WO2020255465A1 - Electrolytic smelter - Google Patents

Electrolytic smelter Download PDF

Info

Publication number
WO2020255465A1
WO2020255465A1 PCT/JP2020/001711 JP2020001711W WO2020255465A1 WO 2020255465 A1 WO2020255465 A1 WO 2020255465A1 JP 2020001711 W JP2020001711 W JP 2020001711W WO 2020255465 A1 WO2020255465 A1 WO 2020255465A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron ore
furnace
electrode
molten iron
electrolytic refining
Prior art date
Application number
PCT/JP2020/001711
Other languages
French (fr)
Japanese (ja)
Inventor
信喜 宇多
小城 育昌
野間 彰
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN202080044047.1A priority Critical patent/CN114040987B/en
Publication of WO2020255465A1 publication Critical patent/WO2020255465A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/10Making pig-iron other than in blast furnaces in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/08Apparatus
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/06Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • F27D11/10Disposition of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an electrolytic refining furnace.
  • the present application claims priority based on Japanese Patent Application No. 2019-115566 filed in Japan on June 21, 2019, the contents of which are incorporated herein by reference.
  • heat treatment using a blast furnace or converter has been widely used as a technique for refining iron ore.
  • iron ore as a metal material and coke as a reducing agent are burned in a furnace.
  • carbon contained in coke deprives iron of oxygen to generate heat, carbon monoxide, and carbon dioxide.
  • the heat of reaction melts the iron ore and produces pig iron.
  • pure iron is obtained by removing oxygen and impurities from pig iron.
  • a voltage is applied inside a furnace having a flat furnace bottom with molten iron ore interposed between the bottom electrode and the upper electrode.
  • the molten electrolyte containing the slag component is deposited on the upper electrode side
  • molten iron (pure iron) is deposited on the furnace bottom electrode side.
  • an upper electrode a metal material containing iron, chromium, vanadium, and tantalum is used as an example.
  • the upper electrodes T have a rod shape extending in the vertical direction, and are generally arranged in a grid pattern at intervals in the horizontal plane.
  • the furnace bottom electrode a metal material made of molybdenum is used as an example.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an electrolytic refining furnace capable of smoothly starting operation.
  • the electrolytic smelting furnace has a furnace body into which iron ore is introduced, a bottom electrode provided on the bottom of the furnace body, and above the bottom electrode in the furnace body.
  • a plurality of provided upper electrodes are provided, and at least one of the upper electrodes is an electrode for electrolytic kneading that electrolytically smelts molten iron ore by being energized between the upper electrodes and the bottom electrode.
  • the electrode for melting is provided inside the electrode for electrolytic kneading, and has a heating portion for heating and melting the iron ore to obtain the molten iron ore.
  • iron ore can be heated and melted by the heating portion of the melting electrode prior to electrolytic refining. Thereby, molten iron ore can be easily produced. Further, since this heating portion is provided inside the electrode for electrolytic kneading, the size and physique of the electrode for melting can be suppressed to a small size. This makes it possible to further increase the degree of freedom in arranging the upper electrodes.
  • the heating portion is inserted into a tubular torch body arranged on the inner peripheral surface of a through hole formed in the electrolytic smelting electrode and the inner peripheral side of the torch body.
  • the iron ore is melted by a plasma jet formed by energizing between the torch body and the plasma torch electrode. May be good.
  • a plasma jet is formed by energizing between the torch body and the plasma torch electrode. This plasma jet can efficiently melt iron ore.
  • the heated portion is formed by energizing between the plasma torch electrode and the bottom electrode of the furnace, and the molten iron ore is formed by a plasma jet. May be heated.
  • a plasma jet is formed by energizing between the plasma torch electrode and the furnace bottom electrode.
  • the iron ore that has begun to melt can be further melted to raise the temperature and homogenize it.
  • the molten iron ore is solidified due to, for example, interruption of work, it can be melted again by the heating unit. As a result, the electrolytic refining work can be resumed immediately.
  • a refining power supply unit for applying a voltage between the furnace bottom electrode and the upper electrode, and the refining power supply unit are provided independently of the furnace bottom electrode and the plasma torch.
  • a start-up power supply unit for applying a voltage between the electrodes may be further provided.
  • the required voltage is larger at the start of operation (that is, when melting iron ore) than at the time of refining.
  • the refining power supply unit and the startup power supply unit are provided independently. Therefore, for example, as compared with a configuration in which the refining power supply unit and the startup power supply unit are not independent, it is possible to suppress fluctuations in the voltage generated by each power supply unit. As a result, the electrolytic refining furnace can be operated more stably.
  • the heating unit may melt the iron ore by a flame formed by a mixed gas containing hydrogen in a state before the iron ore is melted.
  • iron ore can be easily and quickly heated and melted by supplying a combustion gas containing hydrogen from a cylindrical pipe and forming a flame by the combustion gas.
  • the heating unit may stir the molten iron ore by extinguishing a mixed gas containing hydrogen and supplying it to the molten iron ore. Good.
  • the molten iron ore can be agitated by supplying the mixed gas used for melting the iron ore to the molten iron ore in a flame-extinguished state. This makes it possible to homogenize the molten iron ore. Further, since it is not necessary to provide a dedicated device for stirring, the configuration of the device can be simplified. As a result, manufacturing costs and operating costs can be reduced.
  • At least one of the upper electrodes may be formed with an input hole portion that guides the iron ore to the furnace body by penetrating the upper electrode in the vertical direction.
  • iron ore can be smoothly charged into the furnace body through the charging hole.
  • the input hole is formed in a part of the upper electrode, the number of upper electrodes and the installation density can be increased as compared with the case where the input port for iron ore is separately provided. ..
  • the furnace body has a discharge recess that is recessed further downward from the bottom of the furnace, a discharge path that connects the discharge recess and the outside, and an opening / closing portion that opens and closes the discharge path. , May be further provided.
  • the molten iron produced by electrolytic refining can be easily taken out to the outside of the furnace body through the discharge recess and the discharge path.
  • the discharge path is provided with an opening / closing portion, the molten iron can be taken out more easily only by opening the opening / closing portion.
  • the discharge passage is provided above the bottom surface of the discharge recess, and the portion of the discharge recess below the discharge passage is an outer periphery that covers the lower portion from the outside.
  • a heating device may be provided.
  • the discharge path is provided above the bottom surface of the discharge recess, the components containing impurities are precipitated on the bottom surface side, and only the components containing no impurities are taken out by the discharge path. Can be done. Further, the portion below the discharge path is covered from the outside by the outer peripheral heating device. Therefore, for example, the component solidified in the discharge recess when the work is interrupted can be immediately melted when the work is restarted. This makes it possible to operate the electrolytic smelting furnace more smoothly.
  • the discharge path heating is provided in the discharge path and the viscosity is changed by heating the molten iron ore flowing through the discharge path or the refractory material having conductivity and forming the flow path. Further units may be provided.
  • the viscosity of the molten iron ore changes when the discharge path heating unit heats the molten iron ore flowing through the discharge path or the refractory material having conductivity and forming the flow path.
  • the fluidity of the molten iron ore is changed, and the flow rate can be adjusted to a desired value.
  • a slag discharge path heating unit that changes the viscosity by heating the slag may be further provided.
  • the viscosity of the slag changes when the slag discharge path heating unit heats the slag that flows through the slag discharge path or the refractory material that has conductivity and forms the flow path.
  • the fluidity of the slag is changed, and the flow rate can be adjusted to a desired value.
  • the furnace body further includes a charging section for guiding the iron ore charged from the outside to the furnace body, and the furnace bottom horizontally faces from the charging section to the discharging recess.
  • the height position may change downward according to the above.
  • the height position of the furnace bottom changes downward from the input portion toward the discharge recess.
  • the molten iron ore and the reduced molten iron can be naturally flowed toward the discharge recess.
  • the molten iron can be taken out to the outside more easily.
  • the discharge path is provided on the bottom surface of the discharge recess, and the furnace body further includes a stirring gas supply unit that supplies gas into the molten iron ore upward from the bottom surface. You may prepare.
  • the molten iron ore in the discharge recess and the reduced molten iron can be agitated by the stirring gas supply unit. Thereby, the molten iron ore and the molten iron can be further homogenized.
  • the electrolytic refining furnace may be further provided with an auxiliary heating unit provided on at least one of the upper side and the lower side of the furnace body to keep the molten iron ore warm.
  • the auxiliary heating unit since the auxiliary heating unit is provided, the molten iron ore in the furnace body can be maintained in a molten state without coagulation.
  • the separation distance detecting unit that detects the separation distance between the upper electrode and the upper surface of the molten iron ore, and the upper electrode so that the separation distance becomes a predetermined constant value.
  • An electrode moving portion for moving in the vertical direction may be further provided.
  • the electrolytic refining in order to perform electrolytic refining stably, it is necessary to keep the voltage applied between the upper electrode and the upper surface of the molten iron ore as constant as possible.
  • the electrolytic refining progresses, the amount of molten iron that is reduced increases, and the upper surface of the molten iron ore moves upward. Further, the voltage between the upper electrode and the upper surface of the molten iron ore depends on the separation distance between the two.
  • the upper electrode can be moved by the electrode moving portion so that the separation distance between the upper electrode and the upper surface of the molten iron ore becomes a constant value. As a result, the voltage applied between the upper electrode and the molten iron ore can be kept constant. As a result, electrolytic refining can be performed more stably.
  • the electrolytic refining furnace further includes a chamber in which a space is formed and a vacuum pump that creates a vacuum state in the space.
  • the upper electrode penetrates the upper electrode in the vertical direction and is described in the upper electrode. A through hole communicating with the space may be formed.
  • the slag can be sucked up into the chamber in a vacuum state through the through hole formed in the upper electrode. Thereby, the slag and the molten iron can be separated more easily.
  • the electrolytic refining furnace may further include a sedimentation gas supply unit for sedimenting the iron ore floating between the upper electrodes by supplying gas between the upper electrodes from above.
  • the settling gas supply unit can settle the iron ore floating between the upper electrodes. This makes it possible to further homogenize the molten iron ore.
  • a settling mechanism portion provided between the upper electrodes and advancing and retreating toward the inside of the furnace body to settle the iron ore floating between the upper electrodes is further provided. You may prepare.
  • At least one of the melting electrodes is formed with a peripheral charging portion that guides the iron ore to the peripheral edge portion in the furnace body, and the furnace bottom electrode and the upper electrode. May be further provided with a peripheral heating portion for heating and melting the iron ore derived from the peripheral charging portion.
  • iron ore can be supplied to the peripheral portion in the furnace body through the peripheral charging portion. Further, the peripheral heating portion can heat and melt this iron ore. This makes it possible to further promote the homogenization of molten iron ore in the furnace body.
  • the electrolytic smelting furnace is above the furnace body into which iron ore is introduced, the bottom electrode provided on the bottom of the furnace body, and the bottom electrode in the furnace body.
  • the furnace body includes a plurality of provided upper electrodes, and the furnace body has a discharge recess that is recessed further downward from the bottom of the furnace, a discharge path that connects the discharge recess and the outside, and the discharge path. It is provided with an opening / closing part that opens / closes.
  • the molten iron produced by electrolytic refining can be easily taken out to the outside of the furnace body through the discharge recess and the discharge path.
  • the discharge path is provided with an opening / closing portion, the molten iron can be taken out more easily only by opening the opening / closing portion.
  • the electrolytic smelting furnace 100 is an apparatus for melting iron ore and refining molten iron ore by an electrolytic reaction.
  • the ore to be refined is not limited to iron ore, and the electrolytic refining furnace 100 can be applied to any mineral resource that can be refined by an electrolytic reaction. It is also possible to smelt iron scrap instead of iron ore.
  • the electrolytic refining furnace 100 has a furnace body 10, a furnace bottom electrode 11, an upper electrode 12, a collector 13, and a housing 14.
  • the furnace body 10 is a container having a bottom portion 10B extending in a horizontal plane. Iron ore is introduced into the furnace body 10. The iron ore is melt-heated in the furnace body 10 to become the molten ore Wm.
  • the temperature of the molten ore Wm is determined based on the melting point of the material itself. As an example, the temperature of the molten ore Wm is 1200 to 2000 ° C. More preferably, this temperature is 1400 to 1700 ° C. Most preferably, the temperature of the molten ore Wm is 1500 to 1600 ° C.
  • a furnace bottom electrode 11 is provided on the bottom 10B of the furnace body 10.
  • the furnace bottom electrode 11 has a plate shape integrally formed of a metal material containing molybdenum as a main component.
  • a plurality of upper electrodes 12 are arranged inside the furnace body 10 and above the furnace bottom electrode 11. As shown in FIG. 2, the plurality of upper electrodes 12 are arranged in a grid pattern at equal intervals in the horizontal direction.
  • the upper electrode 12 is formed as a columnar electrode body integrally formed of a metal material containing iron, chromium, vanadium, and tantalum.
  • All the upper electrodes 12 are electrorefined from molten iron ore by energizing the furnace bottom electrodes 11. At least one of these upper electrodes 12 includes a plasma torch 20 (heating portion) inside the upper electrode 12, that is, inside the electrode body, and a melting electrode 12A capable of melting iron ore. Has been done. In the example of FIG. 2, a configuration in which a plurality of melting electrodes 12A are arranged at intervals in the horizontal direction in the upper electrodes 12 is shown. The arrangement of the upper electrode 12 is not limited to this, and can be appropriately changed according to the design and specifications.
  • the collector 13 is embedded in the bottom portion 10B of the furnace body 10 and below the furnace bottom electrode 11.
  • the collector 13 is made of a conductive material, and one end thereof is electrically connected to the bottom electrode 11.
  • FIG. 1 shows an example in which two collectors 13 are provided, the number of collectors 13 is not limited to two.
  • the furnace body 10, the bottom electrode 11, the upper electrode 12, and the collector 13 are covered by the housing 14 from the outside.
  • the melting electrode 12A has a cylindrical shape extending in the vertical direction. That is, a through hole 12S extending in the vertical direction is formed inside (inner peripheral side) of the melting electrode 12A.
  • a plasma torch 20 is provided in the through hole 12S as a heating unit for heating and melting the iron ore introduced into the furnace body 10.
  • the plasma torch 20 has a tubular torch body 21 arranged on the inner peripheral surface of the through hole 12S, and a plasma torch electrode 22 communicating with the torch body 21 on the inner peripheral side.
  • the torch body 21 has a large diameter portion 21L located on the side (that is, upper side) away from the furnace bottom electrode 11, a small diameter portion 21S coaxial with the large diameter portion 21L and located below, and these large diameter portions. It has a connecting portion 21C that connects the 21L and the small diameter portion 21S in the vertical direction.
  • the inner diameter of the large diameter portion 21L is larger than the inner diameter of the small diameter portion 21S. Further, the inner diameter dimension of the connecting portion 21C gradually decreases from the upper side to the lower side.
  • a plasma torch electrode 22 is arranged on the inner peripheral side of the large diameter portion 21L.
  • the plasma torch electrode 22 has a rod shape having an outer diameter dimension smaller than the inner diameter dimension of the large diameter portion 21L. Therefore, a gap as a flow path F is formed between the outer peripheral surface of the plasma torch electrode 22 and the inner peripheral surface of the large diameter portion 21L.
  • Working gas supplied from the outside flows through the flow path F from above to below.
  • the working gas is generally Ar, N2 or the like, but a flammable gas (for example, hydrogen) can also be preferably used. Further, a voltage is applied between the torch body 21 and the plasma torch electrode 22 by a power source.
  • the working gas is ionized and the high-temperature plasma jet J1 is formed.
  • the plasma jet J1 is ejected from below the plasma torch 20 toward the bottom electrode 11 side.
  • the plasma jet J1 is formed by energizing between the torch body 21 and the plasma torch electrode 22 in a state before the iron ore M is melted. The heat energy of the plasma jet J1 causes the iron ore M to start heating and melting.
  • the operation of the plasma torch 20 described above is changed. Specifically, as shown in FIG. 4, in this state, electricity is applied between the plasma torch electrode 22 and the furnace bottom electrode 11. As a result, the plasma jet J2 is formed between the torch body 21 and the furnace bottom electrode 11. The thermal energy of the plasma jet J2 melts the iron ore M that has begun to melt as a whole, and the molten iron ore Wm is formed.
  • electrolytic refining is performed on the molten iron ore Wm. Specifically, a DC voltage is applied such that the upper electrode 12 is on the positive side and the collector 13 is on the negative side.
  • the electrolytic reaction proceeds by this voltage, and diiron trioxide (Fe 2 O 3 ) contained in the molten ore Wm is reduced.
  • molten iron Wf pure iron
  • the molten iron Wf precipitates on the furnace bottom electrode 11 side due to its own weight.
  • the molten iron Wf itself functions as a cathode side terminal in addition to the furnace bottom electrode 11.
  • the iron ore M can be heated and melted by the plasma torch 20 of the melting electrode 12A prior to the electrolytic refining.
  • molten iron ore Wm can be easily produced. This makes it possible to smoothly start the operation of the electrolytic refining furnace 100.
  • the plasma torch 20 is provided inside the melting electrode 12A, the size and physique of the melting electrode 12A can be suppressed to a small size. As a result, the degree of freedom in the arrangement of the upper electrode 12 including the melting electrode 12A can be further increased.
  • the plasma jet J1 is formed by energizing between the torch body 21 and the plasma torch electrode 22.
  • the iron ore M can be efficiently melted by this plasma jet J1.
  • the second embodiment of the present invention will be described with reference to FIGS. 5 and 6.
  • the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the configuration of the heating unit 20' is different from that of the first embodiment.
  • the burner 20'as a heating unit ejects a gas (mixed gas Gh) into the furnace body 10 through the through hole 12S formed in the above-mentioned melting electrode 12A.
  • a gas containing hydrogen and an inert gas argon as an example
  • the mixed gas Gh is supplied to the through hole 12S from the hydrogen supply unit 23 provided outside the furnace body 10. Further, in the present embodiment, an ignition device 12I for igniting the mixed gas is provided on the inner peripheral surface of the through hole 12S.
  • the inert gas a rare gas other than the above-mentioned argon can be appropriately selected and used.
  • the burner 20 In the state before the iron ore M is melted, the burner 20'extends toward the furnace bottom electrode 11 (that is, extends downward from the through hole 12S) by igniting the mixed gas Gh. To form. Iron ore M begins to melt due to this flame Fh.
  • the operation of the above-mentioned burner 20' is changed. Specifically, as shown in FIG. 6, in this state, the burner 20'injects only the mixed gas Gh toward the molten iron ore Wm by extinguishing the flame Fh. As a result, the molten iron ore Wm is agitated. The flame Fh is extinguished by changing the hydrogen mixture condition or changing to Ar gas or the like. Further, when the burner 20'is extinguished, it is possible to additionally add iron ore through the through hole 12S. Further, when stirring is performed, the upper electrode 12 is brought into contact with the liquid surface of the molten iron ore Wm or is immersed under the liquid surface.
  • the iron ore M can be easily and quickly heated and melted by the flame Fh of the mixed gas Gh containing hydrogen.
  • the mixed gas Gh used for melting the iron ore M can be supplied to the molten iron ore Wm in a flame-extinguished state to stir the molten iron ore Wm. it can. Thereby, the molten iron ore Wm can be homogenized. Further, since it is not necessary to provide a dedicated device for stirring, the configuration of the device can be simplified. As a result, manufacturing costs and operating costs can be reduced.
  • the third embodiment of the present invention will be described with reference to FIG.
  • the same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the power supply unit (refining power supply unit 31) that applies a voltage between the furnace bottom electrode 11 and the upper electrode 12
  • the power supply unit (startup power supply unit 32) for applying a voltage between the furnace bottom electrode 11 and the plasma torch electrode 22, is electrically independent of each other.
  • the refining power supply unit 31 includes a refining electric wire 31L for electrically connecting the furnace bottom electrode 11 and the melting electrode 12A, a DC power supply P1 provided on the refining electric wire 31L, and a switch 31S. Have. By opening and closing the switch 31S, the supply state of the electric power supplied from the DC power supply P1 is switched.
  • the start-up power supply unit 32 includes a start-up electric wire 32L that electrically connects the furnace bottom electrode 11 and the plasma torch electrode 22, a power supply P2 provided on the start-up electric wire 32L, and a switch 32S. doing. By opening and closing the switch 32S, the supply state of the electric power supplied from the power supply P2 is switched.
  • the required voltage is larger at the start of operation (that is, when starting to melt iron ore) than at the time of refining.
  • the refining power supply unit 31 and the startup power supply unit 32 are provided independently. Therefore, for example, as compared with a configuration in which the refining power supply unit 31 and the startup power supply unit 32 are not independent of each other, it is possible to suppress fluctuations in the voltage generated by each power supply unit. As a result, the electrolytic refining furnace 100 can be operated more stably.
  • the charging electrode 12' excluding the above-mentioned melting electrode 12A is formed with a charging hole portion 12H for charging iron ore before melting. ing.
  • the charging hole portion 12H penetrates the charging electrode 12'in the vertical direction.
  • a device such as a hopper or a screw feeder is installed above the input hole portion 12H. Iron ore before melting is guided from the outside into the charging hole portion 12H through these devices and charged into the furnace body 10.
  • the charging electrode 12' is provided with either the plasma torch 20 or the burner 20' as the heating unit described in each of the above-described embodiments. That is, the input hole portion 12H also serves as a flow path for the gas used in the plasma torch 20 or the burner 20'.
  • iron ore can be smoothly charged into the furnace body 10 through the charging hole portion 12H. Further, since the charging hole portion 12H is formed in a part of the upper electrode 12, the number and density of the upper electrodes 12 can be increased as compared with the case where a charging port for charging iron ore is separately provided. it can. As a result, refining can be performed more stably.
  • the fourth embodiment of the present invention has been described above. It should be noted that various changes and modifications can be made to the above configuration as long as the gist of the present invention is not deviated.
  • the fourth embodiment an example has been described in which all of the upper electrodes 12 except the melting electrode 12A are the charging electrodes 12'. However, only a part of the upper electrode 12 except for the melting electrode 12A may be used as the charging electrode 12'.
  • the electrolytic refining furnace 200 further includes a heater H as an auxiliary heating unit in addition to the respective configurations described in the first embodiment described above.
  • the heater H is provided to keep the molten iron ore Wm stored in the furnace body 10 warm and maintain the molten state.
  • the heater H is provided on at least one of the upper side and the lower side of the furnace body 10. In the example of FIG. 9, the first heater H1 is provided above and the second heater H2 is provided below.
  • the first heater H1 has a plate shape facing the furnace body 10 at intervals.
  • the first heater H1 is formed with a plurality of openings h through which the above-mentioned upper electrode 12 is inserted.
  • the second heater H2 is embedded below the collector 13 in the bottom 10B of the furnace body 10.
  • the second heater H2 also has a plate shape like the first heater H1.
  • the heater H as an auxiliary heating unit, the molten iron ore in the furnace body 10 can be maintained in a molten state without solidifying. As a result, electrolytic refining can be performed more stably.
  • the separation distance L between the bottom surface of the upper electrode 12 (the bottom surface of the electrode 12B) and the upper surface of the molten iron Wf (the molten iron liquid surface Sw) is set. It further includes a separation distance detecting unit 41 for detecting, and an electrode moving unit 42 for moving the upper electrode 12 in the vertical direction based on the value of the separation distance.
  • the separation distance detection unit 41 measures the current and voltage flowing between the upper electrode 12 and the furnace bottom electrode 11, and calculates the separation distance L based on the current characteristics and voltage characteristics.
  • the separation distance L is the upper surface of the molten iron Wf as described above. In other words, the separation distance L is the thickness of the molten iron ore Wm located in the upper layer of the molten iron Wf.
  • the separation distance L increases, the electrical resistance due to the separation distance L increases. Therefore, as the separation distance L increases, the amount of current flowing between the upper electrode 12 and the furnace bottom electrode 11 decreases. That is, the change in the separation distance L can be detected by measuring the amount of current at a certain voltage value.
  • the electrode moving unit 42 moves the upper electrode 12 in the vertical direction and adjusts the separation distance L so that it becomes a predetermined constant value. ..
  • the electrode moving portion 42 various actuators, electric motors, and the like are preferably used.
  • the electrolytic refining it is necessary to keep the voltage applied between the upper electrode 12 and the molten iron liquid level Sw as constant as possible.
  • the electrolytic refining progresses, the reduced molten iron Wf increases, and the upper surface (molten iron liquid surface Sw) of the molten iron Wf moves upward.
  • the voltage between the upper electrode 12 and the molten iron liquid level Sw depends on the separation distance between the two.
  • the upper electrode 12 can be moved by the electrode moving portion 42 so that the separation distance L between the upper electrode 12 and the molten iron liquid surface Sw becomes a constant value.
  • the voltage applied between the upper electrode 12 and the molten iron Wf can be kept constant.
  • electrolytic refining can be performed more stably.
  • the furnace body 10 in the electrolytic refining furnace 400 according to the present embodiment, the furnace body 10'has a discharge recess 10H recessed further downward from the furnace bottom (bottom 10B), a discharge recess 10H, and an outside. Further includes a discharge passage 10E for communicating with the discharge passage 10E, an opening / closing portion 5 for switching the communication state by opening and closing the discharge passage 10E, and an outer peripheral heating device 6 for covering the inside of the discharge recess 10H from the outside.
  • the discharge recess 10H has a rectangular cross-sectional shape that is recessed downward from the bottom 10B.
  • the discharge passage 10E is provided above the bottom surface of the discharge recess 10H (the bottom surface 10S of the discharge recess).
  • An outer peripheral heating device 6 for heating the portion of the discharge recess 10H below the discharge passage 10E is provided. Specifically, an IH heater or the like is preferably used as the outer peripheral heating device 6.
  • the molten iron Wf produced by electrolytic refining can be easily taken out to the outside of the furnace body 10 through the discharge recess 10H and the discharge path 10E.
  • the opening / closing portion 5 is connected to the discharge path 10E, the molten iron Wf can be taken out more easily only by opening the opening / closing portion 5.
  • the discharge path 10E is provided above the bottom surface of the discharge recess 10H (the bottom surface 10S of the discharge recess).
  • the portion below the discharge path 10E is covered from the outside by the outer peripheral heating device 6. Therefore, for example, the component solidified in the discharge recess 10H when the work is interrupted can be immediately melted when the work is restarted. This makes it possible to operate the electrolytic smelting furnace 400 more smoothly.
  • the seventh embodiment of the present invention has been described above. It should be noted that various changes and modifications can be made to the above configuration as long as the gist of the present invention is not deviated.
  • the discharge path 10E' can be formed on the bottom surface 10S of the discharge recess.
  • a stirring gas supply unit 7 for supplying hydrogen, Ar gas, etc. for stirring the molten iron Wf is further provided from the bottom surface 10S of the discharge recess 10S toward the inside of the discharge recess 10H. ..
  • the molten iron Wf can be naturally taken out by gravity through the discharge path 10E'. Further, the agitated gas supply unit 7 can agitate the molten iron ore Wm and the molten iron Wf in the discharge recess 10H. Further, the molten iron ore Wm and the molten iron Wf can be agitated by the electromagnetic stirring effect due to the induction heating. As a result, the molten iron ore Wm and the molten iron Wf can be further homogenized and homogenized.
  • FIGS. 13 and 14 The same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the slag Ws generated in the furnace main body 10 as the electrolytic smelting progresses is externally formed.
  • the slag discharge path 10F penetrates the side wall of the furnace body 10.
  • the slag discharge path 10F is formed at a position separated upward from the furnace bottom electrode 11.
  • the slag discharge passage 10F is provided with an opening / closing portion 5'that changes the opening / closing state of the slag discharge passage 10F.
  • the slag discharge path heating unit Hs changes the viscosity (decreases the viscosity) by heating the slag Ws flowing in the slag discharge path 10F. Thereby, the discharge flow rate of the slag Ws can be adjusted.
  • the discharge path 10E is provided with a discharge path heating section Hf in the same manner as the slag discharge path heating section Hs.
  • the discharge passage heating unit Hf changes the viscosity (decreases the viscosity) by heating the molten iron ore Wm (molten iron Wf) flowing in the discharge passage 10E. Thereby, the discharge flow rate of the molten iron ore Wm (molten iron Wf) can be adjusted.
  • the configuration shown in FIG. 14 is preferably used.
  • the discharge path heating section Hf and the high frequency coil 51 as the slag discharge path heating section Hs are arranged so as to cover the outer periphery of the discharge path 10E (or the slag discharge path 10F).
  • a plug 50 that moves back and forth inside and outside the discharge path 10E (or the slag discharge path 10F) may be provided. By moving the plug 50 forward and backward, the open / closed state of the discharge path 10E (or the slag discharge path 10F) can be changed.
  • the viscosity of the molten iron ore Wm changes when the discharge passage heating unit Hf heats the molten iron ore Wm flowing through the discharge passage 10E.
  • the fluidity of the molten iron ore Wm changes, and the flow rate can be adjusted to a desired value.
  • the viscosity of the slag Ws changes when the slag discharge path heating unit Hs heats the slag Ws flowing through the slag discharge path 10F.
  • the fluidity of the slag Ws changes, and the flow rate can be adjusted to a desired value.
  • the space V communicates with the upper end of the through hole 12S. Since the space V is in a vacuum state, the slag Ws is sucked into the space V through the through hole 12S.
  • the slag Ws can be sucked up into the chamber 60 (space V) in the vacuum state through the through hole 12S formed in the upper electrode 12. Thereby, the slag Ws and the molten iron Wf can be separated more easily.
  • the electrolytic refining furnace 700 further includes a settling gas supply unit 70.
  • the settling gas supply unit 70 supplies gas between the upper electrodes 12 from above to settle the iron ore M floating between the upper electrodes 12. Further, the sedimentation gas supply unit 70 may be inserted into the molten iron ore Wm to supply the gas into the molten iron ore Wm.
  • the sedimentation gas supply unit 70 can sediment the iron ore M floating between the upper electrodes 12. Further, by supplying gas into the molten iron ore, floating iron ore can be involved in the molten iron ore. Thereby, the molten iron ore Wm can be further homogenized.
  • the tenth embodiment of the present invention has been described above. It is possible to make various changes and modifications to the above configuration without departing from the gist of the present invention.
  • FIG. 17 it is possible to adopt a configuration including a sedimentation mechanism unit 70'instead of the sedimentation gas supply unit 70.
  • the iron ore M can be submerged in the molten iron ore Wm by moving the sedimentation mechanism portion 70'downward. This makes it possible to further homogenize the molten iron ore.
  • the eleventh embodiment of the present invention will be described with reference to FIG.
  • the same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the configuration of the furnace main body 10' is a box with each of the above embodiments.
  • the bottom B of the furnace body 10' is configured so that the height position changes stepwise downward from the charging portion 80 toward the discharge recess 10H in the horizontal direction. That is, the height position of the furnace bottom B is gradually lowered from the central portion to the peripheral portion of the furnace body 10'.
  • the central portion is a region including a portion through which the central axis O extending in the vertical direction passes.
  • the hearth B includes the first bottom B1, the second bottom B2, and the third bottom B3 arranged in order from the side separated from the discharge recess 10H toward the discharge recess 10H.
  • the second bottom B2 is located below the first bottom B1.
  • the third bottom B3 is located further below the second bottom B2.
  • the bottom B can be divided into four or more heights. Is.
  • the height position of the furnace bottom B changes downward from the charging portion 80 toward the discharge recess 10H.
  • the molten iron ore Wm and the reduced molten iron Wf can be naturally flowed toward the discharge recess 10H.
  • the molten iron Wf can be taken out to the outside more easily.
  • the twelfth embodiment of the present invention will be described with reference to FIG.
  • the same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the electrolytic refining furnace 900 according to the present embodiment, at least one of the melting electrodes 12A, which is the melting electrode 12A arranged along the side wall of the furnace main body 10. Is formed with a peripheral edge charging portion 80'that penetrates the melting electrode 12A in the vertical direction.
  • the electrolytic refining furnace 900 further includes a peripheral heating section 90 that heats and melts the iron ore M derived from the peripheral charging section 80'.
  • the peripheral heating unit 90 has a pair of electrode terminals 91 and 91 provided separately from the above-mentioned furnace bottom electrode 11 and the upper electrode 12.
  • the electrode terminals 91 and 91 are immersed in the molten iron ore Wm (or molten iron Wf).
  • a voltage is applied to the electrode terminals 91 and 91 by the power supply P.
  • a Joule heating portion is formed between the electrode terminals 91 and 91.
  • the stirring gas supply unit 70B stirs the molten iron ore Wm melted by the peripheral heating unit 90 by supplying gas.
  • the electrolytic refining furnace according to one aspect of the present invention can be smoothly started in operation.
  • Electrolytic smelting furnace 10 10'Folder body 10B Bottom 10E Discharge path 10F Slug discharge path 10H, 10H' Discharge recess 10S Discharge recess Bottom surface 11 Furnace Bottom electrode 12 Top electrode 12A Melting electrode 12A ′ Input electrode 12B Electrode bottom surface 12S Through hole 12H Input hole 12I Ignition device 14 Housing 20 Plasma torch 20 ′ Burner 21 Torch body 21L Large diameter part 21S Small diameter part 21C Connection part 22 Plasma Torch electrode 23 Hydrogen supply unit 31 Refining power supply unit 31L Smelting wire 31S, 32S Switch 32 Startup power supply unit 32L Startup wire 41 Separation distance detection unit 42 Electrode moving unit 5, 5'Opening / closing unit 50 Plug 51 High frequency coil 6 Outer circumference Heating device 60 Chamber 61 Vacuum pump 7, 70, 70', 70B Stirring gas supply unit 80 Input unit 80' Peripheral charging unit 90, 90' Peripheral heating unit 91 Electrode moving unit 5'Opening / closing unit 50 Plug 51 High frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Furnace Details (AREA)

Abstract

The present invention comprises: a furnace into which iron ore is introduced; a furnace floor electrode provided on the furnace floor inside the furnace; and a plurality of upper electrodes that are provided above the furnace floor electrode inside the furnace and have an electrode that electro-refines molten iron ore. At least one of the upper electrodes is a melting electrode that has a heating section inside the electrode main body that heats and melts iron ore to make molten iron ore. As a result, operation of the electrolytic smelter can start smoothly.

Description

電解製錬炉Electrorefining furnace
 本発明は、電解製錬炉に関する。
 本願は、2019年6月21日に、日本国に出願された特願2019-115566号に基づき優先権を主張し、この内容をここに援用する。
The present invention relates to an electrolytic refining furnace.
The present application claims priority based on Japanese Patent Application No. 2019-115566 filed in Japan on June 21, 2019, the contents of which are incorporated herein by reference.
 例えば鉄鉱石を精錬するための技術として、これまで高炉や転炉による熱処理が広く用いられている。この方法では、金属材料となる鉄鉱石と、還元材としてのコークスとを炉内で燃焼させる。炉内ではコークス中に含まれる炭素が鉄から酸素を奪って熱と一酸化炭素、二酸化炭素を生じる。この反応熱によって鉄鉱石が溶融し、銑鉄が生成される。その後、銑鉄から酸素及び不純物を除去することで純鉄が得られる。 For example, heat treatment using a blast furnace or converter has been widely used as a technique for refining iron ore. In this method, iron ore as a metal material and coke as a reducing agent are burned in a furnace. In the furnace, carbon contained in coke deprives iron of oxygen to generate heat, carbon monoxide, and carbon dioxide. The heat of reaction melts the iron ore and produces pig iron. Then, pure iron is obtained by removing oxygen and impurities from pig iron.
 ここで、上記の方法は、コークスを含む大量の炭素を必要とすることから、一酸化炭素や二酸化炭素の発生量が大きくなる。近年の大気汚染対策の厳格化に伴って、これら炭素を含むガスの発生量が抑えられた精錬技術が求められている。このような技術の一例として、下記特許文献1に記載された電解製錬法が挙げられる。 Here, since the above method requires a large amount of carbon including coke, the amount of carbon monoxide and carbon dioxide generated increases. With the stricter air pollution countermeasures in recent years, refining technology that suppresses the amount of gas containing these carbons is required. An example of such a technique is the electrolytic refining method described in Patent Document 1 below.
 電解製錬法では、平面状の炉底を有する炉の内部で、炉底電極と上部電極との間に溶融した鉄鉱石を介在させた状態で電圧を印加する。これにより、上部電極側には、スラグ成分を含む溶融電解質が析出し、炉底電極側に溶融鉄(純鉄)が析出する。上部電極としては、一例として鉄やクロム、バナジウム、タンタルを含む金属材料が用いられる。図21に示すように、上部電極Tは、それぞれ上下方向に延びる棒状をなすとともに、水平面内で間隔をあけて格子状に配列されることが従来一般的である。炉底電極としては、一例としてモリブデンで形成された金属材料が用いられる。 In the electrolytic refining method, a voltage is applied inside a furnace having a flat furnace bottom with molten iron ore interposed between the bottom electrode and the upper electrode. As a result, the molten electrolyte containing the slag component is deposited on the upper electrode side, and molten iron (pure iron) is deposited on the furnace bottom electrode side. As an upper electrode, a metal material containing iron, chromium, vanadium, and tantalum is used as an example. As shown in FIG. 21, the upper electrodes T have a rod shape extending in the vertical direction, and are generally arranged in a grid pattern at intervals in the horizontal plane. As the furnace bottom electrode, a metal material made of molybdenum is used as an example.
米国特許第8764962号明細書U.S. Pat. No. 8,764962
 しかしながら、上記の電解製錬法では、炉の壁面を通じた放熱量が大きくなる。また、溶融前の鉄鉱石は通電しないので、電解製錬の電極は使用できない。このため、精錬開始に当たって炉に投入された鉄鉱石を一様に溶融させることが難しい場合がある。これにより、電解製錬炉の円滑な運用開始が妨げられてしまう。 However, in the above electrolytic refining method, the amount of heat radiated through the wall surface of the furnace is large. Moreover, since iron ore before melting is not energized, electrodes for electrolytic refining cannot be used. For this reason, it may be difficult to uniformly melt the iron ore charged into the furnace at the start of refining. This hinders the smooth start of operation of the electrolytic refining furnace.
 本発明は上記課題を解決するためになされたものであって、円滑に運用開始することが可能な電解製錬炉を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an electrolytic refining furnace capable of smoothly starting operation.
 本発明の一態様に係る電解製錬炉は、鉄鉱石が導入される炉本体と、該炉本体内の炉底に設けられた炉底電極と、該炉本体内の炉底電極の上方に設けられた複数の上部電極と、を備え、前記上部電極うちの少なくとも一つは、前記炉底電極との間に通電されることにより、溶融鉄鉱石を電解製錬する電解製練用電極と、該電解製練用電極の内部に設けられて、前記鉄鉱石を加熱溶融して前記溶融鉄鉱石とする加熱部と、を有する溶融用電極とされている。 The electrolytic smelting furnace according to one aspect of the present invention has a furnace body into which iron ore is introduced, a bottom electrode provided on the bottom of the furnace body, and above the bottom electrode in the furnace body. A plurality of provided upper electrodes are provided, and at least one of the upper electrodes is an electrode for electrolytic kneading that electrolytically smelts molten iron ore by being energized between the upper electrodes and the bottom electrode. The electrode for melting is provided inside the electrode for electrolytic kneading, and has a heating portion for heating and melting the iron ore to obtain the molten iron ore.
 上記構成によれば、電解製錬に先立って、溶融用電極の加熱部によって鉄鉱石を加熱溶融させることができる。これにより、溶融鉄鉱石を容易に生成することができる。さらに、この加熱部が電解製練用電極の内部に設けられていることから、溶融用電極の寸法体格を小さく抑えることもできる。これにより、上部電極の配置の自由度をさらに高めることができる。 According to the above configuration, iron ore can be heated and melted by the heating portion of the melting electrode prior to electrolytic refining. Thereby, molten iron ore can be easily produced. Further, since this heating portion is provided inside the electrode for electrolytic kneading, the size and physique of the electrode for melting can be suppressed to a small size. This makes it possible to further increase the degree of freedom in arranging the upper electrodes.
 上記電解製錬炉では、前記加熱部は、前記電解製錬用電極に形成された貫通孔の内周面に配置された筒状のトーチ本体と、該トーチ本体の内周側に挿通されているプラズマトーチ電極と、を有し、前記鉄鉱石が溶融する前の状態では、前記トーチ本体と前記プラズマトーチ電極との間に通電することで形成されるプラズマジェットによって前記鉄鉱石を溶融させてもよい。 In the electrolytic smelting furnace, the heating portion is inserted into a tubular torch body arranged on the inner peripheral surface of a through hole formed in the electrolytic smelting electrode and the inner peripheral side of the torch body. In the state before the iron ore is melted, the iron ore is melted by a plasma jet formed by energizing between the torch body and the plasma torch electrode. May be good.
 上記構成によれば、鉄鉱石が溶融する前の状態では、トーチ本体とプラズマトーチ電極との間に通電することでプラズマジェットが形成される。このプラズマジェットによって効率的に鉄鉱石を溶融させることができる。 According to the above configuration, in the state before the iron ore is melted, a plasma jet is formed by energizing between the torch body and the plasma torch electrode. This plasma jet can efficiently melt iron ore.
 上記電解製錬炉では、前記加熱部は、前記鉄鉱石が溶融し始めた状態では、前記プラズマトーチ電極と前記炉底電極との間に通電することで形成されるプラズマジェットによって前記溶融鉄鉱石を加熱してもよい。 In the electrolytic refining furnace, when the iron ore has begun to melt, the heated portion is formed by energizing between the plasma torch electrode and the bottom electrode of the furnace, and the molten iron ore is formed by a plasma jet. May be heated.
 上記構成によれば、鉄鉱石が溶融し始めた状態では、プラズマトーチ電極と炉底電極との間に通電することでプラズマジェットが形成される。このプラズマジェットによって、溶融し始めている鉄鉱石をさらに溶融させて、高温化、及び均質化を図ることができる。
また、例えば作業の中断等によって、溶融鉄鉱石が凝固した場合であっても、加熱部によって再度これを溶融させることができる。これにより、直ちに電解製錬作業を再開することができる。
According to the above configuration, when the iron ore begins to melt, a plasma jet is formed by energizing between the plasma torch electrode and the furnace bottom electrode. With this plasma jet, the iron ore that has begun to melt can be further melted to raise the temperature and homogenize it.
Further, even when the molten iron ore is solidified due to, for example, interruption of work, it can be melted again by the heating unit. As a result, the electrolytic refining work can be resumed immediately.
 上記電解製錬炉では、前記炉底電極、及び前記上部電極の間に電圧を印加する精錬用電源部と、前記精錬用電源部と独立して設けられ、前記炉底電極、及び前記プラズマトーチ電極の間に電圧を印加するスタートアップ用電源部と、をさらに備えてもよい。 In the electrolytic smelting furnace, a refining power supply unit for applying a voltage between the furnace bottom electrode and the upper electrode, and the refining power supply unit are provided independently of the furnace bottom electrode and the plasma torch. A start-up power supply unit for applying a voltage between the electrodes may be further provided.
 ここで、精錬時に比べて、運用開始時(つまり、鉄鉱石を溶融させる時)には、必要とされる電圧が大きい。上記構成によれば、精錬用電源部とスタートアップ用電源部とが独立して設けられている。したがって、例えば精錬用電源部とスタートアップ用電源部とが独立していない構成に比べて、各電源部が発生させる電圧の変動を抑えることができる。これにより、さらに安定的に電解製錬炉を運用することができる。 Here, the required voltage is larger at the start of operation (that is, when melting iron ore) than at the time of refining. According to the above configuration, the refining power supply unit and the startup power supply unit are provided independently. Therefore, for example, as compared with a configuration in which the refining power supply unit and the startup power supply unit are not independent, it is possible to suppress fluctuations in the voltage generated by each power supply unit. As a result, the electrolytic refining furnace can be operated more stably.
 上記電解製錬炉では、前記加熱部は、前記鉄鉱石が溶融する前の状態では、水素を含む混合ガスによって形成される火炎によって前記鉄鉱石を溶融させてもよい。 In the electrolytic refining furnace, the heating unit may melt the iron ore by a flame formed by a mixed gas containing hydrogen in a state before the iron ore is melted.
 上記構成によれば、円筒状のパイプより水素を含む燃焼用ガスを供給し、当該燃焼用ガスによる火炎を形成することで、鉄鉱石を容易かつ迅速に加熱溶融させることができる。 According to the above configuration, iron ore can be easily and quickly heated and melted by supplying a combustion gas containing hydrogen from a cylindrical pipe and forming a flame by the combustion gas.
 上記電解製錬炉では、前記加熱部は、前記鉄鉱石が溶融し始めた状態では、水素を含む混合ガスを消炎させて前記溶融鉄鉱石に供給することで該溶融鉄鉱石を撹拌してもよい。 In the electrolytic refining furnace, in the state where the iron ore has begun to melt, the heating unit may stir the molten iron ore by extinguishing a mixed gas containing hydrogen and supplying it to the molten iron ore. Good.
 上記構成によれば、鉄鉱石を溶融させるために用いられていた混合ガスを、消炎させた状態で溶融鉄鉱石に供給することで、当該溶融鉄鉱石を撹拌することができる。これにより、溶融鉄鉱石を均質化することができる。また、撹拌のための専用の装置を設ける必要がないため、装置の構成を簡略化することもできる。これにより、製造コストや運用コストを削減することができる。 According to the above configuration, the molten iron ore can be agitated by supplying the mixed gas used for melting the iron ore to the molten iron ore in a flame-extinguished state. This makes it possible to homogenize the molten iron ore. Further, since it is not necessary to provide a dedicated device for stirring, the configuration of the device can be simplified. As a result, manufacturing costs and operating costs can be reduced.
 上記電解製錬炉では、前記上部電極のうちの少なくとも1つには、該上部電極を上下方向に貫通することで前記鉄鉱石を前記炉本体に導く投入孔部が形成されていてもよい。 In the electrolytic refining furnace, at least one of the upper electrodes may be formed with an input hole portion that guides the iron ore to the furnace body by penetrating the upper electrode in the vertical direction.
 上記構成によれば、投入孔部を通じて、炉本体内に鉄鉱石を円滑に投入することができる。また、上部電極の一部に投入孔部が形成されていることから、鉄鉱石を投入するための投入口を別途設けた場合に比べて、上部電極の個数や設置の密度を上げることができる。 According to the above configuration, iron ore can be smoothly charged into the furnace body through the charging hole. In addition, since the input hole is formed in a part of the upper electrode, the number of upper electrodes and the installation density can be increased as compared with the case where the input port for iron ore is separately provided. ..
 上記電解製錬炉では、前記炉本体は、前記炉底からさらに下方に向かって凹む排出用凹部と、前記排出用凹部と外部とを連通させる排出路と、前記排出路を開閉する開閉部と、をさらに備えてもよい。 In the electrolytic refining furnace, the furnace body has a discharge recess that is recessed further downward from the bottom of the furnace, a discharge path that connects the discharge recess and the outside, and an opening / closing portion that opens and closes the discharge path. , May be further provided.
 上記構成によれば、電解製錬によって生成された溶融鉄を、排出用凹部、及び排出路を通じて炉本体の外部に容易に取り出すことができる。特に、排出路には開閉部が設けられていることから、当該開閉部を開くことのみによってより容易に溶融鉄を取り出すことができる。 According to the above configuration, the molten iron produced by electrolytic refining can be easily taken out to the outside of the furnace body through the discharge recess and the discharge path. In particular, since the discharge path is provided with an opening / closing portion, the molten iron can be taken out more easily only by opening the opening / closing portion.
 上記電解製錬炉では、前記排出路は、前記排出用凹部の底面よりも上方に設けられ、該排出用凹部における前記排出路よりも下方の部分には、該下方の部分を外側から覆う外周加熱装置が設けられていてもよい。 In the electrolytic refining furnace, the discharge passage is provided above the bottom surface of the discharge recess, and the portion of the discharge recess below the discharge passage is an outer periphery that covers the lower portion from the outside. A heating device may be provided.
 上記構成によれば、排出路が排出用凹部の底面よりも上方に設けられていることから、不純物を含む成分は底面側に沈殿させ、不純物を含まない成分のみを排出路によって外部に取り出すことができる。さらに、この排出路よりも下方の部分は、外周加熱装置によって外側から覆われている。したがって、例えば作業を中断した際に排出用凹部内で凝固した成分を、作業再開に当たって直ちに溶融させることができる。これにより、電解製錬炉をより円滑に運用することが可能となる。 According to the above configuration, since the discharge path is provided above the bottom surface of the discharge recess, the components containing impurities are precipitated on the bottom surface side, and only the components containing no impurities are taken out by the discharge path. Can be done. Further, the portion below the discharge path is covered from the outside by the outer peripheral heating device. Therefore, for example, the component solidified in the discharge recess when the work is interrupted can be immediately melted when the work is restarted. This makes it possible to operate the electrolytic smelting furnace more smoothly.
 上記電解製錬炉では、前記排出路に設けられ、該排出路を流通する前記溶融鉄鉱石、又は導電性を有するとともに流路を形成する耐火材を加熱することで粘性を変化させる排出路加熱部をさらに備えてもよい。 In the electrolytic refining furnace, the discharge path heating is provided in the discharge path and the viscosity is changed by heating the molten iron ore flowing through the discharge path or the refractory material having conductivity and forming the flow path. Further units may be provided.
 上記構成によれば、排出路加熱部が排出路を流通する溶融鉄鉱石、又は導電性を有するとともに流路を形成する耐火材を加熱することで、溶融鉄鉱石の粘性が変化する。これにより、溶融鉄鉱石の流動性が変化し、流量を所望の値に調節することができる。 According to the above configuration, the viscosity of the molten iron ore changes when the discharge path heating unit heats the molten iron ore flowing through the discharge path or the refractory material having conductivity and forming the flow path. As a result, the fluidity of the molten iron ore is changed, and the flow rate can be adjusted to a desired value.
 上記電解製錬炉では、前記炉本体の側壁を貫通するスラグ排出路と、該スラグ排出路に設けられ、該スラグ排出路を流通するスラグ、又は導電性を有するとともに流路を形成する耐火材を加熱することで粘性を変化させるスラグ排出路加熱部をさらに備えてもよい。 In the electrolytic refining furnace, a slag discharge path penetrating the side wall of the furnace body, a slag provided in the slag discharge path and flowing through the slag discharge path, or a refractory material having conductivity and forming a flow path. A slag discharge path heating unit that changes the viscosity by heating the slag may be further provided.
 上記構成によれば、スラグ排出路加熱部がスラグ排出路を流通するスラグ、又は導電性を有するとともに流路を形成する耐火材を加熱することで、スラグの粘性が変化する。これにより、スラグの流動性が変化し、流量を所望の値に調節することができる。 According to the above configuration, the viscosity of the slag changes when the slag discharge path heating unit heats the slag that flows through the slag discharge path or the refractory material that has conductivity and forms the flow path. As a result, the fluidity of the slag is changed, and the flow rate can be adjusted to a desired value.
 上記電解製錬炉では、前記炉本体は、外部から投入された前記鉄鉱石を該炉本体に導く投入部をさらに備え、前記炉底は、水平方向に前記投入部から前記排出用凹部に向かうに従って下方に向かって高さ位置が変化していてもよい。 In the electrolytic refining furnace, the furnace body further includes a charging section for guiding the iron ore charged from the outside to the furnace body, and the furnace bottom horizontally faces from the charging section to the discharging recess. The height position may change downward according to the above.
 上記構成によれば、炉底の高さ位置が、投入部から排出用凹部に向かうに従って下方に変化している。これにより、溶融鉄鉱石、及び還元された溶融鉄を排出用凹部に向かって自然に流動させることができる。その結果、溶融鉄をより容易に外部に取り出すことができる。 According to the above configuration, the height position of the furnace bottom changes downward from the input portion toward the discharge recess. As a result, the molten iron ore and the reduced molten iron can be naturally flowed toward the discharge recess. As a result, the molten iron can be taken out to the outside more easily.
 上記電解製錬炉では、前記排出路は、前記排出用凹部の底面に設けられ、前記炉本体は、前記底面から上方に向かって前記溶融鉄鉱石中にガスを供給する撹拌ガス供給部をさらに備えてもよい。 In the electrolytic refining furnace, the discharge path is provided on the bottom surface of the discharge recess, and the furnace body further includes a stirring gas supply unit that supplies gas into the molten iron ore upward from the bottom surface. You may prepare.
 上記構成によれば、撹拌ガス供給部によって、排出用凹部内の溶融鉄鉱石、及び還元された溶融鉄を撹拌することができる。これにより、溶融鉄鉱石、及び溶融鉄をさらに均質化することができる。 According to the above configuration, the molten iron ore in the discharge recess and the reduced molten iron can be agitated by the stirring gas supply unit. Thereby, the molten iron ore and the molten iron can be further homogenized.
 上記電解製錬炉では、該炉本体の上方、及び下方の少なくとも一方に設けられ、前記溶融鉄鉱石を保温する補助加熱部をさらに備えてもよい。 The electrolytic refining furnace may be further provided with an auxiliary heating unit provided on at least one of the upper side and the lower side of the furnace body to keep the molten iron ore warm.
 上記構成によれば、補助加熱部が設けられていることによって、炉本体内の溶融鉄鉱石を凝固させることなく、溶融状態のまま維持することができる。 According to the above configuration, since the auxiliary heating unit is provided, the molten iron ore in the furnace body can be maintained in a molten state without coagulation.
 上記電解製錬炉では、前記上部電極と前記溶融鉄鉱石の上面との間の離間距離を検出する離間距離検出部と、前記離間距離が予め定められた一定値となるように前記上部電極を上下方向に移動させる電極移動部と、をさらに備えてもよい。 In the electrolytic refining furnace, the separation distance detecting unit that detects the separation distance between the upper electrode and the upper surface of the molten iron ore, and the upper electrode so that the separation distance becomes a predetermined constant value. An electrode moving portion for moving in the vertical direction may be further provided.
 ここで、電解製錬を安定的に行うためには、上部電極と溶融鉄鉱石の上面との間に印加される電圧を可能な限り一定に保つ必要がある。一方で、電解製錬が進行するに従って、還元される溶融鉄が増加して、当該溶融鉄鉱石の上面は上方へ移動する。また、上部電極と溶融鉄鉱石の上面との間の電圧は、両者の離間距離に依存する。上記の構成によれば、上部電極と溶融鉄鉱石の上面との間の離間距離が一定値となるように、電極移動部によって上部電極を移動させることができる。これにより、上部電極と溶融鉄鉱石との間に印加される電圧を一定に保つことができる。その結果、より安定的に電解製錬を行うことができる。 Here, in order to perform electrolytic refining stably, it is necessary to keep the voltage applied between the upper electrode and the upper surface of the molten iron ore as constant as possible. On the other hand, as the electrolytic refining progresses, the amount of molten iron that is reduced increases, and the upper surface of the molten iron ore moves upward. Further, the voltage between the upper electrode and the upper surface of the molten iron ore depends on the separation distance between the two. According to the above configuration, the upper electrode can be moved by the electrode moving portion so that the separation distance between the upper electrode and the upper surface of the molten iron ore becomes a constant value. As a result, the voltage applied between the upper electrode and the molten iron ore can be kept constant. As a result, electrolytic refining can be performed more stably.
 上記電解製錬炉は、内部に空間が形成されているチャンバと、前記空間を真空状態とする真空ポンプと、をさらに備え、前記上部電極には、該上部電極を上下方向に貫通するとともに前記空間に連通する貫通孔が形成されていてもよい。 The electrolytic refining furnace further includes a chamber in which a space is formed and a vacuum pump that creates a vacuum state in the space. The upper electrode penetrates the upper electrode in the vertical direction and is described in the upper electrode. A through hole communicating with the space may be formed.
 上記構成によれば、上部電極に形成された貫通孔を通じて、真空状態のチャンバ内にスラグを吸い上げることができる。これにより、スラグと溶融鉄とをより容易に分離することができる。 According to the above configuration, the slag can be sucked up into the chamber in a vacuum state through the through hole formed in the upper electrode. Thereby, the slag and the molten iron can be separated more easily.
 上記電解製錬炉では、前記上部電極同士の間に上方からガスを供給することで、該上部電極同士の間に浮遊する前記鉄鉱石を沈降させる沈降ガス供給部をさらに備えてもよい。 The electrolytic refining furnace may further include a sedimentation gas supply unit for sedimenting the iron ore floating between the upper electrodes by supplying gas between the upper electrodes from above.
 ここで、電解製錬を行う際には、鉄鉱石が溶融に伴って徐々に微細化して液面付近に浮遊することが知られている。上記構成によれば、沈降ガス供給部によって、上部電極同士の間に浮遊する鉄鉱石を沈降させることができる。これにより、溶融鉄鉱石をさらに均質化させることができる。 Here, it is known that when electrolytic refining is performed, iron ore gradually becomes finer as it melts and floats near the liquid surface. According to the above configuration, the settling gas supply unit can settle the iron ore floating between the upper electrodes. This makes it possible to further homogenize the molten iron ore.
 上記電解製錬炉では、前記上部電極同士の間に設けられ、前記炉本体内に向かって進退動することで、該上部電極同士の間に浮遊する前記鉄鉱石を沈降させる沈降機構部をさらに備えてもよい。 In the electrolytic refining furnace, a settling mechanism portion provided between the upper electrodes and advancing and retreating toward the inside of the furnace body to settle the iron ore floating between the upper electrodes is further provided. You may prepare.
 ここで、電解製錬を行う際には、鉄鉱石が溶融に伴って徐々に微細化して液面付近に浮遊することが知られている。上記構成によれば、沈降機構部によって、上部電極同士の間に浮遊する鉄鉱石を沈降させることができる。これにより、溶融鉄鉱石をさらに均質化させることができる。 Here, it is known that when electrolytic refining is performed, iron ore gradually becomes finer as it melts and floats near the liquid surface. According to the above configuration, the settling mechanism can settle the iron ore floating between the upper electrodes. This makes it possible to further homogenize the molten iron ore.
 上記電解製錬炉では、前記溶融用電極のうちの少なくとも1つには、前記鉄鉱石を該炉本体内の周縁部に導く周縁投入部が形成され、前記炉底電極、及び前記上部電極とは別に設けられて、前記周縁投入部から導かれた前記鉄鉱石を加熱溶融させる周縁加熱部をさらに備えてもよい。 In the electrolytic refining furnace, at least one of the melting electrodes is formed with a peripheral charging portion that guides the iron ore to the peripheral edge portion in the furnace body, and the furnace bottom electrode and the upper electrode. May be further provided with a peripheral heating portion for heating and melting the iron ore derived from the peripheral charging portion.
 ここで、炉本体内の周縁部では、炉本体の壁面を通じて外部に熱が放散するため、他の領域に比べて鉄鉱石の溶融が進みにくい場合がある。上記構成によれば、周縁投入部を通じて炉本体内の周縁部に鉄鉱石を供給することができる。さらに、周縁加熱部によってこの鉄鉱石を加熱溶融することができる。これにより、炉本体内における溶融鉄鉱石の均質化をさらに促すことができる。 Here, since heat is dissipated to the outside through the wall surface of the furnace body at the peripheral portion inside the furnace body, it may be difficult for the iron ore to melt as compared with other regions. According to the above configuration, iron ore can be supplied to the peripheral portion in the furnace body through the peripheral charging portion. Further, the peripheral heating portion can heat and melt this iron ore. This makes it possible to further promote the homogenization of molten iron ore in the furnace body.
 本発明の一態様に係る電解製錬炉は、鉄鉱石が導入される炉本体と、該炉本体内の炉底に設けられた炉底電極と、該炉本体内の炉底電極の上方に設けられた複数の上部電極と、を備え、前記炉本体は、前記炉底からさらに下方に向かって凹む排出用凹部と、前記排出用凹部と外部とを連通させる排出路と、前記排出路を開閉する開閉部と、を備える。 The electrolytic smelting furnace according to one aspect of the present invention is above the furnace body into which iron ore is introduced, the bottom electrode provided on the bottom of the furnace body, and the bottom electrode in the furnace body. The furnace body includes a plurality of provided upper electrodes, and the furnace body has a discharge recess that is recessed further downward from the bottom of the furnace, a discharge path that connects the discharge recess and the outside, and the discharge path. It is provided with an opening / closing part that opens / closes.
 上記構成によれば、電解製錬によって生成された溶融鉄を、排出用凹部、及び排出路を通じて炉本体の外部に容易に取り出すことができる。特に、排出路には開閉部が設けられていることから、当該開閉部を開くことのみによってより容易に溶融鉄を取り出すことができる。 According to the above configuration, the molten iron produced by electrolytic refining can be easily taken out to the outside of the furnace body through the discharge recess and the discharge path. In particular, since the discharge path is provided with an opening / closing portion, the molten iron can be taken out more easily only by opening the opening / closing portion.
 本発明によれば、円滑に運用開始することが可能な電解製錬炉を提供することができる。 According to the present invention, it is possible to provide an electrolytic refining furnace capable of smoothly starting operation.
本発明の第一実施形態に係る電解製錬炉の構成を示す断面図である。It is sectional drawing which shows the structure of the electrolytic refining furnace which concerns on 1st Embodiment of this invention. 本発明に第一実施形態に係る電解製錬炉の構成を示す平面図である。It is a top view which shows the structure of the electrorefining furnace which concerns on 1st Embodiment in this invention. 本発明の第一実施形態に係るプラズマトーチの構成を示す断面図であって、鉄鉱石が溶融する前の状態を示している。It is sectional drawing which shows the structure of the plasma torch which concerns on 1st Embodiment of this invention, and shows the state before iron ore melts. 本発明の第一実施形態に係るプラズマトーチの構成を示す断面図であって、鉄鉱石が溶融し始めた状態を示している。It is sectional drawing which shows the structure of the plasma torch which concerns on 1st Embodiment of this invention, and shows the state which iron ore started to melt. 本発明の第二実施形態に係る溶融用電極の拡大断面図であって、鉄鉱石が溶融する前の状態を示している。It is an enlarged sectional view of the electrode for melting which concerns on 2nd Embodiment of this invention, and shows the state before iron ore is melted. 本発明の第二実施形態に係る溶融用電極の拡大断面図であって、鉄鉱石が溶融し始めた状態を示している。It is an enlarged cross-sectional view of the electrode for melting which concerns on 2nd Embodiment of this invention, and shows the state which iron ore started to melt. 本発明の第三実施形態に係る溶融用電極の拡大断面図である。It is an enlarged sectional view of the electrode for melting which concerns on 3rd Embodiment of this invention. 本発明の第四実施形態に係る溶融用電極の拡大断面図である。It is an enlarged sectional view of the electrode for melting which concerns on 4th Embodiment of this invention. 本発明の第五実施形態に係る炉本体の構成を示す断面図である。It is sectional drawing which shows the structure of the furnace body which concerns on 5th Embodiment of this invention. 本発明の第六実施形態に係る電解製錬炉の構成、及び電力系統を示す説明図である。It is explanatory drawing which shows the structure of the electrolytic refining furnace which concerns on 6th Embodiment of this invention, and the electric power system. 本発明の第七実施形態に係る電解製錬炉の構成を示す断面図である。It is sectional drawing which shows the structure of the electrolytic refining furnace which concerns on 7th Embodiment of this invention. 本発明の第七実施形態に係る電解製錬炉の変形例を示す断面図である。It is sectional drawing which shows the modification of the electrolytic refining furnace which concerns on 7th Embodiment of this invention. 本発明の第八実施形態に係る電解製錬炉の構成を示す断面図である。It is sectional drawing which shows the structure of the electrolytic refining furnace which concerns on 8th Embodiment of this invention. 本発明の第八実施形態に係る排出路加熱部、及びスラグ排出路加熱部の構成を示す断面図である。It is sectional drawing which shows the structure of the discharge path heating part and the slag discharge path heating part which concerns on 8th Embodiment of this invention. 本発明の第九実施形態に係る電解製錬炉の構成を示す要部拡大断面図である。It is an enlarged sectional view of the main part which shows the structure of the electrolytic refining furnace which concerns on 9th Embodiment of this invention. 本発明の第十実施形態に係る溶融用電極の構成を示す要部拡大断面図である。It is an enlarged sectional view of the main part which shows the structure of the electrode for melting which concerns on the tenth embodiment of this invention. 本発明の第十実施形態に係る溶融用電極の変形例を示す要部拡大断面図である。It is an enlarged sectional view of the main part which shows the modification of the electrode for melting which concerns on the tenth embodiment of this invention. 本発明の第十一実施形態に係る電解製錬炉の構成を示す断面図である。It is sectional drawing which shows the structure of the electrolytic refining furnace which concerns on 11th Embodiment of this invention. 本発明の第十二実施形態に係る電解製錬炉の構成、及び電力系統を示す説明図である。It is explanatory drawing which shows the structure of the electrolytic refining furnace which concerns on 12th Embodiment of this invention, and the electric power system. 本発明の第十二実施形態に係る電解製錬炉の変形例を示す説明図である。It is explanatory drawing which shows the modification of the electrorefining furnace which concerns on 12th Embodiment of this invention. 従来の上部電極の配置の一例を示す平面図である。It is a top view which shows an example of the arrangement of the conventional upper electrode.
[第一実施形態]
 本発明の第一実施形態について、図1から図4を参照して説明する。本実施形態に電解製錬炉100は、鉄鉱石を溶融し、溶融鉄鋼石を電解反応によって精錬するための装置である。なお、精錬の対象となる鉱石は鉄鉱石に限定されず、電解反応によって精錬することが可能なものであればいかなる鉱物資源に対しても電解製錬炉100を適用することが可能である。また、鉄鉱石に代えて、鉄スクラップを製錬の対象とすることも可能である。
[First Embodiment]
The first embodiment of the present invention will be described with reference to FIGS. 1 to 4. In the present embodiment, the electrolytic smelting furnace 100 is an apparatus for melting iron ore and refining molten iron ore by an electrolytic reaction. The ore to be refined is not limited to iron ore, and the electrolytic refining furnace 100 can be applied to any mineral resource that can be refined by an electrolytic reaction. It is also possible to smelt iron scrap instead of iron ore.
 図1に示すように、電解製錬炉100は、炉本体10と、炉底電極11と、上部電極12と、コレクタ13と、ハウジング14と、を有している。 As shown in FIG. 1, the electrolytic refining furnace 100 has a furnace body 10, a furnace bottom electrode 11, an upper electrode 12, a collector 13, and a housing 14.
 炉本体10は、水平面内に広がる底部10Bを有する容器である。この炉本体10の内部には鉄鉱石が導入される。鉄鉱石は、炉本体10内で溶融加熱されて溶融鉱石Wmとなる。溶融鉱石Wmの温度は材料自体の融点に基づいて決定される。一例として溶融鉱石Wmの温度は1200~2000℃とされる。より望ましくはこの温度は、1400~1700℃とされる。最も望ましくは溶融鉱石Wmの温度は1500~1600℃とされる。 The furnace body 10 is a container having a bottom portion 10B extending in a horizontal plane. Iron ore is introduced into the furnace body 10. The iron ore is melt-heated in the furnace body 10 to become the molten ore Wm. The temperature of the molten ore Wm is determined based on the melting point of the material itself. As an example, the temperature of the molten ore Wm is 1200 to 2000 ° C. More preferably, this temperature is 1400 to 1700 ° C. Most preferably, the temperature of the molten ore Wm is 1500 to 1600 ° C.
 炉本体10の底部10Bには、炉底電極11が設けられている。炉底電極11は、一例としてモリブデンを主成分とする金属材料で一体に形成された板状をなしている。 A furnace bottom electrode 11 is provided on the bottom 10B of the furnace body 10. As an example, the furnace bottom electrode 11 has a plate shape integrally formed of a metal material containing molybdenum as a main component.
 炉本体10の内部であって、炉底電極11の上方には、複数の上部電極12が配置されている。図2に示すように、複数の上部電極12は、水平方向に等間隔をあけて格子状に配列されている。上部電極12は、一例として鉄やクロム、バナジウム、タンタルを含む金属材料によって一体に形成された円柱状をなす電極本体として形成されている。 A plurality of upper electrodes 12 are arranged inside the furnace body 10 and above the furnace bottom electrode 11. As shown in FIG. 2, the plurality of upper electrodes 12 are arranged in a grid pattern at equal intervals in the horizontal direction. As an example, the upper electrode 12 is formed as a columnar electrode body integrally formed of a metal material containing iron, chromium, vanadium, and tantalum.
 全ての上部電極12は、炉底電極11との間で通電することにより、溶融鉄鋼石を電解製錬する。これら上部電極12のうち、少なくとも1つは、上部電極12の内部、即ち、電極本体の内部にプラズマトーチ20(加熱部)を内蔵し、鉄鉱石を溶融することが可能な溶融用電極12Aとされている。図2の例では、上部電極12の中で、水平方向に互いに間隔をあけて複数の溶融用電極12Aが配置されている構成について示している。なお、上部電極12の配置はこれに限定されず、設計や仕様に応じて適宜変更することが可能である。 All the upper electrodes 12 are electrorefined from molten iron ore by energizing the furnace bottom electrodes 11. At least one of these upper electrodes 12 includes a plasma torch 20 (heating portion) inside the upper electrode 12, that is, inside the electrode body, and a melting electrode 12A capable of melting iron ore. Has been done. In the example of FIG. 2, a configuration in which a plurality of melting electrodes 12A are arranged at intervals in the horizontal direction in the upper electrodes 12 is shown. The arrangement of the upper electrode 12 is not limited to this, and can be appropriately changed according to the design and specifications.
 再び図1に示すように、炉本体10の底部10B内であって、炉底電極11の下方の部分には、コレクタ13が埋設されている。コレクタ13は、導電性の材料で形成され、その一端は炉底電極11に電気的に接続されている。なお、図1の例では、二つのコレクタ13が設けられている例を示しているが、コレクタ13の数は2つに限定されない。 As shown in FIG. 1 again, the collector 13 is embedded in the bottom portion 10B of the furnace body 10 and below the furnace bottom electrode 11. The collector 13 is made of a conductive material, and one end thereof is electrically connected to the bottom electrode 11. Although the example of FIG. 1 shows an example in which two collectors 13 are provided, the number of collectors 13 is not limited to two.
 これら炉本体10、炉底電極11、上部電極12、及びコレクタ13は、外側からハウジング14によって覆われている。 The furnace body 10, the bottom electrode 11, the upper electrode 12, and the collector 13 are covered by the housing 14 from the outside.
 次に、図3と図4を参照して、鉄鉱石を溶融するプラズマトーチ20を備えた溶融用電極12Aの構成について説明する。図3に示すように、溶融用電極12Aは、上下方向に延びる円筒状をなしている。つまり、溶融用電極12Aの内部(内周側)には、上下方向に延びる貫通孔12Sが形成されている。この貫通孔12S内には、炉本体10内に導入された鉄鉱石を加熱溶融させるための加熱部としてのプラズマトーチ20が設けられている。プラズマトーチ20は、貫通孔12Sの内周面に配置された筒状のトーチ本体21と、当該トーチ本体21のさらに内周側に相通されているプラズマトーチ電極22と、を有している。 Next, the configuration of the melting electrode 12A provided with the plasma torch 20 for melting the iron ore will be described with reference to FIGS. 3 and 4. As shown in FIG. 3, the melting electrode 12A has a cylindrical shape extending in the vertical direction. That is, a through hole 12S extending in the vertical direction is formed inside (inner peripheral side) of the melting electrode 12A. A plasma torch 20 is provided in the through hole 12S as a heating unit for heating and melting the iron ore introduced into the furnace body 10. The plasma torch 20 has a tubular torch body 21 arranged on the inner peripheral surface of the through hole 12S, and a plasma torch electrode 22 communicating with the torch body 21 on the inner peripheral side.
 トーチ本体21は、炉底電極11から離間する側(つまり、上側)に位置する大径部21Lと、大径部21Lと同軸上であって下方に位置する小径部21Sと、これら大径部21L及び小径部21Sを上下方向に接続する接続部21Cと、を有している。大径部21Lの内径寸法は、小径部21Sの内径寸法よりも大きい。また、接続部21Cの内径寸法は、上方から下方に向かうに従って次第に縮小している。 The torch body 21 has a large diameter portion 21L located on the side (that is, upper side) away from the furnace bottom electrode 11, a small diameter portion 21S coaxial with the large diameter portion 21L and located below, and these large diameter portions. It has a connecting portion 21C that connects the 21L and the small diameter portion 21S in the vertical direction. The inner diameter of the large diameter portion 21L is larger than the inner diameter of the small diameter portion 21S. Further, the inner diameter dimension of the connecting portion 21C gradually decreases from the upper side to the lower side.
 大径部21Lの内周側には、プラズマトーチ電極22が配置されている。プラズマトーチ電極22は、大径部21Lの内径寸法よりも小さな外径寸法を有する棒状をなしている。したがって、プラズマトーチ電極22の外周面と大径部21Lの内周面との間には流路Fとしての隙間が形成されている。この流路Fには、外部から供給された作動ガスが上方から下方に向かって流通する。作動ガスはAr、N2等が一般的であるが、可燃性のガス(例えば水素)も好適に用いることができる。さらに、トーチ本体21とプラズマトーチ電極22との間には、電源によって電圧が印加される。このよう電圧に基づいて、トーチ本体21とプラズマトーチ電極22との間に通電させることで、作動ガスを電離させ、高温のプラズマジェットJ1が形成される。このプラズマジェットJ1は、プラズマトーチ20の下方から炉底電極11側に向かって噴出する。 A plasma torch electrode 22 is arranged on the inner peripheral side of the large diameter portion 21L. The plasma torch electrode 22 has a rod shape having an outer diameter dimension smaller than the inner diameter dimension of the large diameter portion 21L. Therefore, a gap as a flow path F is formed between the outer peripheral surface of the plasma torch electrode 22 and the inner peripheral surface of the large diameter portion 21L. Working gas supplied from the outside flows through the flow path F from above to below. The working gas is generally Ar, N2 or the like, but a flammable gas (for example, hydrogen) can also be preferably used. Further, a voltage is applied between the torch body 21 and the plasma torch electrode 22 by a power source. By energizing between the torch body 21 and the plasma torch electrode 22 based on the voltage in this way, the working gas is ionized and the high-temperature plasma jet J1 is formed. The plasma jet J1 is ejected from below the plasma torch 20 toward the bottom electrode 11 side.
 上記のように構成された電解製錬炉100では、炉本体10内にまず鉄鉱石Mが投入される。電解製錬に先立って、この鉄鉱石Mを溶融させる必要がある。そこで、本実施形態では、鉄鉱石Mが溶融する前の状態で、上記のトーチ本体21とプラズマトーチ電極22との間に通電することでプラズマジェットJ1を形成する。このプラズマジェットJ1の熱エネルギーによって、鉄鉱石Mが加熱溶融を始める。 In the electrolytic refining furnace 100 configured as described above, iron ore M is first charged into the furnace body 10. Prior to electrolytic refining, this iron ore M needs to be melted. Therefore, in the present embodiment, the plasma jet J1 is formed by energizing between the torch body 21 and the plasma torch electrode 22 in a state before the iron ore M is melted. The heat energy of the plasma jet J1 causes the iron ore M to start heating and melting.
 鉄鉱石Mが溶融し始めた状態では、上述のプラズマトーチ20の動作を変化させる。具体的には図4に示すように、この状態では、プラズマトーチ電極22と炉底電極11との間に通電する。これにより、トーチ本体21と炉底電極11との間にプラズマジェットJ2が形成される。このプラズマジェットJ2の熱エネルギーによって、溶融し始めていた鉄鉱石Mが全体的に溶融し、溶融鉄鉱石Wmが形成される。 When the iron ore M has begun to melt, the operation of the plasma torch 20 described above is changed. Specifically, as shown in FIG. 4, in this state, electricity is applied between the plasma torch electrode 22 and the furnace bottom electrode 11. As a result, the plasma jet J2 is formed between the torch body 21 and the furnace bottom electrode 11. The thermal energy of the plasma jet J2 melts the iron ore M that has begun to melt as a whole, and the molten iron ore Wm is formed.
 溶融鉄鉱石Wmに対して、次に電解製錬を施す。具体的には、上部電極12がプラス側、コレクタ13がマイナス側となる直流電圧が印加される。この電圧によって電解反応(還元反応)が進行し、溶融鉱石Wmに含まれる三酸化二鉄(Fe)が還元される。還元反応の進行に伴って、溶融鉄Wf(純鉄)が析出し、自重によって炉底電極11側にこの溶融鉄Wfが沈殿する。溶融鉄Wfの沈殿量が増えることで、炉底電極11に加えて溶融鉄Wf自体も陰極側端子として機能するようになる。 Next, electrolytic refining is performed on the molten iron ore Wm. Specifically, a DC voltage is applied such that the upper electrode 12 is on the positive side and the collector 13 is on the negative side. The electrolytic reaction (reduction reaction) proceeds by this voltage, and diiron trioxide (Fe 2 O 3 ) contained in the molten ore Wm is reduced. As the reduction reaction progresses, molten iron Wf (pure iron) precipitates, and the molten iron Wf precipitates on the furnace bottom electrode 11 side due to its own weight. As the amount of molten iron Wf precipitated increases, the molten iron Wf itself functions as a cathode side terminal in addition to the furnace bottom electrode 11.
 一方で、上部電極12側には、酸素が発生する。 On the other hand, oxygen is generated on the upper electrode 12 side.
 以上、説明したように、上記構成によれば、電解製錬に先立って、溶融用電極12Aのプラズマトーチ20によって鉄鉱石Mを加熱溶融させることができる。これにより、溶融鉄鉱石Wmを容易に生成することができる。これにより、電解製錬炉100を円滑に運用開始することが可能となる。 As described above, according to the above configuration, the iron ore M can be heated and melted by the plasma torch 20 of the melting electrode 12A prior to the electrolytic refining. As a result, molten iron ore Wm can be easily produced. This makes it possible to smoothly start the operation of the electrolytic refining furnace 100.
 さらに、このプラズマトーチ20が溶融用電極12Aの内部に設けられていることから、溶融用電極12Aの寸法体格を小さく抑えることもできる。これにより、溶融用電極12Aを含む上部電極12の配置の自由度をさらに高めることができる。 Further, since the plasma torch 20 is provided inside the melting electrode 12A, the size and physique of the melting electrode 12A can be suppressed to a small size. As a result, the degree of freedom in the arrangement of the upper electrode 12 including the melting electrode 12A can be further increased.
 さらに、上記構成によれば、鉄鉱石Mが溶融する前の状態では、トーチ本体21とプラズマトーチ電極22との間に通電することでプラズマジェットJ1が形成される。このプラズマジェットJ1によって効率的に鉄鉱石Mを溶融させることができる。 Further, according to the above configuration, in the state before the iron ore M is melted, the plasma jet J1 is formed by energizing between the torch body 21 and the plasma torch electrode 22. The iron ore M can be efficiently melted by this plasma jet J1.
 加えて、上記構成によれば、鉄鉱石Mが溶融し始めた状態では、プラズマトーチ電極22と炉底電極11との間に通電することで他のプラズマジェットJ2が形成される。このプラズマジェットJ2によって、溶融し始めている鉄鉱石Mをさらに効率的に溶融させるとともに、均質化を図ることができる。また、例えば作業の中断等によって、溶融鉄鉱石Wmが凝固した場合であっても、プラズマトーチ20によって再度これを溶融させることができる。これにより、直ちに電解製錬作業を再開することができる。 In addition, according to the above configuration, when the iron ore M starts to melt, another plasma jet J2 is formed by energizing between the plasma torch electrode 22 and the furnace bottom electrode 11. With this plasma jet J2, the iron ore M that has begun to melt can be melted more efficiently and homogenized. Further, even when the molten iron ore Wm is solidified due to, for example, interruption of work, it can be melted again by the plasma torch 20. As a result, the electrolytic refining work can be resumed immediately.
 以上、本発明の第一実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。 The first embodiment of the present invention has been described above. It should be noted that various changes and modifications can be made to the above configuration as long as the gist of the present invention is not deviated.
[第二実施形態]
 次に、本発明の第二実施形態について、図5と図6を参照して説明する。なお、上記第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図5に示すように、本実施形態では、加熱部20´の構成が上記第一実施形態と異なっている。加熱部としてのバーナ20´は、上述の溶融用電極12Aに形成された貫通孔12Sを通じて炉本体10内にガス(混合ガスGh)を噴出する。混合ガスGhとして具体的には、水素と、不活性ガス(一例としてアルゴン)とを含むガスが用いられる。混合ガスGhは、炉本体10の外部に設けられた水素供給部23から上記の貫通孔12Sに供給される。さらに、本実施形態では、貫通孔12Sの内周面に、混合ガスに着火するための着火装置12Iが設けられている。なお、不活性ガスとしては、上記のアルゴン以外の希ガスを適宜選択して用いることが可能である。
[Second Embodiment]
Next, the second embodiment of the present invention will be described with reference to FIGS. 5 and 6. The same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 5, in the present embodiment, the configuration of the heating unit 20'is different from that of the first embodiment. The burner 20'as a heating unit ejects a gas (mixed gas Gh) into the furnace body 10 through the through hole 12S formed in the above-mentioned melting electrode 12A. Specifically, as the mixed gas Gh, a gas containing hydrogen and an inert gas (argon as an example) is used. The mixed gas Gh is supplied to the through hole 12S from the hydrogen supply unit 23 provided outside the furnace body 10. Further, in the present embodiment, an ignition device 12I for igniting the mixed gas is provided on the inner peripheral surface of the through hole 12S. As the inert gas, a rare gas other than the above-mentioned argon can be appropriately selected and used.
 バーナ20´は、鉄鉱石Mが溶融する前の状態では、上記の混合ガスGhに着火することで、炉底電極11に向かって延びる(つまり、貫通孔12Sから下方に向かって延びる)火炎Fhを形成する。この火炎Fhによって鉄鉱石Mが溶融を始める。 In the state before the iron ore M is melted, the burner 20'extends toward the furnace bottom electrode 11 (that is, extends downward from the through hole 12S) by igniting the mixed gas Gh. To form. Iron ore M begins to melt due to this flame Fh.
 鉄鉱石Mが溶融し始めた状態で、上述のバーナ20´の動作を変化させる。具体的には図6に示すように、この状態では、バーナ20´は、上記の火炎Fhを消炎させることで、混合ガスGhのみを溶融鉄鉱石Wmに向かって噴出する。これにより、溶融鉄鉱石Wmが撹拌される。なお、火炎Fhの消炎は、水素混合気条件の変更、Arガス等への変更によって行われる。また、バーナ20´が消炎している状態では、貫通孔12Sを通じて鉄鉱石を追加投入することも可能である。さらに、撹拌を行う際には、上部電極12が溶融鉄鉱石Wmの液面に接するか、又は液面の下に浸る状態とされる。 In a state where the iron ore M has begun to melt, the operation of the above-mentioned burner 20'is changed. Specifically, as shown in FIG. 6, in this state, the burner 20'injects only the mixed gas Gh toward the molten iron ore Wm by extinguishing the flame Fh. As a result, the molten iron ore Wm is agitated. The flame Fh is extinguished by changing the hydrogen mixture condition or changing to Ar gas or the like. Further, when the burner 20'is extinguished, it is possible to additionally add iron ore through the through hole 12S. Further, when stirring is performed, the upper electrode 12 is brought into contact with the liquid surface of the molten iron ore Wm or is immersed under the liquid surface.
 上記構成によれば、水素を含む混合ガスGhの火炎Fhによって、鉄鉱石Mを容易かつ迅速に加熱溶融させることができる。 According to the above configuration, the iron ore M can be easily and quickly heated and melted by the flame Fh of the mixed gas Gh containing hydrogen.
 さらに、上記構成によれば、鉄鉱石Mを溶融させるために用いられていた混合ガスGhを、消炎させた状態で溶融鉄鉱石Wmに供給することで、当該溶融鉄鉱石Wmを撹拌することができる。これにより、溶融鉄鉱石Wmを均質化することができる。また、撹拌のための専用の装置を設ける必要がないため、装置の構成を簡略化することもできる。これにより、製造コストや運用コストを削減することができる。 Further, according to the above configuration, the mixed gas Gh used for melting the iron ore M can be supplied to the molten iron ore Wm in a flame-extinguished state to stir the molten iron ore Wm. it can. Thereby, the molten iron ore Wm can be homogenized. Further, since it is not necessary to provide a dedicated device for stirring, the configuration of the device can be simplified. As a result, manufacturing costs and operating costs can be reduced.
 以上、本発明の第二実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。 The second embodiment of the present invention has been described above. It should be noted that various changes and modifications can be made to the above configuration as long as the gist of the present invention is not deviated.
[第三実施形態]
 続いて、本発明の第三実施形態について、図7を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図7に示すように、本実施形態では、上述の第一実施形態で説明した構成において、炉底電極11、及び上部電極12の間に電圧を印加する電源部(精錬用電源部31)と、炉底電極11、及びプラズマトーチ電極22の間に電圧を印加する電源部(スタートアップ用電源部32)とが、電気的に互いに独立している。
[Third Embodiment]
Subsequently, the third embodiment of the present invention will be described with reference to FIG. The same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 7, in the present embodiment, in the configuration described in the first embodiment described above, the power supply unit (refining power supply unit 31) that applies a voltage between the furnace bottom electrode 11 and the upper electrode 12 , The power supply unit (startup power supply unit 32) for applying a voltage between the furnace bottom electrode 11 and the plasma torch electrode 22, is electrically independent of each other.
 精錬用電源部31は、炉底電極11と溶融用電極12Aとを電気的に接続する精錬用電線31Lと、この精錬用電線31L上に設けられている直流電源P1、及びスイッチ31Sと、を有している。スイッチ31Sを開閉することによって直流電源P1から供給される電力の供給状態が切り替えられる。 The refining power supply unit 31 includes a refining electric wire 31L for electrically connecting the furnace bottom electrode 11 and the melting electrode 12A, a DC power supply P1 provided on the refining electric wire 31L, and a switch 31S. Have. By opening and closing the switch 31S, the supply state of the electric power supplied from the DC power supply P1 is switched.
 スタートアップ用電源部32は、炉底電極11とプラズマトーチ電極22とを電気的に接続するスタートアップ用電線32Lと、このスタートアップ用電線32L上に設けられている電源P2、及びスイッチ32Sと、を有している。スイッチ32Sを開閉することによって電源P2から供給される電力の供給状態が切り替えられる。 The start-up power supply unit 32 includes a start-up electric wire 32L that electrically connects the furnace bottom electrode 11 and the plasma torch electrode 22, a power supply P2 provided on the start-up electric wire 32L, and a switch 32S. doing. By opening and closing the switch 32S, the supply state of the electric power supplied from the power supply P2 is switched.
 ここで、精錬時に比べて、運用開始時(つまり、鉄鉱石を溶融させ始める時)には、必要とされる電圧が大きい。上記構成によれば、精錬用電源部31とスタートアップ用電源部32とが独立して設けられている。したがって、例えば精錬用電源部31とスタートアップ用電源部32とが互いに独立していない構成に比べて、各電源部が発生させる電圧の変動を抑えることができる。これにより、さらに安定的に電解製錬炉100を運用することができる。 Here, the required voltage is larger at the start of operation (that is, when starting to melt iron ore) than at the time of refining. According to the above configuration, the refining power supply unit 31 and the startup power supply unit 32 are provided independently. Therefore, for example, as compared with a configuration in which the refining power supply unit 31 and the startup power supply unit 32 are not independent of each other, it is possible to suppress fluctuations in the voltage generated by each power supply unit. As a result, the electrolytic refining furnace 100 can be operated more stably.
 以上、本発明の第三実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。 The third embodiment of the present invention has been described above. It should be noted that various changes and modifications can be made to the above configuration as long as the gist of the present invention is not deviated.
[第四実施形態]
 次に、本発明の第四実施形態について、図8を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図8に示すように、本実施形態では、上部電極12のうち、上述の溶融用電極12Aを除く投入用電極12´に、溶融前の鉄鉱石を投入するための投入孔部12Hが形成されている。投入孔部12Hは、投入用電極12´を上下方向に貫通している。投入孔部12Hの上方には、ホッパーやスクリューフィーダー等の装置(不図示)が設置される。これら装置を通じて外部から投入孔部12H内に溶融前の鉄鉱石が導かれ、炉本体10内に投入される。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG. The same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 8, in the present embodiment, among the upper electrodes 12, the charging electrode 12'excluding the above-mentioned melting electrode 12A is formed with a charging hole portion 12H for charging iron ore before melting. ing. The charging hole portion 12H penetrates the charging electrode 12'in the vertical direction. A device (not shown) such as a hopper or a screw feeder is installed above the input hole portion 12H. Iron ore before melting is guided from the outside into the charging hole portion 12H through these devices and charged into the furnace body 10.
 また、投入用電極12´は、上述の各実施形態で説明した加熱部としてのプラズマトーチ20、及びバーナ20´のいずれか一方が設けられている。つまり、上記の投入孔部12Hは、これらプラズマトーチ20、又はバーナ20´に用いられるガスの流路も兼ねている。 Further, the charging electrode 12'is provided with either the plasma torch 20 or the burner 20' as the heating unit described in each of the above-described embodiments. That is, the input hole portion 12H also serves as a flow path for the gas used in the plasma torch 20 or the burner 20'.
 上記構成によれば、投入孔部12Hを通じて、炉本体10内に鉄鉱石を円滑に投入することができる。また、上部電極12の一部に投入孔部12Hが形成されていることから、鉄鉱石を投入するための投入口を別途設けた場合に比べて、上部電極12の数や密度を上げることができる。その結果、より安定的に精錬を行うことができる。 According to the above configuration, iron ore can be smoothly charged into the furnace body 10 through the charging hole portion 12H. Further, since the charging hole portion 12H is formed in a part of the upper electrode 12, the number and density of the upper electrodes 12 can be increased as compared with the case where a charging port for charging iron ore is separately provided. it can. As a result, refining can be performed more stably.
 以上、本発明の第四実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、上記第四実施形態では、溶融用電極12Aを除く上部電極12の全てが投入用電極12´とされている例について説明した。しかしながら、上部電極12のうち溶融用電極12Aを除く一部のみが投入用電極12´とされていてもよい。 The fourth embodiment of the present invention has been described above. It should be noted that various changes and modifications can be made to the above configuration as long as the gist of the present invention is not deviated. For example, in the fourth embodiment, an example has been described in which all of the upper electrodes 12 except the melting electrode 12A are the charging electrodes 12'. However, only a part of the upper electrode 12 except for the melting electrode 12A may be used as the charging electrode 12'.
[第五実施形態]
 次に、本発明の第五実施形態について、図9を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図9に示すように、本実施形態に係る電解製錬炉200は、上述の第一実施形態で説明した各構成に加えて、補助加熱部としてのヒータHをさらに備えている。ヒータHは、炉本体10内に貯留されている溶融鉄鉱石Wmを保温して、溶融状態を保つために設けられている。ヒータHは、炉本体10の上方、及び、下方の少なくとも一方に設けられている。図9の例では、上方に第一ヒータH1が設けられ、下方に第二ヒータH2が設けられている構成を示している。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described with reference to FIG. The same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 9, the electrolytic refining furnace 200 according to the present embodiment further includes a heater H as an auxiliary heating unit in addition to the respective configurations described in the first embodiment described above. The heater H is provided to keep the molten iron ore Wm stored in the furnace body 10 warm and maintain the molten state. The heater H is provided on at least one of the upper side and the lower side of the furnace body 10. In the example of FIG. 9, the first heater H1 is provided above and the second heater H2 is provided below.
 より具体的には、第一ヒータH1は、炉本体10の上方に間隔をあけて対向する板状をなしている。第一ヒータH1には、上述の上部電極12が挿通される複数の開口部hが形成されている。第二ヒータH2は、炉本体10における底部10B内におけるコレクタ13の下方に埋設されている。第二ヒータH2も第一ヒータH1と同様に板状をなしている。 More specifically, the first heater H1 has a plate shape facing the furnace body 10 at intervals. The first heater H1 is formed with a plurality of openings h through which the above-mentioned upper electrode 12 is inserted. The second heater H2 is embedded below the collector 13 in the bottom 10B of the furnace body 10. The second heater H2 also has a plate shape like the first heater H1.
 上記構成によれば、補助加熱部としてのヒータHが設けられていることによって、炉本体10内の溶融鉄鉱石を凝固させることなく、溶融状態のまま維持することができる。これにより、より安定的に電解製錬を行うことができる。 According to the above configuration, by providing the heater H as an auxiliary heating unit, the molten iron ore in the furnace body 10 can be maintained in a molten state without solidifying. As a result, electrolytic refining can be performed more stably.
 以上、本発明の第五実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。 The fifth embodiment of the present invention has been described above. It should be noted that various changes and modifications can be made to the above configuration as long as the gist of the present invention is not deviated.
[第六実施形態]
 続いて、本発明の第六実施形態について、図10を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図10に示すように、本実施形態に係る電解製錬炉300は、上部電極12の底面(電極底面12B)と溶融鉄Wfの上面(溶融鉄液面Sw)との間の離間距離Lを検出する離間距離検出部41と、当該離間距離の値に基づいて上部電極12を上下方向に移動させる電極移動部42と、をさらに備えている。
[Sixth Embodiment]
Subsequently, the sixth embodiment of the present invention will be described with reference to FIG. The same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 10, in the electrolytic smelting furnace 300 according to the present embodiment, the separation distance L between the bottom surface of the upper electrode 12 (the bottom surface of the electrode 12B) and the upper surface of the molten iron Wf (the molten iron liquid surface Sw) is set. It further includes a separation distance detecting unit 41 for detecting, and an electrode moving unit 42 for moving the upper electrode 12 in the vertical direction based on the value of the separation distance.
 離間距離検出部41は、上部電極12と炉底電極11との間に流れる電流と電圧を計測するとともに、当該電流特性と電圧特性に基づいて離間距離Lを算出する。なお、離間距離Lは、上記のように、溶融鉄Wfの上面である。言い換えれば、離間距離Lは、溶融鉄Wfの上層に位置する溶融鉄鉱石Wmの厚さである。ここで、離間距離Lが増加すると、当該離間距離Lによる電気抵抗が増加する。したがって、離間距離Lが増加すると、上部電極12と炉底電極11との間を流れる電流量が減少する。即ち、ある電圧値における電流量を計測することで、離間距離Lの変化を検知することができる。 The separation distance detection unit 41 measures the current and voltage flowing between the upper electrode 12 and the furnace bottom electrode 11, and calculates the separation distance L based on the current characteristics and voltage characteristics. The separation distance L is the upper surface of the molten iron Wf as described above. In other words, the separation distance L is the thickness of the molten iron ore Wm located in the upper layer of the molten iron Wf. Here, as the separation distance L increases, the electrical resistance due to the separation distance L increases. Therefore, as the separation distance L increases, the amount of current flowing between the upper electrode 12 and the furnace bottom electrode 11 decreases. That is, the change in the separation distance L can be detected by measuring the amount of current at a certain voltage value.
 離間距離検出部41によって離間距離Lの変化が検知された場合、電極移動部42は、上部電極12を上下方向に移動させて、離間距離Lが予め定められた一定値となるように調節する。なお、電極移動部42としては、各種のアクチュエータや電動機等が好適に用いられる。 When a change in the separation distance L is detected by the separation distance detection unit 41, the electrode moving unit 42 moves the upper electrode 12 in the vertical direction and adjusts the separation distance L so that it becomes a predetermined constant value. .. As the electrode moving portion 42, various actuators, electric motors, and the like are preferably used.
 ここで、電解製錬を安定的に行うためには、上部電極12と溶融鉄液面Swとの間に印加される電圧を可能な限り一定に保つ必要がある。一方で、電解製錬が進行するに従って、還元される溶融鉄Wfが増加して、当該溶融鉄Wfの上面(溶融鉄液面Sw)は上方へ移動する。また、上部電極12と溶融鉄液面Swとの間の電圧は、両者の離間距離に依存する。上記の構成によれば、上部電極12と溶融鉄液面Swとの間の離間距離Lが一定値となるように、電極移動部42によって上部電極12を移動させることができる。これにより、上部電極12と溶融鉄Wfとの間に印加される電圧を一定に保つことができる。その結果、より安定的に電解製錬を行うことができる。 Here, in order to stably perform electrolytic refining, it is necessary to keep the voltage applied between the upper electrode 12 and the molten iron liquid level Sw as constant as possible. On the other hand, as the electrolytic refining progresses, the reduced molten iron Wf increases, and the upper surface (molten iron liquid surface Sw) of the molten iron Wf moves upward. Further, the voltage between the upper electrode 12 and the molten iron liquid level Sw depends on the separation distance between the two. According to the above configuration, the upper electrode 12 can be moved by the electrode moving portion 42 so that the separation distance L between the upper electrode 12 and the molten iron liquid surface Sw becomes a constant value. As a result, the voltage applied between the upper electrode 12 and the molten iron Wf can be kept constant. As a result, electrolytic refining can be performed more stably.
 以上、本発明の第六実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。 The sixth embodiment of the present invention has been described above. It should be noted that various changes and modifications can be made to the above configuration as long as the gist of the present invention is not deviated.
[第七実施形態]
 次に、本発明の第七実施形態について、図11を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図11に示すように、本実施形態に係る電解製錬炉400では、炉本体10´は、炉底(底部10B)からさらに下方に向かって凹む排出用凹部10Hと、排出用凹部10Hと外部とを連通させる排出路10Eと、排出路10Eを開閉することで連通状態を切り替える開閉部5と、排出用凹部10Hの内部を外側から覆う外周加熱装置6と、をさらに備えている。
[Seventh Embodiment]
Next, the seventh embodiment of the present invention will be described with reference to FIG. The same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 11, in the electrolytic refining furnace 400 according to the present embodiment, the furnace body 10'has a discharge recess 10H recessed further downward from the furnace bottom (bottom 10B), a discharge recess 10H, and an outside. Further includes a discharge passage 10E for communicating with the discharge passage 10E, an opening / closing portion 5 for switching the communication state by opening and closing the discharge passage 10E, and an outer peripheral heating device 6 for covering the inside of the discharge recess 10H from the outside.
 排出用凹部10Hは、底部10Bから下方に向かって凹む矩形の断面形状を有している。排出路10Eは、この排出用凹部10Hの底面(排出用凹部底面10S)よりも上方に設けられている。排出用凹部10Hにおける排出路10Eよりも下方の部分には、当該部分を加熱する外周加熱装置6が設けられている。外周加熱装置6として具体的には、IHヒータ等が好適に用いられる。 The discharge recess 10H has a rectangular cross-sectional shape that is recessed downward from the bottom 10B. The discharge passage 10E is provided above the bottom surface of the discharge recess 10H (the bottom surface 10S of the discharge recess). An outer peripheral heating device 6 for heating the portion of the discharge recess 10H below the discharge passage 10E is provided. Specifically, an IH heater or the like is preferably used as the outer peripheral heating device 6.
 上記構成によれば、電解製錬によって生成された溶融鉄Wfを、排出用凹部10H、及び排出路10Eを通じて炉本体10の外部に容易に取り出すことができる。特に、排出路10Eには開閉部5が接続されていることから、当該開閉部5を開くことのみによってより容易に溶融鉄Wfを取り出すことができる。 According to the above configuration, the molten iron Wf produced by electrolytic refining can be easily taken out to the outside of the furnace body 10 through the discharge recess 10H and the discharge path 10E. In particular, since the opening / closing portion 5 is connected to the discharge path 10E, the molten iron Wf can be taken out more easily only by opening the opening / closing portion 5.
 さらに、上記構成によれば、排出路10Eが排出用凹部10Hの底面(排出用凹部底面10S)よりも上方に設けられている。この排出路10Eよりも下方の部分は、外周加熱装置6によって外側から覆われている。したがって、例えば作業を中断した際に排出用凹部10H内で凝固した成分を、作業再開に当たって直ちに溶融させることができる。これにより、電解製錬炉400をより円滑に運用することが可能となる。 Further, according to the above configuration, the discharge path 10E is provided above the bottom surface of the discharge recess 10H (the bottom surface 10S of the discharge recess). The portion below the discharge path 10E is covered from the outside by the outer peripheral heating device 6. Therefore, for example, the component solidified in the discharge recess 10H when the work is interrupted can be immediately melted when the work is restarted. This makes it possible to operate the electrolytic smelting furnace 400 more smoothly.
 以上、本発明の第七実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、上記第七実施形態の構成に代えて、図12に示すように、排出路10E´を排出用凹部底面10Sに形成することも可能である。また、同図の例では、排出用凹部底面10Sから排出用凹部10H内に向かって、溶融鉄Wfを撹拌するための水素、Arガス等を供給する撹拌ガス供給部7がさらに設けられている。 The seventh embodiment of the present invention has been described above. It should be noted that various changes and modifications can be made to the above configuration as long as the gist of the present invention is not deviated. For example, instead of the configuration of the seventh embodiment, as shown in FIG. 12, the discharge path 10E'can be formed on the bottom surface 10S of the discharge recess. Further, in the example of the figure, a stirring gas supply unit 7 for supplying hydrogen, Ar gas, etc. for stirring the molten iron Wf is further provided from the bottom surface 10S of the discharge recess 10S toward the inside of the discharge recess 10H. ..
 上記構成によれば、排出路10E´を通じて、溶融鉄Wfを重力によって自然に外部に取り出すことができる。さらに、撹拌ガス供給部7によって、排出用凹部10H内の溶融鉄鉱石Wm、及び溶融鉄Wfを撹拌することができる。さらに、誘導加熱による電磁撹拌効果により、溶融鉄鋼石Wm、及び溶融鉄Wfを撹拌することができる。これにより、溶融鉄鉱石Wm、及び溶融鉄Wfをさらに均温化・均質化することができる。 According to the above configuration, the molten iron Wf can be naturally taken out by gravity through the discharge path 10E'. Further, the agitated gas supply unit 7 can agitate the molten iron ore Wm and the molten iron Wf in the discharge recess 10H. Further, the molten iron ore Wm and the molten iron Wf can be agitated by the electromagnetic stirring effect due to the induction heating. As a result, the molten iron ore Wm and the molten iron Wf can be further homogenized and homogenized.
[第八実施形態]
 続いて、本発明の第八実施形態について、図13と図14を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図13に示すように、本実施形態に係る電解製錬炉500は、上記第七実施形態で説明した形態に加えて、電解製錬の進行に伴って炉本体10内で生じるスラグWsを外部に取り出すためのスラグ排出路10Fと、スラグ排出路10Fを流通するスラグWsを加熱するスラグ排出路加熱部Hsと、排出路10Eを流通する溶融鉄鉱石Wmを加熱する排出路加熱部Hfと、をさらに備えている。
[Eighth Embodiment]
Subsequently, the eighth embodiment of the present invention will be described with reference to FIGS. 13 and 14. The same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 13, in the electrolytic smelting furnace 500 according to the present embodiment, in addition to the embodiment described in the seventh embodiment, the slag Ws generated in the furnace main body 10 as the electrolytic smelting progresses is externally formed. A slag discharge path 10F for taking out the slag, a slag discharge path heating section Hs for heating the slag Ws flowing through the slag discharge path 10F, and a discharge path heating section Hf for heating the molten iron ore Wm flowing through the discharge path 10E. Is further equipped.
 スラグ排出路10Fは、炉本体10の側壁を貫通している。スラグ排出路10Fは、炉底電極11から上方に離間した位置に形成されている。スラグ排出路10Fには、当該スラグ排出路10Fの開閉状態を変化させる開閉部5´が設けられている。スラグ排出路加熱部Hsは、スラグ排出路10F内を流通するスラグWsを加熱することで粘性を変化させる(粘性を低下させる。)。これにより、スラグWsの排出流量を調整することができる。 The slag discharge path 10F penetrates the side wall of the furnace body 10. The slag discharge path 10F is formed at a position separated upward from the furnace bottom electrode 11. The slag discharge passage 10F is provided with an opening / closing portion 5'that changes the opening / closing state of the slag discharge passage 10F. The slag discharge path heating unit Hs changes the viscosity (decreases the viscosity) by heating the slag Ws flowing in the slag discharge path 10F. Thereby, the discharge flow rate of the slag Ws can be adjusted.
 排出路10Eには、スラグ排出路加熱部Hsと同様に、排出路加熱部Hfが設けられている。排出路加熱部Hfは、排出路10E内を流通する溶融鉄鉱石Wm(溶融鉄Wf)を加熱することで粘性を変化させる(粘性を低下させる。)。これにより、溶融鉄鉱石Wm(溶融鉄Wf)の排出流量を調整することができる。 The discharge path 10E is provided with a discharge path heating section Hf in the same manner as the slag discharge path heating section Hs. The discharge passage heating unit Hf changes the viscosity (decreases the viscosity) by heating the molten iron ore Wm (molten iron Wf) flowing in the discharge passage 10E. Thereby, the discharge flow rate of the molten iron ore Wm (molten iron Wf) can be adjusted.
 これら排出路加熱部Hf、及びスラグ排出路加熱部Hsの具体例として、図14に示す構成が好適に用いられる。同図に示すように、排出路加熱部Hf、及びスラグ排出路加熱部Hsとしての高周波コイル51が、排出路10E(又はスラグ排出路10F)の外周を覆うように配置されている。また、当該排出路10E(又はスラグ排出路10F)の内外を進退動するプラグ50が設けられていてもよい。プラグ50を進退動させることで、排出路10E(又はスラグ排出路10F)の開閉状態を変化させることができる。 As a specific example of these discharge path heating portions Hf and the slag discharge passage heating portion Hs, the configuration shown in FIG. 14 is preferably used. As shown in the figure, the discharge path heating section Hf and the high frequency coil 51 as the slag discharge path heating section Hs are arranged so as to cover the outer periphery of the discharge path 10E (or the slag discharge path 10F). Further, a plug 50 that moves back and forth inside and outside the discharge path 10E (or the slag discharge path 10F) may be provided. By moving the plug 50 forward and backward, the open / closed state of the discharge path 10E (or the slag discharge path 10F) can be changed.
 上記構成によれば、排出路加熱部Hfが排出路10Eを流通する溶融鉄鉱石Wmを加熱することで、当該溶融鉄鉱石Wmの粘性が変化する。これにより、溶融鉄鉱石Wmの流動性が変化し、流量を所望の値に調節することができる。 According to the above configuration, the viscosity of the molten iron ore Wm changes when the discharge passage heating unit Hf heats the molten iron ore Wm flowing through the discharge passage 10E. As a result, the fluidity of the molten iron ore Wm changes, and the flow rate can be adjusted to a desired value.
 さらに、上記構成によれば、スラグ排出路加熱部Hsがスラグ排出路10Fを流通するスラグWsを加熱することで、当該スラグWsの粘性が変化する。これにより、スラグWsの流動性が変化し、流量を所望の値に調節することができる。 Further, according to the above configuration, the viscosity of the slag Ws changes when the slag discharge path heating unit Hs heats the slag Ws flowing through the slag discharge path 10F. As a result, the fluidity of the slag Ws changes, and the flow rate can be adjusted to a desired value.
 以上、本発明の第八実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。 The eighth embodiment of the present invention has been described above. It should be noted that various changes and modifications can be made to the above configuration as long as the gist of the present invention is not deviated.
[第九実施形態]
 次に、本発明の第九実施形態について、図15を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図15に示すように、本実施形態に係る電解製錬炉600は、上部電極12の貫通孔12Sに連通する空間Vが内部に形成されているチャンバ60と、チャンバ60内の空間Vから空気を吸引することで真空状態とする真空ポンプ61と、をさらに備えている。空間Vは、貫通孔12Sの上側の端部に連通している。空間Vが真空状態とされていることによって、貫通孔12Sを通じてスラグWsが当該空間Vに吸引される。
[Ninth Embodiment]
Next, a ninth embodiment of the present invention will be described with reference to FIG. The same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 15, in the electrolytic refining furnace 600 according to the present embodiment, the chamber 60 in which the space V communicating with the through hole 12S of the upper electrode 12 is formed inside and the air from the space V in the chamber 60. It is further provided with a vacuum pump 61, which creates a vacuum state by sucking. The space V communicates with the upper end of the through hole 12S. Since the space V is in a vacuum state, the slag Ws is sucked into the space V through the through hole 12S.
 上記構成によれば、上部電極12に形成された貫通孔12Sを通じて、真空状態のチャンバ60内(空間V)にスラグWsを吸い上げることができる。これにより、スラグWsと溶融鉄Wfとをより容易に分離することができる。 According to the above configuration, the slag Ws can be sucked up into the chamber 60 (space V) in the vacuum state through the through hole 12S formed in the upper electrode 12. Thereby, the slag Ws and the molten iron Wf can be separated more easily.
 以上、本発明の第九実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて上記の構成に種々の変更や改修を施すことが可能である。 The ninth embodiment of the present invention has been described above. It is possible to make various changes and modifications to the above configuration without departing from the gist of the present invention.
[第十実施形態]
 続いて、本発明の第十実施形態について、図16を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図16に示すように、本実施形態に係る電解製錬炉700は、沈降ガス供給部70をさらに備えている。沈降ガス供給部70は、上部電極12同士の間に上方からガスを供給することで、当該上部電極12同士の間に浮遊する鉄鉱石Mを沈降させる。また、沈降ガス供給部70は溶融鉄鉱石Wm内に挿入して、ガスを溶融鉄鉱石Wm内に供給してもよい。
[10th Embodiment]
Subsequently, the tenth embodiment of the present invention will be described with reference to FIG. The same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 16, the electrolytic refining furnace 700 according to the present embodiment further includes a settling gas supply unit 70. The settling gas supply unit 70 supplies gas between the upper electrodes 12 from above to settle the iron ore M floating between the upper electrodes 12. Further, the sedimentation gas supply unit 70 may be inserted into the molten iron ore Wm to supply the gas into the molten iron ore Wm.
 ここで、電解製錬を行う際には、鉄鉱石Mが溶融に伴って徐々に微細化して溶融鉄鉱石Wmの液面付近にこれら微細化した鉄鉱石Mが浮遊することが知られている。上記構成によれば、沈降ガス供給部70によって、上部電極12同士の間に浮遊する鉄鉱石Mを沈降させることができる。また、溶融鉄鋼石内にガスを供給することで、浮遊する鉄鉱石を溶融鉄鋼石内に巻き込むことができる。これにより、溶融鉄鉱石Wmをさらに均質化させることができる。 Here, it is known that when electrolytic refining is performed, iron ore M is gradually refined with melting, and these refined iron ore M are suspended near the liquid level of molten iron ore Wm. .. According to the above configuration, the sedimentation gas supply unit 70 can sediment the iron ore M floating between the upper electrodes 12. Further, by supplying gas into the molten iron ore, floating iron ore can be involved in the molten iron ore. Thereby, the molten iron ore Wm can be further homogenized.
 以上、本発明の第十実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて上記の構成に種々の変更や改修を施すことが可能である。例えば、図17に示すように、上記の沈降ガス供給部70に代えて、沈降機構部70´を備える構成を採ることも可能である。沈降機構部70´は、上部電極12同士の間で、上下方向に進退動する。上述のように浮遊する鉄鉱石Mが生じた場合には、沈降機構部70´を下方に移動させることによって、当該鉄鉱石Mを溶融鉄鉱石Wm内に沈めることができる。これにより、溶融鉄鉱石をさらに均質化させることができる。 The tenth embodiment of the present invention has been described above. It is possible to make various changes and modifications to the above configuration without departing from the gist of the present invention. For example, as shown in FIG. 17, it is possible to adopt a configuration including a sedimentation mechanism unit 70'instead of the sedimentation gas supply unit 70. The settling mechanism portion 70'advance and retreat in the vertical direction between the upper electrodes 12. When the floating iron ore M is generated as described above, the iron ore M can be submerged in the molten iron ore Wm by moving the sedimentation mechanism portion 70'downward. This makes it possible to further homogenize the molten iron ore.
[第十一実施形態]
 次に、本発明の第十一実施形態について、図18を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図18に示すように、本実施形態に係る電解製錬炉800では、炉本体10´の構成が上記の各実施形態と箱となっている。この炉本体10´の炉底Bは、水平方向に投入部80から排出用凹部10Hに向かうに従って下方に向かって高さ位置が段階的に変化するように構成されている。つまり、炉本体10´の中央部から周縁部に向かうに従って、炉底Bの高さ位置が段階的に低くなっている。中央部とは、図18中に示すように、上下方向に延びる中心軸線Oが通る部分を含む領域である。
[Eleventh Embodiment]
Next, the eleventh embodiment of the present invention will be described with reference to FIG. The same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 18, in the electrolytic refining furnace 800 according to the present embodiment, the configuration of the furnace main body 10'is a box with each of the above embodiments. The bottom B of the furnace body 10'is configured so that the height position changes stepwise downward from the charging portion 80 toward the discharge recess 10H in the horizontal direction. That is, the height position of the furnace bottom B is gradually lowered from the central portion to the peripheral portion of the furnace body 10'. As shown in FIG. 18, the central portion is a region including a portion through which the central axis O extending in the vertical direction passes.
 より具体的には、炉底Bは、排出用凹部10Hから離間する側から排出用凹部10Hに向かって順に配列された第一炉底B1、第二炉底B2、及び第三炉底B3を有している。第二炉底B2は、第一炉底B1よりも下方に位置している。第三炉底B3は、第二炉底B2よりもさらに下方に位置している。なお、本実施形態では、説明を簡略化するため、炉底Bの高さが三段階にわたって変化している例について示しているが、炉底Bを4つ以上の高さに分けることも可能である。 More specifically, the hearth B includes the first bottom B1, the second bottom B2, and the third bottom B3 arranged in order from the side separated from the discharge recess 10H toward the discharge recess 10H. Have. The second bottom B2 is located below the first bottom B1. The third bottom B3 is located further below the second bottom B2. In this embodiment, for simplification of the explanation, an example in which the height of the bottom B changes in three stages is shown, but the bottom B can be divided into four or more heights. Is.
 上記構成によれば、炉底Bの高さ位置が、投入部80から排出用凹部10Hに向かうに従って下方に変化している。これにより、溶融鉄鉱石Wm、及び還元された溶融鉄Wfを排出用凹部10Hに向かって自然に流動させることができる。その結果、溶融鉄Wfをより容易に外部に取り出すことができる。 According to the above configuration, the height position of the furnace bottom B changes downward from the charging portion 80 toward the discharge recess 10H. As a result, the molten iron ore Wm and the reduced molten iron Wf can be naturally flowed toward the discharge recess 10H. As a result, the molten iron Wf can be taken out to the outside more easily.
 以上、本発明の第十一実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。 The eleventh embodiment of the present invention has been described above. It should be noted that various changes and modifications can be made to the above configuration as long as the gist of the present invention is not deviated.
[第十二実施形態]
 続いて、本発明の第十二実施形態について、図19を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図19に示すように、本実施形態に係る電解製錬炉900では、溶融用電極12Aのうちの少なくとも1つであって、炉本体10の側壁に沿う部分に配置された溶融用電極12Aには、当該溶融用電極12Aを上下方向に貫通する周縁投入部80´が形成されている。加えて、電解製錬炉900は、周縁投入部80´から導かれた鉄鉱石Mを加熱溶融させる周縁加熱部90をさらに備えている。
[Twelfth Embodiment]
Subsequently, the twelfth embodiment of the present invention will be described with reference to FIG. The same components as those of the above embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 19, in the electrolytic refining furnace 900 according to the present embodiment, at least one of the melting electrodes 12A, which is the melting electrode 12A arranged along the side wall of the furnace main body 10. Is formed with a peripheral edge charging portion 80'that penetrates the melting electrode 12A in the vertical direction. In addition, the electrolytic refining furnace 900 further includes a peripheral heating section 90 that heats and melts the iron ore M derived from the peripheral charging section 80'.
 周縁加熱部90は、上述の炉底電極11、及び上部電極12とは別に設けられた一対の電極端子91,91を有している。電極端子91,91は、溶融鉄鉱石Wm(又は溶融鉄Wf)の内部に浸漬されている。電極端子91,91には、電源Pによって電圧が印加される。これにより、電極端子91,91の間ではジュール加熱部が形成される。その結果、溶融鉄鉱石Wm内に新たな鉄鉱石が投入された場合には、当該鉄鉱石は上述のジュール加熱部によって加熱されることで溶融する。なお、これら電極端子91,91の近傍に、撹拌ガス供給部70Bを設けることが望ましい。撹拌ガス供給部70Bは、上記の周縁加熱部90によって溶融させられた溶融鉄鉱石Wm中にガスを供給することでこれを撹拌する。 The peripheral heating unit 90 has a pair of electrode terminals 91 and 91 provided separately from the above-mentioned furnace bottom electrode 11 and the upper electrode 12. The electrode terminals 91 and 91 are immersed in the molten iron ore Wm (or molten iron Wf). A voltage is applied to the electrode terminals 91 and 91 by the power supply P. As a result, a Joule heating portion is formed between the electrode terminals 91 and 91. As a result, when a new iron ore is put into the molten iron ore Wm, the iron ore is heated by the above-mentioned Joule heating unit and melted. It is desirable to provide the stirring gas supply unit 70B in the vicinity of these electrode terminals 91 and 91. The stirring gas supply unit 70B stirs the molten iron ore Wm melted by the peripheral heating unit 90 by supplying gas.
 ここで、炉本体10内の周縁部では、炉本体10の壁面を通じて外部に熱が放散するため、他の領域に比べて鉄鉱石の溶融が進みにくい場合がある。上記構成によれば、周縁投入部80´を通じて炉本体10内の周縁部に鉄鉱石を供給することができるとともに、周縁加熱部90によってこの鉄鉱石を加熱溶融することができる。これにより、炉本体10内における溶融鉄鉱石Wmの均温化、及び均質化をさらに促すことができる。 Here, in the peripheral portion inside the furnace main body 10, heat is dissipated to the outside through the wall surface of the furnace main body 10, so that the melting of iron ore may be difficult to proceed as compared with other regions. According to the above configuration, iron ore can be supplied to the peripheral edge portion in the furnace main body 10 through the peripheral edge charging portion 80', and the iron ore can be heated and melted by the peripheral edge heating portion 90. As a result, it is possible to further promote the homogenization and homogenization of the molten iron ore Wm in the furnace body 10.
 以上、本発明の第十二実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、周縁加熱部90´として、図20に示すように、上部電極12と、炉本体10の側壁に埋設された側部電極92とを設けることも可能である。上部電極12と側部電極92との間に上述のようなジュール加熱部が形成されることで、新たに投入された鉄鉱石Mを溶融させることができる。 The twelfth embodiment of the present invention has been described above. It should be noted that various changes and modifications can be made to the above configuration as long as the gist of the present invention is not deviated. For example, as the peripheral heating portion 90', as shown in FIG. 20, it is also possible to provide the upper electrode 12 and the side electrode 92 embedded in the side wall of the furnace body 10. By forming the Joule heating portion as described above between the upper electrode 12 and the side electrode 92, the newly charged iron ore M can be melted.
 本発明の一態様に係る電解製錬炉では、円滑に運用開始することができる。 The electrolytic refining furnace according to one aspect of the present invention can be smoothly started in operation.
100,200,300,400,500,600,700,800,900 電解製錬炉
10,10´ 炉本体
10B 底部
10E 排出路
10F スラグ排出路
10H,10H´ 排出用凹部
10S 排出用凹部底面
11 炉底電極
12上部電極
12A 溶融用電極
12A´ 投入用電極
12B 電極底面
12S 貫通孔
12H 投入孔部
12I 着火装置
14 ハウジング
20 プラズマトーチ
20´ バーナ
21 トーチ本体
21L 大径部
21S 小径部
21C 接続部
22 プラズマトーチ電極
23 水素供給部
31 精錬用電源部
31L 精錬用電線
31S,32S スイッチ
32 スタートアップ用電源部
32L スタートアップ用電線
41 離間距離検出部
42 電極移動部
5,5´ 開閉部
50 プラグ
51 高周波コイル
6 外周加熱装置
60 チャンバ
61 真空ポンプ
7,70,70´,70B 撹拌ガス供給部
80 投入部
80´ 周縁投入部
90,90´ 周縁加熱部
91 電極端子
92 側部電極
B 炉底
B1 第一炉底
B2 第二炉底
B3 第三炉底
F 流路
Fh 火炎
Gh 混合ガス
h 開口部
H ヒータ
H1 第一ヒータ
H2 第二ヒータ
Hf 排出路加熱部
Hs スラグ排出路加熱部
J1,J2 プラズマジェット
M 鉄鉱石
P1 交流電源
P2 直流電源
Sw 溶融鉄液面
V 空間
Wm 溶融鉄鉱石
Wf 溶融鉄
Ws スラグ
100,200,300,400,500,600,700,800,900 Electrolytic smelting furnace 10,10'Folder body 10B Bottom 10E Discharge path 10F Slug discharge path 10H, 10H' Discharge recess 10S Discharge recess Bottom surface 11 Furnace Bottom electrode 12 Top electrode 12A Melting electrode 12A ′ Input electrode 12B Electrode bottom surface 12S Through hole 12H Input hole 12I Ignition device 14 Housing 20 Plasma torch 20 ′ Burner 21 Torch body 21L Large diameter part 21S Small diameter part 21C Connection part 22 Plasma Torch electrode 23 Hydrogen supply unit 31 Refining power supply unit 31L Smelting wire 31S, 32S Switch 32 Startup power supply unit 32L Startup wire 41 Separation distance detection unit 42 Electrode moving unit 5, 5'Opening / closing unit 50 Plug 51 High frequency coil 6 Outer circumference Heating device 60 Chamber 61 Vacuum pump 7, 70, 70', 70B Stirring gas supply unit 80 Input unit 80' Peripheral charging unit 90, 90' Peripheral heating unit 91 Electrode terminal 92 Side electrode B Furnace bottom B1 First furnace bottom B2 2nd furnace bottom B3 3rd furnace bottom F Flow path Fh Flame Gh Mixed gas h Opening H Heater H1 1st heater H2 2nd heater Hf Discharge path heating part Hs Slug discharge path heating part J1, J2 Plasma jet M Iron ore P1 AC power supply P2 DC power supply Sw Molten iron liquid level V Space Wm Molten iron ore Wf Molten iron Ws Slug

Claims (19)

  1.  鉄鉱石が導入される炉本体と、
     該炉本体内の炉底に設けられた炉底電極と、
     該炉本体内の炉底電極の上方に設けられて、溶融鉄鉱石を電解製錬する電極本体を有する複数の上部電極と、
    を備え、
     前記上部電極のうちの少なくとも一つは、
     前記電極本体の内部に前記鉄鉱石を加熱溶融して前記溶融鉄鉱石とする加熱部を有する溶融用電極とされている電解製錬炉。
    The main body of the furnace where iron ore is introduced and
    The bottom electrode provided on the bottom of the furnace body and
    A plurality of upper electrodes provided above the bottom electrode in the furnace body and having an electrode body for electrolytic refining of molten iron ore,
    With
    At least one of the upper electrodes
    An electrolytic refining furnace as a melting electrode having a heating portion for heating and melting the iron ore into the molten iron ore inside the electrode body.
  2.  前記加熱部は、前記電極本体に形成された貫通孔の内周面に配置された筒状のトーチ本体と、該トーチ本体の内周側に挿通されているプラズマトーチ電極と、を有し、
     前記鉄鉱石が溶融する前の状態では、前記トーチ本体と前記プラズマトーチ電極との間に通電することで形成されるプラズマジェットによって前記鉄鉱石を溶融させる請求項1に記載の電解製錬炉。
    The heating unit has a tubular torch body arranged on the inner peripheral surface of a through hole formed in the electrode body, and a plasma torch electrode inserted through the inner peripheral side of the torch body.
    The electrorefining furnace according to claim 1, wherein in a state before the iron ore is melted, the iron ore is melted by a plasma jet formed by energizing between the torch body and the plasma torch electrode.
  3.  前記加熱部は、前記鉄鉱石が溶融し始めた状態では、前記プラズマトーチ電極と前記炉底電極との間に通電することで形成されるプラズマジェットによって前記溶融鉄鉱石を加熱する請求項2に記載の電解製錬炉。 According to claim 2, the heating unit heats the molten iron ore by a plasma jet formed by energizing between the plasma torch electrode and the furnace bottom electrode when the iron ore has begun to melt. The described electrolytic refining furnace.
  4.  前記炉底電極、及び前記上部電極の間に電圧を印加する精錬用電源部と、
     前記精錬用電源部と独立して設けられ、前記炉底電極、及び前記プラズマトーチ電極の間に電圧を印加するスタートアップ用電源部と、
    をさらに備える請求項3に記載の電解製錬炉。
    A refining power supply unit that applies a voltage between the furnace bottom electrode and the upper electrode,
    A start-up power supply unit that is provided independently of the refining power supply unit and applies a voltage between the furnace bottom electrode and the plasma torch electrode.
    The electrolytic refining furnace according to claim 3.
  5.  前記加熱部は、前記鉄鉱石が溶融する前の状態では、水素を含む混合ガスによって形成される火炎によって前記鉄鉱石を溶融させる請求項1に記載の電解製錬炉。 The electrolytic refining furnace according to claim 1, wherein the heating unit melts the iron ore by a flame formed by a mixed gas containing hydrogen in a state before the iron ore is melted.
  6.  前記加熱部は、前記鉄鉱石が溶融し始めた状態では、水素を含む混合ガスを消炎させて前記溶融鉄鉱石に供給することで該溶融鉄鉱石を撹拌する請求項5に記載の電解製錬炉。 The electrolytic refining according to claim 5, wherein the heating unit agitates the molten iron ore by extinguishing a mixed gas containing hydrogen and supplying the molten iron ore in a state where the iron ore has begun to melt. Furnace.
  7.  前記上部電極のうちの少なくとも1つには、該上部電極を上下方向に貫通することで前記鉄鉱石を前記炉本体に導く投入孔部が形成されている請求項1から6のいずれか一項に記載の電解製錬炉。 Any one of claims 1 to 6 in which at least one of the upper electrodes is formed with a charging hole portion for guiding the iron ore to the furnace body by penetrating the upper electrode in the vertical direction. The electrolytic refining furnace described in.
  8.  前記炉本体は、
     前記炉底からさらに下方に向かって凹む排出用凹部と、
     前記排出用凹部と外部とを連通させる排出路と、
     前記排出路を開閉する開閉部と、
    をさらに備える請求項1から7のいずれか一項に記載の電解製錬炉。
    The furnace body
    A discharge recess that dents further downward from the bottom of the furnace,
    A discharge path that communicates the discharge recess with the outside,
    An opening / closing part that opens / closes the discharge path,
    The electrolytic refining furnace according to any one of claims 1 to 7, further comprising.
  9.  前記排出路は、前記排出用凹部の底面よりも上方に設けられ、該排出用凹部における前記排出路よりも下方の部分には、該下方の部分を外側から覆う外周加熱装置が設けられている請求項8に記載の電解製錬炉。 The discharge passage is provided above the bottom surface of the discharge recess, and a portion of the discharge recess below the discharge passage is provided with an outer peripheral heating device that covers the lower portion from the outside. The electrolytic refining furnace according to claim 8.
  10.  前記排出路に設けられ、該排出路を流通する前記溶融鉄鉱石、又は導電性を有するとともに流路を形成する耐火材を加熱することで粘性を変化させる排出路加熱部をさらに備える請求項8又は9に記載の電解製錬炉。 8. Claim 8 further comprising a discharge passage heating portion provided in the discharge passage and changing the viscosity by heating the molten iron ore flowing through the discharge passage or a refractory material having conductivity and forming a flow path. Or the electrolytic refining furnace according to 9.
  11.  前記炉本体の側壁を貫通するスラグ排出路と、
     該スラグ排出路に設けられ、該スラグ排出路を流通するスラグ、又は導電性を有するとともに流路を形成する耐火材を加熱することで粘性を変化させるスラグ排出路加熱部をさらに備える請求項8から10のいずれか一項に記載の電解製錬炉。
    A slag discharge path penetrating the side wall of the furnace body and
    8. Claim 8 further comprising a slag discharge path heating unit provided in the slag discharge path and changing the viscosity by heating a slag flowing through the slag discharge path or a refractory material having conductivity and forming a flow path. The electrolytic refining furnace according to any one of 10 to 10.
  12.  前記炉本体は、外部から投入された前記鉄鉱石を該炉本体に導く投入部をさらに備え、
     前記炉底は、水平方向に前記投入部から前記排出用凹部に向かうに従って下方に向かって高さ位置が変化している請求項8から11のいずれか一項に記載の電解製錬炉。
    The furnace body further includes a charging section for guiding the iron ore charged from the outside to the furnace body.
    The electrolytic refining furnace according to any one of claims 8 to 11, wherein the height position of the furnace bottom changes downward from the charging portion toward the discharging recess in the horizontal direction.
  13.  前記排出路は、前記排出用凹部の底面に設けられ、
     前記炉本体は、前記底面から上方に向かって前記溶融鉄鉱石中にガスを供給する撹拌ガス供給部をさらに備える請求項8に記載の電解製錬炉。
    The discharge path is provided on the bottom surface of the discharge recess.
    The electrorefining furnace according to claim 8, wherein the furnace body further includes a stirring gas supply unit that supplies gas into the molten iron ore upward from the bottom surface.
  14.  該炉本体の上方、及び下方の少なくとも一方に設けられ、前記溶融鉄鉱石を保温する補助加熱部をさらに備える請求項1から13のいずれか一項に記載の電解製錬炉。 The electrolytic refining furnace according to any one of claims 1 to 13, which is provided on at least one of the upper side and the lower side of the furnace body and further includes an auxiliary heating unit for keeping the molten iron ore warm.
  15.  前記上部電極と前記溶融鉄鉱石の上面との間の離間距離を検出する離間距離検出部と、
     前記離間距離が予め定められた一定値となるように前記上部電極を上下方向に移動させる電極移動部と、をさらに備える請求項1から14のいずれか一項に記載の電解製錬炉。
    A separation distance detection unit that detects the separation distance between the upper electrode and the upper surface of the molten iron ore,
    The electrolytic refining furnace according to any one of claims 1 to 14, further comprising an electrode moving portion for moving the upper electrode in the vertical direction so that the separation distance becomes a predetermined constant value.
  16.  内部に空間が形成されているチャンバと、
     前記空間を真空状態とする真空ポンプと、
    をさらに備え、
     前記上部電極には、該上部電極を上下方向に貫通するとともに前記空間に連通する貫通孔が形成されている請求項1から15のいずれか一項に記載の電解製錬炉。
    A chamber with a space inside and
    A vacuum pump that creates a vacuum in the space,
    With more
    The electrorefining furnace according to any one of claims 1 to 15, wherein the upper electrode is formed with a through hole that penetrates the upper electrode in the vertical direction and communicates with the space.
  17.  前記上部電極同士の間に上方からガスを供給することで、該上部電極同士の間に浮遊する前記鉄鉱石を沈降させる沈降ガス供給部をさらに備える請求項1から16のいずれか一項に記載の電解製錬炉。 The invention according to any one of claims 1 to 16, further comprising a sedimentation gas supply unit for sedimenting the iron ore floating between the upper electrodes by supplying gas between the upper electrodes from above. Electrorefining furnace.
  18.  前記上部電極同士の間に設けられ、前記炉本体内に向かって進退動することで、該上部電極同士の間に浮遊する前記鉄鉱石を沈降させる沈降機構部をさらに備える請求項1から17のいずれか一項に記載の電解製錬炉。 Claims 1 to 17 further include a settling mechanism portion provided between the upper electrodes and advancing and retreating toward the inside of the furnace body to settle the iron ore floating between the upper electrodes. The electrolytic refining furnace according to any one item.
  19.  鉄鉱石が導入される炉本体と、
     該炉本体内の炉底に設けられた炉底電極と、
     該炉本体内の炉底電極の上方に設けられた複数の上部電極と、を備え、
     前記炉本体は、
     前記炉底からさらに下方に向かって凹む排出用凹部と、
     前記排出用凹部と外部とを連通させる排出路と、
     前記排出路を開閉する開閉部と、
    を備える電解製錬炉。
    The main body of the furnace where iron ore is introduced and
    The bottom electrode provided on the bottom of the furnace body and
    A plurality of upper electrodes provided above the bottom electrodes in the furnace body are provided.
    The furnace body
    A discharge recess that dents further downward from the bottom of the furnace,
    A discharge path that communicates the discharge recess with the outside,
    An opening / closing part that opens / closes the discharge path,
    Electrorefining furnace equipped with.
PCT/JP2020/001711 2019-06-21 2020-01-20 Electrolytic smelter WO2020255465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080044047.1A CN114040987B (en) 2019-06-21 2020-01-20 Electrolytic smelting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-115566 2019-06-21
JP2019115566A JP7377633B2 (en) 2019-06-21 2019-06-21 electrolytic smelting furnace

Publications (1)

Publication Number Publication Date
WO2020255465A1 true WO2020255465A1 (en) 2020-12-24

Family

ID=73993799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001711 WO2020255465A1 (en) 2019-06-21 2020-01-20 Electrolytic smelter

Country Status (3)

Country Link
JP (1) JP7377633B2 (en)
CN (1) CN114040987B (en)
WO (1) WO2020255465A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373361B2 (en) * 2019-11-07 2023-11-02 三菱重工業株式会社 Electrolytic smelting furnace and electrolytic smelting method
JP7469613B2 (en) 2020-03-02 2024-04-17 日本製鉄株式会社 Plasma heating device and plasma heating method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910401B1 (en) * 1965-06-09 1974-03-11
JPS5719341A (en) * 1980-05-29 1982-02-01 Asea Ab Apparatus for melt reducing powdery metal oxide
JPS57164996A (en) * 1981-04-01 1982-10-09 Mitsubishi Keikinzoku Kogyo Kk Controlling method for aluminum electrolyzing cell
US4462878A (en) * 1981-12-01 1984-07-31 Iso "Metalurgkomplekt" Method of treating and refining liquid metal alloys by direct current electric arc heating
JPS60208489A (en) * 1984-04-03 1985-10-21 Nippon Mining Co Ltd Method for recovering valuable metal from copper slag
JPS60248812A (en) * 1984-05-23 1985-12-09 Daido Steel Co Ltd Method and apparatus for melting scrap
JPH0237281A (en) * 1988-07-25 1990-02-07 Kubota Ltd Method of starting electric furnace
JPH05125460A (en) * 1991-09-06 1993-05-21 Manyou Hozen Kenkyusho:Kk Apparatus and method for treating metal material
JP2000219990A (en) * 1999-01-29 2000-08-08 Metal Mining Agency Of Japan Electrolytic reducing device
JP2001107278A (en) * 1999-10-08 2001-04-17 Nkk Corp Method and device for treating harmful metal- contaiining salts
JP2001508130A (en) * 1997-01-06 2001-06-19 トラスティーズ オブ ボストン ユニバーシティー Metal extraction method and apparatus, and related sensor apparatus
JP2008280594A (en) * 2007-05-11 2008-11-20 Sumitomo Electric Ind Ltd Metal refining method
US20120043220A1 (en) * 2010-08-23 2012-02-23 Massachusetts Institute Of Technology Extraction of liquid elements by electrolysis of oxides
JP2021006103A (en) * 2019-06-27 2021-01-21 株式会社大一商会 Game machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9401065D0 (en) * 1993-12-27 1994-03-30 W & E Umwelttechnik Ag Method and apparatus for the treatment of ash
JPH0889924A (en) * 1994-09-21 1996-04-09 Ishikawajima Harima Heavy Ind Co Ltd Melting device for fly ash or the like
JP2957157B2 (en) * 1998-02-18 1999-10-04 金属鉱業事業団 Electrolytic reduction device
JP2006292333A (en) * 2005-04-14 2006-10-26 Babcock Hitachi Kk Operation method of plasma type melting furnace and plasma type melting furnace

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910401B1 (en) * 1965-06-09 1974-03-11
JPS5719341A (en) * 1980-05-29 1982-02-01 Asea Ab Apparatus for melt reducing powdery metal oxide
JPS57164996A (en) * 1981-04-01 1982-10-09 Mitsubishi Keikinzoku Kogyo Kk Controlling method for aluminum electrolyzing cell
US4462878A (en) * 1981-12-01 1984-07-31 Iso "Metalurgkomplekt" Method of treating and refining liquid metal alloys by direct current electric arc heating
JPS60208489A (en) * 1984-04-03 1985-10-21 Nippon Mining Co Ltd Method for recovering valuable metal from copper slag
JPS60248812A (en) * 1984-05-23 1985-12-09 Daido Steel Co Ltd Method and apparatus for melting scrap
JPH0237281A (en) * 1988-07-25 1990-02-07 Kubota Ltd Method of starting electric furnace
JPH05125460A (en) * 1991-09-06 1993-05-21 Manyou Hozen Kenkyusho:Kk Apparatus and method for treating metal material
JP2001508130A (en) * 1997-01-06 2001-06-19 トラスティーズ オブ ボストン ユニバーシティー Metal extraction method and apparatus, and related sensor apparatus
JP2000219990A (en) * 1999-01-29 2000-08-08 Metal Mining Agency Of Japan Electrolytic reducing device
JP2001107278A (en) * 1999-10-08 2001-04-17 Nkk Corp Method and device for treating harmful metal- contaiining salts
JP2008280594A (en) * 2007-05-11 2008-11-20 Sumitomo Electric Ind Ltd Metal refining method
US20120043220A1 (en) * 2010-08-23 2012-02-23 Massachusetts Institute Of Technology Extraction of liquid elements by electrolysis of oxides
JP2021006103A (en) * 2019-06-27 2021-01-21 株式会社大一商会 Game machine

Also Published As

Publication number Publication date
CN114040987A (en) 2022-02-11
CN114040987B (en) 2023-02-28
JP2021001368A (en) 2021-01-07
JP7377633B2 (en) 2023-11-10

Similar Documents

Publication Publication Date Title
WO2020255465A1 (en) Electrolytic smelter
SK341992A3 (en) Electric arc furnace arrangement for producing steel
RU2579410C2 (en) Electric arc furnace and method of its operation
EP2799799A1 (en) Arc furnace
US20080298425A1 (en) Method and apparatus for melting metals using both alternating current and direct current
US4139722A (en) Electric induction heating furnace
US4032704A (en) Method and apparatus for treating a metal melt
TW524853B (en) Bottom pour electroslag refining systems and methods
JPS58113309A (en) Steel producer
EP0646757B1 (en) Dc arc furnace
WO2021090546A1 (en) Electrolytic smelting furnace and electrolytic smelting method
SK4682001A3 (en) Direct-current arc furnace comprising a centric charging shaft for producing steel and a method therefor
US20230175780A1 (en) Electric arc furnace
US5738823A (en) Meltdown apparatus
WO2020255475A1 (en) Electrolytic smelting furnace
JP6834554B2 (en) How to heat molten steel in tundish
RU2828265C2 (en) Electric furnace and method of steel production
AU2004263608A1 (en) Method of charging fine-grained metals into an electric-arc furnace
WO2024185211A1 (en) Molten-iron production method
US3736359A (en) Electric furnace
JP7388563B2 (en) Electric furnace and steel manufacturing method
RU2360975C2 (en) Method of direct reduction of iron and device for its implementation (versions)
JPH0361318B2 (en)
KR20240016791A (en) Electric furnace
JP3505065B2 (en) Plasma melting furnace and operating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827322

Country of ref document: EP

Kind code of ref document: A1