JP2008285449A - Method for degrading fluorinated carboxylic acids - Google Patents

Method for degrading fluorinated carboxylic acids Download PDF

Info

Publication number
JP2008285449A
JP2008285449A JP2007133746A JP2007133746A JP2008285449A JP 2008285449 A JP2008285449 A JP 2008285449A JP 2007133746 A JP2007133746 A JP 2007133746A JP 2007133746 A JP2007133746 A JP 2007133746A JP 2008285449 A JP2008285449 A JP 2008285449A
Authority
JP
Japan
Prior art keywords
fluorinated carboxylic
carboxylic acid
fluorinated
carboxylic acids
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007133746A
Other languages
Japanese (ja)
Other versions
JP5071929B2 (en
Inventor
Hisao Hori
久男 堀
Shuzo Kotsuna
周三 忽那
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007133746A priority Critical patent/JP5071929B2/en
Publication of JP2008285449A publication Critical patent/JP2008285449A/en
Application granted granted Critical
Publication of JP5071929B2 publication Critical patent/JP5071929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an industrially very useful degradation method by which hardly degradable fluorinated carboxylic acids, salts thereof or precursors thereof can be degraded and made harmless safely under a mild condition. <P>SOLUTION: The method for degrading the fluorinated carboxylic acids includes treating the fluorinated carboxylic acid, the salt thereof or the precursor thereof with hot water containing a peroxodisulfate ion in a sealed container. Preferably, the temperature of the hot water is 100-200°C. The fluorinated carboxylic acid is represented by the general formula: RCOOH (R is an alkyl group containing at least one fluorine atom), and the alkyl group may contain a hydrogen atom, a halogen atom, an oxygen atom and an alkenyl residue besides the fluorine atom. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、環境および人体に悪影響を及ぼすフッ素化カルボン酸類を穏和な反応条件で分解処理し、無害化する方法に関するものである。   The present invention relates to a method for decomposing and detoxifying fluorinated carboxylic acids that adversely affect the environment and the human body under mild reaction conditions.

フッ素化カルボン酸類は界面活性、光透過性、耐熱性、耐薬品性等で他の材料には見られない優れた性質を持つため様々な用途で利用されてきた。
燃料電池の電解質膜や半導体レジストとしての開発も進んでいる。このように機能性材料として利用されてきた有機フッ素化合物であるが、近年一部の化合物について環境残留性や環境負荷が問題となりつつある。
すなわち、炭素数が7〜11程度のフッ素化カルボン酸の一部には、生体蓄積性が報告されているため、生態系への影響が懸念されている。そのため2002年12月には、それらの中でペルフルオロオクタン酸(C7F15COOH)が化学物質審査規制法における指定化学物質(現在の第二種監視化学物質)となった。
Fluorinated carboxylic acids have been used in various applications because they have excellent properties that are not found in other materials such as surface activity, light transmission, heat resistance, and chemical resistance.
Developments as electrolyte membranes and semiconductor resists for fuel cells are also progressing. Thus, although it is an organic fluorine compound utilized as a functional material, environmental persistence and environmental impact are becoming a problem about some compounds in recent years.
That is, since bioaccumulation has been reported for some of the fluorinated carboxylic acids having about 7 to 11 carbon atoms, there is concern about the impact on the ecosystem. For this reason, in December 2002, perfluorooctanoic acid (C 7 F 15 COOH) became a designated chemical substance (currently a second type monitoring chemical substance) in the Chemical Substances Control Regulation Law.

これらの廃棄物は水中(廃水)に存在することが多いが、これらをフッ化物イオンまで分解できれば既存の水処理技術(カルシウムイオン添加)により環境無害なフッ化カルシウムにできる。
しかし、フッ素化カルボン酸類は、炭素原子が形成する共有結合のなかで最も強力な炭素―フッ素結合から成り立っているために極めて安定な化学物質であって容易に分解し難い。
1000℃程度の高温で焼却すれば原子レベルまで分解できるものの、高エネルギーを必要とし、発生するフッ化水素ガスが焼却炉材(耐火煉瓦)を損傷させる問題がある。
この焼却法に代わる分解法としては、本発明者らは、先に、金属を還元剤として用いる熱水処理する方法(特許文献1)を提案した。
These wastes often exist in water (waste water), but if they can be decomposed to fluoride ions, they can be made harmless calcium fluoride by existing water treatment technology (calcium ion addition).
However, fluorinated carboxylic acids are extremely stable chemical substances because they are composed of the strongest carbon-fluorine bonds among the covalent bonds formed by carbon atoms, and are not easily decomposed.
Although it can be decomposed to the atomic level if incinerated at a high temperature of about 1000 ° C, it requires high energy, and the generated hydrogen fluoride gas has the problem of damaging incinerator materials (refractory bricks).
As a decomposition method that replaces this incineration method, the present inventors previously proposed a method of hydrothermal treatment using a metal as a reducing agent (Patent Document 1).

