JP2008277838A - High-frequency module - Google Patents

High-frequency module Download PDF

Info

Publication number
JP2008277838A
JP2008277838A JP2008133171A JP2008133171A JP2008277838A JP 2008277838 A JP2008277838 A JP 2008277838A JP 2008133171 A JP2008133171 A JP 2008133171A JP 2008133171 A JP2008133171 A JP 2008133171A JP 2008277838 A JP2008277838 A JP 2008277838A
Authority
JP
Japan
Prior art keywords
dielectric
frequency
transmission line
circuit
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008133171A
Other languages
Japanese (ja)
Other versions
JP4957652B2 (en
Inventor
Hajime Kawano
肇 川▲野▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008133171A priority Critical patent/JP4957652B2/en
Publication of JP2008277838A publication Critical patent/JP2008277838A/en
Application granted granted Critical
Publication of JP4957652B2 publication Critical patent/JP4957652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1423Monolithic Microwave Integrated Circuit [MMIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency module with a reduced mounting area, in a high-frequency module of which the housing is constituted of dielectric multilayer structures and which has at least two or more microwave circuits, a control circuit, etc. therein. <P>SOLUTION: Two or more microwave circuits 13, 14 are mounted in a shape of hierarchy, and the microwave circuits are connected by the electromagnetic coupling using slots 19, 20 provided in dielectrics 2, 3, 4, 5, 6, 7, 8, 9, 10, so that even if the number of the microwave circuits increases, they can be located without increasing a projected area of the high-frequency module, and the miniaturization of the high-frequency module can be realized. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は内部に2つ以上のマイクロ波回路などの高周波回路及びその制御回路を有し、そのきょう体を多層誘電体で構成したマイクロ波モジュールに代表される高周波モジュールに関し、特に内部にもつマイクロ波回路間及びマイクロ波回路とその制御回路の実装構造に関するものである。   The present invention relates to a high-frequency module represented by a microwave module having two or more high-frequency circuits such as a microwave circuit and a control circuit for the same and having a casing made of a multilayer dielectric, and in particular, a micro-circuit included therein. The present invention relates to a mounting structure of a microwave circuit and its control circuit.

第8図は従来の誘電体を積層したパッケージを使用した実装方法によるマイクロ波モジュールの一実施例を示すマイクロ波モジュールの断面図、第9図はその裏面視図、第10図はその高周波コネクタと内部のマイクロ波回路との接続構造を示す図である。図において、1は最下部に位置する金属導体、2は第一の誘電体、3は第二の誘電体、4は第三の誘電体、5は第四の誘電体、6は第五の誘電体、12はマイクロ波回路の制御回路または制御用IC、13は第一のマイクロ波回路、15は高周波コネクタ、17は制御信号用ピン、18は誘電体内のスルーホール、21は上記高周波コネクタ15の芯線、24はシールリング、25は上フタである、27は接続用ワイヤであり、第一の誘電体2と第二の誘電体3の接続面及び第三の誘電体4と第四の誘電体5の接続面、第五の誘電体6面上に信号伝達線路面を設け、第二の誘電体3と第三の誘電体4との接続面 及び第四の誘電体5と第五の誘電体6との接合面には接地面が設けてある。なお、ここでのマイクロ波回路とは、半導体基板上にFET(電界効果トランジスタ)、キャパシタ等の回路構成要素を一体形成したマイクロ波回路(Monolithic Microwave IC)や、誘電体基板上に半導体を除いた回路構成要素を形成し、半導体を後から搭載したマイクロ波回路(Microwave IC)などを示し、一般に基板やその基板のパッケージの形状に応じて平たい長方形状を成す。   FIG. 8 is a cross-sectional view of a microwave module showing an embodiment of a microwave module by a mounting method using a conventional package in which dielectrics are laminated, FIG. 9 is a rear view thereof, and FIG. 10 is a high-frequency connector thereof. It is a figure which shows the connection structure of an internal microwave circuit. In the figure, 1 is the lowermost metal conductor, 2 is the first dielectric, 3 is the second dielectric, 4 is the third dielectric, 5 is the fourth dielectric, 6 is the fifth Dielectric material, 12 is a control circuit or control IC for a microwave circuit, 13 is a first microwave circuit, 15 is a high frequency connector, 17 is a control signal pin, 18 is a through hole in the dielectric, and 21 is the above high frequency connector 15 core wires, 24 is a seal ring, 25 is an upper lid, 27 is a connection wire, the connection surface of the first dielectric 2 and the second dielectric 3, and the third dielectric 4 and the fourth The signal transmission line surface is provided on the connection surface of the dielectric 5 and the surface of the fifth dielectric 6, the connection surface of the second dielectric 3 and the third dielectric 4, and the fourth dielectric 5 and the first A ground plane is provided on the joint surface with the fifth dielectric 6. The microwave circuit here refers to a microwave circuit (Monolithic Microwave IC) in which circuit components such as an FET (field effect transistor) and a capacitor are integrally formed on a semiconductor substrate, or a semiconductor on a dielectric substrate. A microwave circuit (Microwave IC) in which a circuit component is formed and a semiconductor is mounted later is shown, and generally a flat rectangular shape is formed according to the shape of a substrate or a package of the substrate.

