JP2008280594A - Metal refining method - Google Patents

Metal refining method Download PDF

Info

Publication number
JP2008280594A
JP2008280594A JP2007127345A JP2007127345A JP2008280594A JP 2008280594 A JP2008280594 A JP 2008280594A JP 2007127345 A JP2007127345 A JP 2007127345A JP 2007127345 A JP2007127345 A JP 2007127345A JP 2008280594 A JP2008280594 A JP 2008280594A
Authority
JP
Japan
Prior art keywords
metal chloride
temperature
molten metal
chloride
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007127345A
Other languages
Japanese (ja)
Inventor
Taiichiro Yamashita
泰一郎 山下
Taku Yamazaki
卓 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007127345A priority Critical patent/JP2008280594A/en
Publication of JP2008280594A publication Critical patent/JP2008280594A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal refining method where, upon electrolysis of a molten metal chloride, the evaporation of a metal salt can be effectively suppressed, and the reduction in the recovery efficiency of the molten metal chloride caused by evaporation from a liquid face and the sticking of the evaporated metal chloride to the inside of piping can be prevented. <P>SOLUTION: In the region from the upper end position of electrode members 11, 12, 13 dipped into a molten metal chloride 3 to the bottom face of an electrolytic cell 5, the heating temperature T1 of the electrolytic cell 5 is set to the melting point m of a metal composing the metal chloride or above and also to a temperature capable of electrolyzing, and, in the region from the upper part than the upper end position of the electrode members 11, 12, 13 to the liquid face 3a of the molten metal chloride 3, the heating temperature T2 of the electrolytic cell 5 is set to the temperature range from the melting point tc of the metal chloride or above to the melting point tc+100°C or below, the temperature T3 of a gas directly above the liquid face 3a of the molten metal chloride 3 is set to a temperature below the melting point tc of the metal chloride, and the molten metal chloride 3 is subjected to electrolytic treatment. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、溶融金属塩化物を電解することにより溶融金属塩化物を金属と塩素とに分離する金属精錬方法に関する。   The present invention relates to a metal refining method for separating molten metal chloride into metal and chlorine by electrolyzing the molten metal chloride.

太陽電池向けの多結晶シリコンの低コスト製造プロセスとして、四塩化珪素の亜鉛還元法が考えられるが、このプロセスでは副生成物として塩化亜鉛が排出され、ここから原料となる亜鉛を回収してプロセス内で再利用することが要求されている。   As a low-cost process for producing polycrystalline silicon for solar cells, the zinc reduction method for silicon tetrachloride can be considered. In this process, zinc chloride is discharged as a by-product, from which zinc is recovered as a process. It is required to be reused within.

そのため、電解槽に貯留した溶融塩化亜鉛を、電解槽の周囲に配置した熱源により電解可能な温度に加熱しつつ、電解槽内の溶融塩化亜鉛中に浸漬した複数の電極部材に電位差を与えて、溶融塩化亜鉛を電解することにより溶融塩化亜鉛を亜鉛と塩素とに分離する金属精錬プロセスが考えられている。   Therefore, a potential difference is given to a plurality of electrode members immersed in the molten zinc chloride in the electrolytic bath while heating the molten zinc chloride stored in the electrolytic bath to a temperature that can be electrolyzed by a heat source arranged around the electrolytic bath. A metal refining process that separates molten zinc chloride into zinc and chlorine by electrolyzing molten zinc chloride has been considered.

しかし、塩化亜鉛の融点が283℃であるのに対して、電解可能な温度は500〜650℃程度となるため、電解槽を電解温度の500〜650℃に加熱していると、電解槽に貯留した溶融塩化亜鉛の液面からの蒸発が活発化する。   However, since the melting point of zinc chloride is 283 ° C., the electrolyzing temperature is about 500 to 650 ° C. Therefore, when the electrolytic cell is heated to an electrolysis temperature of 500 to 650 ° C., Evaporation of the stored molten zinc chloride from the liquid surface is activated.

塩化亜鉛の蒸発の活発化は、亜鉛の回収効率の低下を招くだけでなく、さらには、蒸発した塩化亜鉛が電解槽に接続されている配管内に固着して、配管を閉塞させてしまうおそれもある。   The activation of zinc chloride evaporation not only leads to a decrease in zinc recovery efficiency, but also the evaporated zinc chloride may stick to the pipe connected to the electrolytic cell and block the pipe. There is also.

そこで、電解槽内の溶融金属塩化物中に浸漬する電極部材の周囲を保温材で囲うことで、電解反応に関与する電極部材の周囲の溶融金属塩化物のみを電解可能な温度に維持し、それよりも外側の溶融金属塩化物は電解可能な温度よりも低くして、金属塩化物の蒸発を抑止することが知られている(例えば、特許文献1参照)。   Therefore, by surrounding the electrode member immersed in the molten metal chloride in the electrolytic cell with a heat insulating material, only the molten metal chloride around the electrode member involved in the electrolytic reaction is maintained at a temperature capable of electrolysis, It is known that the outer molten metal chloride is lower than the electrolyzing temperature to prevent evaporation of the metal chloride (see, for example, Patent Document 1).

特開2005−200759号公報JP 2005-200759 A

電極部材の周囲を保温材で囲う前記特許文献1の技術では、理論上は、電極部材から一定以上離れた位置の溶融金属塩化物はその温度を電解可能温度よりも低く抑えて、金属塩化物の蒸発を低減させることができる。   In the technique of Patent Document 1 in which the periphery of the electrode member is surrounded by a heat insulating material, in theory, the molten metal chloride at a position more than a certain distance from the electrode member is kept at a temperature lower than the electrolyzable temperature, and the metal chloride Evaporation can be reduced.