この熱水処理法は、フッ素化カルボン酸類をフッ素化物イオンにまで分解でき、また分解により生じたフッ化物イオンはたとえば環境に無害なフッ化カルシウムとして回収できるといった数多くのメリットを有するものである。   This hydrothermal treatment method has many merits such that fluorinated carboxylic acids can be decomposed into fluorinated ions, and fluoride ions generated by the decomposition can be recovered as, for example, calcium fluoride that is harmless to the environment.

特開2006−306736号公報JP 2006-306736 A

本発明は、この特許文献1に記載の発明を更に発展飛翔させ、より安全かつより穏和な条件下で難分解性のフッ素化カルボン酸類を分解・無害化できる工業的に極めて有用な分解方法を提供することを目的とするものである。   The present invention further develops the invention described in Patent Document 1, and provides an industrially extremely useful decomposition method capable of decomposing and detoxifying refractory fluorinated carboxylic acids under safer and milder conditions. It is intended to provide.

本発明者は、上記課題を解決するために鋭意検討した結果、種々のフッ素化カルボン酸類を特有な試薬と共に水に入れ、密閉してある条件下で加熱すると、該フッ素化カルボン酸類が比較的温和な条件下でフッ化物イオンまで効率的に分解することを見出し、これを基にして本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventor put various fluorinated carboxylic acids into water together with a specific reagent and heated them under sealed conditions. The inventors have found that it is efficiently decomposed to fluoride ions under mild conditions, and based on this, the present invention has been completed.

すなわち、この出願によれば、以下の発明が提供される。
〈1〉フッ素化カルボン酸、その塩及びその前駆体から選ばれた少なくとも一種のフッ素化カルボン酸類を、ペルオキソ二硫酸イオンが存在する密閉容器中で熱水処理することを特徴とするフッ素化カルボン酸類の分解方法。
〈2〉フッ素化カルボン酸が、一般式RCOOH(Rは少なくともフッ素原子を一つ含むアルキル基であり、そのアルキル基はフッ素原子の他に水素原子、ハロゲン原子、酸素原子、アルケニル基を含んでいてもよい)
で表されることを特徴とする上記〈1〉に記載のフッ素化カルボン酸類の分解方法。
〈3〉フッ素化カルボン酸の塩が、フッ素化カルボン酸のアルカリ金属塩またはアンモニウム塩であることを特徴とする上記〈1〉に記載のフッ素化カルボン酸類の分解方法。
〈4〉フッ素化カルボン酸の前駆体が、フッ素化アルコール、フッ素化アルデヒド、フッ素化カルボン酸ハライドまたはフッ素化カルボン酸エステルであることを特徴とする上記〈1〉に記載のフッ素化カルボン酸類の分解方法。
That is, according to this application, the following invention is provided.
<1> Fluorinated carboxylic acid characterized by hydrothermally treating at least one fluorinated carboxylic acid selected from fluorinated carboxylic acids, salts thereof and precursors thereof in a closed vessel in which peroxodisulfate ions are present. Decomposition method of acids.
<2> The fluorinated carboxylic acid is a general formula RCOOH (R is an alkyl group containing at least one fluorine atom, and the alkyl group contains a hydrogen atom, a halogen atom, an oxygen atom, and an alkenyl group in addition to the fluorine atom. May be)
The method for decomposing fluorinated carboxylic acids according to the above <1>, wherein
<3> The method for decomposing a fluorinated carboxylic acid according to <1>, wherein the salt of the fluorinated carboxylic acid is an alkali metal salt or an ammonium salt of the fluorinated carboxylic acid.
<4> The fluorinated carboxylic acid precursor according to <1>, wherein the fluorinated carboxylic acid precursor is a fluorinated alcohol, a fluorinated aldehyde, a fluorinated carboxylic acid halide, or a fluorinated carboxylic acid ester. Disassembly method.

本発明によれば、フッ素化カルボン酸、その塩又はその前駆体などのフッ素化カルボン酸類を150℃程度の比較的低い熱水温度下においても、フッ化物イオンにまで高効率で分解させることができる。また、ここで用いるペルオキソ二硫酸イオンは金属微粒子と異なり水と接触しても激しく反応する恐れがないから、本発明の分解方法は安全性に優れたものである。また、分解により生じたフッ化物イオンは、例えば、カルシウムイオンを添加すると環境無害なフッ化カルシウムとなり、得られるフッ化カルシウムはフッ化水素酸の原料として再資源化することも可能である。   According to the present invention, a fluorinated carboxylic acid such as a fluorinated carboxylic acid, a salt thereof, or a precursor thereof can be decomposed to fluoride ions with high efficiency even at a relatively low hot water temperature of about 150 ° C. it can. Further, unlike the metal fine particles, the peroxodisulfate ion used here has no fear of reacting violently even when it comes into contact with water. Therefore, the decomposition method of the present invention is excellent in safety. Further, fluoride ions generated by decomposition become, for example, calcium fluoride that is harmless to the environment when calcium ions are added, and the obtained calcium fluoride can be recycled as a raw material of hydrofluoric acid.