次に動作について説明する。制御信号用ピン17から入力された制御信号は、誘電体内のスルーホール18a、18b、18C、18dを通り接続用ワイヤ27dを通って制御回路12に入力される。制御回路12の出力信号は接続用ワイヤ27cを通り、誘電体内のスルーホール18e、18fなどを通り第三の誘電体4の信号伝達線路面を通り、接続用ワイヤ27a、27bなどを通じて第一のマイクロ波回路13に入力される。また、マイクロ波信号は高周波コネクタ15aから入力され、接続用ワイヤ27eを通してマイクロ波回路13に入力され、上記制御信号に基づいて第一のマイクロ波回路13で処理された出力信号は、高周波コネクタ15aと同様に第一のマイクロ波回路13に接続された高周波コネクタ15bから出力される。   Next, the operation will be described. The control signal input from the control signal pin 17 is input to the control circuit 12 through the through holes 18a, 18b, 18C, and 18d in the dielectric and through the connection wires 27d. The output signal of the control circuit 12 passes through the connecting wire 27c, passes through the through holes 18e and 18f in the dielectric, passes through the signal transmission line surface of the third dielectric 4, and passes through the connecting wires 27a and 27b to Input to the microwave circuit 13. The microwave signal is input from the high frequency connector 15a, input to the microwave circuit 13 through the connection wire 27e, and the output signal processed by the first microwave circuit 13 based on the control signal is the high frequency connector 15a. In the same manner as described above, the signal is output from the high frequency connector 15b connected to the first microwave circuit 13.

また、マイクロ波回路を複数搭載する場合は、第二の誘電体3の接地面に複数のマイクロ波回路を配置し、二次元的に回路を展開することで実現でき、その場合マイクロ波回路間の接続はマイクロストリップ線路及び接続用ワイヤにて行う。   Also, when multiple microwave circuits are mounted, it can be realized by arranging multiple microwave circuits on the ground plane of the second dielectric 3 and deploying the circuits in two dimensions. These connections are made with microstrip lines and connecting wires.

以上述べたように、従来の誘電体を積層したパッケージを使用したマイクロ波モジュールでは、2つ以上のマイクロ波回路を内部に搭載する場合、マイクロ波回路を搭載する面を1面しかもたない(例えば図8の場合、第二の誘電体3の接地面)ため、マイクロ波回路間の接続は平面内で実施する必要があった。また、2つ以上の高周波コネクタを必要とする場合は同一方向に設ける必要があった。   As described above, in a microwave module using a conventional package in which dielectrics are stacked, when two or more microwave circuits are mounted inside, there is only one surface on which the microwave circuit is mounted ( For example, in the case of FIG. 8, the connection between the microwave circuits has to be performed in a plane because of the ground plane of the second dielectric 3. Further, when two or more high-frequency connectors are required, they must be provided in the same direction.

しかし、マイクロストリップ線路にて平面内に回路を増やしていくと、マイクロ波回路の投影面積(厚み方向に垂直な面の面積)が増大し、結果的にこのマイクロ波回路が実装されたマイクロ波モジュールを必要とするシステム内においてこのモジュールの占有面積が増大し、システムが大型化するという課題があった。また、2つ以上の高周波コネクタを同一方向に設けた場合、マイクロ波モジュールの小型化が制限されるという課題があった。例えば、マイクロ波モジュールによってアレイアンテナを構成する場合、マイクロ波回路へマイクロ波信号を分配・供給する給電回路とマイクロ波回路からのマイクロ波信号を放射するアレイアンテナ素子を、マイクロ波モジュールに対して同一方向に配置するため、給電回路にマイクロ波信号の出力に加えて入力を行うための穴も設ける必要があり、その結果給電回路の実装スペースが少なくなる。   However, increasing the number of circuits in a plane using a microstrip line increases the projected area of the microwave circuit (the area of the surface perpendicular to the thickness direction), and as a result, the microwave on which the microwave circuit is mounted. In a system that requires a module, the occupied area of the module increases, and there is a problem that the system becomes larger. Further, when two or more high-frequency connectors are provided in the same direction, there is a problem that miniaturization of the microwave module is limited. For example, when an array antenna is configured by a microwave module, a power feeding circuit that distributes and supplies a microwave signal to the microwave circuit and an array antenna element that radiates the microwave signal from the microwave circuit are connected to the microwave module. In order to arrange in the same direction, it is necessary to provide a hole for inputting in addition to the output of the microwave signal in the power supply circuit, and as a result, the space for mounting the power supply circuit is reduced.

この発明は、係る課題を解決するために為されたものであり、複数の高周波回路を搭載する場合の実装面積を小さくし、また2つ以上の高周波コネクタを設ける場合にも同一方向ではなく相対する方向に設けることを可能とした高周波モジュールを得るものである。   The present invention has been made in order to solve the above-described problem, and reduces the mounting area when a plurality of high-frequency circuits are mounted, and also when two or more high-frequency connectors are provided, the relative direction is not the same. Thus, a high-frequency module that can be provided in the direction to be obtained is obtained.

この発明による高周波モジュールは、複数の誘電体が積層されて形成された構造体に第一、第二の高周波回路を搭載して成る高周波モジュールにおいて、第一の高周波回路に接続される第一の信号伝達線路が形成された第一の誘電体と、第二の高周波回路に接続される第二、第三の信号伝達線路が形成された第二の誘電体と、上記第一の信号伝達線路と第二の信号伝達線路の間で、積層方向に高周波信号を伝達する信号伝送路と、上記第一の高周波回路に接続され、上記構造体の一方面との間で積層方向に高周波信号を伝達する第一の高周波伝送路と、上記第二の高周波回路に接続された第三の信号伝送線路と上記構造体の他方面との間で高周波信号を伝達する第二の高周波伝送路とを備え、上記第一の高周波回路と上記第二の高周波回路は、上記第一の誘電体と第二の誘電体の積層方向の投影面に互いに重なりを有するように、離間して接地面上に配置され、上記第二の高周波伝送路は、上記構造体の他方面との間で積層方向に高周波信号を伝送する芯線と、その芯線の周囲を取り囲んで、馬蹄状に配置された複数のスルーホールとを有して構成されたものである。   The high-frequency module according to the present invention is a high-frequency module in which a first and second high-frequency circuits are mounted on a structure formed by laminating a plurality of dielectrics, and the first high-frequency module is connected to the first high-frequency circuit. A first dielectric formed with a signal transmission line; a second dielectric formed with second and third signal transmission lines connected to a second high-frequency circuit; and the first signal transmission line. Between the first signal transmission line and the second signal transmission line, the high-frequency signal is transmitted in the stacking direction between the signal transmission path for transmitting a high-frequency signal in the stacking direction and the first high-frequency circuit. A first high-frequency transmission line for transmitting, a third signal transmission line connected to the second high-frequency circuit, and a second high-frequency transmission line for transmitting a high-frequency signal between the other surface of the structure. The first high-frequency circuit and the second high-frequency circuit are The first dielectric and the second dielectric are arranged on the ground plane so as to be overlapped with each other on the projection surface in the stacking direction of the second dielectric, and the second high-frequency transmission path is the other of the structure. A core wire that transmits a high-frequency signal in the stacking direction to and from the direction, and a plurality of through holes that surround the core wire and are arranged in a horseshoe shape.

この発明は以上説明した通り、2つ以上の高周波回路を電磁結合を用いて接続することで、上下方向(積層方向)に配置でき、高周波モジュールの投影面積の増大を防ぐことを可能とし、高周波モジュールを小型化できる効果がある。また、2つ以上の高周波コネクタを設ける場合にも同一方向ではなく、相対する方向に設けることを可能とし、高周波モジュールの小型化の制限を緩和し、高周波モジュールをより小型化できる効果がある。   As described above, the present invention can be arranged in the vertical direction (stacking direction) by connecting two or more high-frequency circuits using electromagnetic coupling, and can prevent an increase in the projected area of the high-frequency module. The module can be downsized. Further, when two or more high-frequency connectors are provided, they can be provided in opposite directions rather than in the same direction, and there is an effect that the restriction on miniaturization of the high-frequency module can be relaxed and the high-frequency module can be further miniaturized.

実施の形態1.
第1図にこの発明による高周波モジュールであるマイクロ波モジュールの一実施例を示す実装断面図、第2図に第1図の裏面視図、第3図に第1図の第五の誘電体6と第六の誘電体7の接合部で切った時の上面視図、第4図に第1図の第七の誘電体8と第八の誘電体9の接合部で切った時の上面視図、第5図に第1図の高周波回路である第一のマイクロ波回路13と高周波回路である第二のマイクロ波回路14とを接続するための電磁結合部の拡大図、第6図に第1図の第二の高周波コネクタと第八及び第九の誘電体との接続部の拡大図を示す。
Embodiment 1 FIG.
FIG. 1 is a mounting sectional view showing an embodiment of a microwave module which is a high frequency module according to the present invention, FIG. 2 is a rear view of FIG. 1, and FIG. 3 is a fifth dielectric 6 of FIG. FIG. 4 is a top view when cut at the junction of the sixth dielectric 7 and FIG. 4 is a top view when cut at the junction of the seventh dielectric 8 and the eighth dielectric 9 in FIG. FIG. 5, FIG. 5 is an enlarged view of an electromagnetic coupling unit for connecting the first microwave circuit 13 which is the high frequency circuit of FIG. 1 and the second microwave circuit 14 which is the high frequency circuit, and FIG. The enlarged view of the connection part of the 2nd high frequency connector of FIG. 1 and the 8th and 9th dielectric material is shown.

図において、1は最下部に位置し一部に貫通穴をもつ金属導体、2は一方の面が金属導体1と接合し、かつ他方の面に信号伝達線路面をもつ第一の誘電体、3は一方の面が第一の誘電体2の信号伝達線路面に接合し、かつ他方の面に接地面をもつ第二の誘電体、4は一方の面が第二の誘電体3の接地面に接合し、かつ他方の面に第二の接地面をもつ第三の誘電体、5は一方の面が第三の誘電体4の第二の接地面に接合し、かつ他方の面に信号伝達線路面をもつ第四の誘電体、6は一方の面が第四の誘電体5の信号伝達線路面に接合し、かつ他方の面に接地面をもつ第五の誘電体、7は一方が第五の誘電体6の接地面に接合し、かつ他方の面に信号伝達線路面をもつ第六の誘電体、8は一方の面が第六の誘電体7の信号伝達線路面に接合し、かつ他方に接地面をもつ第七の誘電体、9は一方の面を接地面とし、かつ他方の面に信号伝達線路面をもつ第八の誘電体、10は一方の面が第八の誘電体9の信号伝達線路面に接合し、かつ他方の面に接地面をもつ第九の誘電体、11は金属導体1の制御回路を搭載するための貫通穴をカバーするためマイクロ波モジュール下部に設けられた金属カバー、12は制御回路、13は第一のマイクロ波回路、14は第二のマイクロ波回路、15は金属導体1に垂直に設けられかつ金属導体1及び第一の誘電体2から第三の誘電体4までを貫通する第一の高周波コネクタ、16は第九の誘電体10に垂直に設けられかつ第九の誘電体10の接地面に設けられた第二の高周波コネクタ、17は金属導体1の貫通穴を通り第一の誘電体の金属導体1との接合面に接合された制御信号ピン、18は第一から第九の誘電体内に設けられたスルーホール、19は第五の誘電体の接地面に設けられたスロット、20は第七の誘電体の接地面に設けられたスロット、21は第一の高周波コネクタ15の芯、22は第一の高周波コネクタ15の内部誘電体、23は第二の高周波コネクタ16の芯、27は金属ワイヤである。   In the figure, 1 is a metal conductor having a through hole in a part located at the bottom, 2 is a first dielectric having one surface joined to the metal conductor 1 and a signal transmission line surface on the other surface, 3 is a second dielectric having one surface bonded to the signal transmission line surface of the first dielectric 2 and a ground surface on the other surface, and 4 is a contact with the second dielectric 3 on one surface. A third dielectric that is bonded to the ground and has a second ground plane on the other side, 5 is bonded to the second ground plane of the third dielectric 4 on one side, and A fourth dielectric having a signal transmission line surface, 6 is a fifth dielectric having one surface bonded to the signal transmission line surface of the fourth dielectric 5 and a ground plane on the other surface, 7 is One is bonded to the ground plane of the fifth dielectric 6 and the other dielectric has a signal transmission line surface on the other surface, and 8 has one surface connected to the signal transmission line surface of the sixth dielectric 7. Join and have a ground plane on the other Seven dielectrics, 9 is an eighth dielectric having one surface as a ground plane and a signal transmission line surface on the other surface, and 10 is a signal transmission line surface of the eighth dielectric 9 on one surface. Ninth dielectric having a ground plane on the other surface, 11 is a metal cover provided at the bottom of the microwave module to cover the through hole for mounting the control circuit of metal conductor 1, 12 is Control circuit, 13 is the first microwave circuit, 14 is the second microwave circuit, 15 is provided perpendicular to the metal conductor 1 and from the metal conductor 1 and the first dielectric 2 to the third dielectric 4 A first high-frequency connector 16 penetrating through the first dielectric 10, a second high-frequency connector 16 provided perpendicular to the ninth dielectric 10 and on the ground plane of the ninth dielectric 10, and 17 a through-hole in the metal conductor 1 The control signal pin 18 that is bonded to the bonding surface of the first dielectric metal conductor 1 through the first dielectric body 18 is provided in the first to ninth dielectric bodies. Through hole, 19 is a slot provided on the ground plane of the fifth dielectric, 20 is a slot provided on the ground plane of the seventh dielectric, 21 is the core of the first high frequency connector 15, 22 is The internal dielectric of the first high-frequency connector 15, 23 is the core of the second high-frequency connector 16, and 27 is a metal wire.

金属導体1と第一の誘電体2から第七の誘電体8と第一の高周波コネクタ15及び制御信号ピン17でこの発明のマイクロ波モジュールのきょう体を構成しており、第八の誘電体9と第九の誘電体10と第二の高周波コネクタ16とで上記マイクロ波モジュールの上部カバーを構成している。   The metal conductor 1, the first dielectric 2, the seventh dielectric 8, the first high-frequency connector 15, and the control signal pin 17 constitute the casing of the microwave module of the present invention, and the eighth dielectric The ninth dielectric member 10 and the second high-frequency connector 16 constitute the upper cover of the microwave module.