しかし、実際は、電解反応時の電極部材の発熱が上方に逃げるため、電極部材の周囲を保温材で囲っただけでは、電極部材の上方に位置している溶融金属塩化物の温度を十分に下げることができず、金属塩の蒸発抑止効果を高めることが難しい。そのため、溶融金属塩化物の液面からの蒸発による回収効率の低下や、蒸発した金属塩化物の配管内への付着を十分に防止することは難しい。   However, in actuality, since the heat generated by the electrode member during the electrolytic reaction escapes upward, the temperature of the molten metal chloride located above the electrode member is sufficiently lowered only by surrounding the electrode member with a heat insulating material. It is difficult to increase the evaporation suppression effect of the metal salt. Therefore, it is difficult to sufficiently prevent the recovery efficiency due to evaporation of the molten metal chloride from the liquid surface and the adhesion of the evaporated metal chloride to the pipe.

そこで、本発明の目的は、溶融金属塩化物を電解する際に、金属塩の蒸発を効果的に抑えることができ、溶融金属塩化物の液面からの蒸発による回収効率の低下や、蒸発した金属塩化物の配管内への付着を防止することができる金属精錬方法を提供することにある。   Accordingly, the object of the present invention is to effectively suppress the evaporation of the metal salt when electrolyzing the molten metal chloride, and to reduce the recovery efficiency due to evaporation from the liquid surface of the molten metal chloride or to evaporate it. An object of the present invention is to provide a metal refining method capable of preventing metal chloride from adhering to a pipe.

前記課題を解決することのできる本発明に係る金属精錬方法は、電解槽に貯留した溶融金属塩化物を、前記電解槽の周囲に配置した熱源により電解可能な温度に加熱しつつ、前記電解槽内の溶融金属塩化物中に浸漬した複数の電極部材に電位差を与えて前記溶融金属塩化物を電解することにより前記溶融金属塩化物を金属と塩素とに分離する金属精錬方法であって、前記複数の電極部材は、上端位置が前記溶融金属塩化物の液面より所定の距離L1だけ下方に位置し、かつ下端位置が前記電解槽の底面から離れた位置に位置するように溶融金属塩化物中に配置し、前記電極部材の上端位置から前記電解槽の底面までの領域では、前記熱源による前記電解槽の加熱温度T1を、前記金属塩化物を構成している金属の融点tm以上で、かつ電解可能な温度とし、前記電極部材の上端位置より上方で前記溶融金属塩化物の液面までの領域では、前記熱源による前記電解槽の加熱温度T2を、金属塩化物の融点tc以上で前記融点tc+100℃以下の温度とし、前記溶融金属塩化物の液面直上の気体の温度T3を、金属塩化物の融点tc以下の温度として、上記の温度管理下で、電解処理を行うことを特徴とする。   The metal refining method according to the present invention that can solve the above-mentioned problems is the above-mentioned electrolytic cell while heating the molten metal chloride stored in the electrolytic cell to a temperature capable of being electrolyzed by a heat source disposed around the electrolytic cell. A metal refining method for separating the molten metal chloride into metal and chlorine by applying a potential difference to a plurality of electrode members immersed in the molten metal chloride in the electrolysis of the molten metal chloride, The plurality of electrode members have a molten metal chloride such that the upper end position is positioned below the liquid level of the molten metal chloride by a predetermined distance L1 and the lower end position is positioned away from the bottom surface of the electrolytic cell. In the region from the upper end position of the electrode member to the bottom surface of the electrolytic cell, the heating temperature T1 of the electrolytic cell by the heat source is equal to or higher than the melting point tm of the metal constituting the metal chloride, Electrolysis is possible In the region from the upper end position of the electrode member to the liquid level of the molten metal chloride, the heating temperature T2 of the electrolytic cell by the heat source is set to the melting point tc + 100 ° C. above the melting point tc of the metal chloride. Electrolytic treatment is performed under the above temperature control, with the gas temperature T3 immediately above the liquid level of the molten metal chloride as the temperature below the melting point tc of the metal chloride.

本発明に係る金属精錬方法において、前記電解槽に貯留された溶融金属塩化物の液面の上方の気圧を負圧に設定して、電解処理を行うことが好ましい。   In the metal refining method according to the present invention, it is preferable to perform the electrolytic treatment by setting the pressure above the liquid level of the molten metal chloride stored in the electrolytic cell to a negative pressure.

本発明に係る金属精錬方法において、前記電解槽に貯留された溶融金属塩化物の液面の上方の気圧pを、−10Pa≦p≦−1kPaに設定して、電解処理を行うことが好ましい。   In the metal refining method according to the present invention, it is preferable to perform the electrolytic treatment by setting the pressure p above the liquid level of the molten metal chloride stored in the electrolytic cell to −10 Pa ≦ p ≦ −1 kPa.

本発明に係る金属精錬方法において、前記金属塩化物が塩化亜鉛であり、電解処理により亜鉛を生成することが好ましい。   In the metal refining method according to the present invention, it is preferable that the metal chloride is zinc chloride and zinc is generated by electrolytic treatment.

本発明に係る金属精錬方法において、前記加熱温度T1を、420℃≦T1≦650℃に設定し、前記加熱温度T2を、283℃≦T2≦383℃に設定し、前記温度T3を、室温程度に設定し、上記の温度管理下で電解処理を実施して、亜鉛を生成することが好ましい。   In the metal refining method according to the present invention, the heating temperature T1 is set to 420 ° C. ≦ T1 ≦ 650 ° C., the heating temperature T2 is set to 283 ° C. ≦ T2 ≦ 383 ° C., and the temperature T3 is about room temperature. It is preferable that zinc is generated by performing an electrolytic treatment under the above temperature control.