本発明のフッ素化カルボン酸、その塩及びその前駆体から選ばれた少なくとも一種のフッ素化カルボン酸類の分解方法は、ペルオキソ二硫酸イオンが存在する密閉容器中で比較的低温で熱水処理することを特徴とする。   The method for decomposing at least one fluorinated carboxylic acid selected from the fluorinated carboxylic acid, its salt and its precursor according to the present invention is a hydrothermal treatment at a relatively low temperature in a closed vessel in which peroxodisulfate ions are present. It is characterized by.

本発明でいうフッ素化カルボン酸とは、フッ素原子を含むカルボン酸を意味し、通常RCOOHで表される。
ここで、Rは少なくともフッ素原子を一つ含むアルキル基で、これらのアルキル基はフッ素原子の他に水素原子や酸素原子を含んでいてもよく、まあ、塩素原子等のハロゲン原子、さらには炭素・炭素二重結合を有するアルケニル基を含んでいてもよい。Rの炭素原子数に特に制限はない。
The fluorinated carboxylic acid referred to in the present invention means a carboxylic acid containing a fluorine atom and is usually represented by RCOOH.
Here, R is an alkyl group containing at least one fluorine atom, and these alkyl groups may contain a hydrogen atom or an oxygen atom in addition to the fluorine atom, well, a halogen atom such as a chlorine atom, or even a carbon atom. -The alkenyl group which has a carbon double bond may be included. There is no particular limitation on the number of carbon atoms in R.

本発明で好ましく使用されるフッ素化カルボン酸としては、例えばRの部分がペルフルオロアルキル基(アルキル基の全ての水素原子がフッ素原子に置き換わったものでRfと記述される)であるペルフルオロカルボン酸(RfCOOH)があり、例としてノナフルオロペンタン酸(C4F9COOH)やペルフルオロオクタン酸(C7F15COOH)があげられる。 Examples of the fluorinated carboxylic acid preferably used in the present invention include, for example, a perfluorocarboxylic acid in which R is a perfluoroalkyl group (described as R f in which all hydrogen atoms of the alkyl group are replaced with fluorine atoms). (R f COOH), and examples thereof include nonafluoropentanoic acid (C 4 F 9 COOH) and perfluorooctanoic acid (C 7 F 15 COOH).

また、ペルフルオロカルボン酸の他にも、本発明で好ましく使用されるフッ素化カルボン酸として一般式RfCF=CHCOOH(Rf =ペルフルオロアルキル基)で表される有機フッ素化合物(フルオロテロマー不飽和カルボン酸と称される)や、一般式RfC2H4COOHで表される有機フッ素化合物(フルオロテロマーカルボン酸と称される)があげられる。 In addition to perfluorocarboxylic acids, organic fluorine compounds (fluorotelomer unsaturated carboxylic acids) represented by the general formula R f CF═CHCOOH (R f = perfluoroalkyl group) as fluorinated carboxylic acids preferably used in the present invention. And organic fluorine compounds represented by the general formula R f C 2 H 4 COOH (referred to as fluorotelomer carboxylic acids).

また、本発明はこれらのフッ素化カルボン酸の塩類(アルカリ金属塩、アンモニウム塩)もその対象とすることができる。   In addition, the present invention can also cover these fluorinated carboxylic acid salts (alkali metal salts and ammonium salts).

更に、本発明においては、上記フッ素化カルボン酸やその塩だけでなく、酸化反応や加水分解で容易にカルボキシル基に変換する官能基を有するフッ素化カルボン酸の前駆体も分解対象とすることができる。   Furthermore, in the present invention, not only the fluorinated carboxylic acid and salts thereof, but also a precursor of a fluorinated carboxylic acid having a functional group that can be easily converted into a carboxyl group by an oxidation reaction or hydrolysis may be a target for decomposition. it can.

このような前駆体としては、-OH基を有するフッ素化アルコール(ROH)、-CHO基を有するフッ素化アルデヒド(RCHO)、-COX(Xはハロゲン)を有する酸ハライド(RCOX)、およびフッ素化カルボン酸エステル(RCOOR1、R1は任意のアルキル基)があげられる。Rは前述のように少なくともフッ素原子を一つ含むアルキル基である。 Such precursors include fluorinated alcohols (ROH) with —OH groups, fluorinated aldehydes (RCHO) with —CHO groups, acid halides (RCOX) with —COX (where X is halogen), and fluorination. Examples thereof include carboxylic acid esters (RCOOR 1 and R 1 are any alkyl groups). R is an alkyl group containing at least one fluorine atom as described above.

本発明で使用されるペルオキソ二硫酸イオンは過硫酸イオンとも呼ばれるイオンであり、化学式S2O8 2-で表される。その供給源としては、ペルオキソ二硫酸(H2S2O8)やその塩類を用いる。ペルオキソ二硫酸塩としてはペルオキソ二硫酸カリウム(K2S2O8)、ペルオキソ二硫酸アンモニウム((NH4)2S2O8)、ペルオキソ二硫酸ナトリウム(Na2S2O8)等をあげることができる。 The peroxodisulfate ion used in the present invention is also called a persulfate ion, and is represented by the chemical formula S 2 O 8 2- . As the supply source, peroxodisulfuric acid (H 2 S 2 O 8 ) and its salts are used. Examples of peroxodisulfate include potassium peroxodisulfate (K 2 S 2 O 8 ), ammonium peroxodisulfate ((NH 4 ) 2 S 2 O 8 ), sodium peroxodisulfate (Na 2 S 2 O 8 ), etc. Can do.

本発明においては、水中に存在するフッ素化カルボン酸、その塩類又はその前駆体を分解反応に付すものであるが、これらの物質の水中の濃度は、通常、1質量ppm〜10質量%程度である。   In the present invention, the fluorinated carboxylic acid, its salt or its precursor present in water is subjected to a decomposition reaction. The concentration of these substances in water is usually about 1 mass ppm to 10 mass%. is there.

本発明方法を実施するには、たとえば、上記フッ素化カルボン酸等を含有する水を耐圧反応容器に入れ、そのフッ素化カルボン酸類のカルボキシル基(−COOHもしくは−COO-)の量に対して1〜10000モル倍、好ましくは5〜1000モル倍のペルオキソ二硫酸イオンを、ペルオキソ二硫酸もしくはその塩を添加することで供給する。フッ素化カルボン酸の前駆体の場合はカルボキシル基に変化する官能基の量に対して1〜10000モル倍、好ましくは5〜1000モル倍のペルオキソ二硫酸イオンを入れる。耐圧反応容器の材質はステンレスやインコネル、ハステロイなどが常用される。その後、反応容器を密閉するが、空気や酸素ガスで系内を0.5MPa程度に加圧してもよい。 In order to carry out the method of the present invention, for example, water containing the above fluorinated carboxylic acid or the like is placed in a pressure-resistant reaction vessel, and the amount of the fluorinated carboxylic acid is 1 to the amount of carboxyl groups (—COOH or —COO ) ˜10000 mol times, preferably 5 to 1000 mol times of peroxodisulfate ion is supplied by adding peroxodisulfate or a salt thereof. In the case of a precursor of a fluorinated carboxylic acid, 1 to 10000 mol times, preferably 5 to 1000 mol times peroxodisulfate ion is added with respect to the amount of the functional group converted to a carboxyl group. Stainless steel, Inconel, Hastelloy, etc. are commonly used as the material for the pressure resistant reactor. Thereafter, the reaction vessel is sealed, but the inside of the system may be pressurized to about 0.5 MPa with air or oxygen gas.

本発明においては、つぎに、耐圧反応容器中で熱水処理を行う。この際の熱水温度は200〜370℃といった高温である必要はなく、これよりも著しく低い温度、たとえば100〜150℃の低熱水温度下でも、効率良くフッ素化カルボン酸類を分解することができる。
このように、本発明方法において、極めて低い熱水温度処理によりフッ素化カルボン酸類が効果的に分解される理由は、現時点では定かではないが、還元分解反応に代えて酸化分解反応を採用し、かつ該酸化分解反応をペルオキソ二硫酸イオンの存在下で実施する態様を組み合わせたことによるものと考えている。
Next, in the present invention, hot water treatment is performed in a pressure-resistant reaction vessel. The hot water temperature at this time does not need to be as high as 200 to 370 ° C., and the fluorinated carboxylic acids can be efficiently decomposed even at a temperature much lower than this, for example, at a low hot water temperature of 100 to 150 ° C. it can.
Thus, in the method of the present invention, the reason why the fluorinated carboxylic acids are effectively decomposed by the extremely low hydrothermal temperature treatment is not clear at present, but adopts an oxidative decomposition reaction instead of the reductive decomposition reaction, And it is thought to be due to a combination of embodiments in which the oxidative decomposition reaction is carried out in the presence of peroxodisulfate ions.

反応時間は特に制約されず、分解の難易度によって適宜定められるが1時間〜24時間程度で十分である。一定時間高温に保持した後、冷却し反応容器内の内容物を回収する。   The reaction time is not particularly limited and is appropriately determined depending on the difficulty of decomposition, but about 1 to 24 hours is sufficient. After being kept at a high temperature for a certain time, it is cooled and the contents in the reaction vessel are recovered.

本発明の分解機構は現時点では定かでないが、反応後に回収した水から硫酸イオンが検出されることから、熱水中でペルオキソ二硫酸イオンが硫酸イオンラジカルとなり、それがフッ素化カルボン酸と反応することで開始されると考えられる。後述の実施例で示すようにペルオキソ二硫酸イオンを入れない場合には回収した水中にフッ化物イオンはほとんど得られなかったためペルオキソ二硫酸イオンが熱水中で反応を起していることは明らかである。
また、フッ素化カルボン酸前駆体の場合には熱水中でフッ素化カルボン酸となり、それが硫酸イオンラジカルと反応して分解すると考えられる。
Although the decomposition mechanism of the present invention is not clear at present, since sulfate ions are detected from water collected after the reaction, peroxodisulfate ions become sulfate ion radicals in hot water, which react with fluorinated carboxylic acids. It is thought that this will start. As shown in the examples below, when peroxodisulfate ions are not added, almost no fluoride ions were obtained in the recovered water, so it is clear that peroxodisulfate ions are reacting in hot water. is there.
Further, in the case of a fluorinated carboxylic acid precursor, it is considered that it becomes a fluorinated carboxylic acid in hot water, which reacts with the sulfate ion radical and decomposes.

本分解反応により、硫黄成分は最終的に硫酸イオンとなる。水中の硫酸イオンは中和、カルシウム添加、逆浸透膜等、確立した既存の方法で処理できる。   Through this decomposition reaction, the sulfur component finally becomes sulfate ions. Sulfate ions in water can be treated by existing established methods such as neutralization, calcium addition, and reverse osmosis membrane.

以下、本発明について実施例などによりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example etc. demonstrate this invention further more concretely, this invention is not limited at all by these Examples.

実施例1
ノナフルオロペンタン酸(C4F9COOH)5.92μmolとペルオキソ二硫酸カリウム400μmolを含む水8mlをステンレス製耐圧反応容器(内容量31mL)に入れた。容器内に圧縮空気を0.64MPaまで充填後、密閉した。これを150℃で6時間加熱した。その後、室温まで冷却し、ガス相および水相中の成分を分析した。水中成分としてノナルフオロペンタン酸1.06μmol、フッ化物イオン29.2μmolが検出され、ガス相成分として二酸化炭素が12.34μmolが得られた。ノナルフオロペンタン酸の残存率(反応後のノナフルオロペンタン酸のモル数を反応前のそれで割った値)は17.9%、フッ化物イオンの収率(生成したフッ化物イオンのモル数を反応前のノナフルオロペンタン酸が含有するフッ素原子のモル数で割った値)は54.8%であった。
Example 1
8 ml of water containing 5.92 μmol of nonafluoropentanoic acid (C 4 F 9 COOH) and 400 μmol of potassium peroxodisulfate was placed in a stainless steel pressure-resistant reaction vessel (content volume 31 mL). The container was filled with compressed air to 0.64 MPa and then sealed. This was heated at 150 ° C. for 6 hours. Then, it cooled to room temperature and analyzed the component in a gas phase and an aqueous phase. Nonalfluoropentanoic acid (1.06 μmol) and fluoride ion (29.2 μmol) were detected as water components, and carbon dioxide (12.34 μmol) was obtained as a gas phase component. The residual ratio of nonafluoropentanoic acid (the number of moles of nonafluoropentanoic acid after reaction divided by that before reaction) was 17.9%, and the yield of fluoride ions (the number of moles of fluoride ions produced was The value divided by the number of moles of fluorine atoms contained in nonafluoropentanoic acid was 54.8%.

比較例1
実施例1において、ペルオキソ二硫酸カリウムを導入しなかったこと以外は、実施例1と同様にして反応を行った。その結果、反応後にはノナルフオロペンタン酸4.12μmol、フッ化物イオン0.08μmolが検出され、ガス相成分として二酸化炭素が4.29μmolが得られた。ノナルフオロペンタン酸の残存率は69.6%、フッ化物イオンの収率は0.2%であった。このようにノナルフオロペンタン酸は、ペルオキソ二硫酸イオンを入れなくても多少は反応するものの、残存率は高く、かつフッ化物イオンがほとんど得られないことがわかる。
Comparative Example 1
In Example 1, the reaction was performed in the same manner as in Example 1 except that potassium peroxodisulfate was not introduced. As a result, 4.12 μmol of nonalfluoropentanoic acid and 0.08 μmol of fluoride ion were detected after the reaction, and 4.29 μmol of carbon dioxide was obtained as a gas phase component. The residual ratio of nonalfluoropentanoic acid was 69.6%, and the yield of fluoride ions was 0.2%. As described above, nonarfluoropentanoic acid reacts to some extent without adding peroxodisulfate ions, but the residual rate is high and fluoride ions are hardly obtained.

実施例2
ペルフルオロオクタン酸(C7F15COOH)5.34μmolとペルオキソ二硫酸カリウム400μmolを含む水8mLをステンレス製耐圧反応容器(内容量31mL)に入れた。容器内圧力を圧縮空気で0.64MPaまで高めた後、密閉した。これを150℃において6時間加熱した。その後、室温まで冷却し、ガス相および水相中の成分を分析した。水中成分としてペルフルオロオクタン酸0.83μmol、フッ化物イオン29.9μmolが検出され、ガス相成分として二酸化炭素が14.7μmolが得られた。ペルフルオロオクタン酸の残存率(反応後のペルフルオロオクタン酸のモル数を反応前のそれで割った値)は15.5%、フッ化物イオンの収率(生成したフッ化物イオンのモル数を反応前のペルフルオロオクタン酸が含有するフッ素原子のモル数で割った値)は37.3%であった。
Example 2
8 mL of water containing 5.34 μmol of perfluorooctanoic acid (C 7 F 15 COOH) and 400 μmol of potassium peroxodisulfate was placed in a stainless pressure-resistant reaction vessel (content 31 mL). The pressure inside the container was increased to 0.64 MPa with compressed air and then sealed. This was heated at 150 ° C. for 6 hours. Then, it cooled to room temperature and analyzed the component in a gas phase and an aqueous phase. Perfluorooctanoic acid 0.83 μmol and fluoride ion 29.9 μmol were detected as water components, and 14.7 μmol of carbon dioxide was obtained as a gas phase component. The residual ratio of perfluorooctanoic acid (the number of moles of perfluorooctanoic acid after reaction divided by that before reaction) is 15.5%, and the yield of fluoride ions (the number of moles of fluoride ions produced is the perfluorooctane before reaction) The value divided by the number of moles of fluorine atoms contained in the acid was 37.3%.

比較例2
実施例2の場合とほぼ同じモル数のペルフルオロオクタン酸を用いて、ペルオキソ二硫酸カリウムを添加しない実験を以下のように行った。ペルフルオロオクタン酸5.99μmolを含む水8mLをステンレス製耐圧反応容器(内容量31mL)に入れた。容器内に圧縮空気を0.64MPaまで充填後、密閉した。これを150℃において6時間加熱した。その後、室温まで冷却し、ガス相および水相中の成分を分析した。水中成分としてペルフルオロオクタン酸4.16μmol、フッ化物イオン0.04μmolが検出され、ガス相成分として二酸化炭素が5.24μmolが得られた。ペルフルオロオクタン酸の残存率は69.4%、フッ化物イオンの収率は0.04%であり、フッ化物イオンの収率はペルオキソ二硫酸カリウムを添加した実施例2に比べて大幅に低下した。
Comparative Example 2
An experiment in which potassium peroxodisulfate was not added using the same number of moles of perfluorooctanoic acid as in Example 2 was performed as follows. 8 mL of water containing 5.99 μmol of perfluorooctanoic acid was placed in a stainless steel pressure-resistant reaction vessel (content volume 31 mL). The container was filled with compressed air to 0.64 MPa and then sealed. This was heated at 150 ° C. for 6 hours. Then, it cooled to room temperature and analyzed the component in a gas phase and an aqueous phase. 4.16 μmol of perfluorooctanoic acid and 0.04 μmol of fluoride ion were detected as the water components, and 5.24 μmol of carbon dioxide was obtained as the gas phase component. The residual ratio of perfluorooctanoic acid was 69.4%, and the yield of fluoride ions was 0.04%. The yield of fluoride ions was significantly lower than that in Example 2 in which potassium peroxodisulfate was added.

実施例3
3-ペルフルオロプロピル-3-フルオロ-(Z)-プロペン酸(C3F7CF=CHCOOH)5.92μmolとペルオキソ二硫酸カリウム400μmolを含む水8mLをステンレス製耐圧反応容器(内容量31mL)に入れた。容器内に圧縮空気を0.64MPaまで充填後、密閉した。これを150℃において6時間加熱した。その後、室温まで冷却し、ガス相および水相中の成分を分析した。水中成分としてヘプタフルオロブタン酸(C3F7COOH)酸0.98μmol、フッ化物イオン18.9μmolが検出され、ガス相成分として二酸化炭素が11.8μmolが得られた。3-ペルフルオロプロピル-3-フルオロ-(Z)-プロペン酸は消失していた。フッ化物イオンの収率(生成したフッ化物イオンのモル数を反応前の3-ペルフルオロプロピル-3-フルオロ-(Z)-プロペン酸が含有するフッ素原子のモル数で割った値)は39.9%であった。
Example 3
8 mL of water containing 5.92 μmol of 3-perfluoropropyl-3-fluoro- (Z) -propenoic acid (C 3 F 7 CF = CHCOOH) and 400 μmol of potassium peroxodisulfate was placed in a stainless steel pressure-resistant reaction vessel (content volume 31 mL). . The container was filled with compressed air to 0.64 MPa and then sealed. This was heated at 150 ° C. for 6 hours. Then, it cooled to room temperature and analyzed the component in a gas phase and an aqueous phase. Heptafluorobutanoic acid (C 3 F 7 COOH) acid 0.98 μmol and fluoride ion 18.9 μmol were detected as water components, and 11.8 μmol of carbon dioxide was obtained as a gas phase component. 3-Perfluoropropyl-3-fluoro- (Z) -propenoic acid had disappeared. Yield of fluoride ion (value obtained by dividing the number of moles of fluoride ion produced by the number of moles of fluorine atoms contained in 3-perfluoropropyl-3-fluoro- (Z) -propenoic acid before reaction) is 39.9% Met.

実施例4
1H,1H,2H,2H-へプタデカフルオロ-1-デカノール(C8F17C2H4OH)4.83μmolとペルオキソ二硫酸カリウム400μmolを含む水8mLをステンレス製耐圧反応容器(内容量31mL)に入れた。容器内圧力を圧縮空気で0.64MPaまで高めた後、密閉した。これを150℃において6時間加熱した。その後、室温まで冷却し、ガス相および水相中の成分を分析した。水中成分としてペルフルオロオクタン酸0.73μmol、フッ化物イオン30.4μmolが検出され、ガス相成分として二酸化炭素が19.3μmolが得られた。1H,1H,2H,2H-へプタデカフルオロ-1-デカノールは消失していた。フッ化物イオンの収率(生成したフッ化物イオンのモル数を反応前の1H,1H,2H,2H-へプタデカフルオロ-1-デカノールが含有するフッ素原子のモル数で割った値)は37.0%であった。
Example 4
1H, 1H, 2H, 2H-Heptadecafluoro-1-decanol (C 8 F 17 C 2 H 4 OH) 4.83 μmol of water containing 400 μmol of potassium peroxodisulfate and stainless steel pressure-resistant reaction vessel (content volume 31 mL) Put in. The pressure inside the container was increased to 0.64 MPa with compressed air and then sealed. This was heated at 150 ° C. for 6 hours. Then, it cooled to room temperature and analyzed the component in a gas phase and an aqueous phase. Perfluorooctanoic acid 0.73 μmol and fluoride ion 30.4 μmol were detected as water components, and carbon dioxide 19.3 μmol was obtained as a gas phase component. 1H, 1H, 2H, 2H-heptadecafluoro-1-decanol disappeared. The yield of fluoride ion (the number of moles of fluoride ion generated divided by the number of moles of fluorine atoms contained in 1H, 1H, 2H, 2H-heptadecafluoro-1-decanol before reaction) was 37.0 %Met.

Claims (4)

フッ素化カルボン酸、その塩及びその前駆体から選ばれた少なくとも一種のフッ素化カルボン酸類を、ペルオキソ二硫酸イオンが存在する密閉容器中で熱水処理することを特徴とするフッ素化カルボン酸類の分解方法。   Decomposition of fluorinated carboxylic acids, characterized by hydrothermal treatment of at least one fluorinated carboxylic acid selected from fluorinated carboxylic acids, salts thereof and precursors thereof in a closed vessel in which peroxodisulfate ions are present Method. フッ素化カルボン酸が、一般式RCOOH(Rは少なくともフッ素原子を一つ含むアルキル基であり、そのアルキル基はフッ素原子の他に水素原子、ハロゲン原子、酸素原子、アルケニル基を含んでいてもよい)
で表されることを特徴とする請求項1に記載のフッ素化カルボン酸類の分解方法。
The fluorinated carboxylic acid is a general formula RCOOH (R is an alkyl group containing at least one fluorine atom, and the alkyl group may contain a hydrogen atom, a halogen atom, an oxygen atom, or an alkenyl group in addition to the fluorine atom. )
The method for decomposing fluorinated carboxylic acids according to claim 1, wherein
フッ素化カルボン酸の塩が、フッ素化カルボン酸のアルカリ金属塩またはアンモニウム塩であることを特徴とする請求項1に記載のフッ素化カルボン酸類の分解方法。   The method for decomposing fluorinated carboxylic acids according to claim 1, wherein the salt of the fluorinated carboxylic acid is an alkali metal salt or an ammonium salt of the fluorinated carboxylic acid. フッ素化カルボン酸の前駆体が、フッ素化アルコール、フッ素化アルデヒド、フッ素化カルボン酸ハライドまたはフッ素化カルボン酸エステルであることを特徴とする請求項1に記載のフッ素化カルボン酸類の分解方法。
The method for decomposing a fluorinated carboxylic acid according to claim 1, wherein the precursor of the fluorinated carboxylic acid is a fluorinated alcohol, a fluorinated aldehyde, a fluorinated carboxylic acid halide, or a fluorinated carboxylic acid ester.
JP2007133746A 2007-05-21 2007-05-21 Method for decomposing fluorinated carboxylic acids Expired - Fee Related JP5071929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133746A JP5071929B2 (en) 2007-05-21 2007-05-21 Method for decomposing fluorinated carboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133746A JP5071929B2 (en) 2007-05-21 2007-05-21 Method for decomposing fluorinated carboxylic acids

Publications (2)

Publication Number Publication Date
JP2008285449A true JP2008285449A (en) 2008-11-27
JP5071929B2 JP5071929B2 (en) 2012-11-14

Family

ID=40145527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133746A Expired - Fee Related JP5071929B2 (en) 2007-05-21 2007-05-21 Method for decomposing fluorinated carboxylic acids

Country Status (1)

Country Link
JP (1) JP5071929B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162521A (en) * 2009-01-19 2010-07-29 Japan Organo Co Ltd Method and apparatus for treating hardly degradable organic compound
WO2022230929A1 (en) 2021-04-30 2022-11-03 Agc株式会社 Method for decomposing polyfluorocarboxylic acids

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040805A (en) * 2001-07-31 2003-02-13 National Institute Of Advanced Industrial & Technology Method for photo-decomposing organofluorine compound
JP2005225785A (en) * 2004-02-12 2005-08-25 National Institute Of Advanced Industrial & Technology Method for decomposing difficultly decomposable fluorinated carboxylic acid
JP2005237778A (en) * 2004-02-27 2005-09-08 Idemitsu Kosan Co Ltd Method for treating hardly decomposable organic compound
JP2006306736A (en) * 2005-04-26 2006-11-09 National Institute Of Advanced Industrial & Technology Method of hydrothermally decomposing fluorinated organic compound
JP2007083096A (en) * 2005-09-20 2007-04-05 National Institute Of Advanced Industrial & Technology Decomposition method for fluoro-carboxylic acids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040805A (en) * 2001-07-31 2003-02-13 National Institute Of Advanced Industrial & Technology Method for photo-decomposing organofluorine compound
JP2005225785A (en) * 2004-02-12 2005-08-25 National Institute Of Advanced Industrial & Technology Method for decomposing difficultly decomposable fluorinated carboxylic acid
JP2005237778A (en) * 2004-02-27 2005-09-08 Idemitsu Kosan Co Ltd Method for treating hardly decomposable organic compound
JP2006306736A (en) * 2005-04-26 2006-11-09 National Institute Of Advanced Industrial & Technology Method of hydrothermally decomposing fluorinated organic compound
JP2007083096A (en) * 2005-09-20 2007-04-05 National Institute Of Advanced Industrial & Technology Decomposition method for fluoro-carboxylic acids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162521A (en) * 2009-01-19 2010-07-29 Japan Organo Co Ltd Method and apparatus for treating hardly degradable organic compound
WO2022230929A1 (en) 2021-04-30 2022-11-03 Agc株式会社 Method for decomposing polyfluorocarboxylic acids
KR20240004221A (en) 2021-04-30 2024-01-11 에이지씨 가부시키가이샤 Decomposition method of polyfluorocarboxylic acids

Also Published As

Publication number Publication date
JP5071929B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JPH1160521A (en) Hydrolysis of alkyl monohalide and apparatus therefor
JP6284188B2 (en) Method for decomposing fluorine organic compounds and apparatus for decomposing fluorine organic compounds
EP0730899A1 (en) Process for cleaning gaseous or liquid effluents containing sulfurous compounds
JP5071929B2 (en) Method for decomposing fluorinated carboxylic acids
JP4788946B2 (en) Hydrothermal decomposition of fluorinated organic compounds
US6927305B2 (en) Process for production of alkanesulfonic acid
JP4389058B2 (en) Method for decomposing fluorocarboxylic acids
Jiao et al. Photoreductive defluorination of trifluoroacetic acid (TFA) in the aqueous phase by hydrated electrons
JP2018104578A (en) Decomposition method and device for fluorine atom-containing polymer
JP2021155478A (en) Decomposition method of fluorine atom-containing polymer and decomposition apparatus of fluorine atom-containing polymer
JP3937006B2 (en) Photolysis of fluorinated organic compounds
JP2005154277A (en) Method for converting fluoro carboxylic acids
JP2007137739A (en) METHOD FOR RECOVERING CaF2
JP4284413B2 (en) Method for decomposing persistent fluorinated carboxylic acids
JP3546136B2 (en) PCB decomposition method
JP7258319B1 (en) Method for decomposing fluorine atom-containing polymer, and apparatus for decomposing fluorine atom-containing polymer
JP4137052B2 (en) Method and apparatus for treating halogen compound aqueous solution, acidic aqueous solution or acidic gas
JP2006045469A (en) Method for dehalogenating halogen-containing polymer with ammonia-containing aqueous solution
JP4941997B2 (en) Decomposition method of fluorine ion exchange resin membrane
RU2538843C2 (en) Using solid waste-quicklime membrane treatment process to produce sodium hydroxide
JP5900130B2 (en) How to use fluoroalkyl iodide
KR101557637B1 (en) Sulfur hexafluoride decomposition device using electron beam
JP2000218129A (en) Method and apparatus for suppressing generation of greenhouse effect gas
KR101561277B1 (en) The removal method of hydrogen chloride in cokes oven gas
CN117279882A (en) Method for decomposing polyfluorocarboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

R150 Certificate of patent or registration of utility model

Ref document number: 5071929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees