JP6206863B2 - Heat-resistant magnetic sensor - Google Patents

Heat-resistant magnetic sensor Download PDF

Info

Publication number
JP6206863B2
JP6206863B2 JP2012229703A JP2012229703A JP6206863B2 JP 6206863 B2 JP6206863 B2 JP 6206863B2 JP 2012229703 A JP2012229703 A JP 2012229703A JP 2012229703 A JP2012229703 A JP 2012229703A JP 6206863 B2 JP6206863 B2 JP 6206863B2
Authority
JP
Japan
Prior art keywords
magnetic
excitation
magnetic field
detection coil
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012229703A
Other languages
Japanese (ja)
Other versions
JP2014081293A (en
Inventor
茂 ▲高▼屋
茂 ▲高▼屋
尚 荒川
尚 荒川
理 欅田
理 欅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2012229703A priority Critical patent/JP6206863B2/en
Publication of JP2014081293A publication Critical patent/JP2014081293A/en
Application granted granted Critical
Publication of JP6206863B2 publication Critical patent/JP6206863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

本発明は、高温環境で磁気測定を行うための耐熱磁気センサに関する。   The present invention relates to a heat-resistant magnetic sensor for performing magnetic measurement in a high temperature environment.

フラックスゲート型磁気センサは、次のような測定原理で外部磁界(測定磁界)を測定する。先ず、磁気コアに巻回した励磁コイルに交番励磁電流(例えば、三角波状の電流)を流して外部磁界と平行に励磁(交番)磁界(例えば、三角波状の磁界)を発生させる。磁気コア内には、この励磁磁界と外部磁界の重畳磁界による磁束が生じ、励磁磁界と外部磁界の重畳磁界により磁気コア材が十分に飽和されている磁界領域では交番励磁電流が変化しても磁束の大きさは変化しない。磁束の大きさが変化しない時間は、外部磁界が作用していない状態では励磁磁界の正負によらず等しいが、外部磁界が作用している状態では外部磁界強度に比例して励磁磁界の正負時に差が生じるため、この時間差を用いて外部磁界強度を求めることができる。   The fluxgate type magnetic sensor measures an external magnetic field (measurement magnetic field) according to the following measurement principle. First, an alternating excitation current (for example, a triangular wave current) is passed through an excitation coil wound around a magnetic core to generate an excitation (alternating) magnetic field (for example, a triangular wave magnetic field) in parallel with the external magnetic field. A magnetic flux is generated in the magnetic core due to the superimposed magnetic field of the excitation magnetic field and the external magnetic field, and even if the alternating excitation current changes in the magnetic field region where the magnetic core material is sufficiently saturated by the superimposed magnetic field of the excitation magnetic field and the external magnetic field. The magnitude of the magnetic flux does not change. The time during which the magnitude of the magnetic flux does not change is the same regardless of the polarity of the exciting magnetic field when the external magnetic field is not acting, but when the exciting magnetic field is positive or negative in proportion to the external magnetic field strength when the external magnetic field is acting. Since a difference occurs, the external magnetic field strength can be obtained using this time difference.

このような従来のフラックスゲート型磁気センサの磁気コアには、軟磁性特性を有するパーマロイ等の磁気材料が用いられている。これらの磁気材料は、非磁気飽和領域では大きな微分透磁率(dB/dH)を有し、且つ小さい励磁磁界強度で急激に磁気飽和が生じて微分透磁率が略零となることから、磁気コアの微分透磁率に比例した電圧を出力する検出コイルを用いて該検出コイルの出力電圧の立ち上がり位置に着目することにより容易に磁気飽和を判定することが可能である。   A magnetic material such as permalloy having soft magnetic properties is used for the magnetic core of such a conventional fluxgate type magnetic sensor. These magnetic materials have a large differential permeability (dB / dH) in the non-magnetic saturation region, and suddenly magnetic saturation occurs with a small excitation magnetic field strength, so that the differential permeability becomes substantially zero. It is possible to easily determine magnetic saturation by using a detection coil that outputs a voltage that is proportional to the differential permeability of the detection coil and paying attention to the rising position of the output voltage of the detection coil.

一方、フラックスゲート型磁気センサの耐熱性向上策として、200℃〜600℃の耐熱性を有する磁気センサを実現するために、キュリー温度の高い磁気材料(例えば、Co−Fe系材料等)を用いる場合、これらの磁気材料は、一般的に、磁気飽和に至る領域での微分透磁率の変化が緩やかであることから、検出コイルの出力電圧の立ち上がり位置を用いて磁気飽和を判定することが困難である。更に、保磁力や磁気飽和に必要な励磁磁界強度が大きくなり、励磁電流が大幅に増加するという問題がある。   On the other hand, as a measure for improving the heat resistance of the fluxgate type magnetic sensor, a magnetic material having a high Curie temperature (for example, a Co—Fe-based material) is used to realize a magnetic sensor having a heat resistance of 200 ° C. to 600 ° C. In these cases, it is difficult for these magnetic materials to determine the magnetic saturation using the rising position of the output voltage of the detection coil because the change in the differential permeability is generally slow in the region leading to the magnetic saturation. It is. Furthermore, there is a problem that the excitation magnetic field strength necessary for coercive force and magnetic saturation increases, and the excitation current increases significantly.

なお、励磁電流の低減策については、特開2010−127889号公報及び特開2004−184098号公報に開示されているように、磁気コアの一部にくびれ部を形成し、このくびれ部で磁束集中(磁気飽和)を生じさせることで対処する方法が提案されている。   As for a measure for reducing the excitation current, a constriction is formed in a part of the magnetic core, as disclosed in Japanese Patent Application Laid-Open Nos. 2010-12789 and 2004-184098, and a magnetic flux is generated in the constriction. Methods have been proposed to deal with by causing concentration (magnetic saturation).

しかしながら、Co−Fe系材料は、磁気飽和に必要な励磁磁界強度が大きいことから、くびれ部による磁気集中によって磁気飽和させようとする場合、くびれ部と非くびれ部の面積比を極めて大きくする必要があり、それでもなお大きな励磁電流を必要とする問題がある。   However, since the Co-Fe-based material has a large excitation magnetic field strength necessary for magnetic saturation, it is necessary to increase the area ratio between the constricted portion and the non-constricted portion when magnetic saturation is caused by magnetic concentration by the constricted portion. However, there is a problem that still requires a large excitation current.

また、励磁電流を軽減するために磁気コアにくびれ部を設けた構成の前記2件の公開公報に記載された磁気センサは、検出コイルをくびれ部に巻回する構成であることから、機械的強度上の問題がある。磁気コア自体に検出コイルを巻回する構成では、必要な機械的強度を得るために磁気コアを小さくすることができないことから磁気センサの小型化が困難であり、また、補強材を貼り付けて検出コイルを巻回する構成では、使用時の環境温度が室温から高温に変化する際の磁気コアと補強材の熱膨張差により発生する応力への対応策が必要となる問題がある。   In addition, the magnetic sensor described in the above two publications having a constriction portion provided in a magnetic core to reduce the excitation current has a configuration in which a detection coil is wound around the constriction portion. There is a problem with strength. In the configuration in which the detection coil is wound around the magnetic core itself, it is difficult to reduce the size of the magnetic sensor because the magnetic core cannot be made small in order to obtain the required mechanical strength. In the configuration in which the detection coil is wound, there is a problem that it is necessary to cope with the stress generated by the difference in thermal expansion between the magnetic core and the reinforcing material when the environmental temperature during use changes from room temperature to high temperature.

特開2006−80338号公報JP 2006-80338 A 特開2010−127889号公報JP 2010-1227889 A 特開2004−184098号公報JP 2004-184098 A

本発明が解決しようとする課題は、次の通りである。   Problems to be solved by the present invention are as follows.

高温環境(200℃〜600℃)において安定した磁気測定を行うことができる耐熱磁気センサを実現する。   A heat resistant magnetic sensor capable of performing stable magnetic measurement in a high temperature environment (200 ° C. to 600 ° C.) is realized.

原子力発電プラント等の高温環境及び放射線環境において安定した磁気測定を行うことができる耐熱磁気センサを実現する。   A heat-resistant magnetic sensor capable of performing stable magnetic measurement in a high-temperature environment and a radiation environment such as a nuclear power plant is realized.

高温環境や高温且つ放射線環境で使用される静的機器の劣化診断を目的とした機器構成材料の電磁気特性の定期的または継続的なその場測定を安定して行うことができる耐熱磁気センサを実現する。   Realization of a heat-resistant magnetic sensor that can stably perform periodic or continuous in-situ measurement of electromagnetic characteristics of equipment components for the purpose of diagnosing deterioration of static equipment used in high-temperature environments and high-temperature radiation environments To do.

高温環境において使用することができる磁界変動に応動する非接触型のスイッチやカウンターを構成するための耐熱磁気センサを実現する。   A heat-resistant magnetic sensor for constructing a non-contact type switch or counter that can be used in a high temperature environment and that responds to magnetic field fluctuations is realized.

本発明は、 軟磁性体により長方形状又は角丸長方形状のループ形状に形成され、その一部にくびれ部を備えた磁気コアに励磁コイルと検出コイルを巻回して構成し、前記励磁コイルに周波数が10Hz以上1kHz以下の交番励磁電流を流し、前記検出コイルの出力電圧に基づいて前記磁気コアに作用している外部磁界の強度を200℃〜600℃の高温環境で計測する耐熱磁気センサであって、
前記磁気コアは、600℃以上のキュリー温度を有するCo−Fe系の軟磁性体により一体型に形成され、かつ前記長方形状又は角丸長方形状の長辺の1辺にくびれ部が形成され、前記励磁コイルは、前記くびれ部が設けられていない他方の長辺に巻回され、前記検出コイルは、くびれ部を設けた前記長辺を除いた部分に巻回され、
前記検出コイルから出力される出力電圧の正/負ピーク間と負/正ピーク間の時間間隔差又は前記時間間隔差と励磁周期の比を評価することにより、前記磁気コアの長辺方向に作用する外部磁界強度を測定するように構成する。
The present invention is formed by winding an excitation coil and a detection coil around a magnetic core formed of a soft magnetic material into a rectangular shape or a rounded rectangular loop shape, and having a constricted portion at a part thereof. A heat-resistant magnetic sensor that passes an alternating excitation current having a frequency of 10 Hz to 1 kHz and measures the intensity of an external magnetic field acting on the magnetic core based on the output voltage of the detection coil in a high temperature environment of 200 ° C. to 600 ° C. There,
The magnetic core is integrally formed of a Co—Fe-based soft magnetic material having a Curie temperature of 600 ° C. or higher, and a constriction is formed on one of the long sides of the rectangular or rounded rectangular shape, The excitation coil is wound around the other long side where the constricted portion is not provided, and the detection coil is wound around a portion excluding the long side where the constricted portion is provided,
By evaluating the time interval difference between the positive / negative peaks and the negative / positive peak of the output voltage output from the detection coil, or the ratio of the time interval difference and the excitation period, it acts in the long side direction of the magnetic core. The external magnetic field strength is measured.

前記検出コイルは前記励磁コイルを兼用した構成とすることもできる。   The detection coil may be configured to also serve as the excitation coil.

本発明の耐熱磁気センサは、磁気コアにキュリー温度が600℃以上のCo−Fe系材料(例えば、パーメンジュール)等を使用し、磁気コア形状、コイル配置位置、検出原理について工夫を施すことにより、消費電流の増加を抑制し、小型化を可能とし、また、高温環境での磁界強度の測定を可能にし、更に、感磁素子に半導体を使用していないことから放射線環境での磁界強度の測定も可能にすることができた。   The heat-resistant magnetic sensor of the present invention uses a Co—Fe-based material (for example, permendur) having a Curie temperature of 600 ° C. or more for the magnetic core, and devise the magnetic core shape, coil arrangement position, and detection principle. This suppresses the increase in current consumption, enables miniaturization, enables measurement of magnetic field strength in a high-temperature environment, and further, does not use a semiconductor for the magnetosensitive element, so the magnetic field strength in a radiation environment It was also possible to measure.

具体的には、磁気コア形状については、ループ状にすることで、励磁磁界により磁気コア内に磁極が発生しない構成としたことにより、反磁界による励磁磁界強度の低下を防ぐことができた。更に、磁気回路を長方形状の閉ループとすることで、比較的機械強度の高い非くびれ部に検出コイルを設けることを可能とし、磁気センサの小型化が可能となった。また、外部磁界(測定磁界)方向に長い長方形または角丸長方形の形状としたことにより、外部磁界により磁気コア内に生じる磁極による反磁界の影響を低減することができた
。また、長方形の長辺部にくびれ部を設けることにより、より小さい励磁電流で略磁気飽和の状態に至らせること、更に、微分透磁率のピーク位置をより明確にすることが可能になった。なお、くびれ部の形状に関しては、非くびれ部と比較して断面積が小さければ、断面積形状や長さは影響しないことが分かった。
Specifically, with respect to the shape of the magnetic core, it is possible to prevent a decrease in excitation magnetic field strength due to a demagnetizing field by adopting a configuration in which a magnetic pole is not generated in the magnetic core due to the excitation magnetic field. Further, by making the magnetic circuit into a rectangular closed loop, it is possible to provide a detection coil in a non-necked portion having a relatively high mechanical strength, and the magnetic sensor can be miniaturized. Further, by adopting a rectangular or rounded rectangular shape that is long in the direction of the external magnetic field (measurement magnetic field), the influence of the demagnetizing field due to the magnetic poles generated in the magnetic core by the external magnetic field can be reduced. Further, by providing a constricted portion on the long side of the rectangle, it becomes possible to reach a substantially magnetic saturation state with a smaller exciting current, and to further clarify the peak position of the differential permeability. Regarding the shape of the constricted portion, it was found that the cross-sectional area shape and the length do not affect if the cross-sectional area is small compared to the non-constricted portion.

また、磁気コアの構造については、一体構造とすることにより、分割部材接合構造とした場合に生じる接合部での磁束の漏れによる悪影響を回避することができた。   Moreover, about the structure of a magnetic core, it was able to avoid the bad influence by the leakage of the magnetic flux in the junction part which arises when it is set as a division member joining structure by making it an integral structure.

また、コイルの配置については、励磁コイル及び検出コイルを磁気コアの機械強度の高い非くびれ部に設けることにより磁気センサの小型化が可能になった。   As for the arrangement of the coils, the magnetic sensor can be miniaturized by providing the excitation coil and the detection coil in the non-constricted portion of the magnetic core having high mechanical strength.

そして、検出原理については、高キュリー温度材料の微分透磁率の励磁磁界に対する変化が緩やかであることを利用して、外部磁界(測定磁界)強度に依存した微分透磁率のピーク位置の変化を検出する構成としたことにより、磁気飽和の判定が困難な同材料でも外部磁界強度の測定を可能にするとともに、従来法のように完全に磁気飽和に至らせる必要がないことから(微分透磁率のピーク位置が判定できればよいことから)、磁気コア材料の変更に伴う消費電力の増加を抑制することが可能となった。   And as for the detection principle, the change in the peak position of the differential permeability depending on the external magnetic field (measurement magnetic field) strength is detected by utilizing the gradual change of the differential permeability of the high Curie temperature material with respect to the excitation magnetic field. With this configuration, it is possible to measure the external magnetic field strength even with the same material for which it is difficult to determine magnetic saturation, and it is not necessary to reach magnetic saturation completely as in the conventional method (differential permeability Since it is only necessary to be able to determine the peak position), it has become possible to suppress an increase in power consumption accompanying the change of the magnetic core material.

本発明の耐熱磁気センサの模式図である。It is a schematic diagram of the heat-resistant magnetic sensor of this invention. 本発明の耐熱磁気センサを使用する磁気測定システムのブロック図である。It is a block diagram of the magnetic measurement system which uses the heat-resistant magnetic sensor of this invention. 磁気センサにおける磁気コアの磁気特性曲線図である。It is a magnetic characteristic curve figure of the magnetic core in a magnetic sensor. 磁気センサにおけるくびれ部を備えた磁気コアの磁気特性曲線図である。It is a magnetic characteristic curve figure of the magnetic core provided with the constriction part in a magnetic sensor. 本発明の実施例における磁気コアの構造図である。It is a structure figure of the magnetic core in the Example of this invention. 本発明の実施例の磁気センサにおける検出コイルの出力電圧特性曲線図である。It is an output voltage characteristic curve figure of a detection coil in a magnetic sensor of an example of the present invention. 本発明の実施例の磁気センサにおけるピーク間隔のズレと外部磁界強度との関係を示す特性図である。It is a characteristic view which shows the relationship between the shift | offset | difference of the peak space | interval and the external magnetic field intensity in the magnetic sensor of the Example of this invention.

本発明の耐熱磁気センサは、Co−Fe系材料(パーメンジュール)等のキュリー温度が600℃以上である軟磁性体(磁気材料)を用いて、図1に示すように、長辺の一部にくびれ部4を形成した長方形または角丸長方形の一体型ループ形状の磁気コア1を作製し、くびれ部4を設けていない長辺部に該磁気コア1を励磁するための励磁コイル3を巻回し、この磁性コア1のくびれ部以外の部分(非くびれ部)に磁界強度を検出するための検出コイル2を巻回した構成の耐熱性フラックスゲート型磁気センサであり、前記磁気コア1の長辺方向に作用する外部磁界(測定磁界)の強度を測定するように使用される。   The heat-resistant magnetic sensor of the present invention uses a soft magnetic material (magnetic material) having a Curie temperature of 600 ° C. or higher, such as a Co—Fe-based material (permendur), as shown in FIG. A rectangular or rounded rectangular integrated magnetic core 1 having a constricted part 4 formed in the part is produced, and an exciting coil 3 for exciting the magnetic core 1 in a long side part where the constricted part 4 is not provided. A heat-resistant fluxgate magnetic sensor having a configuration in which a detection coil 2 for detecting magnetic field strength is wound around a portion other than the constricted portion (non-constricted portion) of the magnetic core 1. Used to measure the strength of an external magnetic field (measurement magnetic field) acting in the long side direction.

この耐熱磁気センサは、図2に示すように、励磁コイル3を励磁電流源5に接続して三角波形状に変化する交番励磁電流を流すことにより三角波状の励磁磁界を発生させて磁気コア1を励磁し、磁気コア1の磁界強度の変化により検出コイル2に誘起される電圧の出力電圧を増幅器6で増幅し、増幅した出力電圧を信号処理回路7で処理することにより、磁気コア1の長辺方向に作用している外部磁界(測定磁界)の強度を測定する磁気測定システムに適用する。なお、信号処理回路7内に入力信号を増幅する増幅器を内蔵する場合には、増幅器6を省略することができる。   As shown in FIG. 2, the heat-resistant magnetic sensor generates a triangular wave-like excitation magnetic field by connecting an excitation coil 3 to an excitation current source 5 and flowing an alternating excitation current that changes in a triangular wave shape, thereby causing the magnetic core 1 to By exciting the output voltage of the voltage induced in the detection coil 2 by the change of the magnetic field strength of the magnetic core 1 by the amplifier 6 and processing the amplified output voltage by the signal processing circuit 7, the length of the magnetic core 1 is increased. The present invention is applied to a magnetic measurement system that measures the strength of an external magnetic field (measurement magnetic field) acting in the side direction. When the amplifier for amplifying the input signal is built in the signal processing circuit 7, the amplifier 6 can be omitted.

この耐熱磁気センサの測定使用可能な環境温度の上限は、使用する磁気材料のキュリー温度に依存し、キュリー温度が高ければ測定使用可能温度の上限も高くなる。キュリー温度600℃の磁気材料を使用した耐熱磁気センサでは、500℃程度の環境においても十分な測定結果を得ることができる。   The upper limit of the environmental temperature at which this heat-resistant magnetic sensor can be used depends on the Curie temperature of the magnetic material used, and the higher the Curie temperature, the higher the upper limit of the usable temperature. With a heat-resistant magnetic sensor using a magnetic material having a Curie temperature of 600 ° C., sufficient measurement results can be obtained even in an environment of about 500 ° C.

また、磁気コアの形状がループ状になっていることから、励磁電流により磁気コア内に磁極が生成することがなく、磁極の反磁界によって有効励磁磁界強度が低下するようなことがない。更に、磁気コアの形状を測定磁界の方向に長い長方形状としたことによって、外部磁界により磁化された磁気コア内の磁極により生じる反磁界の影響も低減することができる。   In addition, since the magnetic core has a loop shape, no magnetic pole is generated in the magnetic core due to the excitation current, and the effective excitation magnetic field strength does not decrease due to the demagnetizing field of the magnetic pole. Furthermore, the influence of the demagnetizing field generated by the magnetic pole in the magnetic core magnetized by the external magnetic field can be reduced by making the shape of the magnetic core a rectangular shape that is long in the direction of the measurement magnetic field.

加えて、測定方向に伸びた長辺部の片側にくびれ部を設けることによって、特許文献3に開示された磁気センサと同様に測定感度の向上が可能となる。しかしながら、特許文献2、3に開示された磁気センサは、励磁コイルまたは検出コイルを磁気コアのくびれ部に巻回していることから、この磁気センサを小型化しようとするとくびれ部が細くなって磁気コアの機械的強度が低下してコイルの巻回が困難になる。そして、強度低下を補うために、くびれ部に補強材を貼り付けると、環境温度が室温から高温に変化する際に磁気コアと補強材の熱膨張差に起因する熱応力が生じ、磁気コアの磁気特性に変化が生じる問題がある。   In addition, by providing the constricted portion on one side of the long side portion extending in the measurement direction, the measurement sensitivity can be improved in the same manner as the magnetic sensor disclosed in Patent Document 3. However, since the magnetic sensor disclosed in Patent Documents 2 and 3 has an exciting coil or a detection coil wound around the constricted portion of the magnetic core, the constricted portion becomes thin when attempting to reduce the size of the magnetic sensor. The mechanical strength of the core is reduced, making it difficult to wind the coil. If a reinforcing material is applied to the constricted part to compensate for the strength reduction, thermal stress due to the difference in thermal expansion between the magnetic core and the reinforcing material occurs when the environmental temperature changes from room temperature to high temperature. There is a problem that changes occur in the magnetic properties.

それに対して、本発明では、磁気コア内の磁束変化の挙動がくびれ部と非くびれ部で測定に影響するほどの差がないことを確認し、機械的強度が高い非くびれ部に励磁コイルと検出コイルを設ける構成とした。   On the other hand, in the present invention, it is confirmed that the behavior of the magnetic flux change in the magnetic core is not so different as to affect the measurement between the constricted part and the non-constricted part. The detection coil is provided.

更に、磁気コアは、積層構造の磁気材または分割構造の磁気材を使用すると、透磁率が小さく、高キュリー温度の磁気材料の場合には、接合部のギャップにおける漏れ磁束が大きくなることから、本発明では、漏れ磁束発生を軽減するために、接合部(ギャップ)のない一体型構成とした。   Furthermore, the magnetic core has a low magnetic permeability when a magnetic material having a laminated structure or a magnetic material having a divided structure is used, and in the case of a magnetic material having a high Curie temperature, the leakage magnetic flux in the gap of the joint becomes large. In the present invention, in order to reduce the occurrence of leakage magnetic flux, an integrated configuration without a joint (gap) is adopted.

また、従来の磁気センサでは、外部磁界強度を微分透磁率(dB/dH)の立ち上がり位置の変化を用いて評価するが、高キュリー温度磁気材料では、磁気飽和特性は図3(a)に示すようになり、微分透磁率の立ち上がりが図3(b)に示すように不明瞭であることから、外部磁界強度を評価することが困難である。しかし、高キュリー温度材料では、微分透磁率の変化が緩やかであることから、この微分透磁率の変化のピークが明確に現れてその位置の判別が可能である。外部磁界による微分透磁率のピーク位置の変化は、立ち上がり位置の変化と対応している。微分透磁率のピークは、完全な磁気飽和に至る前に現れることから、この微分透磁率のピーク位置を用いて、完全に磁気飽和させる必要なく、より小さな励磁電流で、外部磁界強度を評価することが可能である。また、くびれを導入することで、図4(a)に示すように、見掛け上、低磁界で磁気飽和のようになり、図4(b)に示すように、微分透磁率のピーク位置はより明確になる。   Further, in the conventional magnetic sensor, the external magnetic field strength is evaluated by using the change in the rising position of the differential magnetic permeability (dB / dH). However, in the high Curie temperature magnetic material, the magnetic saturation characteristic is shown in FIG. Thus, since the rise of the differential permeability is unclear as shown in FIG. 3B, it is difficult to evaluate the external magnetic field strength. However, in the high Curie temperature material, since the change in the differential permeability is gradual, the peak of the change in the differential permeability clearly appears and the position can be determined. The change in the peak position of the differential permeability due to the external magnetic field corresponds to the change in the rising position. Since the differential permeability peak appears before reaching full magnetic saturation, the peak position of this differential permeability is used to evaluate external magnetic field strength with a smaller excitation current without the need for full magnetic saturation. It is possible. Moreover, by introducing the constriction, as shown in FIG. 4A, it appears to be magnetic saturation at a low magnetic field, and the peak position of the differential permeability is more as shown in FIG. Become clear.

なお、通常、励磁周波数を上げることにより出力電圧を増加させることが行われているが、Co−Fe系の高キュリー温度の磁気材料では、周波数が上がると透磁率が低下し易い傾向を有するため、励磁周波数は1kHz以下とすることが望ましい。また、励磁電流の最大値については、外部磁界による零点のシフトを防ぐために、磁気コアの保磁力以上で且つ見かけのB−H曲線がメジャーループを描く程度以上にする必要がある。   Normally, the output voltage is increased by increasing the excitation frequency. However, in the case of a Co-Fe-based magnetic material having a high Curie temperature, the permeability tends to decrease as the frequency increases. The excitation frequency is desirably 1 kHz or less. Further, the maximum value of the excitation current needs to be equal to or greater than the coercive force of the magnetic core and the apparent BH curve to draw a major loop in order to prevent a zero shift due to an external magnetic field.

更に、磁気コアは、コア形状への加工によって内部歪みを有している可能性があることから、加工後に応力除去焼鈍しておくことが望ましい。   Furthermore, since there is a possibility that the magnetic core has an internal strain due to the processing into the core shape, it is desirable to perform stress relief annealing after the processing.

この実施例の磁気センサは、図5に示すように、パーメンジュール(49%Fe-49
%Co-2%V)磁気材を放電加工して長辺部にくびれ部4を有する長方形ループ形状の
磁気コア1を一体型に作製し、応力除去焼鈍を行った。コイルは、図1に示すように、励
磁コイル3については、φ0.3mmのセラミックスコーティング耐熱銅線を磁気コア1のくびれ部の無い長辺部分に70ターン巻回した。検出コイル2については、くびれ部に巻くことは機械的強度上困難であるため、くびれ部のない短辺部に励磁コイル3と同等の銅線を14ターン巻回して構成した。
As shown in FIG. 5, the magnetic sensor of this example has a permendur (49% Fe-49
% Co-2% V) magnetic material was subjected to electric discharge machining to produce a rectangular loop-shaped magnetic core 1 having a constricted portion 4 on the long side portion, and subjected to stress relief annealing. As for the coil, as shown in FIG. 1, with respect to the exciting coil 3, a ceramic-coated heat-resistant copper wire of φ0.3 mm was wound around the long side portion of the magnetic core 1 without the constricted portion for 70 turns. Since it is difficult to wind the detection coil 2 around the constricted portion in terms of mechanical strength, a copper wire equivalent to the exciting coil 3 is wound around the short side portion without the constricted portion for 14 turns.

本実施例の磁気センサ及び比較用磁気センサは、個々に外部磁界印加用ヘルムホルツコイル(HC)中に設置し、励磁コイル3に100Hz、尖頭値6Aの三角波を励磁電流として印加し、検出コイル2の出力電圧波形の変化とHCの印加磁界強度との関係を評価した。ここで、励磁電流の周波数については、高い周波数の方が出力電圧が高くなるが、透磁率が小さくなって出力電圧波形の変化が緩慢になってくるため、1KHz以下の低周波数の方が望ましい。但し、周波数の低下と共に前述したように出力電圧そのものは低下するので、10Hz以上の周波数であることが望ましい。また、励磁電流の尖頭値については、大きい方が励磁磁界の時間変動量dH/dtが大きくなるので出力電圧の立ち上がり検出には望ましいが、励磁コイル3での発熱が大きくなる点及び消費電力が増大する観点からは小さくすることが望ましい。但し、励磁電流の尖頭値の下限については、従来のパーマロイ等では問題にならなかった残留磁化(保磁力)の問題もあり、少なくとも、励磁コイル3の励磁電流を横軸に、検出コイル2の出力電圧を縦軸にとった疑似B−H曲線にて、図4(a)に示す磁気飽和による屈曲点が見られるまでの励磁電流を流す必要がある。励磁電流が小さく、磁気飽和による屈曲点が見られないような条件では、残留磁化の影響が顕在化し、高磁界を測定後に低磁界の測定を行った場合には、前測定による原点のズレが残り、測定結果が変動する。   The magnetic sensor of this embodiment and the magnetic sensor for comparison are individually installed in an Helmholtz coil (HC) for applying an external magnetic field, and a triangular wave of 100 Hz and a peak value of 6 A is applied to the excitation coil 3 as an excitation current, and a detection coil The relationship between the change in the output voltage waveform of No. 2 and the applied magnetic field strength of HC was evaluated. Here, as for the frequency of the excitation current, the output voltage becomes higher at a higher frequency, but the permeability becomes smaller and the change in the output voltage waveform becomes slower, so a lower frequency of 1 KHz or less is desirable. . However, since the output voltage itself decreases as the frequency decreases as described above, it is desirable that the frequency be 10 Hz or more. As for the peak value of the excitation current, a larger value is preferable for the detection of the rise of the output voltage because the time fluctuation amount dH / dt of the excitation magnetic field is large. From the viewpoint of increasing the thickness, it is desirable to make it smaller. However, the lower limit of the peak value of the excitation current has a problem of residual magnetization (coercive force) that did not become a problem with conventional permalloy or the like. At least, the detection coil 2 has the excitation current of the excitation coil 3 on the horizontal axis. It is necessary to pass an exciting current until the bending point due to magnetic saturation shown in FIG. Under conditions where the excitation current is small and there is no inflection point due to magnetic saturation, the effect of remanent magnetization becomes obvious, and when measuring a low magnetic field after measuring a high magnetic field, the origin deviation from the previous measurement is The remaining measurement results fluctuate.

次に、前記励磁条件で励磁した際の検出コイル2の出力電圧の値の時間変化を図6に示す。従来方法では、磁気コア1の飽和により出力電圧がほぼ零となる位置のシフト量で評価を行っていたが、本実施例では、図6に示すように、磁気コア1の飽和の位置(検出出力電圧の立ち上がり位置)が不明瞭であることから、正のピーク及び負のピーク(共に擬似B−H曲線における保磁力に相当)間の時間間隔t1及びt2のシフト量により評価を行うようにした。外部磁界(測定磁界)が零の時はt1=t2であるが、外部磁界が作用すると外部磁界強度に比例してt1及びt2が相反する±Δtだけシフトする。よって、t1とt2の差分を求めると、2Δtが求まる。但し、この2Δtは、励磁条件等に依存するため、予め外部磁界が既知の状態で2Δtと外部磁気強度との比例定数を求めておくことが必要である。   Next, FIG. 6 shows a change over time in the value of the output voltage of the detection coil 2 when excitation is performed under the excitation conditions. In the conventional method, the evaluation is performed based on the shift amount at the position where the output voltage becomes almost zero due to saturation of the magnetic core 1, but in this embodiment, as shown in FIG. Since the rising position of the output voltage is unclear, the evaluation is performed by the shift amount of the time intervals t1 and t2 between the positive peak and the negative peak (both corresponding to the coercive force in the pseudo BH curve). did. When the external magnetic field (measurement magnetic field) is zero, t1 = t2, but when the external magnetic field is applied, the t1 and t2 are shifted by ± Δt in proportion to the external magnetic field strength. Therefore, when the difference between t1 and t2 is obtained, 2Δt is obtained. However, since 2Δt depends on excitation conditions and the like, it is necessary to obtain a proportional constant between 2Δt and the external magnetic intensity in a state where the external magnetic field is already known.

図7は、環境温度200℃における出力電圧の正/負ピーク間と負/正ピーク間の時間間隔差(2Δt)と励磁周期の比(百分率)と外部磁界強度との関係を示している。この結果から、2Δtと外部磁界強度との間には相関があり、2Δtを用いて外部磁界強度を
評価できることを示している。また、同様の相関は、測定環境温度が高くなっても認められる。従って、検出コイル2から出力される出力電圧の正/負ピーク間と負/正ピーク間の時間間隔差、あるいは前記時間間隔差と励磁周期の比を評価することにより、事前に評価した当該時間間隔差、あるいは当該時間間隔比との相関式から、磁気コア1の長辺方向に作用する外部磁界強度を測定することが可能となる。但し、高温になるにつれて相対的に磁化は小さくなることから、キュリー温度直下での測定は困難である。
FIG. 7 shows the relationship between the time interval difference (2Δt) between the positive / negative peaks of the output voltage and the negative / positive peak at an environmental temperature of 200 ° C., the excitation cycle ratio (percentage), and the external magnetic field intensity. This result shows that there is a correlation between 2Δt and the external magnetic field strength, and it is possible to evaluate the external magnetic field strength using 2Δt. The same correlation is recognized even when the measurement environment temperature is high. Therefore, by evaluating the time interval difference between the positive / negative peaks and the negative / positive peak of the output voltage output from the detection coil 2 or the ratio of the time interval difference and the excitation cycle, It is possible to measure the intensity of the external magnetic field acting in the long side direction of the magnetic core 1 from the correlation equation with the interval difference or the time interval ratio. However, since the magnetization becomes relatively smaller as the temperature becomes higher, measurement just below the Curie temperature is difficult.

磁気コア1のくびれ部4の有無の影響については、くびれ部4が無い状態でもピーク位置のシフトは認められるものの、ピークの形状が図4(b)に示すようにブロードな形状であることからピーク位置の判別が困難であり、くびれ部4を導入することが必要である。   Regarding the influence of the presence or absence of the constricted portion 4 of the magnetic core 1, although the peak position is shifted even without the constricted portion 4, the peak shape is broad as shown in FIG. 4B. It is difficult to determine the peak position, and it is necessary to introduce the constricted portion 4.

なお、通常、励磁周波数を上げることにより出力電圧を増加させることが行われているが、Co−Fe系の高キュリー温度磁気材料では、周波数が上がると透磁率が低下し易い
傾向を有するため、励磁周波数は1kHz以下とすることが望ましい。また、励磁電流の最大値については、外部磁界による零点のシフトを防ぐために、磁気コア材の保磁力以上で且つ見かけのB−H曲線がメジャーループを描く程度以上にすることが必要である。更に、磁気コア1は、コア形状への加工による内部歪みを有している可能性があることから、応力除去焼鈍しを施しておくことが望ましい。
Usually, the output voltage is increased by increasing the excitation frequency. However, in Co-Fe high Curie temperature magnetic materials, the permeability tends to decrease as the frequency increases. The excitation frequency is desirably 1 kHz or less. Further, the maximum value of the exciting current needs to be equal to or greater than the coercive force of the magnetic core material and to the extent that the apparent BH curve draws a major loop in order to prevent a zero point shift due to an external magnetic field. Furthermore, since there is a possibility that the magnetic core 1 has an internal strain due to processing into the core shape, it is desirable to perform stress relief annealing.

なお、前記検出コイル2は、前記励磁コイル3を兼用して構成することができる。   The detection coil 2 can also be configured as the excitation coil 3.

1…磁気コア 2…検出コイル 3…励磁コイル 4…くびれ部 5…励磁電流源 6…増幅器 7…信号処理回路。   DESCRIPTION OF SYMBOLS 1 ... Magnetic core 2 ... Detection coil 3 ... Excitation coil 4 ... Constriction part 5 ... Excitation current source 6 ... Amplifier 7 ... Signal processing circuit.

Claims (2)

軟磁性体により長方形状又は角丸長方形状のループ形状に形成され、その一部にくびれ部を備えた磁気コアに励磁コイルと検出コイルを巻回して構成し、前記励磁コイルに周波数が10Hz以上1kHz以下の交番励磁電流を流し、前記検出コイルの出力電圧に基づいて前記磁気コアに作用している外部磁界の強度を200℃〜600℃の高温環境で計測する耐熱磁気センサであって、
前記磁気コアは、600℃以上のキュリー温度を有するCo−Fe系の軟磁性体により一体型に形成され、かつ前記長方形状又は角丸長方形状の長辺の1辺にくびれ部が形成され、前記励磁コイルは、前記くびれ部が設けられていない他方の長辺に巻回され、前記検出コイルは、くびれ部を設けた前記長辺を除いた部分に巻回され、
前記検出コイルから出力される出力電圧の正/負ピーク間と負/正ピーク間の時間間隔差又は前記時間間隔差と励磁周期の比を評価することにより、前記磁気コアの長辺方向に作用する外部磁界強度を測定することを特徴とする耐熱磁気センサ。
Formed into a rectangular or rounded rectangular loop shape by a soft magnetic material, and is configured by winding an excitation coil and a detection coil around a magnetic core having a constricted portion at a part thereof, and the excitation coil has a frequency of 10 Hz or more A heat-resistant magnetic sensor that passes an alternating excitation current of 1 kHz or less and measures the intensity of an external magnetic field acting on the magnetic core based on the output voltage of the detection coil in a high-temperature environment of 200 ° C. to 600 ° C. ,
The magnetic core is integrally formed of a Co—Fe-based soft magnetic material having a Curie temperature of 600 ° C. or higher, and a constriction is formed on one of the long sides of the rectangular or rounded rectangular shape, The excitation coil is wound around the other long side where the constricted portion is not provided, and the detection coil is wound around a portion excluding the long side where the constricted portion is provided,
By evaluating the time interval difference between the positive / negative peaks and the negative / positive peak of the output voltage output from the detection coil, or the ratio of the time interval difference and the excitation period, it acts in the long side direction of the magnetic core. A heat-resistant magnetic sensor characterized by measuring an external magnetic field strength.
請求項1において、前記検出コイルは前記励磁コイルと兼用することを特徴とする耐熱磁気センサ。   2. The heat resistant magnetic sensor according to claim 1, wherein the detection coil is also used as the excitation coil.
JP2012229703A 2012-10-17 2012-10-17 Heat-resistant magnetic sensor Expired - Fee Related JP6206863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012229703A JP6206863B2 (en) 2012-10-17 2012-10-17 Heat-resistant magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229703A JP6206863B2 (en) 2012-10-17 2012-10-17 Heat-resistant magnetic sensor

Publications (2)

Publication Number Publication Date
JP2014081293A JP2014081293A (en) 2014-05-08
JP6206863B2 true JP6206863B2 (en) 2017-10-04

Family

ID=50785599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229703A Expired - Fee Related JP6206863B2 (en) 2012-10-17 2012-10-17 Heat-resistant magnetic sensor

Country Status (1)

Country Link
JP (1) JP6206863B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184991B2 (en) * 2016-05-11 2019-01-22 Texas Instruments Incorporated Dual-axis fluxgate device
JP7066132B2 (en) * 2018-04-05 2022-05-13 国立研究開発法人日本原子力研究開発機構 Magnetic sensor, material evaluation method using it, manufacturing method of magnetic sensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179668A (en) * 1984-02-27 1985-09-13 Sony Magnescale Inc Detection for magnetomotive force
JPH09318720A (en) * 1996-05-29 1997-12-12 Shimadzu Corp Flux gate magnetic sensor
JP2004184098A (en) * 2002-11-29 2004-07-02 Sumitomo Special Metals Co Ltd Magnetic sensor element and its manufacturing method
KR100494472B1 (en) * 2002-12-31 2005-06-10 삼성전기주식회사 A weak field magnetic sensor using printed circuit board technology, and its manufacturing method
JP2005246448A (en) * 2004-03-05 2005-09-15 Chuo Motor Wheel Co Ltd Cast-in material for forming cast-in casting and cast-in casting method
JP2007240362A (en) * 2006-03-09 2007-09-20 Fujikura Ltd Magnetic device
JP5121679B2 (en) * 2008-12-01 2013-01-16 三菱電機株式会社 Fluxgate magnetic sensor
TWI438460B (en) * 2009-05-21 2014-05-21 Fujikura Ltd Fluxgate sensor and electronic compass using the same
DE102009047624A1 (en) * 2009-12-08 2011-06-09 Robert Bosch Gmbh magnetic field sensor

Also Published As

Publication number Publication date
JP2014081293A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
KR100993928B1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
JP5943768B2 (en) DC current detector
JP5684442B2 (en) Magnetic sensor device
Geliang et al. Design of a GMI magnetic sensor based on longitudinal excitation
EP2787363A1 (en) Geomagnetic sensor
JP2009210406A (en) Current sensor and watthour meter
Zhao et al. Feedback-type giant magneto-impedance sensor based on longitudinal excitation
JP6206863B2 (en) Heat-resistant magnetic sensor
JP4042404B2 (en) Force sensor
JP2010536011A (en) Arrangement of current measurement through a conductor
JP5121679B2 (en) Fluxgate magnetic sensor
JP2008185436A (en) Method and apparatus for measuring electromagnetic characteristic of metal analyte
JP5914827B2 (en) Force sensor, force detection device using the same, and force detection method
KR20160052696A (en) Method for operating a magnetostrictive sensor
KR102298348B1 (en) Direct current measuging method and apparatus
Talebian Theoretical and experimental study on optimum operational conditions of a magnetostrictive force sensor
JP4884384B2 (en) Broadband current detector
JP5119880B2 (en) Magnetostrictive stress sensor
JP5655377B2 (en) Electromagnet operation monitoring system, electromagnet operation monitoring device
JP4450417B2 (en) Magnetostrictive modulation type current sensor and current measurement method using this sensor
JP2015001503A (en) Current detector
JP2000266786A (en) Current sensor
US20080212644A1 (en) Temperature sensor and related remote temperature sensing method
JP2011053160A (en) Magnetic detection sensor
JP2007109787A (en) Contactless dc galvanometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170829

R150 Certificate of patent or registration of utility model

Ref document number: 6206863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees