JP2008279376A - Voc冷却回収装置 - Google Patents

Voc冷却回収装置 Download PDF

Info

Publication number
JP2008279376A
JP2008279376A JP2007126502A JP2007126502A JP2008279376A JP 2008279376 A JP2008279376 A JP 2008279376A JP 2007126502 A JP2007126502 A JP 2007126502A JP 2007126502 A JP2007126502 A JP 2007126502A JP 2008279376 A JP2008279376 A JP 2008279376A
Authority
JP
Japan
Prior art keywords
voc
gas
precooler
recovery
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007126502A
Other languages
English (en)
Inventor
Koichi Ota
浩一 太田
Masuo Yoshioka
万寿男 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2007126502A priority Critical patent/JP2008279376A/ja
Publication of JP2008279376A publication Critical patent/JP2008279376A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Treating Waste Gases (AREA)

Abstract

【課題】小型の装置であっても効率よくVOCを凝縮液化できる回収装置を提供する。
【解決手段】高温側回路33と低温側回路34とがカスケードコンデンサ36を介して熱的に接続されてなる二元冷凍機32と、高温側回路33の蒸発器46が配置されるプレクーラー60と、低温側回路34の蒸発器56が配置されるメインクーラー62と、プレクーラー60へVOCガスを導入させるガス導入管64と、プレクーラー60からメインクーラー62へVOCガスを流通させるガス流通管67と、メインクーラー62からガスを排出させるガス排出管71と、プレクーラー60及びメインクーラー62の下部に設けられたドレンポート72,74と、プレクーラー60及びメインクーラー62の各ドレンポート72,74に接続され、ドレン回収管76,77を介して回収したVOCを貯留する回収槽78とを具備する。
【選択図】図1

Description

本発明は、揮発性有機化合物(VOC)が気体となっている場合において、このVOCガスを液化して回収するための冷却回収装置に関する。
VOCは、揮発性を有しており大気中で気体状となる有機化合物であり、トルエン、キシレン、酢酸エチル、デカン等様々な物質が該当する。
気体状となったVOCを含むVOCガスは、塗装関係の施設、接着剤を乾燥させる施設、印刷関係の施設、化学製品の製造施設、工業用洗浄施設など様々な施設において排出されている。しかしながらVOCは、浮遊粒子状物質(SPM)や、光化学オキシダントの原因物質であり、大気汚染防止の観点から、近年その排出が抑制されるように求められている。
そこで、排出されるVOCガスを回収するために、VOCガスを冷却して凝縮液化させるためのガス回収装置が従来より知られている(例えば、特許文献1及び特許文献2参照)。
以下、図3に基づいて、特許文献1及び特許文献2に示されているようなガス回収装置の構成を説明する。
ガス回収装置10は、密閉容器として構成された冷却装置11と、冷凍機12とを有している。回収すべきガスは流通管13を流通して冷却装置11の内部に導入される。冷却装置11内には第1コイル14及び第2コイル15の2つのコイルが配置されている。
冷凍機12には、冷媒が流通する冷媒流通管17に圧縮機16と、凝縮器18とが設けられている。また、凝縮器18と第1のコイル14との間には、膨張器19が設けられており、凝縮器18から延出される冷媒流通管17は、膨張器19の手前で分岐して分岐管21が接続されており、分岐管21には、膨張器20と第2コイル15が設けられている。
第2コイル15の下流側の分岐管21はエジェクタ22の吸引部に接続されており、第2コイル15はエジェクタ22により負圧となり、第1コイル14よりも低温となる。
実開平6−29603号公報(図2等) 特開平7−260345号公報(図2等)
上述したような従来のガス回収装置では、同一の密閉容器内で異なる2つの温度のコイルで冷却しており、VOCの凝縮液化が効率よく行えないという課題があった。
また、従来のガス回収装置では、VOCの凝縮液化を効率よく行うためにVOCガスを予め圧縮させて高濃度にしておくために冷却装置よりも前段にコンプレッサを設けることが必要であり、装置が大型化してしまうという課題もあった。
そこで本発明は上記課題を解決すべくなされ、その目的とするところは、小型の装置であっても効率よくVOCを凝縮液化できる回収装置を提供することにある。
すなわち、本発明にかかるVOC冷却回収装置は、気体となっているVOCを含むVOCガスから、VOCを液化させて回収するVOC冷却回収装置であって、第1の冷媒で冷却される高温側回路と第2の冷媒で冷却される低温側回路とがカスケードコンデンサを介して熱的に接続されてなる二元冷凍機と、第1の密閉容器内に前記高温側回路の蒸発器が配置されてなり、導入されるVOCガスを予備冷却するプレクーラーと、第2の密閉容器内に前記低温側回路の蒸発器が配置されてなり、予備冷却されたVOCガスを冷却するメインクーラーと、前記プレクーラーへVOCガスを導入させるガス導入管と、前記プレクーラー内で予備冷却されて排出されたVOCガスを前記メインクーラーへ導入させるガス流通管と、前記メインクーラーでVOCが回収された残りのガスをメインクーラーから排出させるガス排出管と、前記プレクーラー及び前記メインクーラーの下部に設けられたドレンポートと、前記プレクーラー及び前記メインクーラーの各ドレンポートに接続され、前記プレクーラー及び前記メインクーラーにおいて液化されたVOCを流通させるドレン回収管と、該ドレン回収管に接続されており、回収したVOCを貯留する回収槽とを具備することを特徴としている。
この構成を採用することによって、二元冷凍機を用いて高温側回路のプレクーラーで予備冷却したのちにさらに低温のメインクーラーで冷却させるので、効率よくVOCを凝縮液化させることができる。
また、前記プレクーラーにデフロスト用エアを導入させるためのデフロスト用エア導入管が設けられていることを特徴としてもよい。
この構成による作用は以下の通りである。
すなわち、プレクーラー内にはVOCガスの冷却に伴ってVOCガス中に含まれる水分が霜となって付着するが、この霜を取らなければ高温側蒸発器の効率が悪くなる。したがって、所定時間おきにプレクーラー内の霜を取る作業(デフロスト)を行う必要が生じる。そこで、デフロスト用エアを導入させるようにすることにより、高温側蒸発器における冷却効率を高めることができる。
前記デフロスト用エア導入管は、前記ガス導入管と兼用して設けられていることを特徴としてもよい。
このように、プレクーラーへ導入される管路を1本だけ設けて、VOCガスの導入時にはVOCガスを流通させ、デフロスト時にはデフロスト用エアを流通させることができるので、装置をコンパクトな構成とすることができる。
さらに、デフロスト時において、デフロスト用エアが、前記プレクーラー及び前記メインクーラーの各ドレンポートと各ドレン回収管を経て前記回収槽内にパージされるように、前記ガス排出管の排気出口を閉塞する、出口閉塞バルブが設けられ、前記回収槽には、回収槽内のエアを排気するための排気口が設けられ、該排気口には、パージされたデフロスト用エアに含まれるVOCを浄化して排気口から排気できるように触媒が設けられていることを特徴としてもよい。
この構成を採用することによる作用は以下の通りである。
プレクーラーに付着する霜や、VOCガス回収後のプレクーラー及びメインクーラー内には、VOCが含まれている。したがって、デフロストの際にプレクーラー及びメインクーラーを通過したデフロスト用ガスにもVOCが混入してしまい、デフロスト用エアをそのまま排気してしまうと、VOCの排出抑制という目的が達成出来ない。そこで、デフロスト用エアを回収槽で全て回収して触媒にてVOC成分を除去してから排出する構成にしたので、VOCの排出を抑制することができる。
また、前記ガス導入管と、前記プレクーラーと、前記ガス流通管と、前記メインクーラーと、前記ガス排出管とから構成されるVOC回収ユニットが複数系統設けられており、各VOC回収ユニットの間で、VOCガス回収動作とデフロスト動作とを切り換えて実行可能に設けられていることを特徴としている。
この構成による作用は以下の通りである。
つまりデフロストの方法としては、運転を停止して常温で霜を溶かす方法があるが、その間VOCガスの処理ができなくなるので、運転を停止することは好ましくないし、たとえ運転を停止するとしても停止時間をなるべく短くしたいという要望がある。また停止時間を短くするためには、ヒーターデフロストや、ホットガスデフロストなどの方法があるが、これらの方法では爆発の危険性があるため採用は困難である。そこで、上記のような構成を採用することで、VOC回収ユニットのいずれかをVOCの回収に用い、他のVOC回収ユニットはデフロストさせておくことができる。つまり、プレクーラー及びメインクーラーをそれぞれ複数台設けることにより、VOCガスの回収とデフロストを交互に実行させることができるので、装置運転を全く停止させることなくデフロストを行える。
本発明にかかるVOC冷却回収装置によれば、二元冷凍機を用いて高温側回路で予備冷却したのちにさらに低温で冷却させるので、効率よくVOCを凝縮液化させることができる。また、VOCガスを予めコンプレッサで圧縮させなくてもよいので、装置全体の小型化を図ることができる。
以下、本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。
(第1の実施形態)
図1に本実施形態の全体構成を示す。
本実施形態のVOC冷却回収装置30は、二元冷凍機32を用いており、VOCガスを二元冷凍機32の高温側回路33で予備冷却したのちにさらに低温側回路34で冷却させることにより、効率よくVOCを凝縮液化できる。
まず、二元冷凍機32の構成について説明する。
二元冷凍機32は、高温側回路33と低温側回路34とがカスケードコンデンサ36によって熱的に接続されることにより構成されている。
高温側回路33は、高温側圧縮機(コンプレッサー)38と、高温側凝縮器40と、高温側減圧弁43と、カスケードコンデンサを構成する第1の高温側蒸発器44とを備えており、これらの各機器は高温側冷媒が流通する冷媒流通管45によって直列に接続されている。
高温側回路33の高温側凝縮器40の下流側には、冷媒ドライヤ50が設けられており、冷媒中の水分の除去を図っている。
また、高温側減圧弁43と第1の高温側蒸発器44との間には、冷媒流通管45を流通する冷媒の流量を調節する制御バルブ37が設けられている。
また、高温側回路33は、第1の高温側蒸発器44と並列となるように第2の高温側蒸発器46を設けている。第1の高温側蒸発器44と第2の高温側蒸発器46は、高温側圧縮機38及び高温側凝縮器40を共通に用いるようにしており、第2の高温側蒸発器46は、冷媒流通管45の高温側圧縮機38に接続している部位と、冷媒流通管45の高温側凝縮器40に接続している部位との間で分岐する分岐管49に設けられている。
分岐管49には第2の高温側減圧弁43が設けられている。分岐管49の高温側減圧弁43と第2の高温側蒸発器46の間には、分岐管49を流通する冷媒の流量を調節する制御バルブ39が設けられている。
本実施形態における高温側凝縮器40にはファン35が設けられており、ファンによって導入された外気によって冷媒が冷却されて凝縮されるように設けられている。
このような構成を有する高温側回路33では、高温における特性が優れた冷媒を使用している。
次に、低温側回路34の構成について説明する。
低温側回路34は、低温側圧縮機(コンプレッサー)51と、カスケードコンデンサ36を構成する低温側凝縮器52と、低温側減圧弁54と、低温側蒸発器56とを備えており、これらの各機器は低温側冷媒が流通する冷媒流通管55によって接続されている。また、低温側回路34の低温側凝縮器52の下流側には、冷媒ドライヤ57が設けられており、冷媒中の水分の除去を図っている。
また、低温側圧縮機51と低温側凝縮器52の間には、オイルセパレータ59が設けられている。オイルセパレータ59は、低温側圧縮機51から生じたオイルが他の機器へ流入しないように、オイルを分離して低温側圧縮機51に戻すようにしている。
カスケードコンデンサ36内には、カスケードコンデンサ36内の温度を検出する温度センサ53が設けられている。
温度センサ53には、制御部58が接続されている。制御部58は、高温側圧縮機38及び低温側圧縮機51の動作を制御可能に設けられており、検出したカスケードコンデンサ36内の温度が、予め設定しておいた所定の温度になるように制御する。具体的に、カスケードコンデンサ36内の温度は、―10℃程度になるように制御される。
続いてVOCガスの流通経路について説明する。
まず、高温側回路33の第1の高温側蒸発器46は、密閉容器内に配置され、VOCガスを予備冷却するプレクーラー60を構成する。VOCガスを予備冷却することで、VOCガス中に含まれる水分を霜として付着させることにより、水分を除去することができる。
低温側回路34の低温側蒸発器56も密閉容器内に配置され、VOCを液化させるメインクーラー62を構成する。
回収すべきVOCは、VOCの発生源(図示せず)に接続されているガス導入管64内を流通して、VOC冷却回収装置30内に導入されるように設けられる。ガス導入管64には、ブロワ66と制御バルブ68が設けられており、ブロワ66によってVOCガスをガス導入管64内に送り込むようにしている。ガス導入管64に送り込まれたVOCガスは、プレクーラー60内に導入され、予備冷却される。
プレクーラー60とメインクーラー62との間には、ガス流通管67が配設され、プレクーラー60で予備冷却されたVOCガスが、ガス流通管67を通ってメインクーラー62内へ導入される。
なお、メインクーラー62には、VOCが分離された残りのガスを排出するためのガス排出管71が配設されている。このように、VOCガスは、プレクーラー60とメインクーラー62の双方を通過して2段階にわたって冷却され、その後VOCが除去されてガス排出管71から排気される。また、ガス排出管71の端部には、排気出口65が設けられている。
さらに、ガス排出管71には、排気出口65を閉塞するための出口閉塞バルブ70が設けられている。
ガス流通管67の周囲には、周囲の温度を遮断して流通するVOCガスの低温状態を維持できるように、断熱部材91が設けられている。例えば、ガス流通管67の周囲に断熱材を巻き付けるようにして断熱部材91を構成しても良い。
なお、本実施形態では、ガス導入管64の一部とガス排出管71の一部にも断熱部材91を設けるようにし、さらに冷却効率を上げるようにしている。
プレクーラー60及びメインクーラー62のそれぞれの下部には、ドレンポート72、74が設けられている。ドレンポート72、74はドレン回収管76,77を介して回収槽78に接続されている。
プレクーラー60及びメインクーラー62でVOCが凝縮して液化すると、液化したVOCがドレン回収管76及びドレン回収管77を経由して回収槽78に貯留される。回収槽78には、回収槽78内の空気を排気する排気管79が設けられており、排気管79には排気フィルター80が取り付けられている。排気フィルター80は、VOCを分解する触媒等が用いられている。
なお、ガス導入管64には、デフロスト時にはデフロスト用エアを導入するようにするとよい。本実施形態におけるデフロスト用エアとしては通常の外気を採用する。
すなわち、ガス導入管64におけるプレクーラー60の上流側に、外気を導入させるための分岐管82を設け、分岐管82には分岐管82の開閉を行う制御バルブ84と、外気を送り込むためのブロワ86が設けられている。
以下、本実施形態におけるVOC冷却回収装置30の動作について説明する。
まず、VOC冷却回収装置30の動作前は、ガス導入管64の制御バルブ68と分岐管82の制御バルブ84は閉塞させておき、VOCガスもデフロスト用エアもガス導入管64には流入しないようにしておく。
それから、VOC冷却回収装置30の動作前は、制御バルブ37も閉塞させておき、最初はプレクーラー60が運転しないように設けておく。
最初に、高温側圧縮機38の電源を投入する。
高温側圧縮機38が動作すると、高温側回路33の冷媒が圧縮されて高温側凝縮器40に送り込まれ、高温側凝縮器40で圧力一定で冷媒が冷却されるとともに液化される。液化された冷媒は、高温側減圧弁43で膨張させられて沸点を下げ、カスケードコンデンサ36内の第1の高温側蒸発器44において、低温側回路34の低温側凝縮器52の熱を奪って蒸発する。
次いで、高温側圧縮機38の電源を投入してから所定時間経過後に、低温側回路34において低温側圧縮機51の電源を投入する。
すると、低温側回路34の冷媒が圧縮されて低温側凝縮器52に送り込まれ、高温側蒸発器44との間で熱交換されて圧力一定で冷媒が冷却されるとともに液化される。
液化された冷媒は、低温側減圧弁54で膨張させられて沸点を下げる。低温側蒸発器56においては、冷媒がメインクーラー62内の熱を奪って蒸発する。そして、蒸発して気化した冷媒は低温側圧縮機51内に流入する。
カスケードコンデンサ36内の温度が−10℃になったことを制御部58が検出した場合には、制御部58は制御バルブ37を開いてプレクーラー60側の分岐管49に冷媒を流す。液化された冷媒は、分岐管49の高温側減圧弁43で膨張させられて沸点を下げ、第2の高温側蒸発器46において、プレクーラー60内の熱を奪って蒸発する。
これとともに制御部58は、制御バルブ39の開度を調整して、カスケードコンデンサ36内の温度が一定になるよう、冷媒がプレクーラー60側へ流れる量と、冷媒がカスケードコンデンサ36へ流れる量を配分する。
次いで、制御バルブ68を開くとともにブロワ66の運転を開始させることにより、VOCガスはガス導入管64を経てプレクーラー60内に流入する。
プレクーラー60内にVOCガスが流入すると、プレクーラー60内の第2の高温側蒸発器46では、高温側減圧弁43によって膨張させられて沸点を下げた冷媒が、ガス導入管64から導入されたVOCガスの熱を奪って蒸発する。なお、このときVOCガスに含まれる水分が霜となってプレクーラー60内に付着する。このため、水分が除去されて予備冷却されたVOCガスが、次のメインクーラー62へ導入される。
なお、このとき、プレクーラー60内の温度は、―10℃程度である。
プレクーラー60で予備冷却されたVOCガスは、ガス流通管67を通ってメインクーラー62へ導入される。
メインクーラー62内にVOCガスが流入すると、メインクーラー62内の低温側蒸発器56では、低温側減圧弁54によって膨張させられて沸点を下げた冷媒が、ガス流通管67から導入されたVOCガスの熱を奪って蒸発する。
なお、このとき、メインクーラー62内の温度は、−55〜−65℃程度である。
このようにして、VOCガスはプレクーラー60とメインクーラー62内で冷却され、凝縮して液化される。液化したVOCは、プレクーラー60内部及びメインクーラー62内部の下部に溜まる。プレクーラー60とメインクーラー62の下部にはドレンポート72,74が設けられているので、液化したVOCはドレンポート72,74からドレン回収管76、77を通って回収槽78内に流れ出て、回収される。
なお、VOC冷却回収動作を連続して実行していると、特にプレクーラー60内に付着した霜を除去するデフロストを行う必要が生じる。冷却効率を上げるには、およそ8時間程度おきにデフロストを行う必要がある。
デフロストの際には、高温側圧縮機38と低温側圧縮機51の電源をオフにして冷凍サイクルを停止させる。そして、制御バルブ68を閉じてVOCガスがVOCガス導入管64内に流入するのを防止し、且つ制御バルブ84を開いてデフロスト用エアである外気をガス導入管64内に流入させる。さらに、ガス排出管71の先端部の排気出口65の出口閉塞バルブ70を閉じる。
このようにしてデフロストを実行すると、プレクーラー60内の霜が溶けて水分が液化するが、この液化した水分がドレン回収管76を通って回収槽78内に回収される。さらに、排気出口65が閉塞されるので、デフロスト用エアも排気出口65からは排出されず、ドレン回収管76,77を通って回収槽78内に回収される。
回収槽78では、回収されたデフロスト用エアが排気フィルター80を通って、VOCが回収されて外部へ排気される。
すなわち、デフロストの際には、プレクーラー60やメインクーラー62内に残留していたVOCがデフロスト用ガスと一緒に排出されてくるので、これをガス排出管71の先端部の排気出口65から出てしまわないようにし、回収槽78で回収することができる。
(第2の実施形態)
次に、本発明の第2の実施形態について、図2に基づいて説明する。
なお、上述した第1の実施形態と同一の構成要素については同一の符号を付し、説明を省略する場合もある。
VOC冷却回収装置の第2の実施形態は、プレクーラー及びメインクーラーをそれぞれ2台ずつ設け、VOCの回収とデフロストとを交互に実行できるように設けた点に特徴がある。
第2の実施形態のVOC冷却回収装置90における高温側回路33には、高温側蒸発器が3台並列に接続されており、そのうちの1台がカスケードコンデンサ36を構成する第1の高温側蒸発器44である。他の2台は、それぞれが密閉容器内に配置されてプレクーラー60a,60bを構成する2台の第2の高温側蒸発器46a,46bである。
第2の高温側蒸発器46a,46bは、それぞれが分岐管49a,49bによって冷媒流通管45から分岐して設けられ、またそれぞれが交互に運転できるように設けられ、各分岐管49a,49bには、分岐管49a,49b内の冷媒の流通を制御するための制御バルブ37a,37bが設けられている。
また、各プレクーラー60a,60bに設けられた各ドレンポート72a,72bには、回収槽78に連通されるドレン回収管76a,76bが接続されている。
また、低温側回路34においては、2台の低温側蒸発器56a,56bが並列に設けられており、それぞれが密閉容器内に配置されてメインクーラー62a,62bを構成している。
2台の低温側蒸発器56a,56bのうち、いずれかの低温側蒸発器56aは、冷媒流通管55から分岐管94aによって分岐して設けられ、またそれぞれが交互に運転できるように設けられている。このため冷媒流通管55と分岐管94aには、冷媒流通管55と分岐管94a内の冷媒の流通を制御するための制御バルブ96a,96bが設けられている。
また、メインクーラー62a,62bに設けられた各ドレンポート74a,74bには、回収槽78に連通されるドレン回収管77a,77bが接続されている。
ドレン回収管76a,76b,77a,77bは、プレクーラー60a,60b及びメインクーラー62a,62bで液化したVOCの回収に用いられるとともに、デフロスト時には、デフロスト用エアを回収槽78へ流通させる役割も有している。
本実施形態における、VOCガスをプレクーラーへ導入させるガス導入管110は、2系統設けられている。すなわち、VOCガスの発生源に接続された1本のガス導入管110が2本に分岐して2系統のガス導入管110a,110bを構成している。
分岐した一方がプレクーラー60aにVOCガスを導入する第1のガス導入管110aであり、分岐した他方がプレクーラー60bにVOCガスを導入する第2のガス導入管110bである。
第1のガス導入管110aの、プレクーラー60aよりも上流側には、逆止弁98aと、VOCガスの流通を制御する制御バルブ99aが設けられている。
第2のガス導入管110bの、プレクーラー60bよりも上流側には、逆止弁98bと、VOCガスの流通を制御する制御バルブ99bが設けられている。
本実施形態におけるデフロスト用エアは、各プレクーラー60a,60bまでは、ガス導入管110a,110bではなく、独立した配管を通るように設けられている。つまり、デフロスト用エアの導入口から延びる配管にブロワ86が設けられ、ブロワ86の下流では配管が2本に分岐している。2本に分岐した一方がプレクーラー60aにデフロスト用エアを導入するデフロスト用エア導入管100aであり、2本に分岐した他方がプレクーラー60bにデフロスト用エアを導入するデフロスト用エア導入管100bである。
デフロスト用エア導入管100aのプレクーラー60aよりも上流側には、逆止弁102aと、デフロスト用エアの流通を制御する制御バルブ104aが設けられている。
また、デフロスト用エア導入管100bのプレクーラー60bよりも上流側には、逆止弁102bと、デフロスト用エアの流通を制御する制御バルブ104bが設けられている。
プレクーラー60aとメインクーラー62aとの間は、VOCガスとデフロスト用エアが共通で流通するガス流通管106aが配管されている。
同様に、プレクーラー60bとメインクーラー62bとの間は、VOCガスとデフロスト用エアが共通で流通可能なガス流通管106bが配管されている。
メインクーラー62aには、メインクーラー62aを通過してVOCガスが回収された回収後のガスを排気するガス排出管108aが接続されている。ガス排出管108aには、ガス排出管108aの先端部に形成された排気出口65aを閉塞可能な閉塞バルブ70aが設けられている。
同様にメインクーラー62bにも、メインクーラー62bを通過してVOCガスが回収された回収後のガスを排気するガス排出管108bが接続されている。ガス排出管108bには、ガス排出管108bの先端部に形成された排気出口65bを閉塞可能な閉塞バルブ70bが設けられている。
このように、本実施形態では、プレクーラー60aとメインクーラー62aを連結させたガス回収ユニットと、プレクーラー60bとメインクーラー62bを連結させたガス回収ユニットの2系統のVOCガスの流通経路が設けられ、それぞれVOCの回収とデフロストを実行できる。各ガス回収ユニットでVOCの回収とデフロストを交互に実行することにより、運転を停止させることなく、常にVOCの回収処理を行うことができる。
続いて、第2の実施形態におけるVOC冷却回収装置90の動作について説明する。
まず、VOC冷却回収装置90の動作前は、ガス導入管110a,110bの各制御バルブ99a,99bは閉塞させておき、またデフロスト用エア導入管100a,100bの各制御バルブ104a,104bも閉塞させておく。
それから、VOC冷却回収装置30の動作前は、各制御バルブ37a,37bも閉塞させておき、最初はプレクーラー60a,60bが運転しないように設けておく。
さらに低温側回路34の制御バルブ96a,96bのうちいずれか一方を開いておき、他方を閉じておく。ここでは、制御バルブ96aを開いておくものとする。
最初に、高温側圧縮機38の電源を投入する。
高温側圧縮機38が動作すると、高温側回路33の冷媒が圧縮されて高温側凝縮器40に送り込まれ、高温側凝縮器40で圧力一定で冷媒が冷却されるとともに液化される。液化された冷媒は、高温側減圧弁43で膨張させられて沸点を下げ、カスケードコンデンサ36内の第1の高温側蒸発器44において、低温側回路34の低温側凝縮器52の熱を奪って蒸発する。
次いで、高温側圧縮機38の電源を投入してから所定時間経過後に、低温側回路34において低温側圧縮機51の電源を投入する。
すると、低温側回路34の冷媒が圧縮されて低温側凝縮器52に送り込まれ、高温側蒸発器44との間で熱交換されて圧力一定で冷媒が冷却されるとともに液化される。
液化された冷媒は、低温側減圧弁54で膨張させられて沸点を下げる。そして開いている制御バルブ96aに連通する低温側蒸発器56aに冷媒が流通し、メインクーラー62内の熱を奪って蒸発する。そして、蒸発して気化した冷媒は低温側圧縮機51内に流入する。
カスケードコンデンサ36内の温度が−10℃になったことを制御部58が検出した場合には、制御部58は、動作しているメインクーラー62aに接続されているプレクーラー60aの制御バルブ37aを開いて、プレクーラー60a側の分岐管49aに冷媒を流す。液化された冷媒は、分岐管49aの高温側減圧弁43aで膨張させられて沸点を下げ、第2の高温側蒸発器46aにおいて、プレクーラー60a内の熱を奪って蒸発する。
これとともに制御部58は、制御バルブ39の開度を調整して、カスケードコンデンサ36内の温度が一定になるよう、冷媒がプレクーラー60a側へ流れる量と、冷媒がカスケードコンデンサ36へ流れる量を配分する。
次いで、制御バルブ99aを開くとともにブロワ(図示せず)の運転を開始させることにより、VOCガスはガス導入管110aを経てプレクーラー60a内に流入する。
プレクーラー60a内にVOCガスが流入すると、プレクーラー60a内の第2の高温側蒸発器46aでは、高温側減圧弁43aによって膨張させられて沸点を下げた冷媒が、ガス導入管110aから導入されたVOCガスの熱を奪って蒸発する。なお、このときVOCガスに含まれる水分が霜となってプレクーラー60a内に付着する。このため、水分が除去されて予備冷却されたVOCガスが、次のメインクーラー62aへ導入される。
なお、このとき、プレクーラー60a内の温度は、―10℃程度である。
プレクーラー60aで予備冷却されたVOCガスは、ガス流通管106a通ってメインクーラー62aへ導入される。
メインクーラー62a内にVOCガスが流入すると、メインクーラー62a内の低温側蒸発器56aでは、低温側減圧弁54によって膨張させられて沸点を下げた冷媒が、ガス流通管106aから導入されたVOCガスの熱を奪って蒸発する。
なお、このとき、メインクーラー62a内の温度は、−55〜−65℃程度である。
このようにして、VOCガスはプレクーラー60aとメインクーラー62a内で冷却され、凝縮して液化される。液化したVOCは、プレクーラー60a内部及びメインクーラー62a内部の下部に溜まる。プレクーラー60aとメインクーラー62aの下部にはドレンポート72a,74aが設けられているので、液化したVOCはドレンポート72a,74aからドレン回収管76a、77aを通って回収槽78内に流れ出て、回収される。
なお、VOC冷却回収動作を連続して実行していると、特にプレクーラー60内に付着した霜を除去するデフロストを行う必要が生じる。冷却効率を上げるには、およそ8時間おきにデフロストを行う必要がある。
したがって、デフロストの実行時刻になると、プレクーラー60aへの制御バルブ37aを閉じ、プレクーラー60bへの制御バルブ37bを開ける。これと同時に、VOCの導入も切り換えるためにガス導入管95aの制御バルブ99aを閉じ、ガス導入管95bの制御バルブ99bを開ける。すると高温側の冷媒は、プレクーラー60aへ流通せずにプレクーラー60bへ流通するようになり、プレクーラー60b内が冷却される。また、これとともに、プレクーラー60b内にVOCガスが導入され、予備冷却される。
さらに、低温側回路34もVOCガスの導入を切り換える。つまり、制御バルブ96aを閉じ、制御バルブ96bを開ける。すると、低温側の冷媒は、メインクーラー62aへ流通せずにメインクーラー62bへ流通するようになる。
また、プレクーラー60bで予備冷却されたVOCガスは、ガス流通管106bを通ってメインクーラー62b内に導入されてVOCが分離され、ガス排出管108bから排出される。
なお、今までVOCの回収に用いられていたVOC回収ユニットは、デフロストされる。すなわち、デフロスト用エア導入管100aの制御バルブ104aが開かれ、ブロワ86を作動させることで、デフロスト用エアが今までVOCの回収に使用されていたプレクーラー60a内に導入される。ここでは通常の外気をデフロスト用エアとして用いる。
デフロスト用エアが導入されたプレクーラー60a内では霜が溶け、溶けた霜がVOCを含んだ水となってドレンポート72aからドレン回収管76aを通って回収槽78へ回収される。
また、プレクーラー60aを通過したデフロスト用エアは、ガス流通管106aを通ってメインクーラー60a内に導入される。メインクーラー60a内では、ほとんど霜は付着していないが、多少の霜が付着しているので、その霜が溶け、溶けた霜がVOCを含んだ水となってドレンポート74aからドレン回収管77aを通って回収槽78へ回収される。
なお、デフロストが実行されると、メインクーラー62に設けられているガス排出管108aの出口閉塞バルブ70aは閉じられる。このため、デフロスト用エアは、ガス排出管108aからは排出されず、メインクーラー62aのドレンポート74aまたは、プレクーラー60aのドレンポート72aから排気される。このようにデフロスト用エアは、ドレン回収管76a,77aから回収槽78へ導入される。
回収槽78では、回収されたデフロスト用エアが排気フィルター80を通って、VOCが除去され、外部へ排気される。
なお、VOC回収ユニットのデフロストが終了した場合には、デフロスト用エアの導入を停止すべく、制御バルブ104aを閉じ、ブロワ86の運転を停止してもよい。この間も他のVOC回収ユニットは所定の時間が経過するまでVOCの回収動作を実行し続ける。
そして、所定時間経過後、VOCの回収を実行していたVOC回収ユニットの動作を停止させて、デフロスト用エアを送り込んでデフロストを実行する。さらに、デフロストを行ったVOC回収ユニットについてはVOCガスを導入させてVOCの回収動作を実行させる。
なお、上述してきたような各制御バルブの切り換え動作は、人手により行ってもよいし、制御部58が各制御バルブに制御信号を出力して自動的に制御するようにしてもよい。
上述した第2の実施形態では、プレクーラー及びメインクーラーをそれぞれ2台ずつ設けたものであるが、VOCの回収とデフロストとを交互に実行できるような構成であれば、2台ずつに限定するものではなく、複数台であればよい。
以上本発明につき好適な実施形態を挙げて種々説明したが、本発明はこの実施形態に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのはもちろんである。
本発明のVOC冷却回収装置の第1の実施形態の全体構成を示す説明図である。 本発明のVOC冷却回収装置の第2の実施形態の全体構成を示す説明図である。 従来のガス回収装置を示す説明図である。
符号の説明
30 冷却回収装置
32 二元冷凍機
33 高温側回路
34 低温側回路
35 ファン
36 カスケードコンデンサ
37 制御バルブ
38 高温側圧縮機
39 制御バルブ
40 高温側凝縮器
43 高温側減圧弁
44 第1の高温側蒸発器
45 冷媒流通管
46 第2の高温側蒸発器
49 分岐管
50 冷媒ドライヤ
51 低温側圧縮機
52 低温側凝縮器
53 温度センサ
54 低温側減圧弁
55 冷媒流通管
56 低温側蒸発器
57 冷媒ドライヤ
58 制御部
59 オイルセパレータ
60 プレクーラー
62 メインクーラー
64 ガス導入管
65 排気出口
66 ブロワ
67 ガス流通管
68 制御バルブ
70 出口閉塞バルブ
71 ガス排出管
72,74 ドレンポート
76,77 ドレン回収管
78 回収槽
79 排気管
80 排気フィルター
82 分岐管
84 制御バルブ
86 ブロワ
90 冷却回収装置
91 断熱部材
94 分岐管
95 ガス導入管
96 制御バルブ
98 逆止弁
99 制御バルブ
100 デフロスト用エア導入管
102 逆止弁
104 制御バルブ
106 ガス流通管
108 ガス排出管
110 ガス導入管

Claims (5)

  1. 気体となっているVOCを含むVOCガスから、VOCを液化させて回収するVOC冷却回収装置であって、
    第1の冷媒で冷却される高温側回路と第2の冷媒で冷却される低温側回路とがカスケードコンデンサを介して熱的に接続されてなる二元冷凍機と、
    第1の密閉容器内に前記高温側回路の蒸発器が配置されてなり、導入されるVOCガスを予備冷却するプレクーラーと、
    第2の密閉容器内に前記低温側回路の蒸発器が配置されてなり、予備冷却されたVOCガスを冷却するメインクーラーと、
    前記プレクーラーへVOCガスを導入させるガス導入管と、
    前記プレクーラー内で予備冷却されて排出されたVOCガスを前記メインクーラーへ導入させるガス流通管と、
    前記メインクーラーでVOCが回収された残りのガスをメインクーラーから排出させるガス排出管と、
    前記プレクーラー及び前記メインクーラーの下部に設けられたドレンポートと、
    前記プレクーラー及び前記メインクーラーの各ドレンポートに接続され、前記プレクーラー及び前記メインクーラーにおいて液化されたVOCを流通させるドレン回収管と、
    該ドレン回収管に接続されており、回収したVOCを貯留する回収槽とを具備することを特徴とするVOC冷却回収装置。
  2. 前記プレクーラーにデフロスト用エアを導入させるためのデフロスト用エア導入管が設けられていることを特徴とする請求項1記載のVOC冷却回収装置。
  3. 前記デフロスト用エア導入管は、前記ガス導入管と兼用して設けられていることを特徴とする請求項2記載のVOC冷却回収装置。
  4. デフロスト時において、デフロスト用エアが、前記プレクーラー及び前記メインクーラーの各ドレンポートと各ドレン回収管を経て前記回収槽内にパージされるように、前記ガス排出管の排気出口を閉塞する、出口閉塞バルブが設けられ、
    前記回収槽には、回収槽内のエアを排気するための排気口が設けられ、
    該排気口には、パージされたデフロスト用エアに含まれるVOCを浄化して排気口から排気できるように触媒が設けられていることを特徴とする請求項1〜請求項3のうちのいずれか1項記載のVOC冷却回収装置。
  5. 前記ガス導入管と、前記プレクーラーと、前記ガス流通管と、前記メインクーラーと、前記ガス排出管とから構成されるVOC回収ユニットが複数系統設けられており、
    各VOC回収ユニットの間で、VOCガス回収動作とデフロスト動作とを切り換えて実行可能に設けられていることを特徴とする請求項1〜請求項4のうちのいずれか1項記載のVOC冷却回収装置。
JP2007126502A 2007-05-11 2007-05-11 Voc冷却回収装置 Pending JP2008279376A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126502A JP2008279376A (ja) 2007-05-11 2007-05-11 Voc冷却回収装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126502A JP2008279376A (ja) 2007-05-11 2007-05-11 Voc冷却回収装置

Publications (1)

Publication Number Publication Date
JP2008279376A true JP2008279376A (ja) 2008-11-20

Family

ID=40140657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126502A Pending JP2008279376A (ja) 2007-05-11 2007-05-11 Voc冷却回収装置

Country Status (1)

Country Link
JP (1) JP2008279376A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112755716A (zh) * 2020-12-01 2021-05-07 威特龙消防安全集团股份公司 一种在线分析用尾气净化方法及装置
CN114470848A (zh) * 2022-01-24 2022-05-13 广东申菱环境系统股份有限公司 一种冷凝油气回收系统及除霜方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112755716A (zh) * 2020-12-01 2021-05-07 威特龙消防安全集团股份公司 一种在线分析用尾气净化方法及装置
CN114470848A (zh) * 2022-01-24 2022-05-13 广东申菱环境系统股份有限公司 一种冷凝油气回收系统及除霜方法

Similar Documents

Publication Publication Date Title
US10393432B2 (en) Configurations and methods of CO2 capture from flue gas by cryogenic desublimation
CN106714937B (zh) 用于被压缩空气的冷却干燥器和对应的方法
JP4786591B2 (ja) Voc冷却回収装置
TW201248099A (en) Cryogenic CO2 separation using a refrigeration system
FR2756368A1 (fr) Procede et installation pour l'alimentation pour un appareil de separation d'air
KR20200113160A (ko) 가스 살균제 회수 및 정제 방법 및 시스템
US20100281917A1 (en) Apparatus and Method for Condensing Contaminants for a Cryogenic System
EA023306B1 (ru) Способ удаления из текучей среды конденсирующихся компонентов
WO2014199797A1 (ja) 不純物除去システム
JP4786593B2 (ja) Voc冷却回収装置
JP2008279377A (ja) Voc冷却回収装置
JP2008279376A (ja) Voc冷却回収装置
JP4786592B2 (ja) Voc冷却回収装置
JPH04326901A (ja) 溶剤回収装置
CN102767987B (zh) 一种解决主换热器堵塞的方法
US11819800B2 (en) Method and system for recovering and purifying a gaseous sterilizing agent
EP0833119B1 (fr) Procédé et installation pour l'alimentation pour un appareil de séparation d'air
CN210613279U (zh) 转轮式自除霜冷凝装置
JP2008279378A (ja) Voc冷却回収装置
JPH0515725A (ja) 溶剤濃縮回収装置
JPH0515724A (ja) 溶剤濃縮回収装置
JP2003004346A (ja) 冷却装置
JP2009208037A (ja) 溶剤の回収装置
TW201314153A (zh) 用於低溫分離二氧化碳之熱整合
JP2019126775A (ja) 溶剤回収装置及び溶剤回収システム