JP2008281364A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2008281364A
JP2008281364A JP2007123814A JP2007123814A JP2008281364A JP 2008281364 A JP2008281364 A JP 2008281364A JP 2007123814 A JP2007123814 A JP 2007123814A JP 2007123814 A JP2007123814 A JP 2007123814A JP 2008281364 A JP2008281364 A JP 2008281364A
Authority
JP
Japan
Prior art keywords
magnetic
ring
current
current sensor
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007123814A
Other languages
Japanese (ja)
Inventor
Junichi Inoue
淳一 井上
Tomohiro Fujisawa
友弘 藤沢
Yoshio Matsuo
良夫 松尾
Ichiro Sasada
一郎 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
FDK Corp
Original Assignee
Kyushu University NUC
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, FDK Corp filed Critical Kyushu University NUC
Priority to JP2007123814A priority Critical patent/JP2008281364A/en
Publication of JP2008281364A publication Critical patent/JP2008281364A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current sensor, constituted in such a way as to detect DC magnetic fields corresponding to a current to be measured, on the basis of the modulation of magnetic flux due to the Villari effects, reducing the output offset due to residual magnetic fields, improving the linearity of output characteristics, and reducing hysteresis and suitable for vehicle-mounted uses. <P>SOLUTION: The current sensor is provided with a piezoelectric ring 1 formed in a ring shape; a first magnetic ring 2 formed into a ring shape; and a second magnetic ring 3 formed in a ring shape. The two magnetic rings 2 and 3 are each jointed to and integrated with the front and the back of the piezoelectric ring 1, and a wire rod is wound around the inside and the outside of the ring-like sections to form a pickup coil 4. At least one of the first and second magnetic rings 2 and 3 is provided with a gap 5, which cuts off the ring-like member. The piezoelectric ring 1 generates oscillations in the radial directions by adding a prescribed AC current between electrodes. A wire 6 through which a current to be measured I flows is positioned inside the ring-like section, to detect the strength of magnetic fields generated by the current to be measured I by the pickup coil 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被測定電流によって発生する磁界の強さをピックアップコイルにより検出する電流センサに関するもので、より具体的には、ピックアップコイルを連係した磁性体材料には所定の振動力を加えることで逆磁歪効果(ビラリ効果)を起こさせて変調し、被測定電流に対応した磁界の変化を検出するような構成における出力特性の改良に関する。   The present invention relates to a current sensor for detecting the strength of a magnetic field generated by a current to be measured by a pickup coil, and more specifically, by applying a predetermined vibration force to a magnetic material associated with a pickup coil. The present invention relates to an improvement in output characteristics in a configuration in which an inverse magnetostriction effect (biliary effect) is generated and modulated to detect a change in a magnetic field corresponding to a current to be measured.

直流電流を非接触に検出する電流センサに関して、大電流の測定が行えること、そして比較的高温となるような厳しい環境でも測定が行えることが強く求められる用途がある。例えば車載用途などでは、小型で堅牢であること、および動作温度が広いことなど、一般産業用途を超える仕様となり、具体的には50アンペア程度の電流が測定でき、車両のエンジン室では少なくとも130℃程度で動作できることが必要になる。また近年は、燃料電池車やハイブリッド車などが注目され、電流センサは重要な部品になっている。   With respect to a current sensor that detects a direct current in a non-contact manner, there are applications that are required to be able to measure a large current and to perform measurement even in a severe environment where the temperature is relatively high. For example, in an in-vehicle application, the specification exceeds a general industrial application such as being small and robust, and having a wide operating temperature. Specifically, a current of about 50 amperes can be measured, and at least 130 ° C. in a vehicle engine room. It is necessary to be able to operate at a degree. In recent years, fuel cell vehicles and hybrid vehicles have attracted attention, and current sensors have become important components.

大電流の検出が行える電流センサとしては、例えばホール素子を用いたものがよく知られている。これは環状の磁性体コアに設けたギャップ部位にホール素子を配置し、被測定電流が流れる電線は環状部位の内側に位置させ、被測定電流によって発生する磁界の強さをホール素子により検出(ホール電圧)する構成を採る。しかし、ホール素子による電流センサは、磁性体コアのギャップ部位にホール素子を挟む構成のため小型化が難しく、高温環境で使用することに困難があり欠点が多い。   As a current sensor capable of detecting a large current, for example, a sensor using a Hall element is well known. This is because the Hall element is arranged in the gap part provided in the annular magnetic core, the electric wire through which the current to be measured flows is positioned inside the annular part, and the strength of the magnetic field generated by the current to be measured is detected by the Hall element ( (Hall voltage). However, a current sensor using a Hall element has many drawbacks because it is difficult to reduce the size because of the configuration in which the Hall element is sandwiched between gap portions of the magnetic core, and difficult to use in a high-temperature environment.