本発明による金属精錬方法によれば、溶融金属塩化物を電解する際に、熱源による電解槽の加熱温度自体を、電解槽内の溶融金属塩化物中に浸漬させた電極部材との位置関係に相応して設定するものであり、電極部材の上端位置より上方で溶融金属塩化物の液面までの領域に位置する溶融金属塩化物の温度は、金属塩化物の融点tc以上で前記融点tc+100℃以下の温度範囲に設定され、さらに、溶融金属塩化物の液面よりも上方の気体領域の温度は、金属塩化物の融点tc以下の温度に設定されるため、金属塩の蒸発を効果的に抑えることができる。
したがって、溶融金属塩化物の液面からの蒸発による回収効率の低下や、蒸発した金属塩化物の配管内への付着を防止することができる。
According to the metal refining method of the present invention, when the molten metal chloride is electrolyzed, the heating temperature of the electrolytic cell by the heat source itself is in a positional relationship with the electrode member immersed in the molten metal chloride in the electrolytic cell. The temperature of the molten metal chloride located in the region from the upper end position of the electrode member to the liquid surface of the molten metal chloride is set to the melting point tc + 100 ° C. above the melting point tc of the metal chloride. Further, the temperature of the gas region above the liquid level of the molten metal chloride is set to a temperature below the melting point tc of the metal chloride, so that the evaporation of the metal salt is effectively performed. Can be suppressed.
Therefore, it is possible to prevent the recovery efficiency due to evaporation of the molten metal chloride from the liquid surface and the adhesion of the evaporated metal chloride to the pipe.

以下、本発明に係る金属精錬方法の実施形態の例について、図面を参照しつつ説明する。
図1(A)は本発明に係る金属精錬方法を実施する溶融塩電解装置の実施形態例の概略構成を示す縦断面図、図1(B)は図1(A)に示した溶融塩電解装置において本発明に係る金属精錬方法を実施する場合に設定する電解槽内の溶融金属塩化物及び気体の温度のグラフ図である。
Hereinafter, an example of an embodiment of a metal refining method according to the present invention will be described with reference to the drawings.
1A is a longitudinal sectional view showing a schematic configuration of an embodiment of a molten salt electrolysis apparatus for performing a metal refining method according to the present invention, and FIG. 1B is a molten salt electrolysis shown in FIG. It is a graph of the temperature of the molten metal chloride and gas in an electrolytic cell set when implementing the metal refining method which concerns on this invention in an apparatus.

図1に示す溶融塩電解装置1は、溶融金属塩化物3を貯留する電解槽5と、電解槽5を加熱するために電解槽5の周囲に配置された熱源である複数のヒータ7,8,9と、溶融金属塩化物3に直立状態で並列に浸漬される複数の電極部材11,12,13と、これらの電極部材11,12,13に所定の電位差を付与したり、前記ヒータ7,8,9を所望の温度に発熱させたりする制御部(図示省略)と、電解槽5及びヒータ7,8,9の外周囲を囲う断熱壁15と、前記電極部材11,12,13を出し入れするための電解槽5の上部開口5aを覆う蓋部材17とを備えた構成となっている。   A molten salt electrolysis apparatus 1 shown in FIG. 1 includes an electrolytic bath 5 that stores molten metal chloride 3, and a plurality of heaters 7 and 8 that are heat sources arranged around the electrolytic bath 5 to heat the electrolytic bath 5. , 9, a plurality of electrode members 11, 12, 13 immersed in parallel in the upright state in the molten metal chloride 3, a predetermined potential difference is given to these electrode members 11, 12, 13, or the heater 7 , 8 and 9 are heated to a desired temperature, a controller (not shown), a heat insulating wall 15 surrounding the outer periphery of the electrolytic cell 5 and the heaters 7, 8 and 9, and the electrode members 11, 12, and 13. The lid member 17 that covers the upper opening 5a of the electrolytic cell 5 for taking in and out is provided.

電解槽5の上端面には、電解槽5内に溶融金属塩化物3を導入する塩化物導入路21と、電解槽5内の溶融金属塩化物3の液面3aの上方の気体空間23に窒素ガス(N)等の不活性ガスを導入する気体導入路25と、溶融金属塩化物3の電解により生成される塩素ガス(Cl)を負圧吸引力により排出する塩素排出路27とが設けられている。
また、電解槽5の底部側には、溶融金属塩化物3の電解により生成される金属を排出する生成金属回収路29が設けられている。
On the upper end surface of the electrolytic cell 5, a chloride introduction path 21 for introducing the molten metal chloride 3 into the electrolytic cell 5 and a gas space 23 above the liquid level 3 a of the molten metal chloride 3 in the electrolytic cell 5 are provided. a gas introduction path 25 for introducing a nitrogen gas (N 2) an inert gas such as a chlorine discharge path 27 for discharging the negative pressure suction attraction chlorine gas produced (Cl 2) by electrolysis of a molten metal chloride 3 Is provided.
In addition, a generated metal recovery passage 29 for discharging metal generated by electrolysis of the molten metal chloride 3 is provided on the bottom side of the electrolytic cell 5.

電解槽5は、液面3aの上方の気体空間23の高さh1が、溶融金属塩化物3に浸漬される各電極部材11,12,13の高さh2と略同等、またはh2よりも大きな値となり、また溶融金属塩化物3に浸漬した各電極部材11,12,13の上端が液面3aから所定の距離L1だけ下方の位置となり、かつ各電極部材11,12,13の下端が電解槽5の底面から所定の距離だけ離れた位置となるように、深さが設定されている。   In the electrolytic cell 5, the height h1 of the gas space 23 above the liquid surface 3a is substantially equal to or higher than the height h2 of the electrode members 11, 12, 13 immersed in the molten metal chloride 3. The upper ends of the electrode members 11, 12, 13 immersed in the molten metal chloride 3 are positioned at a position below the liquid surface 3a by a predetermined distance L1, and the lower ends of the electrode members 11, 12, 13 are electrolyzed. The depth is set to be a position away from the bottom surface of the tank 5 by a predetermined distance.

各電極部材11,12,13の上端から液面3aまでの距離L1は、この領域の溶融金属塩化物3が、電極部材11,12,13の発熱の影響で、後述する設定温度以上に過昇温されることを防止できる程度に、深く設定する。例えば、距離L1を200〜600mmの範囲内に設定すれば良い。   The distance L1 from the upper end of each electrode member 11, 12, 13 to the liquid level 3a is such that the molten metal chloride 3 in this region exceeds the set temperature, which will be described later, due to the heat generated by the electrode members 11, 12, 13. Set it deep enough to prevent the temperature from rising. For example, the distance L1 may be set within a range of 200 to 600 mm.

熱源となる複数のヒータ7,8,9は、電解槽5内の溶融金属塩化物3を、電極部材11,12,13に対する位置に応じて加熱するために、電解槽5の外周に高さ位置を変えて設けられている。
最上位のヒータ7は、電極部材11,12,13の上端位置より上方で溶融金属塩化物3の液面3aまでの領域を所望の温度範囲に加熱する。
中間のヒータ8は、電極部材11,12,13の上端から下端までの領域を所望の温度範囲に加熱する。
最下位のヒータ9は、電解槽5の底部を覆うように設けられていて、電極部材11,12,13の下端から電解槽5の底面までの領域を所望の温度範囲に加熱する。
このように、電解槽5の高さ方向に分けてヒータ7,8,9を配置することで、電解槽5は高さ位置に応じて、所望の温度勾配を設けることができる。
The plurality of heaters 7, 8, and 9 serving as heat sources have a height on the outer periphery of the electrolytic cell 5 in order to heat the molten metal chloride 3 in the electrolytic cell 5 according to the position with respect to the electrode members 11, 12, and 13. It is provided with a different position.
The uppermost heater 7 heats the region from the upper end position of the electrode members 11, 12, 13 to the liquid surface 3 a of the molten metal chloride 3 to a desired temperature range.
The intermediate heater 8 heats the region from the upper end to the lower end of the electrode members 11, 12, 13 to a desired temperature range.
The lowest heater 9 is provided so as to cover the bottom of the electrolytic cell 5, and heats the region from the lower end of the electrode members 11, 12, 13 to the bottom surface of the electrolytic cell 5 to a desired temperature range.
Thus, by arranging the heaters 7, 8 and 9 separately in the height direction of the electrolytic cell 5, the electrolytic cell 5 can be provided with a desired temperature gradient according to the height position.

複数の電極部材11,12,13のうち、両端の電極部材11,13には、通電棒30A,30Bが接続されており、一方は陰極として、他方は陽極として作動させられる。
これらの両端の電極11,13間に並列に配置される複数個の電極部材12は、隣接する他の電極部材との間に所定の隙間を確保した状態に非導通部材31により連結されており、両端の電極部材11,13からの離間距離に相応した電位差で、電解反応に寄与する。
Current supply rods 30A, 30B are connected to the electrode members 11, 13 at both ends of the plurality of electrode members 11, 12, 13, and one is operated as a cathode and the other as an anode.
The plurality of electrode members 12 arranged in parallel between the electrodes 11 and 13 at both ends are connected by a non-conducting member 31 in a state in which a predetermined gap is ensured between the adjacent electrode members. The potential difference corresponding to the distance from the electrode members 11 and 13 at both ends contributes to the electrolytic reaction.

次に、上記溶融塩電解装置1によって実施される金属精錬方法について説明する。
本実施形態の金属精錬方法は、前記電解槽5に貯留した溶融金属塩化物3を、電解槽5の周囲に配置した熱源であるヒータ7,8,9により電解可能な温度に加熱しつつ、電解槽5内の溶融金属塩化物3中に浸漬した複数の電極部材11,12,13に電位差を与えて溶融金属塩化物3を電解することにより、溶融金属塩化物3を金属と塩素とに分離して回収するものである。
Next, the metal refining method implemented with the said molten salt electrolysis apparatus 1 is demonstrated.
In the metal refining method of the present embodiment, the molten metal chloride 3 stored in the electrolytic cell 5 is heated to a temperature capable of being electrolyzed by the heaters 7, 8, and 9 which are heat sources arranged around the electrolytic cell 5. By applying a potential difference to the plurality of electrode members 11, 12, and 13 immersed in the molten metal chloride 3 in the electrolytic bath 5 to electrolyze the molten metal chloride 3, the molten metal chloride 3 is converted into metal and chlorine. Separated and recovered.

複数の電極部材11,12,13は、上端位置が前記溶融金属塩化物3の液面より所定の距離L1だけ下方に位置し、かつ下端位置が電解槽5の底面から離れた位置に位置するように溶融金属塩化物3中に配置する。   The plurality of electrode members 11, 12, and 13 are located at the upper end position below the liquid surface of the molten metal chloride 3 by a predetermined distance L 1 and at the lower end position away from the bottom surface of the electrolytic cell 5. It arrange | positions in molten metal chloride 3 like this.

電極部材11,12,13の上端位置から電解槽5の底面までの領域では、ヒータ8,9による加熱によって、この領域の電解槽5の加熱温度(ヒータ8,9の温度)T1を、金属塩化物を構成している金属の融点tm以上で、かつ電解可能な温度に設定する。   In a region from the upper end position of the electrode members 11, 12, 13 to the bottom surface of the electrolytic cell 5, the heating temperature of the electrolytic cell 5 (temperature of the heaters 8, 9) T <b> 1 in this region is changed to metal by heating by the heaters 8, 9. The temperature is set to a temperature that is at least the melting point tm of the metal constituting the chloride and that can be electrolyzed.

また、電極部材11,12,13の上端位置より上方で溶融金属塩化物3の液面3aまでの領域では、ヒータ7による加熱によって、この領域の電解槽5の加熱温度(ヒータ7の温度)T2を、金属塩化物の融点tc以上で前記融点tc+100℃以下の温度範囲に設定する。このために距離L1を200〜600mmの範囲内として、ヒータ7,8,9をコントロールする。   Further, in the region above the upper end position of the electrode members 11, 12, 13 and up to the liquid level 3 a of the molten metal chloride 3, the heating temperature of the electrolytic cell 5 in this region (the temperature of the heater 7) is heated by the heater 7. T2 is set to a temperature range between the melting point tc of the metal chloride and the melting point tc + 100 ° C. or less. For this purpose, the heaters 7, 8, and 9 are controlled by setting the distance L1 within the range of 200 to 600 mm.

さらに、溶融金属塩化物3の液面3aよりも上方の気体領域の温度T3(液面直上の気体の温度)は、気体導入路25から供給する不活性ガスの温度を調整することで、金属塩化物の融点tc以下の温度に設定する。   Furthermore, the temperature T3 of the gas region above the liquid level 3a of the molten metal chloride 3 (the temperature of the gas immediately above the liquid level) is adjusted by adjusting the temperature of the inert gas supplied from the gas introduction path 25, so that Set to a temperature below the melting point tc of the chloride.

以上のように電解槽5の各部の温度を所望温度に設定した温度管理下で、電解処理を行う。これにより、電極部材11,12,13の上端位置から電解槽5の底面までの領域では、金属塩化物の電解を良好に行うとともに、電極部材11,12,13の上端位置より上方では溶融金属塩化物3が蒸発しない程度に加熱されることになり、金属塩の蒸発を効果的に抑えることができる。したがって、溶融金属塩化物3の液面3aからの蒸発による回収効率の低下を生じさせず、また、蒸発した金属塩化物が配管(塩素排出路27)内に付着することを防止することができる。   As described above, the electrolytic treatment is performed under temperature control in which the temperature of each part of the electrolytic cell 5 is set to a desired temperature. Thereby, in the area | region from the upper end position of the electrode members 11, 12, and 13 to the bottom face of the electrolytic cell 5, while performing electrolysis of a metal chloride favorably, it is molten metal above the upper end position of the electrode members 11, 12, and 13 It will be heated to such an extent that chloride 3 does not evaporate, and it can control evaporation of a metal salt effectively. Accordingly, the recovery efficiency due to the evaporation of the molten metal chloride 3 from the liquid surface 3a is not reduced, and the evaporated metal chloride can be prevented from adhering to the inside of the pipe (chlorine discharge path 27). .

また、本実施形態の金属精錬方法では、電解槽5に貯留された溶融金属塩化物3の液面3aの上方の気体空間23の気圧を負圧に設定して、電解処理を行う。そのため、電解反応によって発生する塩素ガスをより安全に排気処理することができる。また、溶融金属塩化物3の液面3aの上方の気体空間23の気圧を負圧に設定する場合に、負圧吸引力を利用して、窒素ガスまたはその他の不活性ガスを冷却用ガスとして溶融金属塩化物3の液面3aに供給すれば、溶融金属塩化物3の液面3a温度をより確実に所望の温度範囲に設定することができ、金属塩化物の蒸発をさらに確実に抑止することができる。   Moreover, in the metal refining method of this embodiment, the electrolytic treatment is performed by setting the pressure of the gas space 23 above the liquid surface 3a of the molten metal chloride 3 stored in the electrolytic bath 5 to a negative pressure. Therefore, the chlorine gas generated by the electrolytic reaction can be exhausted more safely. Further, when the atmospheric pressure of the gas space 23 above the liquid surface 3a of the molten metal chloride 3 is set to a negative pressure, nitrogen gas or other inert gas is used as a cooling gas by using a negative pressure suction force. If it supplies to the liquid level 3a of the molten metal chloride 3, the liquid level 3a temperature of the molten metal chloride 3 can be more reliably set to a desired temperature range, and the evaporation of the metal chloride is more reliably suppressed. be able to.

また、本実施形態の金属精錬方法では、電解槽5に貯留された溶融金属塩化物3の液面3aの上方の気体領域の気圧pを、−10Pa≦p≦−1kPaに設定して、電解処理を行う。そのため、溶融金属塩化物3の液面3aの上方の気体空間23の気圧が過度の負圧になることを防止でき、過度の負圧が電解反応で生成された塩素ガスの排気等に影響を及ぼすことを防止できる。   Further, in the metal refining method of the present embodiment, the pressure p in the gas region above the liquid surface 3a of the molten metal chloride 3 stored in the electrolytic cell 5 is set to −10 Pa ≦ p ≦ −1 kPa to perform electrolysis. Process. Therefore, the atmospheric pressure in the gas space 23 above the liquid surface 3a of the molten metal chloride 3 can be prevented from becoming an excessive negative pressure, and the excessive negative pressure affects the exhaust of chlorine gas generated by the electrolytic reaction. Can be prevented.

上記実施形態の具体的な実施例を、以下に示す。   A specific example of the above embodiment is shown below.

実施例1の金属精錬方法は、電解槽5に投入する金属塩化物が塩化亜鉛であって、電解処理により、亜鉛を生成するものである。
その場合に、電解槽5の加熱温度は、次のように設定する。
In the metal refining method of Example 1, the metal chloride charged into the electrolytic cell 5 is zinc chloride, and zinc is generated by electrolytic treatment.
In that case, the heating temperature of the electrolytic cell 5 is set as follows.

電極部材11,12,13の上端位置から前記電解槽5の底面までの領域における電解槽5の加熱温度T1を、420℃≦T1≦650℃に設定する。なお、亜鉛の融点が419.5℃である。
電極部材11,12,13の上端位置より上方で溶融金属塩化物3の液面3aまでの領域における電解槽5の加熱温度T2を、283℃≦T2≦383℃に設定する。なお、塩化亜鉛の融点が283℃である。
溶融金属塩化物3の液面3aの直上の気体の温度T3を、気体導入路25から供給する不活性ガス(窒素ガス)の温度を調整することで、室温程度に設定する。
The heating temperature T1 of the electrolytic cell 5 in the region from the upper end position of the electrode members 11, 12, 13 to the bottom surface of the electrolytic cell 5 is set to 420 ° C. ≦ T1 ≦ 650 ° C. The melting point of zinc is 419.5 ° C.
The heating temperature T2 of the electrolytic cell 5 in the region up to the liquid surface 3a of the molten metal chloride 3 above the upper end position of the electrode members 11, 12, 13 is set to 283 ° C. ≦ T2 ≦ 383 ° C. The melting point of zinc chloride is 283 ° C.
The temperature T3 of the gas immediately above the liquid level 3a of the molten metal chloride 3 is set to about room temperature by adjusting the temperature of the inert gas (nitrogen gas) supplied from the gas introduction path 25.

図1(B)は、上記のように温度設定した時の電解槽5内の溶融金属塩化物及び気体の高さ方向の温度勾配を示す。
実施例1では、上記の温度管理下で電解処理を実施して、亜鉛を生成する。
FIG. 1B shows the temperature gradient in the height direction of the molten metal chloride and gas in the electrolytic cell 5 when the temperature is set as described above.
In Example 1, the electrolytic treatment is performed under the above temperature control to generate zinc.

この実施例1の金属精錬方法では、金属塩化物が塩化亜鉛で、電解処理により、亜鉛を生成するものであるため、例えば、太陽電池向けの多結晶シリコンを四塩化珪素の亜鉛還元法により製造した際に幅生成物として排出される塩化亜鉛から、亜鉛を効率良く回収して、多結晶シリコンの製造プロセス内で再利用することが容易になる。   In the metal refining method of Example 1, since the metal chloride is zinc chloride and zinc is generated by electrolytic treatment, for example, polycrystalline silicon for solar cells is produced by the zinc tetrachloride reduction method. In this case, zinc can be efficiently recovered from the zinc chloride discharged as a width product and reused in the polycrystalline silicon manufacturing process.

また、上記実施例1の金属精錬方法では、電極部材11,12,13の上端位置から前記電解槽5の底面までの領域における電解槽5の加熱温度T1を、亜鉛の融点tmが419.5℃以上であることを考慮して、420℃≦T1≦650℃に設定し、電極部材11,12,13の上端位置より上方で前記溶融金属塩化物3の液面3aまでの領域における電解槽5の加熱温度T2を、塩化亜鉛の融点tcが283℃であることを考慮して、283℃≦T2≦383℃に設定し、溶融金属塩化物3の液面3aよりも上方の気体領域の温度T3を、室温程度に設定している。   Further, in the metal refining method of Example 1, the heating temperature T1 of the electrolytic cell 5 in the region from the upper end position of the electrode members 11, 12, 13 to the bottom surface of the electrolytic cell 5 is set, and the melting point tm of zinc is 419.5. Considering that the temperature is higher than or equal to ° C., the electrolytic cell is set to 420 ° C. ≦ T1 ≦ 650 ° C. and in the region above the upper end position of the electrode members 11, 12, 13 to the liquid surface 3 a of the molten metal chloride 3. In consideration of the fact that the melting point tc of zinc chloride is 283 ° C., the heating temperature T2 of 5 is set to 283 ° C. ≦ T2 ≦ 383 ° C., and the gas region above the liquid level 3a of the molten metal chloride 3 The temperature T3 is set to about room temperature.

そのため、溶融塩化亜鉛の電解処理の際に、電極部材11,12,13の上方に位置する溶融塩化亜鉛の温度は、塩化亜鉛の融点tcの283℃から+100℃の範囲内に適切に設定され、溶融塩化亜鉛の液面3aよりも上方の気体領域の温度は室温程度に適切に設定され、溶融塩化亜鉛の液面3aよりも上方の気体領域が溶融塩化亜鉛に対して冷却効果を発揮するため、溶融塩化亜鉛の液面3a付近の温度を確実に所望温度以下に抑止して、溶融塩化亜鉛の液面3aからの蒸発をより確実に防止することができる。   Therefore, during the electrolytic treatment of molten zinc chloride, the temperature of the molten zinc chloride located above the electrode members 11, 12, 13 is appropriately set within the range of 283 ° C. to + 100 ° C. of the melting point tc of zinc chloride. The temperature of the gas region above the liquid surface 3a of the molten zinc chloride is appropriately set to about room temperature, and the gas region above the liquid surface 3a of the molten zinc chloride exhibits a cooling effect on the molten zinc chloride. Therefore, the temperature in the vicinity of the liquid surface 3a of the molten zinc chloride can be reliably suppressed below the desired temperature, and evaporation of the molten zinc chloride from the liquid surface 3a can be more reliably prevented.

したがって、溶融塩化亜鉛の電解反応により亜鉛を生成する際に、亜鉛の回収効率を高めることができ、また、蒸発した塩化亜鉛が塩素排出路27内に付着することを防止することができる。   Therefore, when generating zinc by the electrolytic reaction of molten zinc chloride, the recovery efficiency of zinc can be increased, and evaporated zinc chloride can be prevented from adhering in the chlorine discharge path 27.

以上説明した本実施形態の溶融塩電解装置1及び金属精錬方法は、次のような場面において、特に効果的である。   The molten salt electrolysis apparatus 1 and the metal refining method of the present embodiment described above are particularly effective in the following scenes.

塩化物法により多結晶シリコンを製造する際には、シリコンの塩化物(例えば、四塩化珪素や三塩化シラン)を亜鉛で還元して多結晶シリコンを得ると共に、還元用の亜鉛は塩化亜鉛として取り出される。そして、塩化亜鉛を電解することにより純亜鉛を得て、この純亜鉛を再びシリコン塩化物の還元に用いることができる。この塩化亜鉛を電解する工程において、本実施形態の溶融塩電解装置1および金属精錬方法が好適に用いられる。   When producing polycrystalline silicon by the chloride method, silicon chloride (for example, silicon tetrachloride or silane trichloride) is reduced with zinc to obtain polycrystalline silicon, and the reducing zinc is converted into zinc chloride. It is taken out. And pure zinc can be obtained by electrolyzing zinc chloride, and this pure zinc can be used again for reduction of silicon chloride. In the step of electrolyzing zinc chloride, the molten salt electrolysis apparatus 1 and the metal refining method of this embodiment are preferably used.

なお、上記の一実施形態に示した溶融塩電解装置1や金属精錬方法の用途は、塩化亜鉛の電解に限らない。塩化亜鉛以外の各種の金属塩化物に対して、電解により金属と塩素ガスとを分離回収する場合に使用すると良い。   In addition, the use of the molten salt electrolysis apparatus 1 and the metal refining method shown in the above embodiment is not limited to the electrolysis of zinc chloride. It may be used when various metals chloride other than zinc chloride is separated and recovered by electrolysis from metal and chlorine gas.

(A)は本発明に係る金属精錬方法を実施する溶融塩電解装置の実施形態例の概略構成を示す縦断面図、(B)は図1(A)に示した溶融塩電解装置において本発明に係る金属精錬方法を実施する場合に設定する電解槽内の温度のグラフ図である。(A) is a longitudinal cross-sectional view showing a schematic configuration of an embodiment of a molten salt electrolysis apparatus for performing a metal refining method according to the present invention, and (B) shows the present invention in the molten salt electrolysis apparatus shown in FIG. 1 (A). It is a graph of the temperature in the electrolytic cell set when implementing the metal refining method which concerns on.

符号の説明Explanation of symbols

1 溶融塩電解装置
3 溶融金属塩化物
3a 液面
5 電解槽
7,8,9 ヒータ(熱源)
11,12,13 電極部材
15 断熱壁
17 蓋部材
21 塩化物導入路
23 気体空間
25 気体導入路
27 塩素排出路
29 生成金属回収路
30A,30B 通電棒
31 非導通部材
DESCRIPTION OF SYMBOLS 1 Molten salt electrolysis apparatus 3 Molten metal chloride 3a Liquid surface 5 Electrolyzer 7, 8, 9 Heater (heat source)
DESCRIPTION OF SYMBOLS 11, 12, 13 Electrode member 15 Heat insulation wall 17 Lid member 21 Chloride introduction path 23 Gas space 25 Gas introduction path 27 Chlorine discharge path 29 Production metal recovery path 30A, 30B Current supply rod 31 Non-conduction member

Claims (5)

電解槽に貯留した溶融金属塩化物を、前記電解槽の周囲に配置した熱源により電解可能な温度に加熱しつつ、前記電解槽内の溶融金属塩化物中に浸漬した複数の電極部材に電位差を与えて前記溶融金属塩化物を電解することにより前記溶融金属塩化物を金属と塩素とに分離する金属精錬方法であって、
前記複数の電極部材は、上端位置が前記溶融金属塩化物の液面より所定の距離L1だけ下方に位置し、かつ下端位置が前記電解槽の底面から離れた位置に位置するように溶融金属塩化物中に配置し、
前記電極部材の上端位置から前記電解槽の底面までの領域では、前記熱源による前記電解槽の加熱温度T1を、前記金属塩化物を構成している金属の融点tm以上で、かつ電解可能な温度とし、
前記電極部材の上端位置より上方で前記溶融金属塩化物の液面までの領域では、前記熱源による前記電解槽の加熱温度T2を、金属塩化物の融点tc以上で前記融点tc+100℃以下の温度とし、
前記溶融金属塩化物の液面直上の気体の温度T3を、金属塩化物の融点tc以下の温度として、
上記の温度管理下で、電解処理を行うことを特徴とする金属精錬方法。
While the molten metal chloride stored in the electrolytic cell is heated to a temperature capable of being electrolyzed by a heat source disposed around the electrolytic cell, a potential difference is applied to a plurality of electrode members immersed in the molten metal chloride in the electrolytic cell. A metal refining method for separating the molten metal chloride into metal and chlorine by providing and electrolyzing the molten metal chloride,
The plurality of electrode members are made of molten metal chloride such that the upper end position is positioned below the liquid level of the molten metal chloride by a predetermined distance L1 and the lower end position is positioned away from the bottom surface of the electrolytic cell. Placed in things,
In the region from the upper end position of the electrode member to the bottom surface of the electrolytic cell, the heating temperature T1 of the electrolytic cell by the heat source is equal to or higher than the melting point tm of the metal constituting the metal chloride and can be electrolyzed. age,
In the region from the upper end position of the electrode member to the liquid level of the molten metal chloride, the heating temperature T2 of the electrolytic cell by the heat source is set to a temperature not lower than the melting point tc of the metal chloride and not higher than the melting point tc + 100 ° C. ,
The temperature T3 of the gas immediately above the liquid surface of the molten metal chloride is set to a temperature not higher than the melting point tc of the metal chloride,
The metal refining method characterized by performing an electrolytic treatment under said temperature control.
請求項1に記載の金属精錬方法であって、
前記電解槽に貯留された溶融金属塩化物の液面の上方の気圧を負圧に設定して、電解処理を行うことを特徴とする金属精錬方法。
The metal refining method according to claim 1,
A metal refining method, wherein the electrolytic treatment is performed by setting the pressure above the liquid level of the molten metal chloride stored in the electrolytic bath to a negative pressure.
請求項2に記載の金属精錬方法であって、
前記電解槽に貯留された溶融金属塩化物の液面の上方の気圧pを、−10Pa≦p≦−1kPaに設定して、電解処理を行うことを特徴とする金属精錬方法。
The metal refining method according to claim 2,
The metal refining method characterized by performing an electrolysis process by setting the pressure p above the liquid level of the molten metal chloride stored in the electrolytic bath to −10 Pa ≦ p ≦ −1 kPa.
請求項1から3の何れか一項に記載の金属精錬方法であって、
前記金属塩化物が塩化亜鉛であり、電解処理により亜鉛を生成することを特徴とする金属精錬方法。
A metal refining method according to any one of claims 1 to 3,
A metal refining method, wherein the metal chloride is zinc chloride, and zinc is generated by electrolytic treatment.
請求項4に記載の金属精錬方法であって、
前記加熱温度T1を、420℃≦T1≦650℃に設定し、
前記加熱温度T2を、283℃≦T2≦383℃に設定し、
前記温度T3を、室温程度に設定し、
上記の温度管理下で電解処理を実施して、亜鉛を生成することを特徴とする金属精錬方法。
The metal refining method according to claim 4,
The heating temperature T1 is set to 420 ° C. ≦ T1 ≦ 650 ° C.,
The heating temperature T2 is set to 283 ° C. ≦ T2 ≦ 383 ° C.,
The temperature T3 is set to about room temperature,
A metal refining method characterized in that zinc is generated by performing an electrolytic treatment under the above temperature control.
JP2007127345A 2007-05-11 2007-05-11 Metal refining method Pending JP2008280594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007127345A JP2008280594A (en) 2007-05-11 2007-05-11 Metal refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007127345A JP2008280594A (en) 2007-05-11 2007-05-11 Metal refining method

Publications (1)

Publication Number Publication Date
JP2008280594A true JP2008280594A (en) 2008-11-20

Family

ID=40141663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007127345A Pending JP2008280594A (en) 2007-05-11 2007-05-11 Metal refining method

Country Status (1)

Country Link
JP (1) JP2008280594A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080761A1 (en) * 2009-01-06 2010-07-15 Epner R L System for electrolytic recovery of metals with improved connection interface
JP2014501330A (en) * 2010-12-23 2014-01-20 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシー Anode-cathode power distribution system for electrochemical reduction and method of use thereof
US9920443B2 (en) 2010-12-23 2018-03-20 Ge-Hitachi Nuclear Energy Americas Llc Modular cathode assemblies and methods of using the same for electrochemical reduction
WO2020255465A1 (en) * 2019-06-21 2020-12-24 三菱重工業株式会社 Electrolytic smelter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080761A1 (en) * 2009-01-06 2010-07-15 Epner R L System for electrolytic recovery of metals with improved connection interface
JP2014501330A (en) * 2010-12-23 2014-01-20 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシー Anode-cathode power distribution system for electrochemical reduction and method of use thereof
US9920443B2 (en) 2010-12-23 2018-03-20 Ge-Hitachi Nuclear Energy Americas Llc Modular cathode assemblies and methods of using the same for electrochemical reduction
WO2020255465A1 (en) * 2019-06-21 2020-12-24 三菱重工業株式会社 Electrolytic smelter
JP2021001368A (en) * 2019-06-21 2021-01-07 三菱重工業株式会社 Electrolytic refining furnace
CN114040987A (en) * 2019-06-21 2022-02-11 三菱重工业株式会社 Electrolytic smelting furnace
CN114040987B (en) * 2019-06-21 2023-02-28 三菱重工业株式会社 Electrolytic smelting furnace

Similar Documents

Publication Publication Date Title
JP4707036B2 (en) Method for producing alloy ingot by molten salt electrolysis using ESR heating
WO2008004602A1 (en) Electrolysis system and method
JP2008280594A (en) Metal refining method
WO2007034605A1 (en) Molten salt electrolyzer for reducing metal, method of electrolyzing the same and process for producing high-melting-point metal with use of reducing metal
EP2210969A1 (en) Electrolysis system
JP2016510362A (en) Hydrogen gas diffusion anode assembly to produce HCl
JP7017361B2 (en) Molten salt electrolytic cell
US20090211916A1 (en) Method and apparatus for producing metal by electrolysis of molton salt
WO2009107339A1 (en) Manufacturing method for a reducing metal and an electrolytic apparatus to be used in the same
CN112752869A (en) Fluorine gas production device
JP4934012B2 (en) Method for producing metallic calcium
JP6970570B2 (en) How to dry the molten salt electrolytic cell
US10072346B2 (en) Method for producing metal and method for producing refractory metal
JPWO2008102520A1 (en) Metal production apparatus by molten salt electrolysis and metal production method using the same
JP5138465B2 (en) Method and apparatus for producing metallic calcium
JP2007217786A (en) Electrolyzer
JP7061519B2 (en) Molten salt moisture reduction method, molten salt electrolysis method, and molten metal manufacturing method
WO2006115027A1 (en) Molten salt electrolytic cell and process for producing metal using the same
JP4199703B2 (en) Method for producing metal by molten salt electrolysis
JP2010116602A (en) Electrolytic apparatus for producing metal and operation method of the same
JP4190519B2 (en) Method and apparatus for producing metallic calcium by molten salt electrolysis
JP2007247057A (en) Cathode graphite material for aluminum three layer electrorefining
JP7453109B2 (en) Passage section structure of melt feeding pipe and method for producing metal magnesium
JP6945398B2 (en) Molten salt electrolytic cell
JP6914152B2 (en) Method for manufacturing molten metal collection member and metallic magnesium