JP2007247057A - Cathode graphite material for aluminum three layer electrorefining - Google Patents
Cathode graphite material for aluminum three layer electrorefining Download PDFInfo
- Publication number
- JP2007247057A JP2007247057A JP2007030218A JP2007030218A JP2007247057A JP 2007247057 A JP2007247057 A JP 2007247057A JP 2007030218 A JP2007030218 A JP 2007030218A JP 2007030218 A JP2007030218 A JP 2007030218A JP 2007247057 A JP2007247057 A JP 2007247057A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- aluminum
- cathode
- anode
- refined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Description
本発明は、アルミニウム三層電解精製用陰極黒鉛材に関する。 The present invention relates to a cathode graphite material for aluminum three-layer electrolytic purification.
原料アルミニウム(B)を精製して純度99.9質量%以上の精製アルミニウム(A)を製造する方法として、三層電解法が知られている〔非特許文献1:「アルミニウムの製品と製造技術」、社団法人軽金属学会、2001年10月30日発行、第117頁、非特許文献2:「軽金属の研究と技術のあゆみ」、軽金属学会、1991年11月30日発行、第194頁〜第196頁〕。 A three-layer electrolysis method is known as a method for producing a purified aluminum (A) having a purity of 99.9% by mass or more by refining the raw material aluminum (B) [Non-patent Document 1: “Aluminum Products and Production Technology” ”, Japan Institute of Light Metals, published on October 30, 2001, page 117, Non-Patent Document 2:“ Research on Light Metals and History of Technology ”, Japan Institute of Light Metals, published on November 30, 1991, pp. 194- 196].
この方法は、図1に示すようにアルミニウム三層電解精製用陰極黒鉛材からなる陰極(1)および陽極(2)を備え、この陰極(1)と陽極(2)との間に、陰極(1)側から順に精製アルミニウム層(B1)、精製電解浴層(B2)および陽極母合金溶湯層(B3)が形成された三層電解法精製炉(3)を用い、原料アルミニウム(B)を陽極母合金溶湯(B3)に供給しつつ、陰極(1)に向けて陽極(2)から直流電流(I)を通電することにより、精製アルミニウム層(B1)に精製アルミニウム(A)を析出させて、精製アルミニウム(A)を製造する方法である。 As shown in FIG. 1, this method comprises a cathode (1) and an anode (2) made of a cathode graphite material for aluminum three-layer electrolytic purification, and a cathode (1) and an anode (2) are disposed between the cathode (1) and the anode (2). 1) Using a three-layer electrolytic purification furnace (3) in which a purified aluminum layer (B1), a purified electrolytic bath layer (B2), and an anode mother alloy molten metal layer (B3) are formed in this order from the side, the raw material aluminum (B) is Purified aluminum (A) is deposited on the purified aluminum layer (B1) by supplying direct current (I) from the anode (2) toward the cathode (1) while supplying the molten anode mother alloy (B3). Thus, this is a method for producing purified aluminum (A).
かかる方法において、精製アルミニウム層(B1)、精製電解浴層(B2)および陽極母合金溶湯層(B3)は、それぞれ直流電流(I)の通電により750℃〜800℃の高温に加熱されて溶融状態となっている。また、陰極(1)は通常、大気に曝されている。このため、陰極(1)を構成する黒鉛材としては、高温下、大気圧中で消耗のより少ないものが求められている。 In such a method, the refined aluminum layer (B1), the refined electrolytic bath layer (B2), and the anode mother alloy molten metal layer (B3) are each heated to a high temperature of 750 ° C. to 800 ° C. by melting with a direct current (I). It is in a state. The cathode (1) is usually exposed to the atmosphere. For this reason, a graphite material constituting the cathode (1) is required to be less consumed at high temperature and atmospheric pressure.
そこで本発明者は、高温下、大気中で消耗のより少ないアルミニウム三層電解精製用陰極黒鉛材を開発するべく鋭意検討した結果、本発明に至った。 Therefore, the present inventors have intensively studied to develop a cathode graphite material for aluminum three-layer electrolytic purification that is less consumed in the atmosphere at high temperatures, and as a result, have reached the present invention.
すなわち本発明は、Fe含有量が0.2質量%以下、表面の気孔面積率が22%以下であることを特徴とするアルミニウム三層電解精製用陰極黒鉛材を提供するものである。 That is, the present invention provides a cathode graphite material for aluminum three-layer electrolytic purification, wherein the Fe content is 0.2% by mass or less and the surface pore area ratio is 22% or less.
本発明のアルミニウム三層電解精製用陰極黒鉛材は、高温下、大気中での消耗がより少ないので、より長期間に亘り、三層電解精製法による精製アルミニウムの製造において、陰極として使用することができる。 The cathode graphite material for aluminum three-layer electrolytic purification according to the present invention is less consumed in the air at high temperatures, so it can be used as a cathode in the production of purified aluminum by the three-layer electrolytic purification method for a longer period of time. Can do.
本発明のアルミニウム三層電解精製用陰極黒鉛材は、Fe含有量が0.2質量%以下、好ましくは0.15質量%以下である。Fe含有量が0.2質量%を超えると、局部的な消耗が生じ易くなる。 The cathode graphite material for aluminum three-layer electrolytic purification of the present invention has an Fe content of 0.2% by mass or less, preferably 0.15% by mass or less. When the Fe content exceeds 0.2% by mass, local wear tends to occur.
表面の気孔面積率は22%以下、好ましくは20%以下である。気孔面積率が22%を超えると、局部的な消耗が生じ易くなる。 The surface pore area ratio is 22% or less, preferably 20% or less. When the pore area ratio exceeds 22%, local wear tends to occur.
本発明のアルミニウム三層電解精製用陰極黒鉛材は、固有抵抗値が6μΩm以下であることが好ましい。固有抵抗値が6μΩmを超えると、陰極(1)として使用した場合に、陰極の発熱によるエネルギーのロスが大きくなる。 The cathode graphite material for aluminum three-layer electrolytic purification of the present invention preferably has a specific resistance value of 6 μΩm or less. When the specific resistance value exceeds 6 μΩm, when used as the cathode (1), energy loss due to the heat generation of the cathode increases.
本発明のアルミニウム三層電解精製用陰極黒鉛材は、例えば図1に示すような三層電解法精製炉(3)の陰極(1)を構成する。 The cathode graphite material for aluminum three-layer electrolytic purification of the present invention constitutes the cathode (1) of a three-layer electrolytic purification furnace (3) as shown in FIG. 1, for example.
図1に示す三層電解法精製炉(3)は、三層電解法による精製アルミニウム(A)の製造に用いられる炉であり、陰極(1)および陽極(2)を備えている。この陰極(1)と陽極(2)との間には、陰極(1)側から順に精製アルミニウム層(B1)、精製電解浴層(B2)および陽極母合金溶湯層(B3)が形成されている。 A three-layer electrolytic method refining furnace (3) shown in FIG. 1 is a furnace used for producing purified aluminum (A) by a three-layer electrolytic method, and includes a cathode (1) and an anode (2). Between the cathode (1) and the anode (2), a purified aluminum layer (B1), a purified electrolytic bath layer (B2), and an anode mother alloy molten metal layer (B3) are formed in this order from the cathode (1) side. Yes.
陰極(1)は精製炉(3)の上部に、陽極(2)は精製炉(3)の底部に、それぞれ配置されており、精製アルミニウム層(B1)は陰極(1)に接し、陽極母合金溶湯層(B3)は陽極(2)に接している。 The cathode (1) is disposed at the top of the refining furnace (3), the anode (2) is disposed at the bottom of the refining furnace (3), and the refining aluminum layer (B1) is in contact with the cathode (1), and the anode mother The molten alloy layer (B3) is in contact with the anode (2).
陽極母合金電解溶湯(B3)の組成は、例えばAlが60質量%〜70質量、Cuが30質量%〜40質量%である。 The composition of the anode mother alloy electrolytic molten metal (B3) is, for example, 60 mass% to 70 mass% for Al and 30 mass% to 40 mass% for Cu.
精製電解浴層(B2)の組成は、例えばAlF3が35質量%〜45質量%、BaF2が25質量%〜45質量%、CaF2が5質量%〜15質量%、NaFが5質量%〜20質量%である。 The composition of the purified electrolytic bath layer (B2) is, for example, 35 mass% to 45 mass% for AlF 3 , 25 mass% to 45 mass% for BaF 2 , 5 mass% to 15 mass% for CaF 2 , and 5 mass% for NaF. ˜20 mass%.
このような三層電解法精製炉(3)を用いて、原料アルミニウム(B)を製造するには、原料アルミニウム(B)を陽極母合金溶湯層(B3)に供給しつつ、陰極(1)に向けて陽極(2)から直流電流(I)を通電すればよい。 In order to produce the raw material aluminum (B) using such a three-layer electrolytic purification furnace (3), while supplying the raw material aluminum (B) to the anode mother alloy molten metal layer (B3), the cathode (1) Direct current (I) may be applied from the anode (2) toward
直流電流(I)は、陽極(2)から陽極母合金溶湯層(B3)、精製電解浴層(B2)および精製アルミニウム層(B1)をこの順に通過して陰極(1)に至る。精製アルミニウム層(B1)、精製電解浴層(B2)および陽極母合金溶湯層(B3)は、通常は陽極(3)から陰極(1)へ通電する直流電流による発熱により、例えば750℃〜800℃に加熱された溶融状態である。陽極(2)から陰極(1)への通電量は、陰極の単位面積あたりで、通常3A/cm2〜4A/cm2である。図1に示す炉(3)において、原料アルミニウム(B)は原料アルミニウム投入口(4)から投入される。この投入口(4)は、隔壁(5)により精製アルミニウム層(B1)および精製電解浴層(B2)と仕切られ、陽極母合金溶湯層(B3)と連通している。投入口(5)から投入された原料アルミニウム(B)は溶融状態となって陽極母合金溶湯層(B3)に供給され、直流電流(I)により溶融状態となり、精製電解浴層(B2)を通過しながら精製されてつつ、陰極(1)へ向けて精製アルミニウム(A)となって析出して、精製アルミニウム層(B1)を形成する。 The direct current (I) passes from the anode (2) through the anode mother alloy molten metal layer (B3), the refined electrolytic bath layer (B2) and the refined aluminum layer (B1) in this order to the cathode (1). The refined aluminum layer (B1), the refined electrolytic bath layer (B2) and the anode mother alloy molten metal layer (B3) are usually heated by direct current flowing from the anode (3) to the cathode (1), for example, 750 ° C. to 800 ° C. It is a molten state heated to ° C. The amount of current flowing from the anode (2) to the cathode (1) is usually 3 A / cm 2 to 4 A / cm 2 per unit area of the cathode. In the furnace (3) shown in FIG. 1, the raw material aluminum (B) is charged from the raw material aluminum inlet (4). The inlet (4) is partitioned from the refined aluminum layer (B1) and the refined electrolytic bath layer (B2) by the partition wall (5), and communicates with the anode mother alloy molten metal layer (B3). The raw material aluminum (B) charged from the inlet (5) is in a molten state and is supplied to the molten anode layer (B3), and is melted by the direct current (I), and the purified electrolytic bath layer (B2) is removed. While being refined while passing, it is precipitated as purified aluminum (A) toward the cathode (1) to form a purified aluminum layer (B1).
かくして精製アルミニウム層(B1)に析出した目的の精製アルミニウム(A)は、通常の方法、例えば精製アルミニウム層(B1)から汲み取る方法により取り出すことができ、取り出された精製アルミニウム(A)は通常、鋳造により冷却される。 Thus, the target purified aluminum (A) deposited on the purified aluminum layer (B1) can be taken out by a usual method, for example, a method of pumping from the purified aluminum layer (B1). It is cooled by casting.
以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
なお、各実施例で用いた黒鉛材は以下の方法により評価した。
(1)Fe含有量
ICP発光分析法により求めた。
(2)表面の気孔面積率
電極面を研磨し、研磨面の光学顕微鏡写真(倍率100倍)から、画像解析装置〔Media Cybernetics社製「IMAGE-PRO PLUS」〕により、総面積に対する気孔部分の面積の割合を求めた。
In addition, the graphite material used in each Example was evaluated by the following method.
(1) Fe content Determined by ICP emission analysis.
(2) Polish the surface pore area ratio electrode surface, and from the photomicrograph (magnification 100 times) of the polished surface, image analysis device [Media Cybernetics "IMAGE-PRO PLUS"] of the pore portion relative to the total area The area ratio was determined.
実施例1
黒鉛材〔(株)エスイーシー製、「黒鉛押出材GS−G低Fe品」を円柱状に加工し、図1に示すような三層電解法によるアルミニウム精製用の精製炉(3)の陰極(1)として用いた。この黒鉛材のFe含有量は0.12質量%であり、気孔面積率は18%であった。アルミニウムの溶融温度は750℃〜800℃とし、通電量は3.4A/cm2〜3.5A/cm2とした。299日後に、この陰極を取り出し、その下面を目視で観察したところ、平坦のままであった。
Example 1
Graphite material [“Extruded graphite GS-G low Fe product” manufactured by ESC Corporation was processed into a cylindrical shape, and the cathode of a purification furnace (3) for refining aluminum by a three-layer electrolysis method as shown in FIG. Used as 1). This graphite material had an Fe content of 0.12% by mass and a pore area ratio of 18%. The melting temperature of aluminum was set to 750 ° C. to 800 ° C., and the energization amount was set to 3.4 A / cm 2 to 3.5 A / cm 2 . After 299 days, the cathode was taken out and its lower surface was visually observed.
比較例1
実施例1で用いた黒鉛材に代えて、製鋼用電気炉に使用するアーク電極用黒鉛材〔(株)エスイーシー製、「黒鉛押出し材GS−G普通品」を用いた以外は実施例1と同様に操作した。この黒鉛材のFe含有量は0.43質量%であり、気孔面積率は26%であった。257日後に、この陰極を取り出し、その下面を目視で観察したところ、ドーナツ状に窪んだ形状の局部的な消耗が生じていた。
Comparative Example 1
Instead of the graphite material used in Example 1, Example 1 except that a graphite material for arc electrodes used in an electric furnace for steelmaking [manufactured by ESC Co., Ltd., “graphite extruded material GS-G ordinary product”] was used. The same operation was performed. This graphite material had an Fe content of 0.43% by mass and a pore area ratio of 26%. After 257 days, the cathode was taken out and the lower surface thereof was visually observed. As a result, local consumption in the shape of a donut was found.
A:精製アルミニウム B:原料アルミニウム
B1:精製アルミニウム層 B2:精製電解浴層 B3:陽極母合金溶湯層
I:直流電流
1:陰極 2:陽極 3:三層電解法精製炉
4:原料アルミニウム投入口 5:隔壁
A: Refined aluminum B: Raw material aluminum
B1: Refined aluminum layer B2: Refined electrolytic bath layer B3: Anode mother alloy molten metal layer I: DC current 1: Cathode 2: Anode 3: Three-layer electrolytic purification furnace 4: Raw material aluminum inlet 5: Partition wall
Claims (2)
前記陰極が、請求項1に記載のアルミニウム三層電解精製用陰極黒鉛材で構成されていることを特徴とする前記精製アルミニウムの製造方法。 A three-layer electrolytic purification furnace comprising a cathode and an anode, and a refined aluminum layer, a refined electrolytic bath layer, and an anode mother alloy molten metal layer formed in that order from the cathode side between the cathode and the anode, While supplying raw material aluminum to the molten alloy layer, a method of producing purified aluminum by depositing purified aluminum on the purified aluminum layer by passing a direct current from the anode toward the cathode,
The said cathode is comprised with the cathode graphite material for aluminum three-layer electrolytic purification of Claim 1, The manufacturing method of the said purified aluminum characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007030218A JP2007247057A (en) | 2006-02-16 | 2007-02-09 | Cathode graphite material for aluminum three layer electrorefining |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006039070 | 2006-02-16 | ||
JP2007030218A JP2007247057A (en) | 2006-02-16 | 2007-02-09 | Cathode graphite material for aluminum three layer electrorefining |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007247057A true JP2007247057A (en) | 2007-09-27 |
Family
ID=38591669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007030218A Pending JP2007247057A (en) | 2006-02-16 | 2007-02-09 | Cathode graphite material for aluminum three layer electrorefining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007247057A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102534685A (en) * | 2011-12-07 | 2012-07-04 | 内蒙古新长江矿业投资有限公司 | Refined aluminum pot roasting starting method |
US9524918B2 (en) | 2011-07-28 | 2016-12-20 | Denka Company Limited | Heat dissipating component for semiconductor element |
CN106929879A (en) * | 2017-02-19 | 2017-07-07 | 周俊和 | The method that prebaked anode aluminium electroloysis steel pawl aluminum guide leads power-off |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08143378A (en) * | 1994-11-21 | 1996-06-04 | Showa Denko Kk | Production of carbon sheet |
JPH09143781A (en) * | 1995-11-28 | 1997-06-03 | Nippon Light Metal Co Ltd | Three-layered type electrolytic refining furnace for production of high-purity aluminum |
JP2001172786A (en) * | 1999-11-02 | 2001-06-26 | Vaw Highpural Gmbh | Ultrahigh purity aluminum producing device |
WO2006000276A1 (en) * | 2004-05-12 | 2006-01-05 | Sgl Carbon Ag | Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes |
-
2007
- 2007-02-09 JP JP2007030218A patent/JP2007247057A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08143378A (en) * | 1994-11-21 | 1996-06-04 | Showa Denko Kk | Production of carbon sheet |
JPH09143781A (en) * | 1995-11-28 | 1997-06-03 | Nippon Light Metal Co Ltd | Three-layered type electrolytic refining furnace for production of high-purity aluminum |
JP2001172786A (en) * | 1999-11-02 | 2001-06-26 | Vaw Highpural Gmbh | Ultrahigh purity aluminum producing device |
WO2006000276A1 (en) * | 2004-05-12 | 2006-01-05 | Sgl Carbon Ag | Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9524918B2 (en) | 2011-07-28 | 2016-12-20 | Denka Company Limited | Heat dissipating component for semiconductor element |
CN102534685A (en) * | 2011-12-07 | 2012-07-04 | 内蒙古新长江矿业投资有限公司 | Refined aluminum pot roasting starting method |
CN106929879A (en) * | 2017-02-19 | 2017-07-07 | 周俊和 | The method that prebaked anode aluminium electroloysis steel pawl aluminum guide leads power-off |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4602986B2 (en) | Method for producing metallic calcium by molten salt electrolysis | |
US7901561B2 (en) | Method for electrolytic production and refining of metals | |
JP4707036B2 (en) | Method for producing alloy ingot by molten salt electrolysis using ESR heating | |
JP5183498B2 (en) | Electrolytic production of silicon and scouring method | |
WO2019104809A1 (en) | Method for directly preparing tungsten-base alloy powder by electrolyzing discarded hard alloy | |
CN101400811B (en) | Method for electrolytic production and refining of metals | |
CN104561550A (en) | Method for preparing Al-Ti-Fe alloy through thermal reduction of ilmenite in cryolite-based molten salt | |
CN106894052B (en) | A kind of conjuncted-multilevel aluminum electrolysis unit and its application method preparing rafifinal | |
US20090152122A1 (en) | Method for electrolyzing molten salt, electrolytic cell, and process for producing ti using said method | |
JP2007247057A (en) | Cathode graphite material for aluminum three layer electrorefining | |
WO2007034645A1 (en) | PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR | |
JPH0257694A (en) | Production of praseodymium or praseodymium-containing alloy | |
JPH11512149A (en) | Electrochemical production of sodium and aluminum chloride | |
WO2006003865A1 (en) | Method for producing metal by molten salt electrolysis | |
JP7370988B2 (en) | Manufacturing method of titanium metal | |
JP2012172194A (en) | Electrolytic apparatus and electrowinning method using the same | |
CN102912382B (en) | A kind of method of electrolytic preparation aluminium-magnesium alloy in fluorochloride molten salt system | |
CN110565119A (en) | Method for purifying aluminum alloy | |
JP4557565B2 (en) | Electrolyzer | |
JPWO2008102520A1 (en) | Metal production apparatus by molten salt electrolysis and metal production method using the same | |
JP4521877B2 (en) | Molten salt electrolysis apparatus for metal and method for producing metal using the apparatus | |
CN109440133A (en) | Produce the high purity titanium preparation method of smart magnesium | |
JP3952296B2 (en) | Molten salt heat exchanger and method for producing Ti material using the same | |
JP2005200758A (en) | Electrolytic cell structure | |
CN102330118A (en) | Method for preparing Mg-Sr alloy through molten salt electrolytic codeposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080204 |
|
RD05 | Notification of revocation of power of attorney |
Effective date: 20080516 Free format text: JAPANESE INTERMEDIATE CODE: A7425 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091013 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120619 |