JP6970570B2 - How to dry the molten salt electrolytic cell - Google Patents

How to dry the molten salt electrolytic cell Download PDF

Info

Publication number
JP6970570B2
JP6970570B2 JP2017184046A JP2017184046A JP6970570B2 JP 6970570 B2 JP6970570 B2 JP 6970570B2 JP 2017184046 A JP2017184046 A JP 2017184046A JP 2017184046 A JP2017184046 A JP 2017184046A JP 6970570 B2 JP6970570 B2 JP 6970570B2
Authority
JP
Japan
Prior art keywords
electrolytic cell
molten salt
drying
temperature
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017184046A
Other languages
Japanese (ja)
Other versions
JP2019059971A (en
Inventor
健人 櫻井
文二 秋元
幸司 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2017184046A priority Critical patent/JP6970570B2/en
Publication of JP2019059971A publication Critical patent/JP2019059971A/en
Application granted granted Critical
Publication of JP6970570B2 publication Critical patent/JP6970570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

この発明は、電解槽内部を溶融塩浴とし、その電解槽内部で溶融塩の電気分解を行って溶融金属を生成するための溶融塩電解槽を、電気分解の開始に先立って乾燥する方法に関するものであり、特に、電極の消耗や電流効率の低下を招く溶融塩への水分の混入をより確実に抑制することのできる技術を提案するものである。 The present invention relates to a method in which the inside of an electrolytic cell is a molten salt bath, and the molten salt electrolytic cell for electrolyzing the molten salt inside the electrolytic cell to generate molten metal is dried prior to the start of electrolysis. In particular, the present invention proposes a technique capable of more reliably suppressing the mixing of water into the molten salt, which causes wear of the electrode and reduction of current efficiency.

たとえば、クロール法による金属チタンの製造に際し、副次的に生成される塩化マグネシウムは、溶融塩電解槽を用いて、電気分解により金属マグネシウムと塩素ガスとに分解され、それぞれ四塩化チタンの還元およびチタン鉱石の塩素化に用いられて再利用されることがある。 For example, magnesium chloride secondary to the production of metallic titanium by the Kroll process is decomposed into metallic magnesium and chlorine gas by electrolysis using a molten salt electrolytic tank, and the reduction of titanium tetrachloride and chlorine tetrachloride, respectively. It may be used for chlorination of titanium ore and reused.

この種の電気分解では一般に、電解槽内部で塩化マグネシウム等の溶融塩を貯留させて溶融塩浴とし、電解槽内部の貯留室から電解室へ溶融塩を流して、ここで電極への通電に基き、溶融塩化マグネシウム等の溶融金属と塩素等のガスとに分解する。電解室で生成された溶融金属は電解槽内部で貯留室へとさらに循環して、溶融塩との密度差によって溶融塩浴の液面上に浮上した後に回収され、また、ガスは溶融塩電解槽に設けられたガス排出通路を経て電解槽外部に排出される。 In this type of electrolysis, in general, a molten salt such as magnesium chloride is stored inside the electrolytic cell to form a molten salt bath, and the molten salt is flowed from the storage chamber inside the electrolytic cell to the electrolytic cell, where the electrode is energized. Based on this, it decomposes into molten metal such as molten magnesium chloride and gas such as chlorine. The molten metal generated in the electrolytic cell is further circulated to the storage chamber inside the electrolytic cell, floats on the liquid surface of the molten salt bath due to the density difference with the molten salt, and then recovered, and the gas is electrolyzed by the molten salt. It is discharged to the outside of the electrolytic cell through the gas discharge passage provided in the tank.

ところで、電解槽内部に水分が存在し、それが溶融塩浴に混入した場合、電極の消耗に起因する溶融塩電解槽の短命化や、電気分解の開始初期の電流効率の低下といった問題が生じる。これはすなわち、電極への通電により、溶融塩浴中の水の電気分解が起こり、これにより発生する酸素が黒鉛電極と反応して電極の酸化を促進させ、電極を早期に消耗させる。また、溶融塩浴中の水分が、溶融塩の電気分解により生成した金属マグネシウム等と反応して、その溶融金属の酸化物、たとえば酸化マグネシウムを形成し、さらにこれが塩素ガス等と反応し、再び塩化マグネシウム等に戻るという余分な反応に電流が消費されることによる。 By the way, when water is present inside the electrolytic cell and is mixed in the molten salt bath, problems such as shortening of the life of the molten salt electrolytic cell due to wear of electrodes and a decrease in current efficiency at the initial stage of electrolysis occur. .. That is, when the electrode is energized, the water in the molten salt bath is electrolyzed, and the oxygen generated thereby reacts with the graphite electrode to promote the oxidation of the electrode and consume the electrode at an early stage. Further, the water in the molten salt bath reacts with metallic magnesium or the like generated by electrolysis of the molten salt to form an oxide of the molten metal, for example, magnesium oxide, which further reacts with chlorine gas or the like and again. This is due to the consumption of current in the extra reaction of returning to magnesium chloride or the like.

このような問題に対処するため、電気分解の開始に先立って電解槽内部の水分を極力減らすための溶融塩電解槽の乾燥方法が、たとえば特許文献1、2等で提案されている。
特許文献1には、溶融塩電解槽に溶融塩を供給する前に、加熱した大気等のガスを電解槽内部に送り込むとともに電解槽外部へ排出し、電解槽内部を100℃以上に保持するガス加熱乾燥法と、溶融塩電解槽に溶融塩を供給した後に、通電を行わずに溶融塩を溶融状態に保持する浴保持乾燥法が記載されている。
In order to deal with such a problem, for example, Patent Documents 1 and 2 have proposed a method for drying a molten salt electrolytic cell in order to reduce the water content in the electrolytic cell as much as possible prior to the start of electrolysis.
In Patent Document 1, before supplying the molten salt to the molten salt electrolytic cell, a gas such as heated air is sent into the electrolytic cell and discharged to the outside of the electrolytic cell to keep the inside of the electrolytic cell at 100 ° C. or higher. A heat drying method and a bath holding drying method in which the molten salt is kept in a molten state without energization after supplying the molten salt to the molten salt electrolytic cell are described.

なお、特許文献2には、上記の浴保持乾燥法に関し、浴保持乾燥の開始から48時間以内の乾燥初期に、その48時間以内における槽内浴塩の平均温度上昇率が0.75〜2.5℃/hrとなるように槽内浴塩を昇温することが開示されている。 In Patent Document 2, regarding the above-mentioned bath-holding and drying method, the average temperature increase rate of the bath salt in the tank within 48 hours at the initial stage of drying within 48 hours from the start of bath-holding and drying is 0.75 to 2. It is disclosed that the temperature of the bath salt in the tank is raised to 5.5 ° C./hr.

特開2006−328450号公報Japanese Unexamined Patent Publication No. 2006-328450 特開2014−224288号公報Japanese Unexamined Patent Publication No. 2014-224288

ここで、溶融塩を供給する前に電解槽内部を乾燥するに当り、特許文献1に記載のガス加熱乾燥法では、電解槽内部に送り込んだ加熱ガスを、単純に自然排出することとしているので、特に溶融塩電解槽の外壁を構成する煉瓦の目地等に水が残留し、水分を溶融塩電解槽の全体から十分に取り除くことができなかった。その結果として、電極の消耗や電流効率の低下を、所期したほどに抑制することができない。 Here, in drying the inside of the electrolytic cell before supplying the molten salt, in the gas heating and drying method described in Patent Document 1, the heated gas sent into the electrolytic cell is simply discharged naturally. In particular, water remained in the joints of the bricks constituting the outer wall of the molten salt electrolytic cell, and the water could not be sufficiently removed from the entire molten salt electrolytic cell. As a result, the wear of the electrodes and the decrease in current efficiency cannot be suppressed as expected.

この発明は、従来技術が抱えるこのような問題を解決することを課題とするものであり、それの目的とするところは、溶融塩を供給する前の電解槽内部をより有効に乾燥させて、溶融塩の電気分解に際する電極の消耗や電流効率の低下を効果的に抑制することのできる溶融塩電解槽の乾燥方法を提供することにある。 An object of the present invention is to solve such a problem of the prior art, and the purpose of the present invention is to more effectively dry the inside of the electrolytic cell before supplying the molten salt. It is an object of the present invention to provide a method for drying a molten salt electrolytic cell, which can effectively suppress the consumption of electrodes and the decrease in current efficiency during electrolysis of molten salt.

この発明の溶融塩電解槽の乾燥方法は、溶融塩浴とした内部での溶融塩の電気分解による溶融金属の生成に用いる溶融塩電解槽を、電気分解の開始に先立ち乾燥する方法であって、溶融塩を供給する前の電解槽内部を加熱するとともに減圧吸引することにある。 The method for drying the molten salt electrolytic cell of the present invention is a method for drying the molten salt electrolytic cell used for producing molten metal by electrolysis of the molten salt inside the molten salt bath prior to the start of electrolysis. The inside of the electrolytic cell before supplying the molten salt is heated and sucked under reduced pressure.

ここで好ましくは、減圧吸引により電解槽内部の気圧を、−500Pa〜−100Paに保持する。
また好ましくは、減圧吸引時の吸気速度を、7.5×101L/min・m3〜1.3×102L/min・m3とする。
Here, preferably, the air pressure inside the electrolytic cell is maintained at −500 Pa to −100 Pa by vacuum suction.
Further, preferably, the intake speed at the time of decompression suction is 7.5 × 10 1 L / min · m 3 to 1.3 × 10 2 L / min · m 3 .

この発明の溶融塩電解槽の乾燥方法では、溶融塩電解槽の外壁の少なくとも一部が通気性材料からなるものであり、溶融塩電解槽の周囲を、一箇所以上の吸気口を有する槽囲繞ケースで覆った状態で、前記吸気口を用いて電解槽内部を減圧吸引することにより、電解槽内部の気体が、溶融塩電解槽の通気性材料の外壁部分を通過するとともに前記吸気口を経て吸引されることが好ましい。 In the method for drying a molten salt electrolytic cell of the present invention, at least a part of the outer wall of the molten salt electrolytic cell is made of a breathable material, and the circumference of the molten salt electrolytic cell is surrounded by a tank having one or more intake ports. By sucking the inside of the electrolytic cell under reduced pressure using the intake port while covered with a case, the gas inside the electrolytic cell passes through the outer wall portion of the breathable material of the molten salt electrolytic cell and also passes through the intake port. It is preferable to be sucked.

この発明の溶融塩電解槽の乾燥方法では、電解槽内部の加熱を、電解槽内部への乾燥高温ガスの供給により行うことが好ましい。
あるいは、電解槽内部の加熱を、電解槽内部に配置した電気加熱ヒーターもしくは浸管バーナーの発熱により行うことが好ましい。
あるいは、溶融塩電解槽が、電解槽内部に延びるべく配置されて電解槽内部に位置する部分が密閉された溶融塩浴の加熱及び/又は冷却用の温度調整管を有し、電解槽内部の加熱を、温度調整管への高温ガスの供給により行うことが好ましい。
In the method for drying the molten salt electrolytic cell of the present invention, it is preferable to heat the inside of the electrolytic cell by supplying a dry high-temperature gas to the inside of the electrolytic cell.
Alternatively, it is preferable that the inside of the electrolytic cell is heated by the heat generated by the electric heating heater or the immersion burner arranged inside the electrolytic cell.
Alternatively, the molten salt electrolytic cell has a temperature control tube for heating and / or cooling the molten salt bath, which is arranged so as to extend inside the electrolytic cell and whose portion located inside the electrolytic cell is sealed, and is inside the electrolytic cell. It is preferable that heating is performed by supplying a high-temperature gas to the temperature control tube.

電解槽内部の加熱時の昇温速度は、4℃/hr〜8℃/hrとすることが好ましい。
電解槽内部の加熱時の保持温度は、420℃以上かつ450℃以下とすることが好適である。
The rate of temperature rise during heating inside the electrolytic cell is preferably 4 ° C./hr to 8 ° C./hr.
The holding temperature of the inside of the electrolytic cell during heating is preferably 420 ° C. or higher and 450 ° C. or lower.

電解槽内部の保温及び減圧時間は、48時間以上とすることが好ましい。 The heat retention and depressurization time inside the electrolytic cell is preferably 48 hours or more.

この発明の溶融塩電解槽の乾燥方法によれば、溶融塩を供給する前の電解槽内部を加熱するとともに減圧吸引することにより、電解槽内部の全体で、加熱により気化した水蒸気が、電解槽内部の吸引される気体とともに電解槽外部へ効果的に排出されることになるので、電解槽内部の水分を十分に減らして該内部をより有効に乾燥させることができる。その結果として、溶融塩の電気分解を開始した後の、電極の早期の消耗や開始初期の電流効率の低下を一層抑制することができる。 According to the method for drying the molten salt electrolytic cell of the present invention, by heating the inside of the electrolytic cell before supplying the molten salt and sucking under reduced pressure, the water vapor vaporized by heating in the entire inside of the electrolytic cell is released into the electrolytic cell. Since it is effectively discharged to the outside of the electrolytic cell together with the gas sucked inside, the water content inside the electrolytic cell can be sufficiently reduced and the inside can be dried more effectively. As a result, it is possible to further suppress the early consumption of the electrode and the decrease in the current efficiency at the initial stage after the start of electrolysis of the molten salt.

この発明の一の実施形態に係る溶融塩電解槽の乾燥方法に用いることのできる溶融塩電解槽を示す、溶融塩浴の深さ方向に沿う断面図である。It is sectional drawing along the depth direction of the molten salt bath which shows the molten salt electrolytic cell which can be used for the drying method of the molten salt electrolytic cell which concerns on one Embodiment of this invention. 図1の溶融塩電解槽を減圧ポンプとともに示す、深さ方向に直交する断面図である。It is sectional drawing which shows the molten salt electrolytic cell of FIG. 1 together with the decompression pump, which is orthogonal to the depth direction. 図2の溶融塩電解槽及び減圧ポンプの側面図である。It is a side view of the molten salt electrolytic cell and the decompression pump of FIG.

以下に図面を参照しつつ、この発明の実施の形態について詳細に説明する。
図1に示すところにおいて、図中1は、たとえば主としてAl23等の耐火煉瓦その他の適切な材料からなる容器形状を有し、その内部に供給される溶融塩が貯留してなる溶融塩浴で、溶融塩を電気分解するとともに、該電気分解により溶融金属を生成する溶融塩電解槽を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, in FIG. 1, a molten salt having a container shape mainly made of a refractory brick such as Al 2 O 3 or other suitable material, and a molten salt in which the molten salt supplied to the inside thereof is stored is stored. The molten salt electrolysis tank which electrolyzes a molten salt in a bath and produces a molten metal by the electrolysis is shown.

この溶融塩電解槽1は、電解槽内部の上方側開口を覆蓋する図示しない蓋部材に近接させて設けた隔壁2により、電解槽内部が、図1の右側に位置して陽極3a及び陰極3bを有する電極3が配置される電解室1aと、図1の左側に位置し、電解室1aでの電気分解により得られた溶融金属が流れ込んで該溶融金属が溶融塩との密度差により上方側に溜まる貯留室1bとに区画されている。なお、電解室1aの陽極3a及び陰極3bのあいだには、一以上、好ましくは二以上、特に好ましくは三以上の複極が装入されていることが、電気分解の回数を多くすることができるため、生産性を高くすることができる点で好ましい。 The molten salt electrolytic cell 1 has a partition wall 2 provided close to a lid member (not shown) that covers the upper opening inside the electrolytic cell, so that the inside of the electrolytic cell is located on the right side of FIG. 1 and the anode 3a and the cathode 3b are located. The electrolytic cell 1a in which the electrode 3 is arranged and the molten metal located on the left side of FIG. 1 flow into the molten metal obtained by electrolysis in the electrolytic cell 1a, and the molten metal is on the upper side due to the density difference with the molten salt. It is partitioned into a storage chamber 1b that collects in. It should be noted that one or more, preferably two or more, particularly preferably three or more multiple poles are charged between the anode 3a and the cathode 3b of the electrolytic chamber 1a, which may increase the number of electrolysis. Therefore, it is preferable in that the productivity can be increased.

また、図示の溶融塩電解槽1は、貯留室1b側に、電解槽内部に延びるべく配置された温度調整管4を有する。温度調整管4は、溶融金属や溶融塩が所期した温度になるように溶融塩浴を加熱及び/又は冷却するため、内部に気体その他の流体が流されて当該流体と溶融塩浴との間で熱エネルギーの交換を行う熱交換器等として機能する。それゆえ、かかる温度調整管4は、溶融塩浴に浸漬される電解槽内部に位置する部分が密閉されている。
ここでは、温度調整管4は、図1に示すように、互いに離隔して位置して溶融塩浴の深さ方向に延びる二本以上の主管4aと、電気分解の実施に際して溶融塩浴の内部に位置し、それらの主管4aの相互を連通させる一本以上の枝管4bとを有するものとしている。
Further, the illustrated molten salt electrolytic cell 1 has a temperature control tube 4 arranged so as to extend inside the electrolytic cell on the storage chamber 1b side. In the temperature control tube 4, in order to heat and / or cool the molten salt bath so that the molten metal and the molten salt reach the desired temperature, a gas or other fluid is flowed inside, and the molten metal and the molten salt bath are brought into contact with each other. It functions as a heat exchanger or the like that exchanges heat energy between them. Therefore, the temperature control tube 4 is sealed with a portion located inside the electrolytic cell immersed in the molten salt bath.
Here, as shown in FIG. 1, the temperature control pipe 4 has two or more main pipes 4a located apart from each other and extending in the depth direction of the molten salt bath, and the inside of the molten salt bath when performing electrolysis. It is assumed to have one or more branch pipes 4b which are located in the above and communicate with each other of the main pipes 4a.

このような構成を有する溶融塩電解槽1は、たとえば、クロール法で金属チタンを製造する際にそれに付随して生成される塩化マグネシウム(MgCl2)等の電気分解に用いることができる。
具体的には、陽極3a及び陰極3bに接続した図示しない整流器等からの電極3への通電により、電解槽内部の底部近傍を通って貯留室1bから電解室1aに流入した溶融塩としての塩化マグネシウムは、溶融金属としての金属マグネシウム(Mg)と、ガスとしての塩素ガス(Cl2)とに電気分解される。電解室1aで生成された金属マグネシウムは、隔壁2に設けられた溶融金属流路を通って貯留室1bに流入し、その後、塩化マグネシウムに対する比重の小さい金属マグネシウムは、貯留室1bの浅い箇所に浮上してそこに溜まることになり、これを図示しないポンプ等により回収することができる。一方、塩素ガスは、図示しないガス排出通路から電解槽外部へ排出される。
The molten salt electrolytic cell 1 having such a configuration can be used, for example, for electrolysis of magnesium chloride (MgCl 2 ) and the like, which are produced in association with the production of metallic titanium by the Kroll process.
Specifically, by energizing the electrode 3 from a rectifier or the like (not shown) connected to the anode 3a and the cathode 3b, chloride as a molten salt flowing into the electrolytic cell 1a from the storage chamber 1b through the vicinity of the bottom inside the electrolytic cell. Magnesium is electrolyzed into metallic magnesium (Mg) as a molten metal and chlorine gas (Cl 2) as a gas. The metallic magnesium produced in the electrolytic chamber 1a flows into the storage chamber 1b through the molten metal flow path provided in the partition wall 2, and then the metallic magnesium having a small specific gravity with respect to magnesium chloride is transferred to a shallow portion of the storage chamber 1b. It will surface and accumulate there, which can be recovered by a pump or the like (not shown). On the other hand, chlorine gas is discharged to the outside of the electrolytic cell from a gas discharge passage (not shown).

これにより得られた金属マグネシウムは、金属チタンを製造するクロール法における四塩化チタンの還元に、また塩素ガスは、同法におけるチタン鉱石の塩素化にそれぞれ用いることができる。 The metallic magnesium thus obtained can be used for the reduction of titanium tetrachloride in the Kroll process for producing metallic titanium, and the chlorine gas can be used for the chlorination of titanium ore in the same method.

ところで、溶融塩浴に水分が含まれると、溶融塩を電気分解する際に、それとともに水が電気分解されて酸素が発生する。陽極3aの材質は耐塩素性を有する黒鉛とすることが一般的であるところ、水の電気分解による酸素はこの黒鉛電極と反応して、黒鉛電極の酸化による消耗を促進させ、寿命を短くする。また、溶融塩浴中の水が、電気分解により生成した金属マグネシウムと反応すると酸化マグネシウムが生成されるが、この酸化マグネシウムの一部は塩素ガスと反応して、再び元の塩化マグネシウムに戻り、また、一部の酸化マグネシウムはスラッジとなって回収不可能となる。これらの理由から、このような水との反応は電流効率を低下させる。 By the way, when the molten salt bath contains water, when the molten salt is electrolyzed, the water is electrolyzed and oxygen is generated. Generally, the material of the anode 3a is graphite having chlorine resistance, but oxygen due to electrolysis of water reacts with the graphite electrode to accelerate the consumption due to oxidation of the graphite electrode and shorten the life. .. Further, when the water in the molten salt bath reacts with the metallic magnesium generated by electrolysis, magnesium oxide is produced, but a part of this magnesium oxide reacts with chlorine gas and returns to the original magnesium chloride again. In addition, some magnesium oxide becomes sludge and cannot be recovered. For these reasons, such reactions with water reduce current efficiency.

したがって、陽極3aの早期の消耗を防止するとともに電流効率の低下を抑制するため、溶融塩の電気分解の開始前に、溶融塩電解槽1の内部の水分を可能な限り除去することが重要となる。
そこで、この発明の実施形態では、溶融塩電解槽1を用いて電気分解を開始するに先立って、溶融塩電解槽1を乾燥することとし、具体的には、溶融塩電解槽1に溶融塩を供給する前に、溶融塩電解槽1をある程度密閉して、電解槽内部を加熱するとともに減圧吸引する。
Therefore, in order to prevent early consumption of the anode 3a and suppress a decrease in current efficiency, it is important to remove as much water as possible inside the molten salt electrolytic cell 1 before starting electrolysis of the molten salt. Become.
Therefore, in the embodiment of the present invention, the molten salt electrolytic cell 1 is dried prior to starting electrolysis using the molten salt electrolytic cell 1, and specifically, the molten salt is placed in the molten salt electrolytic cell 1 in the molten salt electrolytic cell 1. The molten salt electrolytic cell 1 is sealed to some extent to heat the inside of the electrolytic cell and suck it under reduced pressure.

このことによれば、電解槽内部が比較的高温になるように加熱することにより、電解槽内部に存在する水分の気化を促進させることができるだけでなく、電解槽内部の気圧が低下するように、減圧ポンプ等を用いて吸引することにより、水蒸気等が電解槽内部から外部へ容易かつ確実に排出されるので、溶融塩電解槽1を有効に乾燥することができる。 According to this, by heating the inside of the electrolytic cell to a relatively high temperature, not only the vaporization of the water existing in the electrolytic cell can be promoted, but also the pressure inside the electrolytic cell is lowered. By sucking with a decompression pump or the like, steam or the like is easily and surely discharged from the inside of the electrolytic cell to the outside, so that the molten salt electrolytic cell 1 can be effectively dried.

この加熱及び減圧吸引について詳細に述べると、はじめに、図1〜3に例示するように、たとえば、平面視で矩形状をなす溶融塩電解槽1の四辺の側面を、その全周にわたって鉄製等の槽囲繞ケース5で覆う。この槽囲繞ケース5は、溶融塩電解槽1の側面の外壁1cに倣って該外壁1cよりも若干大きい平面視矩形状の囲い形状を有し、槽囲繞ケース5の各側面には、内外面に貫通する複数箇所の吸気口5aが形成されている。なお図示の例では、槽囲繞ケース5の各側面には、深さ方向の異なる二段の深さ位置に二箇所ずつ、計四箇所の吸気口5aが設けられている。
また図示は省略するが、溶融塩電解槽1の上方側開口は、半密閉の蓋部材を取り付け、必要に応じて蓋部材の隙間を断熱ブランケット等で埋めることにより、電解槽内部を、吸引時に減圧される程度に気密にする。
The heating and decompression suction will be described in detail. First, as illustrated in FIGS. Cover with the tank surrounding case 5. The tank surrounding case 5 has a rectangular enclosure shape in a plan view slightly larger than the outer wall 1c following the outer wall 1c of the side surface of the molten salt electrolytic cell 1, and each side surface of the tank surrounding case 5 has inner and outer surfaces. A plurality of intake ports 5a penetrating the are formed. In the illustrated example, each side surface of the tank surrounding case 5 is provided with two intake ports 5a at two different depth positions in the depth direction, for a total of four intake ports 5a.
Although not shown, the upper opening of the molten salt electrolytic cell 1 is provided with a semi-enclosed lid member, and if necessary, the gap between the lid members is filled with a heat insulating blanket or the like to suck the inside of the electrolytic cell. Make it airtight to the extent that it is depressurized.

次いで、槽囲繞ケース5の各吸気口5aを、ケーブルにより、たとえば一個の減圧ポンプ6に接続する。ここでは、各吸気口5aと減圧ポンプ6との間に、吸引した気体中の水分を捕集する水分トラップ7を設けている。この水分トラップ7としては公知のものを用いることができる。 Next, each intake port 5a of the tank surrounding case 5 is connected to, for example, one decompression pump 6 by a cable. Here, a moisture trap 7 for collecting the moisture in the sucked gas is provided between each intake port 5a and the decompression pump 6. A known moisture trap 7 can be used.

そしてその後、電解槽内部を加熱しながら、減圧ポンプ6で電解槽内部の気体を吸引し、電解槽内部を減圧する。ここでは、溶融塩電解槽1の外壁1cの主要部分が、煉瓦等の通気性材料からなることにより、減圧ポンプ6で減圧吸引すると、電解槽内部の気体が、溶融塩電解槽1の外壁1cの通気性材料からなる部分から吸気口5aを経て吸引されることになる。なお、溶融塩電解槽1の外壁1cは、煉瓦の他、モルタル、黒鉛、窒化珪素等のセラミックスにより構成されることもある。 Then, while heating the inside of the electrolytic cell, the gas inside the electrolytic cell is sucked by the decompression pump 6 to reduce the pressure inside the electrolytic cell. Here, since the main part of the outer wall 1c of the molten salt electrolytic cell 1 is made of a breathable material such as brick, when the pressure is reduced and sucked by the decompression pump 6, the gas inside the electrolytic cell 1 c becomes the outer wall 1c of the molten salt electrolytic cell 1. It will be sucked from the portion made of the breathable material of the above through the intake port 5a. The outer wall 1c of the molten salt electrolytic cell 1 may be made of ceramics such as mortar, graphite, and silicon nitride in addition to bricks.

この際の加熱は、種々の方法により行うことができるが、好ましくは、電解槽内部への乾燥高温ガスの供給、電解槽内部に配置した電気加熱ヒーターもしくは浸管バーナーの発熱、温度調整管4への高温ガスの供給により行う。それにより、減圧ポンプ6等による減圧吸引で、乾燥した気体が溶融塩電解槽1の煉瓦製等の外壁1cを通過して、そこに存在する水分が効果的に除去される。その結果として、大気中での燃焼により生じた燃焼ガスを電解槽内部に送り込むことによる水分混入のおそれを取り除くことができる。 The heating at this time can be performed by various methods, but preferably, the supply of the dry high-temperature gas to the inside of the electrolytic cell, the heat generation of the electric heating heater or the immersion burner arranged inside the electrolytic cell, and the temperature control tube 4 By supplying high temperature gas to. As a result, the dried gas passes through the outer wall 1c of the molten salt electrolytic cell 1 made of brick or the like by decompression suction by the decompression pump 6 or the like, and the water present therein is effectively removed. As a result, it is possible to eliminate the risk of moisture contamination due to the combustion gas generated by combustion in the atmosphere being sent into the electrolytic cell.

上記の乾燥高温ガスは、たとえば、予め水分が除去された気体を、熱交換器を用いて加熱すること等により得ることができ、これを、ダクト等を介して電解槽内部に送り込む。乾燥高温ガスは、たとえば、乾燥エアー、乾燥CO2又は窒素やアルゴン等とすることができる。 The above-mentioned dry high-temperature gas can be obtained, for example, by heating a gas from which water has been removed in advance using a heat exchanger, and sends the gas into the electrolytic cell through a duct or the like. The dry hot gas can be, for example, dry air, dry CO 2, nitrogen, argon or the like.

電気加熱ヒーターは、電気エネルギーを直接・間接的に熱エネルギーに変換し、対象物の加熱や冷却を行うヒーターであり、熱エネルギーへの変換に、通電、電磁誘導、高周波電界、電磁波、光(放射)を利用したもの等がある。このような電気加熱ヒーターを電解槽内部に配置して発熱させることにより、外気からの水分の混入を抑制することができる。
また浸管バーナーとしては、密閉された管内で、燃焼用空気や燃料ガスを燃焼させ、それにより発生した熱を、管外壁を介して管外部へ伝えるもの等があり、これによっても、燃焼時の水分の、電解槽内部への混入を防止することができる。
An electric heating heater is a heater that directly or indirectly converts electric energy into heat energy to heat or cool an object. For conversion to heat energy, energization, electromagnetic induction, high frequency electric field, electromagnetic wave, light ( There are things that use radiation). By arranging such an electric heater inside the electrolytic cell to generate heat, it is possible to suppress the mixing of moisture from the outside air.
In addition, as an immersion burner, there is a burner that burns combustion air or fuel gas in a closed pipe and transfers the heat generated by the combustion to the outside of the pipe through the outer wall of the pipe. It is possible to prevent the water from getting into the inside of the electrolytic tank.

溶融塩電解槽1の乾燥のための加熱に、温度調整管4を用いるには、温度調整管4の内部に高温ガスを供給する。この高温ガスは、乾燥したのもの又は水分が含まれているもののいずれであってもよい。温度調整管4の電解槽内部に位置する部分は密閉されており、そこに供給する高温ガスに水分が含まれていても、電解槽内部の温度調整管4の外側に当該水分が移動することはないからである。したがって、温度調整管4に供給する高温ガスは大気とすることも可能である。 In order to use the temperature control tube 4 for heating the molten salt electrolytic cell 1 for drying, a high temperature gas is supplied to the inside of the temperature control tube 4. This hot gas may be either dry or moist. The portion of the temperature control tube 4 located inside the electrolytic cell is sealed, and even if the high temperature gas supplied there contains water, the water moves to the outside of the temperature control tube 4 inside the electrolytic cell 4. Because there is no. Therefore, the high temperature gas supplied to the temperature control tube 4 can be the atmosphere.

溶融塩電解槽1を乾燥する際に、減圧吸引を行うことにより、電解槽内部の気圧は、−500Pa〜−100Paに保持されることが好適である。電解槽内部の気圧が低すぎると、電解槽の蓋部材の僅かな隙間から大気を巻き込むため、大気中の水分が混入しやすくなるおそれがあり、この一方で、電解槽内部の気圧が高すぎると、蓋部材の隙間から電解槽の外へ熱風が吹きだす恐れが生じることが懸念されるからである。 It is preferable that the air pressure inside the electrolytic cell is maintained at −500 Pa to −100 Pa by performing vacuum suction when the molten salt electrolytic cell 1 is dried. If the air pressure inside the electrolytic cell is too low, the air will be entrained through a small gap in the lid member of the electrolytic cell, and moisture in the atmosphere may easily be mixed in. On the other hand, the air pressure inside the electrolytic cell is too high. This is because there is a concern that hot air may be blown out of the electrolytic cell through the gap between the lid members.

また、減圧ポンプ6等による減圧吸引時の吸気速度は、7.5×101L/min・m3[電解槽の内容積]〜1.3×102L/min・m3[電解槽の内容積]とすることが好ましい。ここでいう「減圧吸引時の吸気速度」は、減圧ポンプ6の吸気能力を、溶融塩電解槽1の内容積で除した値を意味する。この吸気速度が速すぎると、電解槽の蓋部材の僅かな隙間から大気を巻き込んだり、乾燥が不十分なモルタル目地材を吸引してしまう可能性があり、また遅すぎると、減圧状態を保てなくなる懸念がある。 The intake speed during decompression suction by the decompression pump 6 or the like is 7.5 × 10 1 L / min ・ m 3 [internal volume of the electrolytic cell] to 1.3 × 10 2 L / min ・ m 3 [electrolytic cell]. Internal volume of] is preferable. The "intake rate at the time of decompression suction" referred to here means a value obtained by dividing the intake capacity of the decompression pump 6 by the internal volume of the molten salt electrolytic cell 1. If this intake speed is too fast, the atmosphere may be entrained through a small gap in the lid member of the electrolytic cell, or mortar joint material that is not sufficiently dried may be sucked in. If it is too slow, the depressurized state may be maintained. There is a concern that it will disappear.

電解槽内部を加熱する際に、電解槽内部の一時間当たりの上昇温度である昇温速度は、好ましくは4℃/hr〜8℃/hrとする。昇温速度が速すぎると、入熱過剰となって温度が局所的に上昇することによる外壁1cの煉瓦や目地材、陰極3b等の損傷ないし変形のおそれがある。一方、昇温速度が遅すぎると、乾燥に多くの時間が必要になる。
昇温速度は、電解槽内部に常時設置した熱電対によって監視している電解槽内部の温度を、3時間おきに記録し、それらの各記録温度を時間間隔で除して、その平均を算出することにより求める。
When heating the inside of the electrolytic cell, the rate of temperature rise, which is the temperature rise inside the electrolytic cell per hour, is preferably 4 ° C./hr to 8 ° C./hr. If the temperature rise rate is too fast, there is a risk of damage or deformation of the bricks, joint materials, cathode 3b, etc. of the outer wall 1c due to excessive heat input and local temperature rise. On the other hand, if the heating rate is too slow, it takes a lot of time to dry.
The temperature rise rate is calculated by recording the temperature inside the electrolytic cell, which is constantly monitored by a thermocouple installed inside the electrolytic cell, every 3 hours, dividing each recorded temperature by the time interval, and calculating the average. Ask by doing.

また、電解槽内部を加熱する際は、所定の最高温度に到達した後にその最高温度で所定の時間にわたって保持することが、水分除去の観点より好ましいが、そのときの保持温度(最高温度)は、100℃以上かつ500℃未満、さらには420℃以上かつ450℃以下とすることが好適である。保持温度が100℃未満では、電解槽内部の水分が有効に気化しないことが懸念される。保持温度を420℃未満とすると、溶融塩電解槽の外壁を構成する煉瓦層内で、気化した水分の一部が、露点以下の温度となることで再凝縮し、煉瓦層内に残留する可能性が否めず、この一方で、450℃を超えると、溶融塩電解槽1を設置した工場等における磁力の影響と相俟って、鉄製等の陰極3bが湾曲する懸念がある。 Further, when heating the inside of the electrolytic cell, it is preferable to hold the inside of the electrolytic cell at the maximum temperature for a predetermined time after reaching the predetermined maximum temperature, from the viewpoint of removing water, but the holding temperature (maximum temperature) at that time is , 100 ° C. or higher and lower than 500 ° C., and more preferably 420 ° C. or higher and 450 ° C. or lower. If the holding temperature is less than 100 ° C., there is a concern that the water inside the electrolytic cell will not be effectively vaporized. When the holding temperature is less than 420 ° C, a part of the vaporized water in the brick layer constituting the outer wall of the molten salt electrolytic cell can be recondensed at a temperature below the dew point and remain in the brick layer. On the other hand, if the temperature exceeds 450 ° C., there is a concern that the cathode 3b made of iron or the like may be curved due to the influence of the magnetic force in the factory or the like where the molten salt electrolytic cell 1 is installed.

そして、上記の保持温度等の所定の温度に保持するとともに減圧吸引する保温・減圧時間は、好ましくは48時間以上、より好ましくは60時間以上とする。これにより、水分除去をより一層確実に行うことができる。 The heat retention / depressurization time for maintaining the temperature at a predetermined temperature such as the above-mentioned holding temperature and sucking under reduced pressure is preferably 48 hours or longer, more preferably 60 hours or longer. This makes it possible to remove water more reliably.

なお、陽極3aとして黒鉛電極を用いる場合、上述した乾燥時の加熱及び減圧吸引は、その黒鉛電極を溶融塩電解槽1から取り外した状態で行うことができる。これはすなわち、黒鉛電極を取り付けたまま加熱及び減圧吸引を行うと、通常の黒鉛では400℃以上から酸化消耗が多少起こるからである。ただし、耐酸化処理を施した黒鉛電極を使用する場合は、その黒鉛電極を取り付けた後に乾燥を行っても問題ない。また、陰極3bについては溶融塩電解槽1に取り付けた後に乾燥を行っても問題ない。 When a graphite electrode is used as the anode 3a, the above-mentioned heating and vacuum suction during drying can be performed with the graphite electrode removed from the molten salt electrolytic cell 1. This is because if heating and vacuum suction are performed with the graphite electrode attached, oxidative consumption will occur to some extent from 400 ° C. or higher with ordinary graphite. However, when a graphite electrode subjected to oxidation resistance treatment is used, there is no problem even if the graphite electrode is attached and then dried. Further, the cathode 3b may be dried after being attached to the molten salt electrolytic cell 1.

乾燥を行った後、陽極3a等の残りの電解槽部材を溶融塩電解槽に取り付けたうえで、溶融塩を投入する前に、溶融塩電解槽の予熱処理を行う。予熱処理を行う理由は、浴入れ時の冷却による溶融塩の固化防止や、急加熱による電解槽部材の割れ防止を図るためである。 After drying, the remaining electrolytic cell members such as the anode 3a are attached to the molten salt electrolytic cell, and the molten salt electrolytic cell is preheated before the molten salt is charged. The reason for performing the preheat treatment is to prevent the molten salt from solidifying by cooling at the time of bathing and to prevent the electrolytic cell member from cracking due to rapid heating.

予熱処理を行ったあとは、直ちに、溶融塩を電解槽内に投入する。塩化マグネシウムを含有する溶融塩を投入する場合、塩化マグネシウムの他、溶融塩の電気伝導度の向上および溶融塩の融点調節、溶融塩の密度調節のために、塩化カルシウム及び塩化ナトリウムを含有する。また、塩化マグネシウムを含有する溶融塩は、塩化マグネシウム、塩化カルシウム及び塩化ナトリウムの他に、マグネシウムのフッ化物、水酸化物、炭酸塩や硝酸塩等のマグネシウム塩、酸化マグネシウム、金属マグネシウム、カルシウムのフッ化物、ナトリウムのフッ化物、カリウムのフッ化物、リチウムのフッ化物、塩化リチウム、塩化カリウムなどが含まれていてもよい。 Immediately after the preheat treatment, the molten salt is put into the electrolytic cell. When the molten salt containing magnesium chloride is added, in addition to magnesium chloride, calcium chloride and sodium chloride are contained in order to improve the electric conductivity of the molten salt, adjust the melting point of the molten salt, and adjust the density of the molten salt. In addition to magnesium chloride, calcium chloride and sodium chloride, molten salts containing magnesium chloride include magnesium fluorides, hydroxides, magnesium salts such as carbonates and nitrates, magnesium oxide, metallic magnesium, and calcium foot. It may contain a compound, a fluoride of sodium, a fluoride of potassium, a fluoride of lithium, lithium chloride, potassium chloride and the like.

次にこの発明の乾燥方法を行った溶融塩電解槽を試作し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、それに限定されることを意図するものではない。 Next, a molten salt electrolytic cell according to the drying method of the present invention was prototyped, and its effect was confirmed, which will be described below. However, the description here is for the purpose of mere illustration, and is not intended to be limited thereto.

後述のいずれの比較例および実施例においても、まず、耐火煉瓦およびモルタルにより構築した溶融塩電解槽の電解室側に鉄製の陰極を設置後、蓋部材をセットした。その後、各乾燥条件において電解槽の乾燥を行った。
乾燥後は、黒鉛製の陽極および複極を電解室に設置し、熱量を調節しながら、電解槽内の部材の予熱処理を行った。予熱処理では、90時間かけて、槽内温度380℃まで昇温し、その後、380℃で48時間保持した。
In any of the comparative examples and examples described later, first, an iron cathode was installed on the electrolytic cell side of the molten salt electrolytic cell constructed from refractory bricks and mortar, and then the lid member was set. Then, the electrolytic cell was dried under each drying condition.
After drying, a graphite anode and a double pole were installed in the electrolytic cell, and the members in the electrolytic cell were preheated while adjusting the amount of heat. In the preheat treatment, the temperature in the tank was raised to 380 ° C. over 90 hours, and then kept at 380 ° C. for 48 hours.

予熱処理が完了後、直ちに、溶融塩を電解槽内に投入した。この溶融塩の浴組成については、MgCl2、CaCl2、NaCl、MgF2がそれぞれ質量比で20%、30%、49%、1%からなる溶融塩であり、溶融塩の温度は670℃前後に調節した。 Immediately after the preheat treatment was completed, the molten salt was put into the electrolytic cell. Regarding the bath composition of this molten salt, MgCl 2 , CaCl 2 , NaCl, and MgF 2 are molten salts composed of 20%, 30%, 49%, and 1% by mass ratio, respectively, and the temperature of the molten salt is around 670 ° C. Adjusted to.

溶融塩を投入してから45時間後に、以下に示す条件で、溶融塩の電気分解を行った。
溶融塩の電気分解を継続している間は、金属マグネシウムの生成量に対応した塩化マグネシウムを補給するために、補給溶融塩として、クロール法による副生物の塩化マグネシウムを、電解槽に供給し、溶融塩中の塩化マグネシウムの含有量が15〜20質量%となるように調節した。
Forty-five hours after the molten salt was added, the molten salt was electrolyzed under the conditions shown below.
While the electrolysis of the molten salt is being continued, magnesium chloride, which is a by-product of the Kroll process, is supplied to the electrolytic tank as a supplementary molten salt in order to supplement magnesium chloride corresponding to the amount of metallic magnesium produced. The content of magnesium chloride in the molten salt was adjusted to be 15 to 20% by mass.

溶融塩の電気分解を開始してから7日間の平均電流効率を測定した。また、溶融塩の電気分解を開始してから3か月後に、電気分解を一時停止し、陽極の減肉量を測定した。その結果を、表1に示す。なお電流効率は、以下の式により算出し、表1の「平均電流効率」は、比較例1の電流効率を100とし、比較例2及び実施例1〜3の電流効率を比較例1の電流効率に対する相対値で示したものである。
電流効率=電解槽から回収したMg質量/理論生成Mg質量
The average current efficiency for 7 days after the start of electrolysis of the molten salt was measured. In addition, three months after the start of electrolysis of the molten salt, the electrolysis was temporarily stopped, and the amount of wall thinning of the anode was measured. The results are shown in Table 1. The current efficiency is calculated by the following formula, and in the "average current efficiency" of Table 1, the current efficiency of Comparative Example 1 is 100, and the current efficiencies of Comparative Example 2 and Examples 1 to 3 are the currents of Comparative Example 1. It is shown as a relative value to efficiency.
Current efficiency = Mg mass recovered from the electrolytic cell / theoretically generated Mg mass

Figure 0006970570
Figure 0006970570

比較例1では、貯留室側の蓋に設けた穴箇所に、電解槽内部に延びるべく配置された先端開口バーナー管を取り付けて、燃焼排ガスを電解槽内部に直接送り込む方法で、減圧吸引せずに乾燥を行った。
このとき、電解槽の昇温速度が4〜8℃/hrの範囲を逸脱しないようにし、且つ、保持温度が440℃前後となるように、電解槽内部に送り込む燃焼排ガス量を調節しながら54時間保持した。なお、電解槽内部に導入した排ガスは加熱により気化した水蒸気と共に、電解槽の蓋上に設けたダクトから排出させた。
In Comparative Example 1, a tip opening burner tube arranged to extend inside the electrolytic cell is attached to a hole provided in the lid on the storage chamber side, and the combustion exhaust gas is directly sent into the electrolytic cell without decompression suction. Was dried.
At this time, 54 while adjusting the amount of combustion exhaust gas sent into the electrolytic cell so that the temperature rising rate of the electrolytic cell does not deviate from the range of 4 to 8 ° C./hr and the holding temperature is around 440 ° C. I kept it for a while. The exhaust gas introduced into the electrolytic cell was discharged from the duct provided on the lid of the electrolytic cell together with the steam vaporized by heating.

比較例2では、貯留室側の蓋に設けた穴箇所に、電解槽内部に延びるべく配置された浸管バーナーを取り付けて、電解槽内部を間接加熱する方法で、減圧吸引せずに乾燥を行った。
このとき、電解槽の昇温速度が4〜8℃/hrの範囲を逸脱しないようにし、且つ、保持温度が440℃前後となるように浸管バーナーを調節しながら54時間保持した。なお、加熱により気化した水蒸気は、電解槽の蓋上に設けたダクトから排出させた。
In Comparative Example 2, a dipping tube burner arranged to extend inside the electrolytic cell is attached to a hole provided in the lid on the storage chamber side to indirectly heat the inside of the electrolytic cell, and drying is performed without decompression suction. went.
At this time, the temperature of the electrolytic cell was maintained for 54 hours while being adjusted so that the temperature rising rate of the electrolytic cell did not deviate from the range of 4 to 8 ° C./hr and the holding temperature was around 440 ° C. The steam vaporized by heating was discharged from a duct provided on the lid of the electrolytic cell.

実施例1では、貯留室側の蓋に設けた穴箇所に、電解槽内部に延びるべく配置された浸管バーナーを取り付けて、電解槽内部を間接加熱する方法で、槽囲繞ケースの各吸気口を減圧ポンプに接続し、電解槽内部の気圧が−280Paとなるように減圧吸引しながら、乾燥を行った。このとき電解槽の昇温速度が4〜8℃/hrの範囲を逸脱しないようにし、且つ、保持温度が440℃前後となるように浸管バーナーを調節しながら54時間温度保持した。 In the first embodiment, a dipping tube burner arranged to extend inside the electrolytic cell is attached to a hole provided in the lid on the storage chamber side to indirectly heat the inside of the electrolytic cell, and each intake port of the tank surrounding case is used. Was connected to a decompression pump, and drying was performed while depressurizing and sucking so that the air pressure inside the electrolytic cell was 280 Pa. At this time, the temperature was maintained for 54 hours while adjusting the immersion burner so that the heating rate of the electrolytic cell did not deviate from the range of 4 to 8 ° C./hr and the holding temperature was around 440 ° C.

実施例2では、貯留室側の蓋に設けた穴箇所に、電解槽内部に延びるべく配置された先端開口の配管から加熱された乾燥エアーを電解槽内部に直接送り込む方法で、槽囲繞ケースの各吸気口を減圧ポンプに接続し、電解槽内部の気圧が−280Paとなるように減圧吸引しながら、乾燥を行った。このとき電解槽の昇温速度が4〜8℃/hrの範囲を逸脱しないようにし、且つ、保持温度が440℃前後となるように乾燥エアー量を調節しながら54時間温度保持した。 In the second embodiment, the dry air heated from the pipe having the tip opening arranged to extend inside the electrolytic cell is directly sent into the electrolytic cell into the hole provided in the lid on the storage chamber side. Each intake port was connected to a decompression pump, and drying was performed while depressurizing and sucking so that the air pressure inside the electrolytic cell was 280 Pa. At this time, the temperature was maintained for 54 hours while adjusting the amount of dry air so that the heating rate of the electrolytic cell did not deviate from the range of 4 to 8 ° C./hr and the holding temperature was around 440 ° C.

実施例3では、貯留室側の蓋に設けた穴箇所に、電解槽内部に延びるべく配置された浸管バーナーを取り付けて、電解槽内部を間接加熱する方法で、槽囲繞ケースの各吸気口を減圧ポンプに接続し、電解槽内部の気圧が−400Paとなるように減圧吸引しながら、乾燥を行った。このとき電解槽の昇温速度が4〜8℃/hrの範囲を逸脱しないようにし、且つ、保持温度が440℃前後となるように浸管バーナーを調節しながら54時間温度保持した。 In the third embodiment, a dipping tube burner arranged to extend inside the electrolytic cell is attached to a hole provided in the lid on the storage chamber side to indirectly heat the inside of the electrolytic cell, and each intake port of the tank surrounding case is used. Was connected to a decompression pump, and drying was performed while depressurizing and sucking so that the air pressure inside the electrolytic cell was −400 Pa. At this time, the temperature was maintained for 54 hours while adjusting the immersion burner so that the heating rate of the electrolytic cell did not deviate from the range of 4 to 8 ° C./hr and the holding temperature was around 440 ° C.

表1に示すところから、減圧吸引を行った実施例1〜3はいずれも、比較例1及び2に比して、3か月後の陽極減肉量が大きく低減されるとともに、平均電流効率が有意に向上したことが解かる。それにより、実施例1〜3では、電解槽内部の水分が十分に減るほどにその内部を有効に乾燥できたと推測される。 From the place shown in Table 1, in each of Examples 1 to 3 in which decompression suction was performed, the amount of wall thinning of the anode after 3 months was significantly reduced as compared with Comparative Examples 1 and 2, and the average current efficiency was reduced. It can be seen that was significantly improved. As a result, in Examples 1 to 3, it is presumed that the inside of the electrolytic cell could be effectively dried so that the water content inside the electrolytic cell was sufficiently reduced.

1 溶融塩電解槽
1a 電解室
1b 貯留室
1c 外壁
2 隔壁
3 電極
3a 陽極
3b 陰極
4 温度調整管
4a 主管
4b 枝管
5 槽囲繞ケース
5a 吸気口
6 減圧ポンプ
7 水分トラップ
1 Molten salt electrolysis tank 1a Electrolysis chamber 1b Storage chamber 1c Outer wall 2 Partition 3 Electrode 3a Anode 3b Cathode 4 Temperature control pipe 4a Main pipe 4b Branch pipe 5 Tank enclosure case 5a Intake port 6 Decompression pump 7 Moisture trap

Claims (9)

溶融塩浴とした内部での溶融塩の電気分解による溶融金属の生成に用いる溶融塩電解槽を、電気分解の開始に先立ち乾燥する方法であって、溶融塩を供給する前の電解槽内部を加熱するとともに減圧吸引し、
溶融塩電解槽の外壁の少なくとも一部が通気性材料からなり、
溶融塩電解槽の周囲を、一箇所以上の吸気口を有する槽囲繞ケースで覆った状態で、前記吸気口を用いて電解槽内部を減圧吸引することにより、電解槽内部の気体が、溶融塩電解槽の通気性材料の外壁部分を通過するとともに前記吸気口を経て吸引される、溶融塩電解槽の乾燥方法。
This is a method of drying the molten salt electrolytic cell used for the production of molten metal by electrolysis of the molten salt inside the molten salt bath prior to the start of electrolysis. Heat and aspirate under reduced pressure,
At least part of the outer wall of the molten salt electrolyzer is made of breathable material,
By covering the circumference of the molten salt electrolytic cell with a tank surrounding case having one or more intake ports and sucking the inside of the electrolytic cell under reduced pressure using the intake port, the gas inside the electrolytic cell becomes the molten salt. A method for drying a molten salt electrolytic cell, which passes through an outer wall portion of a breathable material of the electrolytic cell and is sucked through the intake port.
減圧吸引により電解槽内部の気圧を、−500Pa〜−100Paに保持する、請求項1に記載の溶融塩電解槽の乾燥方法。 The method for drying a molten salt electrolytic cell according to claim 1, wherein the air pressure inside the electrolytic cell is maintained at −500 Pa to −100 Pa by suction under reduced pressure. 減圧吸引時の吸気速度を、7.5×101L/min・m3〜1.3×102L/min・m3とする、請求項1又は2に記載の溶融塩電解槽の乾燥方法。 The drying of the molten salt electrolytic cell according to claim 1 or 2, wherein the intake rate at the time of vacuum suction is 7.5 × 10 1 L / min · m 3 to 1.3 × 10 2 L / min · m 3. Method. 電解槽内部の加熱を、電解槽内部への乾燥高温ガスの供給により行う、請求項1〜のいずれか一項に記載の溶融塩電解槽の乾燥方法。 The method for drying a molten salt electrolytic cell according to any one of claims 1 to 3 , wherein the inside of the electrolytic cell is heated by supplying a dry high-temperature gas to the inside of the electrolytic cell. 電解槽内部の加熱を、電解槽内部に配置した電気加熱ヒーターもしくは浸管バーナーの発熱により行う、請求項1〜のいずれか一項に記載の溶融塩電解槽の乾燥方法。 The method for drying a molten salt electrolytic cell according to any one of claims 1 to 3 , wherein the inside of the electrolytic cell is heated by the heat generated by an electric heating heater or a immersion burner arranged inside the electrolytic cell. 溶融塩電解槽が、電解槽内部に延びるべく配置されて電解槽内部に位置する部分が密閉された溶融塩浴の加熱及び/又は冷却用の温度調整管を有し、
電解槽内部の加熱を、温度調整管への高温ガスの供給により行う、請求項1〜のいずれか一項に記載の溶融塩電解槽の乾燥方法。
The molten salt electrolytic cell has a temperature control tube for heating and / or cooling the molten salt bath, which is arranged so as to extend inside the electrolytic cell and whose portion located inside the electrolytic cell is sealed.
The method for drying a molten salt electrolytic cell according to any one of claims 1 to 3 , wherein the inside of the electrolytic cell is heated by supplying a high-temperature gas to a temperature control tube.
電解槽内部の加熱時の昇温速度を、4℃/hr〜8℃/hrとする、請求項1〜のいずれか一項に記載の溶融塩電解槽の乾燥方法。 The method for drying a molten salt electrolytic cell according to any one of claims 1 to 6 , wherein the heating rate of the inside of the electrolytic cell during heating is 4 ° C./hr to 8 ° C./hr. 電解槽内部の加熱時の保持温度を、420℃以上かつ450℃以下とする、請求項1〜のいずれか一項に記載の溶融塩電解槽の乾燥方法。 The method for drying a molten salt electrolytic cell according to any one of claims 1 to 7 , wherein the holding temperature of the inside of the electrolytic cell during heating is 420 ° C. or higher and 450 ° C. or lower. 電解槽内部の保温及び減圧時間を、48時間以上とする、請求項1〜のいずれか一項に記載の溶融塩電解槽の乾燥方法。 The method for drying a molten salt electrolytic cell according to any one of claims 1 to 8 , wherein the heat retention and depressurization time inside the electrolytic cell is 48 hours or more.
JP2017184046A 2017-09-25 2017-09-25 How to dry the molten salt electrolytic cell Active JP6970570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017184046A JP6970570B2 (en) 2017-09-25 2017-09-25 How to dry the molten salt electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017184046A JP6970570B2 (en) 2017-09-25 2017-09-25 How to dry the molten salt electrolytic cell

Publications (2)

Publication Number Publication Date
JP2019059971A JP2019059971A (en) 2019-04-18
JP6970570B2 true JP6970570B2 (en) 2021-11-24

Family

ID=66178354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017184046A Active JP6970570B2 (en) 2017-09-25 2017-09-25 How to dry the molten salt electrolytic cell

Country Status (1)

Country Link
JP (1) JP6970570B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7206152B2 (en) * 2019-05-29 2023-01-17 東邦チタニウム株式会社 Molten salt electrolysis method and metal magnesium production method
CN112064063A (en) * 2020-08-28 2020-12-11 华东理工大学 Method for improving current efficiency of metal lithium electrolysis

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057574B2 (en) * 1990-10-31 2000-06-26 東邦チタニウム株式会社 Method and apparatus for adjusting bath temperature of electrolytic bath for metal production
JP2001040493A (en) * 1999-07-30 2001-02-13 Toho Titanium Co Ltd Production of titanium and production apparatus therefor
JP4481877B2 (en) * 2005-05-24 2010-06-16 株式会社大阪チタニウムテクノロジーズ Molten salt electrolysis method
JP4395482B2 (en) * 2006-03-02 2010-01-06 株式会社大阪チタニウムテクノロジーズ Molten salt electrolysis method and molten salt electrolyzer
JP6083867B2 (en) * 2013-05-16 2017-02-22 株式会社大阪チタニウムテクノロジーズ Electrolytic cell drying method
JP6495142B2 (en) * 2015-08-28 2019-04-03 株式会社神戸製鋼所 Method for producing titanium metal

Also Published As

Publication number Publication date
JP2019059971A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6970570B2 (en) How to dry the molten salt electrolytic cell
WO2006040978A1 (en) Metal producing method and producing device by molten salt electrolysis
US2760930A (en) Electrolytic cell of the diaphragm type
RU2344203C2 (en) Electrolytic cell and structural elements implemented therein
CN104818499B (en) A kind of electrolysis is bench of burners
CN105088284B (en) A kind of electrolytic furnace
JP7017361B2 (en) Molten salt electrolytic cell
JPS6017035B2 (en) Metal electrolytic refining method and its equipment
RU2687113C2 (en) Method of producing metal and method of producing refractory metal
JP4481877B2 (en) Molten salt electrolysis method
JP6083867B2 (en) Electrolytic cell drying method
JP2019214773A (en) Molten salt electrolysis method, and method for producing metal magnesium
JP4198434B2 (en) Method for smelting titanium metal
JP2008280594A (en) Metal refining method
JP4934012B2 (en) Method for producing metallic calcium
JP4261328B2 (en) Molten metal chloride electrolyzer
JP7061519B2 (en) Molten salt moisture reduction method, molten salt electrolysis method, and molten metal manufacturing method
US3265606A (en) Electrolytic cell for preparation of alloys of lead with alkaline metals
JP2012251221A (en) Fused salt electrolytic method
JP7264760B2 (en) ANODE ARRANGEMENT STRUCTURE, MOLTEN SALT ELECTROLYSIS DEVICE, AND METHOD FOR MANUFACTURING METAL
JP2010116602A (en) Electrolytic apparatus for producing metal and operation method of the same
RU220188U1 (en) Gas-electric electrolysis bath for producing aluminum from alumina
JP4020846B2 (en) Metal manufacturing apparatus and temperature control method thereof
JP3705746B2 (en) Electrolytic apparatus for metal production and method of operating the same
CN214582403U (en) High-temperature furnace and high-temperature processing system with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211029

R150 Certificate of patent or registration of utility model

Ref document number: 6970570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150