また、特許文献1や非特許文献1に見られるように、ビラリ効果を利用することで電流センサを構成するようにした技術の提案がある。このものは、図1に示す本発明に係る代表的な構成例を援用して説明するが、環状の磁性体リング2(3)に対して圧電体リング1を接合させて一体化し、当該環状部位の内外に線材を巻き回してピックアップコイル4としており、直流電流Iによって発生する直流磁界の強さをピックアップコイル4により検出する構成を採る。ピックアップコイル4と交錯する磁束、つまり直流磁界の強さを検出するにはこれを変調する必要があり、このため圧電体リング1は所定の交流電圧を加えて直径方向に振動させ、磁性体リング2(3)へ機械的な振動力を加えることで逆磁歪効果(ビラリ効果)を起こさせて磁束の変調を行う。これにより、被測定電流Iに対応した磁界の変化を検出することができ、電流の検出が行える。
特開2006−98332号公報
Further, as can be seen in Patent Document 1 and Non-Patent Document 1, there is a proposal of a technique in which a current sensor is configured by using the Villari effect. This will be described with reference to the typical configuration example according to the present invention shown in FIG. 1, but the piezoelectric ring 1 is joined and integrated with the annular magnetic ring 2 (3), and the annular A wire rod is wound around the inside and outside of the part to form the pickup coil 4, and the pickup coil 4 detects the strength of the DC magnetic field generated by the DC current I. In order to detect the intensity of the magnetic flux crossing the pickup coil 4, that is, the strength of the DC magnetic field, it is necessary to modulate this. For this reason, the piezoelectric ring 1 is vibrated in the diametrical direction by applying a predetermined AC voltage, and the magnetic ring By applying a mechanical vibration force to 2 (3), the inverse magnetostriction effect (biliary effect) is caused to modulate the magnetic flux. Thereby, the change of the magnetic field corresponding to the current I to be measured can be detected, and the current can be detected.
JP 2006-98332 A

電気学会マグネティックス研究会 MAG−05−34 ビラリ効果を利用した大電流センサ 忠津孝・笹田一郎The Institute of Electrical Engineers of Japan Magnetics MAG-05-34 A high-current sensor using the Billari effect Takashi Tadatsu and Ichiro Hamada

しかし、非特許文献1に見られるようなビラリ効果を利用した電流センサにあっては、以下に示すような問題がある。磁性材料によっては、残留磁化が大きいものがあり、残留磁束による出力が発生し被測定電流Iが0であってもピックアップコイル4に出力電圧(オフセット)が生じてしまい、出力特性が悪い。   However, the current sensor using the barrier effect as seen in Non-Patent Document 1 has the following problems. Some magnetic materials have a large residual magnetization, and an output voltage (offset) is generated in the pickup coil 4 even when the measured current I is 0 even if the output due to the residual magnetic flux is 0, resulting in poor output characteristics.

磁性体リング2(3)には磁気特性についてヒステリシスがあることから、電流センサの出力特性にその影響がでることは避けられないという問題があり、磁気特性のヒステリシスをより低減させる改善が求められている。   Since the magnetic ring 2 (3) has a hysteresis with respect to the magnetic characteristics, there is a problem that the influence on the output characteristics of the current sensor is inevitable, and an improvement to further reduce the hysteresis of the magnetic characteristics is required. ing.

また、ピックアップコイル4の出力は、被測定電流Iに対して概ね良好な直線性を示すものの、直線性が得られる領域(被測定電流Iの範囲)が狭い。そこで、直線性が得られる被測定電流領域を拡大したいという要求がある。   Further, although the output of the pickup coil 4 shows generally good linearity with respect to the current I to be measured, the region where the linearity can be obtained (the range of the current I to be measured) is narrow. Therefore, there is a demand to expand the current measurement region where linearity can be obtained.

この発明は上述した課題を解決するもので、その目的は、被測定電流に対応した直流磁界をビラリ効果による磁束の変調により検出する構成を採り、残留磁束による出力のオフセットを低減でき、出力特性について直線性を良好に向上でき、そしてヒステリシスを低減できて車載用途等に好ましく適用できる電流センサを提供することにある。   The present invention solves the above-mentioned problem, and its purpose is to detect a DC magnetic field corresponding to the current to be measured by modulating the magnetic flux by the billiary effect, and to reduce the output offset due to the residual magnetic flux. It is an object of the present invention to provide a current sensor that can improve linearity well and reduce hysteresis and can be preferably applied to in-vehicle applications.

上述した目的を達成するために、本発明に係る電流センサは、(1)被測定電流によって発生する磁界の強さをピックアップコイルにより検出する電流センサであって、環状に形成した圧電体リングと、環状に形成した第1磁性体リングとを接合して1つの環状体を形成し、前記第1磁性体リングに当該環状部位を遮断するギャップを設け、前記環状体の内外に線材を巻き回して前記ピックアップコイルとする構成とした。   In order to achieve the above-described object, a current sensor according to the present invention is (1) a current sensor for detecting the strength of a magnetic field generated by a current to be measured by a pickup coil, and a piezoelectric ring formed in an annular shape. The first magnetic ring formed in an annular shape is joined to form one annular body, a gap for blocking the annular portion is provided in the first magnetic ring, and a wire is wound around the inside and outside of the annular body. Thus, the pickup coil is configured.

(2)上記の(1)の発明を前提とし、環状に形成した第2磁性体リングを前記圧電体リングに接合し、その第2磁性体リングと前記第1磁性体リングとで前記圧電体リングを挟み込むように構成するとよい。換言すると、2つの磁性体リングを、圧電体リングの表裏へそれぞれ接合させて一体化する。(1)の発明では、圧電体リングのみが径方向に伸縮するので、反りが発生するが、更に磁性体リングと圧電体リングの熱膨張係数が異なる場合、このように、2つの磁性体リングで圧電体リングを挟み込むことで、温度変化が生じても電流センサ全体での反りの発生を抑制できる。   (2) On the premise of the invention of (1) above, a second magnetic ring formed in an annular shape is joined to the piezoelectric ring, and the piezoelectric body is formed by the second magnetic ring and the first magnetic ring. It is good to comprise so that a ring may be inserted | pinched. In other words, the two magnetic rings are joined and integrated to the front and back of the piezoelectric ring. In the invention of (1), since only the piezoelectric ring expands and contracts in the radial direction, warping occurs. However, when the thermal expansion coefficients of the magnetic ring and the piezoelectric ring are different, two magnetic rings are thus obtained. By sandwiching the piezoelectric ring, the occurrence of warpage in the entire current sensor can be suppressed even if a temperature change occurs.

(3)さらに、上記の(2)の発明を前提とし、第2磁性体リングに環状部位を遮断するギャップを設けるとよい。   (3) Furthermore, on the premise of the invention of (2) above, it is preferable to provide a gap for blocking the annular portion in the second magnetic body ring.

(4)また、電流センサは、筒状に形成した圧電体筒体と、筒状に形成した磁性体筒体とを備えて、磁性体筒体には当該筒状部位を遮断するギャップを設け、当該磁性体筒体と圧電体筒体とを同心に重ね合わせて一体に接合し、当該筒状部位の内外に線材を巻き回してピックアップコイルとする構成にすることもできる。   (4) In addition, the current sensor includes a piezoelectric body cylinder formed in a cylindrical shape and a magnetic body cylinder formed in a cylindrical shape, and the magnetic body cylinder is provided with a gap that blocks the cylindrical portion. The magnetic cylinder and the piezoelectric cylinder may be superposed concentrically and integrally joined together, and a wire rod may be wound around the cylindrical portion to form a pickup coil.

(5)上記の各発明において、ギャップ部位には透磁率が相違する調整部材を配置する構成にするとよい。   (5) In each of the above inventions, an adjustment member having a different magnetic permeability may be disposed in the gap portion.

本発明では、磁性体リング(磁性体筒体)にギャップを設けたため、磁気抵抗を調整することができる。磁性体リング(磁性体筒体)の磁気抵抗は、ギャップ部位の幅や当該部位をなす物質に応じて変更でき、磁気抵抗を調整することにより磁束の発生を制御することができる。   In the present invention, since a gap is provided in the magnetic ring (magnetic cylinder), the magnetic resistance can be adjusted. The magnetic resistance of the magnetic ring (magnetic cylinder) can be changed according to the width of the gap part and the material forming the part, and the generation of magnetic flux can be controlled by adjusting the magnetic resistance.

本発明に係る電流センサでは、磁性体リング(磁性体筒体)にギャップを設けたため磁気抵抗を変更でき、磁束の発生を制御することができる。このため、被測定電流によって発生する直流磁束を適正に制御できる。その結果、残留磁束による出力のオフセットを低減でき、出力特性について直線性を良好に向上でき、電流検出の帯域を広くすることができ、ヒステリシスの低減が行える。   In the current sensor according to the present invention, since the gap is provided in the magnetic ring (magnetic cylinder), the magnetic resistance can be changed and the generation of magnetic flux can be controlled. For this reason, it is possible to appropriately control the DC magnetic flux generated by the current to be measured. As a result, the offset of the output due to the residual magnetic flux can be reduced, the linearity of the output characteristics can be improved satisfactorily, the current detection band can be widened, and the hysteresis can be reduced.

図1は本発明の好適な一実施の形態を示している。本実施形態において電流センサは、環状に形成した圧電体リング1と、環状に形成した第1磁性体リング2および第2磁性体リング3とを備え、これら2つの磁性体リング2,3は圧電体リング1の表裏へそれぞれ接合させて一体化し、当該環状部位の内外に線材を巻き回してピックアップコイル4とする構成にしている。   FIG. 1 shows a preferred embodiment of the present invention. In this embodiment, the current sensor includes a ring-shaped piezoelectric ring 1 and a ring-shaped first magnetic ring 2 and second magnetic ring 3, and the two magnetic rings 2 and 3 are piezoelectric. The body ring 1 is joined and integrated to the front and back, and a wire rod is wound around the inside and outside of the annular portion to form the pickup coil 4.

第1磁性体リング2,第2磁性体リング3には、少なくとも一方に当該環状部位を遮断するギャップ5を設けている。ギャップの形成位置並びに個数は任意に設定できる。圧電体リング1は分極させてあり、電極間に所定の交流電圧を加えることにより直径方向に振動するようになっている。圧電体リング1の分極処理は具体的には、対向する2面に焼き付け用の銀ペーストを塗布して導電性皮膜(分極電極)を形成し、80〜120℃に加熱したシリコンオイル中に入れて、分極電極間に2〜3kV/mmの電圧を20〜60分間加える処理を行い、分極させる。   At least one of the first magnetic ring 2 and the second magnetic ring 3 is provided with a gap 5 that blocks the annular portion. The formation position and the number of gaps can be arbitrarily set. The piezoelectric ring 1 is polarized and vibrates in the diameter direction by applying a predetermined alternating voltage between the electrodes. Specifically, the polarization treatment of the piezoelectric ring 1 is performed by applying a silver paste for baking on two opposing surfaces to form a conductive film (polarization electrode), and placing it in silicon oil heated to 80 to 120 ° C. Then, a process of applying a voltage of 2 to 3 kV / mm between the polarization electrodes for 20 to 60 minutes is performed for polarization.

被測定電流Iが流れる電線6は環状部位の内側に位置させ、被測定電流Iによって発生する磁界の強さをピックアップコイル4により検出する。   The electric wire 6 through which the current I to be measured flows is positioned inside the annular portion, and the strength of the magnetic field generated by the current I to be measured is detected by the pickup coil 4.

この場合、電線6を環状部位内に位置させるので、被測定電流Iによる磁束は磁性体リング2,3について周回方向に発生する。圧電体リング1に交流電圧を加えた場合、磁界が一定、つまり直流磁界の状態でも磁束密度は対応量の増減を起こし、磁束の変化が生じる。すなわち、磁性体リング2,3へ機械的な振動力を加えることで逆磁歪効果(ビラリ効果)を起こさせて磁束の変調を行う。この磁束の変化のためピックアップコイル4では起電力を生じ、ピックアップコイル4の出力は、直流磁界の大きさ、すなわち被測定電流Iの大きさに比例して増減する。したがって、被測定電流Iに対応した磁界の変化を検出することができ、電流の検出が行える。   In this case, since the electric wire 6 is positioned in the annular portion, the magnetic flux due to the current I to be measured is generated in the circulation direction with respect to the magnetic rings 2 and 3. When an AC voltage is applied to the piezoelectric ring 1, the magnetic flux density increases or decreases by a corresponding amount even when the magnetic field is constant, that is, in the state of a DC magnetic field, and the magnetic flux changes. That is, by applying a mechanical vibration force to the magnetic rings 2 and 3, an inverse magnetostriction effect (biliary effect) is caused to modulate the magnetic flux. Due to this change in magnetic flux, an electromotive force is generated in the pickup coil 4, and the output of the pickup coil 4 increases or decreases in proportion to the magnitude of the DC magnetic field, that is, the magnitude of the current I to be measured. Therefore, the change in the magnetic field corresponding to the current I to be measured can be detected, and the current can be detected.

ところで、磁性体リング2(3)についてギャップ5を設けた場合、図2に該当部分を示して説明するが磁束φは、
φ=N・I/(L/μS)
となる。Iは被測定電流、Nは電線6のターン数、Lは磁路の長さ、Sは断面積である。ここでN・Iは起磁力、L/μSは磁気抵抗となっている。そして磁束密度Bは、
B=N・I/(L/μ)
となる。磁性体材料による磁路部位とギャップ5との磁気抵抗は直列なので、
L/μ=ΔL/μg+(L−ΔL)/μs
となる。ΔLはギャップ5の長さ、μgはギャップ5の透磁率、μsは磁性体材料の透磁率である。
By the way, when the gap 5 is provided for the magnetic ring 2 (3), the corresponding portion is shown in FIG.
φ = N · I / (L / μS)
It becomes. I is the current to be measured, N is the number of turns of the wire 6, L is the length of the magnetic path, and S is the cross-sectional area. Here, N · I is a magnetomotive force, and L / μS is a magnetic resistance. And the magnetic flux density B is
B = N · I / (L / μ)
It becomes. Since the magnetic resistance of the magnetic path portion and the gap 5 due to the magnetic material is in series,
L / μ = ΔL / μg + (L−ΔL) / μs
It becomes. ΔL is the length of the gap 5, μg is the permeability of the gap 5, and μs is the permeability of the magnetic material.

そして、ピックアップコイル4における起電力Vは、
e=Vsinωt
とおくとeは、
e=−n・S・δB/δt
なので、
|ΔB|=1/(n・S)∫edt
=1/(n・S)∫Vsinωtdt
=V・1/(n・S)・1/(π・f)
∴ V=n・S・π・f .dB
=(N・I・n・S・π・f)/(ΔL/μg+(L−ΔL)/μs)
となる。以上により、起電力Vは、ギャップ5の長さΔL、ギャップ5の材質(透磁率μg)に応じて適宜に調整が行えることがわかる。
And the electromotive force V in the pickup coil 4 is
e = Vsinωt
E is
e = −n · S · δB / δt
So,
| ΔB | = 1 / (n · S) ∫edt
= 1 / (n · S) ∫Vsinωtdt
= V · 1 / (n · S) · 1 / (π · f)
= V = n · S · π · f. dB
= (N · I · n · S · π · f) / (ΔL / μg + (L−ΔL) / μs)
It becomes. From the above, it can be seen that the electromotive force V can be appropriately adjusted according to the length ΔL of the gap 5 and the material (magnetic permeability μg) of the gap 5.

また、ギャップ5は磁性体リング2(3)に対して複数を設ける構成にすることもよい。さらに、ギャップ5の部位には透磁率が相違する調整部材を配置する構成にすることもよい。   Also, a plurality of gaps 5 may be provided for the magnetic ring 2 (3). Furthermore, it is good also as a structure which arrange | positions the adjustment member from which the magnetic permeability differs in the site | part of the gap 5. FIG.

このように、本発明に係る電流センサは、圧電体材料と磁性体材料からなる構成なので、高温環境で使用することに何ら問題がなく、動作温度の範囲が広い。そして、電流の検出動作にはビラリ効果による磁束の変調を利用しているので、ホール素子による構成と違って小型化することができ、外乱磁界の影響を受けない検出が行える。また、ホール素子は半導体のため放射線耐性が弱い欠点があるが、本発明に係る電流センサは放射線耐性が強いと言える。   As described above, since the current sensor according to the present invention is composed of the piezoelectric material and the magnetic material, there is no problem when used in a high temperature environment, and the operating temperature range is wide. The current detection operation utilizes magnetic flux modulation due to the barrier effect, so that the size can be reduced unlike the configuration using the Hall element, and detection without being affected by the disturbance magnetic field can be performed. In addition, since the Hall element is a semiconductor and has a weak radiation resistance, it can be said that the current sensor according to the present invention has a high radiation resistance.

この場合、磁性体リング2にはギャップ5を設けるので、磁気抵抗を調整することができ、磁性体リング2の磁気抵抗は、ギャップ5部位の幅や当該部位をなす物質に応じて変更でき、磁気抵抗を調整することにより磁束の発生を制御することができる。このため、被測定電流Iによって発生する直流磁束を適正に制御でき、その結果、残留磁束による出力のオフセットを低減でき、出力特性について直線性を良好に向上でき、電流検出の帯域を広くすることができ、ヒステリシスの低減が行える。したがって、本発明に係る電流センサは車載用途等に好ましく適用することができる。   In this case, since the magnetic ring 2 is provided with the gap 5, the magnetic resistance can be adjusted, and the magnetic resistance of the magnetic ring 2 can be changed according to the width of the gap 5 part and the substance forming the part, The generation of magnetic flux can be controlled by adjusting the magnetic resistance. For this reason, it is possible to properly control the DC magnetic flux generated by the current I to be measured. As a result, the output offset due to the residual magnetic flux can be reduced, the linearity of the output characteristics can be improved satisfactorily, and the current detection band can be widened. Hysteresis can be reduced. Therefore, the current sensor according to the present invention can be preferably applied to in-vehicle applications.

また、本実施形態では、圧電体リングの表裏両側に磁性体リングを接合するようにしたが、本発明はこれに限ることはなく、圧電体リングの片側に磁性体リングを接合しても良い。   In the present embodiment, the magnetic ring is bonded to both the front and back sides of the piezoelectric ring. However, the present invention is not limited to this, and the magnetic ring may be bonded to one side of the piezoelectric ring. .

(電流センサの筒型の構成例)
図3は、本発明に係る電流センサの他例を示す斜視図である。この電流センサは、筒状に形成した圧電体筒体10と、筒状に形成した磁性体筒体11とを備えて、磁性体筒体11と圧電体筒体10とを同心に重ね合わせて一体に接合し、当該筒状部位の内外に線材を巻き回してピックアップコイル4とする構成にしている。また、磁性体筒体11には当該筒状部位を遮断するギャップ5を設けている。そして、圧電体リング10は、電極間に所定の交流電圧を加えることにより直径方向あるいは筒体の長さ方向に振動するようになっている。ここでは圧電体筒10の外側に磁性体筒11を同心に重ね合わせているが、これは逆に磁性体筒体11の外側に圧電体筒10を同心に重ね合わせる構成にしてもよい。あるいは、磁性体筒体は、圧電体筒の内外に同時に接合する構成としてもよい。
(Cylinder type configuration example of current sensor)
FIG. 3 is a perspective view showing another example of the current sensor according to the present invention. This current sensor includes a piezoelectric body 10 formed in a cylindrical shape and a magnetic body 11 formed in a cylindrical shape, and the magnetic body 11 and the piezoelectric body 10 are overlapped concentrically. The pickup coil 4 is constructed by integrally joining and winding a wire around the inside and outside of the cylindrical part. The magnetic cylinder 11 is provided with a gap 5 that blocks the cylindrical portion. The piezoelectric ring 10 vibrates in the diameter direction or the length direction of the cylindrical body by applying a predetermined alternating voltage between the electrodes. Here, the magnetic cylinder 11 is concentrically overlapped on the outside of the piezoelectric cylinder 10, but conversely, the piezoelectric cylinder 10 may be concentrically overlapped on the outside of the magnetic cylinder 11. Alternatively, the magnetic cylinder may be configured to be joined simultaneously to the inside and outside of the piezoelectric cylinder.

本発明にあっては、電流センサは図3に示す筒型に構成しても電流検出の動作は変わりなく、図1に示すリング型と同様な作用となり同様に大電流の検出が行える。   In the present invention, even if the current sensor is configured in the cylindrical shape shown in FIG. 3, the operation of current detection is not changed, and the operation is the same as that of the ring type shown in FIG.

本発明の効果を実証するため、図1に示す電流センサを試作し、その出力特性の評価を行った。試作は磁性体リング2に対してギャップ5を設けた構成(a)と、ギャップ5を設けない構成(b)との2つを製作し、両者それぞれに電流測定を行った。その結果、図4(a),(b)に示す出力特性を得た。   In order to verify the effect of the present invention, the current sensor shown in FIG. 1 was prototyped and its output characteristics were evaluated. In the trial production, two configurations, a configuration (a) in which the gap 5 was provided to the magnetic ring 2 and a configuration (b) in which the gap 5 was not provided, were manufactured, and current measurement was performed on each of them. As a result, the output characteristics shown in FIGS. 4A and 4B were obtained.

図4(a),(b)から明らかなように、ギャップ5を設けた構成(a)では、ギャップ5を設けない構成(b)に比べて、出力特性は残留磁束による出力のオフセットが低減し、ヒステリシスが低減できることを確認した。さらにギャップ5を設けた構成(a)では、被測定電流の変化に対して出力の直線性が得られる範囲、つまり、測定可能な電流領域を拡大することができることを確認した。   As is clear from FIGS. 4A and 4B, the output characteristic is less offset by the residual magnetic flux in the configuration (a) in which the gap 5 is provided than in the configuration (b) in which the gap 5 is not provided. It was confirmed that the hysteresis can be reduced. Furthermore, in the configuration (a) in which the gap 5 is provided, it was confirmed that the range in which the output linearity can be obtained with respect to the change in the current to be measured, that is, the measurable current region can be expanded.

本発明では直流大電流の検出を非接触に行えて動作温度が広範囲となることから、ハイブリッド車や電気自動車などの車載用途、そして太陽光発電,風力発電,燃料電池などの大電流センサの用途に有効である。   In the present invention, a large DC current can be detected in a non-contact manner and the operating temperature becomes wide. Therefore, in-vehicle applications such as hybrid vehicles and electric vehicles, and applications of large current sensors such as solar power generation, wind power generation, and fuel cells. It is effective for.

本発明に係る電流センサの好適な一実施の形態を示す斜視図である。1 is a perspective view showing a preferred embodiment of a current sensor according to the present invention. 磁性体リングにおけるギャップの作用を説明する斜視図である。It is a perspective view explaining the effect | action of the gap in a magnetic body ring. 本発明に係る電流センサの他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of the current sensor which concerns on this invention. 電流センサの出力特性を示すグラフ図であり、(a)はギャップを設けた構成での出力特性、(b)はギャップを設けない構成での出力特性である。It is a graph which shows the output characteristic of a current sensor, (a) is an output characteristic in the structure which provided the gap, (b) is an output characteristic in the structure which does not provide a gap.

符号の説明Explanation of symbols

1 圧電体リング
2 第1磁性体リング
3 第2磁性体リング
4 ピックアップコイル
5 ギャップ
6 電線
10 圧電体筒体
11 磁性体筒体
DESCRIPTION OF SYMBOLS 1 Piezoelectric ring 2 1st magnetic body ring 3 2nd magnetic body ring 4 Pickup coil 5 Gap 6 Electric wire 10 Piezoelectric cylinder 11 Magnetic body cylinder

Claims (5)

被測定電流によって発生する磁界の強さをピックアップコイルにより検出する電流センサであって、
環状に形成した圧電体リングと、環状に形成した第1磁性体リングとを接合して1つの環状体を形成し、
前記第1磁性体リングに当該環状部位を遮断するギャップを設け、
前記環状体の内外に線材を巻き回して前記ピックアップコイルとすることを特徴とする電流センサ。
A current sensor for detecting the strength of a magnetic field generated by a current to be measured by a pickup coil,
Joining the annularly formed piezoelectric ring and the annularly formed first magnetic ring to form one annular body,
A gap for blocking the annular portion is provided in the first magnetic ring,
A current sensor characterized in that a wire rod is wound inside and outside the annular body to form the pickup coil.
環状に形成した第2磁性体リングを前記圧電体リングに接合し、その第2磁性体リングと前記第1磁性体リングとで前記圧電体リングを挟み込むように構成したことを特徴とする請求項1に記載の電流センサ。   An annular second magnetic ring is joined to the piezoelectric ring, and the piezoelectric ring is sandwiched between the second magnetic ring and the first magnetic ring. The current sensor according to 1. 前記第2磁性体リングに環状部位を遮断するギャップを設けたことを特徴とする請求項2に記載の電流センサ。   The current sensor according to claim 2, wherein a gap for blocking an annular portion is provided in the second magnetic body ring. 被測定電流によって発生する磁界の強さをピックアップコイルにより検出する電流センサであって、筒状に形成した圧電体筒体と、筒状に形成した磁性体筒体とを備えて、
前記磁性体筒体には当該筒状部位を遮断するギャップを設け、
当該磁性体筒体と前記圧電体筒体とを同心に重ね合わせて一体に接合し、当該筒状部位の内外に線材を巻き回して前記ピックアップコイルとすることを特徴とする電流センサ。
A current sensor for detecting the strength of a magnetic field generated by a current to be measured by a pickup coil, comprising a piezoelectric cylinder formed in a cylindrical shape, and a magnetic cylinder formed in a cylindrical shape,
The magnetic cylinder is provided with a gap for blocking the cylindrical part,
A current sensor characterized in that the magnetic cylinder and the piezoelectric cylinder are overlapped concentrically and integrally joined, and a wire rod is wound around the inside and outside of the cylindrical portion to form the pickup coil.
前記ギャップ部位には透磁率が相違する調整部材を配置することを特徴とする請求項1から4の何れか1項に記載の電流センサ。   The current sensor according to any one of claims 1 to 4, wherein an adjustment member having a different magnetic permeability is disposed in the gap portion.
JP2007123814A 2007-05-08 2007-05-08 Current sensor Withdrawn JP2008281364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007123814A JP2008281364A (en) 2007-05-08 2007-05-08 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007123814A JP2008281364A (en) 2007-05-08 2007-05-08 Current sensor

Publications (1)

Publication Number Publication Date
JP2008281364A true JP2008281364A (en) 2008-11-20

Family

ID=40142312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123814A Withdrawn JP2008281364A (en) 2007-05-08 2007-05-08 Current sensor

Country Status (1)

Country Link
JP (1) JP2008281364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293361A (en) * 2013-06-03 2013-09-11 哈尔滨理工大学 Temperature-compensable current sensor based on double magnetic circuits and current detection method of current sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293361A (en) * 2013-06-03 2013-09-11 哈尔滨理工大学 Temperature-compensable current sensor based on double magnetic circuits and current detection method of current sensor

Similar Documents

Publication Publication Date Title
JP5687433B2 (en) Magnetic circuit having a wound magnetic core
WO2021085040A1 (en) Thermoelectric conversion element and production method for same
JP3549539B2 (en) Magneto-elastic non-contact torque transducer
JP2009002736A (en) Current sensor
CN112490350A (en) Self-biased magnetoelectric composite material structure and assembling method thereof
JP5284024B2 (en) Magnetic sensor
JP2008281364A (en) Current sensor
JP2003215169A (en) Method of manufacturing core for contactless type sensor, core for contactless type sensor, and non-contact type sensor
US9823315B2 (en) Magnetic sensor
JP2008026053A (en) Current sensor
WO2012109949A1 (en) Piezoelectric current sensor
JP2010040914A (en) Magnetization method of multi-pole magnet, and multi-pole magnet and magnetic encoder using the same
WO2007110943A1 (en) Magnetostrictive modulation current sensor and method for measuring current using that sensor
JP4450417B2 (en) Magnetostrictive modulation type current sensor and current measurement method using this sensor
JP2008145220A (en) Current sensor
JP6920114B2 (en) Current sensor
JPS5946526A (en) Electromagnetic stress sensor
JP6206863B2 (en) Heat-resistant magnetic sensor
JP2022108343A5 (en)
JP2012198053A (en) Magnetic sensor and current sensor using the same
JP2011047942A (en) Magnetic flux detector and method of manufacturing the same
JP2004349528A (en) Magnetic impedance element
WO2012063584A1 (en) Current sensor
JP3746359B2 (en) DC current sensor
JP2012049309A (en) Magnetic structure, and magnetic component, magnetic sensor device and current sensor device using the magnetic structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803