト回路と接続することにより、低コストで耐圧低下を防止することのできる高耐圧ICの構成については、公知文献での記載がある(特許文献2)。
高耐圧接合終端構造により電気的に分離された高電位ゲート駆動回路と、半導体基板に達するトレンチとこのトレンチに接地電位の電極を設けることにより、pn接合に逆バイアス電圧が印加された場合に発生する充電電流による寄生サイリスタ構造のラッチアップを防ぐことができることを示す公知文献における記載もある(特許文献3)。
High voltage IC configuration capable of preventing a reduction in breakdown voltage at low cost by connecting a high potential gate drive circuit in a high potential island electrically isolated by a high breakdown voltage junction termination structure to a high breakdown voltage level shift circuit Is described in a publicly known document (Patent Document 2).
Occurs when a reverse bias voltage is applied to the pn junction by providing a high-potential gate drive circuit electrically isolated by a high-voltage junction termination structure, a trench reaching the semiconductor substrate, and an electrode having a ground potential in the trench. There is also a description in a publicly known document indicating that the latch-up of the parasitic thyristor structure due to the charging current can be prevented (Patent Document 3).

縦型パワー素子とこのパワー素子を制御する制御回路とを同一半導体基板上に備える半導体装置において、前記制御回路が設けられるウエル領域内の前記制御回路の下部に部分的な絶縁体層を形成することにより、前記パワー素子のターンオフ時に発生する変位電流を絶縁体層でブロックし、制御回路の語動作を防止する記載がある(特許文献4)。
特開平9−55498号公報 特開平9−74198号公報 特開2005−191263号公報 特許第2871939号公報
In a semiconductor device including a vertical power element and a control circuit for controlling the power element on the same semiconductor substrate, a partial insulator layer is formed below the control circuit in a well region where the control circuit is provided. Thus, there is a description that the displacement current generated when the power element is turned off is blocked by an insulator layer to prevent word operation of the control circuit (Patent Document 4).
JP-A-9-55498 Japanese Patent Laid-Open No. 9-74198 JP 2005-191263 A Japanese Patent No. 2871939

しかしながら、前記高耐圧接合終端構造は、前述のように、高価なエピタキシャルウエハではなく、安価な通常のシリコンウエハを用いるので、熱拡散により形成したプレーナ接合による絶縁分離構造を安価に製造できるものの、たとえば、高電位島4(分離領域)(図3のB−B’)内に形成されるn形MOSFETや(図9)p形MOSFET(図10)のうち、たとえば、図10において、dV/dtが電極端子たとえば、ソース端子S、nベース領域9、基板電位(基準電位GND)を通じてnウエル領域2と半導体基板(Psub)1の領域間に加わると、nウエル領域2の空乏化により、電子が矢印で示すようにnウエル領域2を横方向に流れてnベース領域9を経て排出される。nウエル領域2内の抵抗成分19を電流経路とするため、寄生トランジスタ20のベース電位が上昇し、p型オフセット領域5とnウエル領域2、p型基板領域1からなる寄生トランジスタ20がオンし、誤動作につながるという寄生素子に起因する誤動作問題については、依然として残されている。   However, as described above, since the high-voltage junction termination structure uses an inexpensive normal silicon wafer instead of an expensive epitaxial wafer, an insulating isolation structure by planar bonding formed by thermal diffusion can be manufactured at low cost. For example, among the n-type MOSFET and the p-type MOSFET (FIG. 10) formed in the high potential island 4 (isolation region) (BB ′ in FIG. 3), for example, in FIG. When dt is applied between the region of the n well region 2 and the semiconductor substrate (Psub) 1 through the electrode terminal, for example, the source terminal S, the n base region 9 and the substrate potential (reference potential GND), the n well region 2 is depleted, Electrons flow laterally through the n-well region 2 as indicated by arrows and are discharged through the n-base region 9. Since the resistance component 19 in the n-well region 2 is used as a current path, the base potential of the parasitic transistor 20 rises, and the parasitic transistor 20 including the p-type offset region 5, the n-well region 2, and the p-type substrate region 1 is turned on. The problem of malfunction caused by parasitic elements that lead to malfunction still remains.

本発明は、以上述べた点に鑑みてなされたものであり、本発明の目的は、安価に製造できる高耐圧接合終端構造による絶縁分離構造を用いる場合においても、dV/dt耐量が高く、高電位島内の寄生素子構造のラッチアップによる誤動作を防止することができる高耐圧ICを提供することである。   The present invention has been made in view of the above points. The object of the present invention is to provide a high dV / dt resistance even in the case of using an insulation isolation structure with a high voltage junction termination structure that can be manufactured at low cost. It is an object of the present invention to provide a high voltage IC capable of preventing malfunction due to latch-up of a parasitic element structure in a potential island.

特許請求の範囲の請求項1記載の発明によれば、前記本発明の目的を達成するために、高電圧電源の高電位側(Vcc)に主端子の一方が接続され、負荷側に主端子の他方が接続されたパワーデバイスのゲートを駆動するための高耐圧ICであって、前記パワーデバイスの主端子の他方を基準(Vout)とする低電圧電源により電流を供給される高電位ゲート駆動回路部と、前記高電圧電源の低電位側(GND)を基準とする低電圧電源により電流を供給される制御回路からの信号を、前記高電位ゲート駆動回路部への信号に変換するレベルシフト回路部と、を同一の他導電型半導体基板上に備え、前記他導電型半導体基板の表面層に設けられる一導電型ウエル領域内に前記高電位ゲート駆動回路部および前記レベルシフト回路部が形成され、前記ゲート駆動回路部には少なくとも一つの横型MOSFETが形成され、前記ウエル領域内の前記半導体基板の主面に平行方向に選択的に、かつ前記横型MOSFETの少なくとも一つの横型MOSFETのソース領域およびドレイン領域の下方に、寄生素子抑制用の埋め込み絶縁膜を有する高耐圧ICとする。   According to the first aspect of the present invention, in order to achieve the object of the present invention, one of the main terminals is connected to the high potential side (Vcc) of the high voltage power source, and the main terminal is connected to the load side. A high-voltage IC for driving the gate of the power device to which the other of the power devices is connected, wherein the current is supplied by a low-voltage power supply with the other main terminal of the power device as a reference (Vout) A level shift that converts a signal from a circuit unit and a control circuit supplied with a current from a low voltage power source with a low potential side (GND) of the high voltage power source as a reference into a signal to the high potential gate drive circuit unit A high-potential gate drive circuit portion and a level shift circuit portion formed in one well-type well region provided on a surface layer of the other-conductivity-type semiconductor substrate. The And at least one lateral MOSFET is formed in the gate driving circuit section, and selectively in a direction parallel to the main surface of the semiconductor substrate in the well region, and a source region of at least one lateral MOSFET of the lateral MOSFET, and A high breakdown voltage IC having a buried insulating film for suppressing parasitic elements below the drain region.

特許請求の範囲の請求項2記載の発明によれば、前記埋め込み絶縁膜は、前記高電位ゲート駆動回路部の外周となる一導電型のベース領域まで延在し、前記高電位ゲート駆動回路は前記埋め込み絶縁膜と前記ベース領域で囲まれた領域となる特許請求の範囲の請求項1記載の高耐圧ICとする。
特許請求の範囲の請求項3記載の発明によれば、前記埋め込み絶縁膜が、前記横型MOSFETのソース領域およびドレイン領域の下端面に接する特許請求の範囲の請求項1記載の高耐圧ICとする。
According to the invention of claim 2, the buried insulating film extends to a base region of one conductivity type that is an outer periphery of the high-potential gate drive circuit unit, and the high-potential gate drive circuit is The high breakdown voltage IC according to claim 1, which is a region surrounded by the buried insulating film and the base region.
According to a third aspect of the present invention, in the high breakdown voltage IC according to the first aspect, the buried insulating film is in contact with the lower end surfaces of the source region and the drain region of the lateral MOSFET. .

特許請求の範囲の請求項4記載の発明によれば、前記埋め込み絶縁膜が、前記高電位ゲート駆動回路部の外周となる一導電型のベース領域の下端面に接する特許請求の範囲の請求項2記載の高耐圧IC。   According to a fourth aspect of the present invention, the buried insulating film is in contact with a lower end surface of a one-conductivity type base region that is an outer periphery of the high-potential gate drive circuit unit. 2. High voltage IC according to 2.

本発明によれば、安価に製造できる高耐圧接合終端構造による絶縁分離構造を用いる場合においても、dV/dt耐量が高く、高電位島内の寄生素子構造のラッチアップによる誤動作を防止することができる高耐圧ICを提供することができる。   According to the present invention, even when an insulation isolation structure using a high voltage junction termination structure that can be manufactured at low cost is used, dV / dt resistance is high, and malfunction due to latch-up of a parasitic element structure in a high potential island can be prevented. A high voltage IC can be provided.

以下、本発明にかかる高耐圧ICの製造方法について、図面を用いて詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
図1−1は本発明の実施例1にかかる高耐圧ICの要部断面図、図1−2は本発明の実施例1にかかる高耐圧ICの異なる位置のBOX層を示す要部断面図、図4は本発明の実施例2にかかる高耐圧ICのBOX層の部分を示す半導体基板の断面図、図5は本発明の実施例3にかかる高耐圧ICのBOX層の部分を示す半導体基板の断面図、図6は本発明の実施例4にかかる高耐圧ICのBOX層の部分を示す半導体基板の断面図、図11は本発明の実施例5にかかる高耐圧ICのBOX層の範囲を示す高耐圧ICを示す平面図(a)と要部断面図(b)である。
Hereinafter, a method for manufacturing a high voltage IC according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.
1-1 is a cross-sectional view of a main part of a high voltage IC according to Example 1 of the present invention, and FIG. 1-2 is a cross-sectional view of a main part showing a BOX layer at a different position of the high voltage IC according to Example 1 of the present invention. 4 is a cross-sectional view of a semiconductor substrate showing a portion of a BOX layer of a high voltage IC according to a second embodiment of the present invention, and FIG. 5 is a semiconductor showing a portion of a BOX layer of the high voltage IC according to a third embodiment of the present invention. FIG. 6 is a sectional view of a semiconductor substrate showing a portion of a BOX layer of a high voltage IC according to a fourth embodiment of the present invention. FIG. 11 is a sectional view of the BOX layer of the high voltage IC according to a fifth embodiment of the present invention. It is the top view (a) which shows the high voltage | pressure-resistant IC which shows a range, and principal part sectional drawing (b).

本発明の高耐圧ICは前記背景技術で述べたように、図2に示すブロック回路のうち、高耐圧IC部25の改良にかかる。本発明の実施例1について、高電位島(分離領域)を取り巻いて電気的に低電位領域(p型シリコン基板の電位GND)と絶縁分離するための高耐圧接合終端構造に加えて、高電位島中の低耐圧の横型MOSFET構造の下方にBOX層を設けることにより寄生素子の動作を抑制することができるようにした構造について、図1−1に高電位島中の横型MOSFET構造の下方のみにBOX層を形成した半導体基板の要部断面図を示す。この高耐圧ICは、p型シリコン基板(psub)1の表面層に形成される拡散深さ約6μmのn型半導体領域(nウエル領域)2と、このnウエル領域2の表面に部分的に厚さ50nmのBOX層(埋め込み酸化膜)3を介して設けられる深さ約3μmのn型半導体領域4からなる活性領域を備える部分SOI構造を基本構造とする。   The high voltage IC according to the present invention is related to the improvement of the high voltage IC portion 25 in the block circuit shown in FIG. In addition to the high voltage junction termination structure for electrically isolating and isolating the high potential island (isolation region) from the low potential region (potential GND of the p-type silicon substrate) around the high potential island (isolation region), With respect to a structure in which the operation of the parasitic element can be suppressed by providing a BOX layer below the low breakdown voltage lateral MOSFET structure in the island, FIG. FIG. 2 shows a cross-sectional view of a main part of a semiconductor substrate on which a BOX layer is formed. The high breakdown voltage IC includes an n-type semiconductor region (n-well region) 2 having a diffusion depth of about 6 μm formed in a surface layer of a p-type silicon substrate (psub) 1 and a part of the surface of the n-well region 2. A basic structure is a partial SOI structure including an active region made of an n-type semiconductor region 4 having a depth of about 3 μm provided via a BOX layer (buried oxide film) 3 having a thickness of 50 nm.

以下、前述の本発明の実施例1にかかる高耐圧ICの製造プロセスの主要部(BOX層と高電位島中の横型MOSFET構造部分の製造プロセス)について説明する。不純物濃度6×1013cm−3 のp型シリコン半導体基板1に、酸素イオンを180keVの注入エネルギーで、5×1017cm−2のドーズ量で注入し、温度1350℃程度で約2時間熱処理して、厚さ50nmのBOX層3をSOI構造として、半導体基板の表面から深さ0.3μmの位置に形成する。次に、リンを注入エネルギー280keVで、1×1012cm−2のドーズ量で注入し、温度950℃程度で60分程度熱処理する。続けて、エピタキシャル成長法を用いて基板温度900°Cで不純物濃度が6×1013cm−3のp型シリコン層を厚さ3μm堆積する。続いて、リンを注入エネルギー150keVで、5×1012cm−2のドーズ量で注入し、温度1150℃程度で200分程度熱処理すると、BOX層(埋め込み酸化膜)3を含む領域とシリコン基板の双方の領域にまたがって、表面濃度が3×1015cm−3、接合深さXjが約6μmのnウエル領域2を均等に形成できる。ドレインまたはソース領域となるp型オフセット領域5および7は、ボロンを注入エネルギー50keVで、1×1013cm−2のドーズ量で注入し、温度1100℃程度で300分程度熱処理して、表面濃度が9×1016cm−3、接合深さXjが3μmの不純物濃度分布を得る。 The main part of the manufacturing process of the high voltage IC according to the first embodiment of the present invention (the manufacturing process of the BOX layer and the lateral MOSFET structure in the high potential island) will be described below. Oxygen ions are implanted into the p-type silicon semiconductor substrate 1 having an impurity concentration of 6 × 10 13 cm −3 with an implantation energy of 180 keV and a dose of 5 × 10 17 cm −2 , and heat treatment is performed at a temperature of about 1350 ° C. for about 2 hours. Then, the BOX layer 3 having a thickness of 50 nm is formed as an SOI structure at a depth of 0.3 μm from the surface of the semiconductor substrate. Next, phosphorus is implanted at an implantation energy of 280 keV and a dose of 1 × 10 12 cm −2 and heat-treated at a temperature of about 950 ° C. for about 60 minutes. Subsequently, a p-type silicon layer having an impurity concentration of 6 × 10 13 cm −3 is deposited to a thickness of 3 μm using an epitaxial growth method at a substrate temperature of 900 ° C. Subsequently, phosphorus is implanted at an implantation energy of 150 keV and at a dose of 5 × 10 12 cm −2 , and heat-treated at a temperature of about 1150 ° C. for about 200 minutes, and the region including the BOX layer (buried oxide film) 3 and the silicon substrate The n-well region 2 having a surface concentration of 3 × 10 15 cm −3 and a junction depth Xj of about 6 μm can be uniformly formed across both regions. In the p-type offset regions 5 and 7 serving as the drain or source region, boron is implanted at an implantation energy of 50 keV at a dose of 1 × 10 13 cm −2 , and heat-treated at a temperature of about 1100 ° C. for about 300 minutes. Is 9 × 10 16 cm −3 and the junction depth Xj is 3 μm.

n型ベース領域9および11は、リンを注入エネルギー150keVで、7×1012cm−2のドーズ量で注入し、温度1100℃程度で300分程度熱処理し、表面濃度が7×1016cm−3、接合深さXjが3μmの不純物濃度分布を得る。
次に、一般的な半導体プロセスを用いて、前記p型オフセット領域5、7の表面に形成されるpソースおよびドレインコンタクト領域6、8、前記n型ベース領域9および11の表面に形成されるnコンタクト領域10、12、ゲート絶縁膜13、ゲートポリシリコン14、ソース電極端子S、ゲート電極端子G、ドレイン電極端子D、シリコン酸化膜(LOCOS)15からなるp型MOSFET構造を作製した。上述した図1−1に示す実施例1の高耐圧ICによれば、厚さ50nmBOX層を、前記p型MOSFET構造とその外周のn型ベース領域9、11の下端面に接するように形成したので、前述の解決しようとする課題の項で説明したように、図10において、dV/dtがソース電極端子S、psub(p型半導体基板)1間に加わっても、本発明にかかる図1−1のように新たに設けた前述のBOX層3により寄生トランジスタの発生を防止でき、誤動作問題が解消される。また、このBOX層3の厚さはSIMOX法によって作成可能な厚さである必要がある。しかし、BOX層3の厚さは、たとえば、50nmのように薄くとも、耐圧については高耐圧接合分離構造により維持されるので、高耐圧の絶縁分離についても問題が生じない。なお、前記図1−1では厚さ50nmBOX層3を、前記p型MOSFET構造とその外周のn型ベース領域9、11の下端面に接する構成としたが、前記p型MOSFET構造の外周にn型ベース領域9、11を形成しない横型MOSFET構造とすることもできる。その場合は、BOX層の配置も前記p型MOSFET構造の下端面までとなる。
In the n-type base regions 9 and 11, phosphorus is implanted at an implantation energy of 150 keV and a dose amount of 7 × 10 12 cm −2 , and heat-treated at a temperature of about 1100 ° C. for about 300 minutes, and the surface concentration is 7 × 10 16 cm −. 3. An impurity concentration distribution with a junction depth Xj of 3 μm is obtained.
Next, the p + source and drain contact regions 6 and 8 formed on the surfaces of the p-type offset regions 5 and 7 and the surfaces of the n-type base regions 9 and 11 are formed using a general semiconductor process. A p-type MOSFET structure comprising n + contact regions 10 and 12, gate insulating film 13, gate polysilicon 14, source electrode terminal S, gate electrode terminal G, drain electrode terminal D, and silicon oxide film (LOCOS) 15 was fabricated. . According to the high breakdown voltage IC of Example 1 shown in FIG. 1-1 described above, the BOX layer having a thickness of 50 nm is formed so as to be in contact with the lower end surfaces of the p-type MOSFET structure and the n-type base regions 9 and 11 on the outer periphery thereof. Therefore, as described in the above section of the problem to be solved, even if dV / dt is applied between the source electrode terminal S and the psub (p-type semiconductor substrate) 1 in FIG. The above-described BOX layer 3 newly provided as -1 can prevent the generation of a parasitic transistor and solve the malfunction problem. Further, the thickness of the BOX layer 3 needs to be a thickness that can be formed by the SIMOX method. However, even if the thickness of the BOX layer 3 is as thin as 50 nm, for example, the breakdown voltage is maintained by the high breakdown voltage junction isolation structure. In FIG. 1-1, the BOX layer 3 having a thickness of 50 nm is configured to be in contact with the p-type MOSFET structure and the lower end surfaces of the n-type base regions 9 and 11 on the outer periphery thereof. A lateral MOSFET structure in which the mold base regions 9 and 11 are not formed may be employed. In that case, the BOX layer is arranged up to the lower end surface of the p-type MOSFET structure.

この結果、図10に示すBOX層の無い従来例では、175℃におけるdV/dt耐量は20kV/μsであったが、BOX層を設けることにより図1−1に示す実施例1の高耐圧ICでは30kV/μsに向上した。
ただし、前記図1−1ではBOX層3をp型オフセット領域5、7とn型ベース領域9、11の下端面に接触するように配置することにより、寄生素子(トランジスタ構造)機能を完全に防止したが、図1−2のように、BOX層3をp型オフセット領域5、7とn型ベース領域9、11の下端面から離れた下方のnウエル領域2内に設けてもよい。BOX層3を下方に離すほど、nウエル領域中を横方向に流れる電気抵抗が小さくなるので、寄生素子による影響が大きくなるが、誤動作が実質的に問題にならない程度に離すことができる。nウエル領域2内におけるBOX層3の基板主面に平行な方向に配置される範囲についても、同様に誤動作が実質的に問題にならない程度の範囲に配置すればよい。
As a result, in the conventional example without the BOX layer shown in FIG. 10, the dV / dt withstand voltage at 175 ° C. was 20 kV / μs, but by providing the BOX layer, the high breakdown voltage IC of Example 1 shown in FIG. Then, it improved to 30 kV / μs.
However, in FIG. 1-1, the BOX layer 3 is disposed so as to be in contact with the bottom surfaces of the p-type offset regions 5 and 7 and the n-type base regions 9 and 11, thereby completely providing the parasitic element (transistor structure) function. However, as shown in FIG. 1-2, the BOX layer 3 may be provided in the n-well region 2 below the p-type offset regions 5 and 7 and the bottom surfaces of the n-type base regions 9 and 11. The further away the BOX layer 3 is, the smaller the electric resistance flowing in the lateral direction in the n-well region becomes. Therefore, the influence of the parasitic element increases, but it can be separated to such an extent that malfunction does not substantially cause a problem. Similarly, the range in which the BOX layer 3 is arranged in the direction parallel to the main surface of the substrate in the n-well region 2 may be arranged in such a range that malfunction does not substantially become a problem.

L負荷時のdi/dtにより発生する逆起電力は、ダイオードを順方向にバイアスする形になるため、電流値を下げることで負電圧耐量についても改善することができる。本発明の高耐圧ICでは、−70Vの電圧を印加した時、基板電流は従来3.5Aであったものが1.4Aに低減した。   Since the back electromotive force generated by di / dt at the time of L load becomes a form in which the diode is forward-biased, the negative voltage withstand capability can be improved by reducing the current value. In the high voltage IC of the present invention, when a voltage of -70 V was applied, the substrate current was 3.5 A, which was 3.5 A in the past.

本発明の高耐圧ICにかかる実施例2は高電位島中の低耐圧n型MOSFET構造へのBOX層の適用例であり、図4は、実施例2での説明に用いる高耐圧ICの半導体基板の要部断面図である。n型MOSFET構造を十数Vの逆バイアスを印加したnウエル領域内に形成することで、Bi−CMOS構造を可能にするものである。実施例1との相違点は、nウエル領域2の表面層に設けたpウエル領域49とnウエル領域2の境界部にBOX層(埋め込み酸化膜)33をn型オフセット領域からなるnソース領域35とnドレイン領域37とそれらの領域の周囲に位置するpベース領域34、36をカバーする範囲に配置したことである。この実施例2では、従来の前記図9における基板(Psub)1とnウエル領域2とpウエル領域49、n型オフセット領域からなるnソース領域35もしくはnドレイン領域37からなる寄生トランジスタ(サイリスタ)のラッチアップ防止を目的とする。本発明の実施例2の高耐圧IC(図4)によれば、175℃におけるdV/dt耐量は30kV/μsであった。従来の図9に示す高耐圧ICにおけるdV/dt耐量、20kV/μsよりは向上した。   Example 2 of the high voltage IC according to the present invention is an application example of a BOX layer to a low voltage n-type MOSFET structure in a high potential island, and FIG. 4 shows a semiconductor of a high voltage IC used in the description of Example 2. It is principal part sectional drawing of a board | substrate. A Bi-CMOS structure is made possible by forming an n-type MOSFET structure in an n-well region to which a reverse bias of several tens of volts is applied. The difference from the first embodiment is that a BOX layer (buried oxide film) 33 is formed at the boundary between the p well region 49 and the n well region 2 provided in the surface layer of the n well region 2 and an n source region composed of an n type offset region. 35, the n drain region 37, and the p base regions 34 and 36 located around these regions are arranged in a range that covers them. In the second embodiment, a conventional parasitic transistor (thyristor) including the substrate (Psub) 1, the n well region 2, the p well region 49, the n source region 35 including the n type offset region or the n drain region 37 in FIG. The purpose is to prevent latch-up. According to the high breakdown voltage IC (FIG. 4) of Example 2 of the present invention, the dV / dt resistance at 175 ° C. was 30 kV / μs. The conventional high voltage IC shown in FIG. 9 is improved from the dV / dt resistance, 20 kV / μs.

図4ではBOX層33がpウエル領域49の下端面に接するように配置されているが、前記実施例1と同様の理由で、誤動作が実質的に問題にならない程度、下端面から下方に離れていてもよい。   In FIG. 4, the BOX layer 33 is disposed so as to be in contact with the lower end surface of the p-well region 49. For the same reason as in the first embodiment, the BOX layer 33 is separated downward from the lower end surface to such an extent that malfunction does not substantially cause a problem. It may be.

実施例3にかかる図5は、前記実施例2のn型MOSFET(図4)の外周に、さらに、nウエル領域2からの電子をGNDへ排出するnベース領域50および51を設けることで、他素子への電流経路によるpウエル領域49をエミッタとするラッチアップを防止する構造に変更したことを示す半導体基板の要部断面図である。実施例3の高耐圧ICによれば、175℃におけるdV/dt耐量は40kV/μsが得られた。BOX層の無い従来のdV/dt耐量、20kV/μsよりは向上している。   In FIG. 5 according to the third embodiment, n base regions 50 and 51 for discharging electrons from the n well region 2 to GND are further provided on the outer periphery of the n-type MOSFET (FIG. 4) of the second embodiment. It is principal part sectional drawing of the semiconductor substrate which shows having changed into the structure which prevents the latchup which uses the p well area | region 49 by the current path to another element as an emitter. According to the high voltage IC of Example 3, the dV / dt resistance at 175 ° C. was 40 kV / μs. This is an improvement over the conventional dV / dt withstand capability without a BOX layer, 20 kV / μs.

なお、図5ではBOX層33がpウエル領域49の下端面に接するように配置されているが、前記実施例1と同様の理由で、誤動作が実質的に問題にならない程度、前記BOX層33が下端面から下方に離れていてもよいし、また、同様の趣旨で基板主面に平行な方向の範囲についても調節することができる。   In FIG. 5, the BOX layer 33 is disposed so as to be in contact with the lower end surface of the p-well region 49. However, for the same reason as in the first embodiment, the BOX layer 33 is not affected so much that malfunction is not a problem. May be separated downward from the lower end surface, and for the same purpose, the range in the direction parallel to the main surface of the substrate can be adjusted.

図6に本発明の高耐圧ICにかかる実施例4での説明に使用する半導体基板の要部断面図を示す。この高耐圧ICは、p型シリコン基板(psub)1の表面層に形成される拡散深さ約6μmのn型半導体領域(nウエル領域)2と、このnウエル領域2の表面層に部分的に厚さ50nmのBOX層(埋め込み酸化膜)3を介して設けられる深さ約3μmのn型半導体領域2−1からなる活性領域を備える部分SOI構造を有する。   FIG. 6 shows a cross-sectional view of a main part of a semiconductor substrate used for explanation in Example 4 according to the high voltage IC of the present invention. The high breakdown voltage IC includes an n-type semiconductor region (n-well region) 2 having a diffusion depth of about 6 μm formed in a surface layer of a p-type silicon substrate (psub) 1 and a partial surface layer of the n-well region 2. And a partial SOI structure including an active region made of an n-type semiconductor region 2-1 having a depth of about 3 μm provided via a BOX layer (buried oxide film) 3 having a thickness of 50 nm.

以下、本発明の実施例4にかかる高耐圧ICの製造プロセスの主要部(BOX層と高電位島部分の製造プロセスについて説明する。SOI構造としてBOX層(埋め込み酸化膜)3を有する構成が図3と異なる他、製造プロセスについては、基本的には図3と同様であるので、BOX層の位置についてのみ説明することにして他は省略する。
BOX層3は前記実施例1では、図1−1に示すように高電位島(分離領域)4中の低耐圧の横型MOSFET構造5、7、9、11、の下方にのみにBOX層を部分的に設けることにより寄生素子の動作を抑制することができるようにした構造であるが、実施例4では、図6に示すように高電位島(分離領域)4の全体の下方にBOX層が形成される点が異なっている。
The main part of the manufacturing process of the high voltage IC according to Example 4 of the present invention (the manufacturing process of the BOX layer and the high potential island part will be described below). The configuration having the BOX layer (buried oxide film) 3 as the SOI structure is shown in FIG. Since the manufacturing process is basically the same as that shown in FIG. 3 except for the difference from 3, only the position of the BOX layer will be described and the others will be omitted.
In the first embodiment, the BOX layer 3 is formed only under the low breakdown voltage lateral MOSFET structures 5, 7, 9, 11 in the high potential island (isolation region) 4 as shown in FIG. Although the structure is such that the operation of the parasitic element can be suppressed by being provided partially, in the fourth embodiment, a BOX layer is provided below the entire high potential island (isolation region) 4 as shown in FIG. Is different.

BOX層の配置を前述のようにすることにより、BOX層の無い従来例では175℃におけるdV/dt耐量は20kV/μsであったが、実施例4の高耐圧ICでは、dV/dt耐量が50kV/μsに向上した。実施例1の場合のdV/dt耐量30kV/μsよりも優れていることが分かる。   By arranging the BOX layer as described above, the dV / dt resistance at 175 ° C. was 20 kV / μs in the conventional example without the BOX layer, but the dV / dt resistance is higher in the high voltage IC of Example 4. It improved to 50 kV / μs. It can be seen that it is superior to the dV / dt resistance of 30 kV / μs in the case of Example 1.

実施例5の高耐圧ICはレベルシフト回路素子を含めた負電圧耐量の向上を図ったものであり、誤動作の防止を目的とするものである。図11(a)は実施例5の高耐圧ICについて、高耐圧ICにおけるSOI層(BOX層)が配置される範囲を破線で示す平面図である。図11(b)は前記図11(a)のD−D’部分の拡大断面図である。図11(b)に示すように、p型半導体基板(psub)1、nウエル領域2、pウエル領域10aからなる寄生トランジスタが動作し易いが、BOX層3を設けることにより、矢印で示す横方向電流がドレイン端子Drainに流れ、寄生トランジスタを動作させて誤動作を起こす不具合を、横方向電流経路を増加させて抵抗を下げることで、実質的に問題が無い程度に抑制することができる。実施例5では、レベルシフト回路C−C’、D−D’を含む高耐圧接合終端構造部A−B、A’−B’と高電位島(分離領域)B−B’の双方の下方のnウエル領域2中にBOX層3を配置することで、誤動作開始電圧が、従来−30Vの電圧であったものが−60Vに向上した。   The high breakdown voltage IC of the fifth embodiment is intended to improve the negative voltage tolerance including the level shift circuit element, and is intended to prevent malfunction. FIG. 11A is a plan view showing the range in which the SOI layer (BOX layer) in the high voltage IC is arranged with a broken line in the high voltage IC of the fifth embodiment. FIG. 11B is an enlarged cross-sectional view of the D-D ′ portion of FIG. As shown in FIG. 11B, a parasitic transistor composed of a p-type semiconductor substrate (psub) 1, an n-well region 2, and a p-well region 10a is easy to operate, but by providing a BOX layer 3, a horizontal line indicated by an arrow is provided. A problem that the directional current flows to the drain terminal Drain and causes the malfunction due to the operation of the parasitic transistor can be suppressed to an extent that there is substantially no problem by increasing the lateral current path and reducing the resistance. In the fifth embodiment, the high breakdown voltage junction termination structures AB and A′-B ′ including the level shift circuits CC ′ and DD ′ and the high potential island (isolation region) BB ′ below both. By disposing the BOX layer 3 in the n-well region 2, the malfunction start voltage has been improved from -30V to -60V.

以上説明した実施例1〜5による本発明は、高電位分離領域内、高耐圧接合分離領域内に設けた回路へのBOX層(埋め込み酸化膜)の適用例を示したものである。BOX層(埋め込み酸化膜)の厚さは、本発明の実施例では50nmとしたが、SIMOX法の作製上限である数100nmでもよい。また、上述の説明では、一導電型半導体基板としてn型シリコンを用いたが、これはp型としてもよい。また、半導体であればシリコン、SiC、ダイヤモンド等を問わず、利用することができる。   The present invention according to the first to fifth embodiments described above shows an application example of a BOX layer (buried oxide film) to a circuit provided in a high potential isolation region and a high breakdown voltage junction isolation region. The thickness of the BOX layer (buried oxide film) is 50 nm in the embodiment of the present invention, but it may be several 100 nm which is the upper limit of the SIMOX method. In the above description, n-type silicon is used as the one-conductivity-type semiconductor substrate, but it may be p-type. Any semiconductor such as silicon, SiC, diamond, etc. can be used.

本発明の実施例1にかかる高耐圧ICの要部断面図である。It is principal part sectional drawing of the high voltage | pressure-resistant IC concerning Example 1 of this invention. 本発明の実施例1にかかる高耐圧ICの異なる位置のBOX層を示す要部断面図である。It is principal part sectional drawing which shows the BOX layer of the different position of the high voltage | pressure-resistant IC concerning Example 1 of this invention. 高耐圧ICを用いた照明用インバータ装置のブロック回路図である。It is a block circuit diagram of the inverter apparatus for illumination using high voltage | pressure-resistant IC. 図2に示す高耐圧ICの半導体基板の断面図である。It is sectional drawing of the semiconductor substrate of the high voltage | pressure-resistant IC shown in FIG. 本発明の実施例2にかかる高耐圧ICのBOX層の部分を示す半導体基板の断面図である。It is sectional drawing of the semiconductor substrate which shows the part of the BOX layer of the high voltage | pressure-resistant IC concerning Example 2 of this invention. 本発明の実施例3にかかる高耐圧ICのBOX層の部分を示す半導体基板の断面図である。It is sectional drawing of the semiconductor substrate which shows the part of the BOX layer of the high voltage | pressure-resistant IC concerning Example 3 of this invention. 本発明の実施例4にかかる高耐圧ICのBOX層の部分を示す半導体基板の断面図である。It is sectional drawing of the semiconductor substrate which shows the part of the BOX layer of the high voltage | pressure-resistant IC concerning Example 4 of this invention. レベルアップ回路部を示す半導体基板の断面図である。It is sectional drawing of the semiconductor substrate which shows a level-up circuit part. レベルダウン回路部を示す半導体基板の断面図である。It is sectional drawing of the semiconductor substrate which shows a level down circuit part. 分離領域内の低耐圧n型MOSFET構造における寄生トランジスタの動作を説明するための半導体基板の断面図である。It is sectional drawing of the semiconductor substrate for demonstrating operation | movement of the parasitic transistor in the low voltage | pressure-resistant n-type MOSFET structure in an isolation region. 分離領域内の低耐圧p型MOSFET構造における寄生トランジスタの動作を説明するための半導体基板の断面図である。It is sectional drawing of the semiconductor substrate for demonstrating operation | movement of the parasitic transistor in the low voltage | pressure-resistant p-type MOSFET structure in an isolation region. 本発明の実施例5にかかる高耐圧ICのBOX層の範囲を示す高耐圧ICの平面図である。It is a top view of the high voltage | pressure-resistant IC which shows the range of the BOX layer of the high voltage | pressure-resistant IC concerning Example 5 of this invention. 本発明の高耐圧ICであって、一相分の制御回路部と低電位ゲート駆動回路部と高電位ゲート駆動回路部を示す半導体基板の平面図である。1 is a plan view of a semiconductor substrate showing a control circuit portion, a low potential gate drive circuit portion, and a high potential gate drive circuit portion for one phase, which is a high voltage IC according to the present invention.

符号の説明Explanation of symbols

1、 p型シリコン基板(psub)
2、 n型半導体領域、nウエル領域
3、33 埋め込み酸化膜(BOX層)
4、 n型活性領域、分離領域
5、7 p型オフセット領域
9、11 n型ベース領域
6、8 pコンタクト領域
10、12 nコンタクト領域
13 ゲート酸化膜
14 ゲート電極
15 厚膜絶縁層、厚膜シリコン酸化膜(LOCOS)
21 制御回路
22 低電位ゲート駆動回路
23 高電位ゲート駆動回路
24 レベルシフト回路
25 高耐圧IC
35、37 nオフセット領域
49 pウエル領域
50、51 nベース層。
1. p-type silicon substrate (psub)
2, n-type semiconductor region, n-well region 3, 33 buried oxide film (BOX layer)
4, n-type active region, isolation region 5, 7 p-type offset region 9, 11 n-type base region 6, 8 p + contact region 10, 12 n + contact region 13 gate oxide film 14 gate electrode 15 thick insulating layer, Thick silicon oxide film (LOCOS)
21 Control Circuit 22 Low Potential Gate Drive Circuit 23 High Potential Gate Drive Circuit 24 Level Shift Circuit 25 High Voltage IC
35, 37 n offset region 49 p well region 50, 51 n base layer.

Claims (5)

高電圧電源の高電位側(Vcc)に主端子の一方が接続され、負荷側に主端子の他方が接続されたパワーデバイスのゲートを駆動するための高耐圧ICであって、前記パワーデバイスの主端子の他方を基準(Vout)とする低電圧電源により電流を供給される高電位ゲート駆動回路部と、前記高電圧電源の低電位側(GND)を基準とする低電圧電源により電流を供給される制御回路からの信号を、前記高電位ゲート駆動回路部への信号に変換するレベルシフト回路部と、を同一の他導電型半導体基板上に備え、前記他導電型半導体基板の表面層に設けられる一導電型ウエル領域内に前記高電位ゲート駆動回路部および前記レベルシフト回路部が形成され、前記ゲート駆動回路部には少なくとも一つの横型MOSFETが形成され、前記ウエル領域内の前記半導体基板の主面に平行方向に選択的に、かつ前記横型MOSFETの少なくとも一つの横型MOSFETのソース領域およびドレイン領域の下方に、寄生素子抑制用の埋め込み絶縁膜を有することを特徴とする高耐圧IC。 A high voltage IC for driving the gate of a power device having one of the main terminals connected to the high potential side (Vcc) of the high voltage power supply and the other of the main terminals connected to the load side, A high-potential gate drive circuit section that is supplied with current by a low-voltage power supply that uses the other main terminal as a reference (Vout), and a current that is supplied by a low-voltage power supply that uses the low-potential side (GND) of the high-voltage power supply as a reference And a level shift circuit section for converting a signal from the control circuit to a signal to the high potential gate drive circuit section on the same other conductivity type semiconductor substrate, on the surface layer of the other conductivity type semiconductor substrate The high-potential gate drive circuit unit and the level shift circuit unit are formed in one conductivity type well region provided, and at least one lateral MOSFET is formed in the gate drive circuit unit. A buried insulating film for suppressing parasitic elements, selectively in a direction parallel to the main surface of the semiconductor substrate in the region, and below the source region and drain region of at least one lateral MOSFET of the lateral MOSFET. High-voltage IC that features. 前記埋め込み絶縁膜は、前記高電位ゲート駆動回路部の外周となる一導電型のベース領域まで延在し、前記高電位ゲート駆動回路は前記埋め込み絶縁膜と前記ベース領域で囲まれた領域となることを特徴とする請求項1記載の高耐圧IC。 The buried insulating film extends to a base region of one conductivity type that is an outer periphery of the high-potential gate driving circuit unit, and the high-potential gate driving circuit is a region surrounded by the buried insulating film and the base region. The high voltage IC according to claim 1. 前記埋め込み絶縁膜が、前記横型MOSFETのソース領域およびドレイン領域の下端面に接することを特徴とする請求項1記載の高耐圧IC。 2. The high breakdown voltage IC according to claim 1, wherein the buried insulating film is in contact with a lower end surface of a source region and a drain region of the lateral MOSFET. 前記埋め込み絶縁膜が、前記高電位ゲート駆動回路部の外周となる一導電型のベース領域の下端面に接することを特徴とする請求項2記載の高耐圧IC。 3. The high breakdown voltage IC according to claim 2, wherein the buried insulating film is in contact with a lower end surface of a base region of one conductivity type which is an outer periphery of the high potential gate drive circuit unit. 前記埋め込み絶縁膜がSIMOX法により形成される絶縁膜であることを特徴とする請求項1乃至4のいずれか一項に記載の高耐圧IC。 5. The high breakdown voltage IC according to claim 1, wherein the buried insulating film is an insulating film formed by a SIMOX method.
JP2007133606A 2007-05-21 2007-05-21 High breakdown voltage ic Pending JP2008288476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133606A JP2008288476A (en) 2007-05-21 2007-05-21 High breakdown voltage ic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133606A JP2008288476A (en) 2007-05-21 2007-05-21 High breakdown voltage ic

Publications (1)

Publication Number Publication Date
JP2008288476A true JP2008288476A (en) 2008-11-27

Family

ID=40147894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133606A Pending JP2008288476A (en) 2007-05-21 2007-05-21 High breakdown voltage ic

Country Status (1)

Country Link
JP (1) JP2008288476A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087149A (en) * 2008-09-30 2010-04-15 Nec Electronics Corp Semiconductor device and method of manufacturing same
JP2010154721A (en) * 2008-12-26 2010-07-08 Fuji Electric Systems Co Ltd Semiconductor apparatus
JP2014090006A (en) * 2012-10-29 2014-05-15 Mitsubishi Electric Corp Power module
CN105321944A (en) * 2014-06-16 2016-02-10 富士电机株式会社 Semiconductor integrated circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087149A (en) * 2008-09-30 2010-04-15 Nec Electronics Corp Semiconductor device and method of manufacturing same
JP2010154721A (en) * 2008-12-26 2010-07-08 Fuji Electric Systems Co Ltd Semiconductor apparatus
JP2014090006A (en) * 2012-10-29 2014-05-15 Mitsubishi Electric Corp Power module
CN105321944A (en) * 2014-06-16 2016-02-10 富士电机株式会社 Semiconductor integrated circuit
CN105321944B (en) * 2014-06-16 2019-07-05 富士电机株式会社 Conductor integrated circuit device

Similar Documents

Publication Publication Date Title
JP5994939B2 (en) Semiconductor device
JP5757145B2 (en) Semiconductor device
TWI488287B (en) Three-dimensional gate driver integrated circuit and preparation method thereof
JP5499915B2 (en) High voltage semiconductor device
JP5754558B2 (en) Semiconductor integrated circuit device
US9412732B2 (en) Semiconductor device
US20130009272A1 (en) Semiconductor device
JP5293831B2 (en) High voltage semiconductor device and drive circuit
JP2009206284A (en) Semiconductor device
US9755058B2 (en) Surface devices within a vertical power device
JP2019201230A (en) Method for manufacturing semiconductor integrated circuit
JP6729487B2 (en) SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND POWER CONVERSION DEVICE
JP2008288476A (en) High breakdown voltage ic
JP5040135B2 (en) Dielectric isolation type semiconductor device and manufacturing method thereof
US10217765B2 (en) Semiconductor integrated circuit
WO2016042971A1 (en) Semiconductor device
JP2004006555A (en) Semiconductor device
JP2010010264A (en) Semiconductor device
JP2012028451A (en) Semiconductor integrated circuit
JP4479823B2 (en) Semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20081216

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219