次に動作について説明する。まず、制御信号であるが、制御信号ピン17から入力された制御信号は第一の誘電体2に設けられたスルーホール18aを通り第一の誘電体2の信号伝達線路を通りさらにスルーホール18bを通り金属ワイヤ27cを通り制御回路12に入力される。制御回路12で処理された信号は金属ワイヤ27dを通り、スルーホール18d、18e、18fを通り第四の誘電体5の信号伝達線路に接続され、第3図の金属ワイヤ27gから27hを通して第一のマイクロ波回路13に入力される。また、同様に制御回路12から出力された制御信号は第一の誘電体2から第六の誘電体7の内部のスルーホール18を通り第六の誘電体7上の線号伝達線路に接続され第4図の金属ワイヤ27iから27jを通して第二のマイクロ波回路14に入力される。上記制御信号に基づいて、第一のマイクロ波回路及び第二のマイクロ波回路は動作を行う。次に高周波信号であるが、第一の高周波コネクタ15から入力された高周波信号は第1図の金属ワイヤ27eを通して第一のマイクロ波回路13に入力される。上記制御信号に基づいて処理された高周波信号はマイクロ波回路13から出力され第1図の金属ワイヤ27aを通り第四の誘電体5の信号伝達線路に接続される。第四の誘電体5に接続された高周波信号は第5図に示す構造をしたスロット19を介し第六の誘電体7の信号伝達線路に電磁結合される。電磁結合された高周波信号は第1図の金属ワイヤ27fを通り第二のマイクロ波回路14に入力される。上記制御信号にて処理された高周波信号はマイクロ波回路14から出力され第1図の金属ワイヤ27kを通り第六の誘電体7の信号伝達線路に接続される。第六の誘電体7に入力された高周波信号はスロット19を用いた電磁結合と同様にスロット20を用いて第八の誘電体9の信号伝達線路に伝達され、第八の誘電体9の信号伝達線路に伝達された高周波信号は第6図に示すスルーホール18gを介し第九の誘電体10の接地面に設けた第二の高周波コネクタ16の芯23に接続される。このとき、第八の誘電体9及び第九の誘電体10の内部に、互いに平行な複数のスルーホール18hを芯23を囲むように馬蹄形に配置することで同軸コネクタと同様な高周波信号の接続が実現できる。スルーホール18hにおける各ホールの間隔および芯23との距離、ホールの径などは、使用するマイクロ波の周波数に応じた電磁遮蔽の性能とコネクタに要求されるインピーダンスに基づいて適宜設定される。このスルーホール18h、第二の同軸コネクタ23およびスロット20を用いて第六の誘電体7の信号伝達線路に対して垂直方向にマイクロ波信号を伝達することにより、2つの同軸コネクタを同一方向に設けて金属導体1側に配置した場合と比べて実装場所の制限がなくなる。また、第二の高周波コネクタ16は芯23を第八の誘電体9の信号伝達線路に接続し、芯23の周囲にスルーホール18hを設けることによって形成されるため、同軸コネクタと信号伝達線路を接続するための金属ワイヤとその接続のためのスペースを設ける必要がなく、多層誘電体への実装に適している。以上の構成により、スロット19を介して第四の誘電体5の信号伝達線路と第六の誘電体7の信号伝達線路を電磁結合で接続することによって、第一、第二のマイクロ波回路13、14を上下方向(積層方向)に配置でき、マイクロ波モジュールの投影面積の増大を防ぐことが可能となり、マイクロ波モジュールを小型化できる。なお、上記マイクロ波モジュールの構成は、マイクロ波以外の周波数帯域を扱う高周波回路、例えばミリ波帯域の高周波回路などにも適用できることは言うまでもない。   Next, the operation will be described. First, as a control signal, a control signal input from the control signal pin 17 passes through a through hole 18a provided in the first dielectric 2, passes through a signal transmission line of the first dielectric 2, and further passes through a through hole 18b. Through the metal wire 27c and input to the control circuit 12. The signal processed by the control circuit 12 passes through the metal wire 27d, is connected to the signal transmission line of the fourth dielectric 5 through the through holes 18d, 18e and 18f, and passes through the metal wires 27g to 27h in FIG. Is input to the microwave circuit 13. Similarly, the control signal output from the control circuit 12 is connected to the line transmission line on the sixth dielectric 7 through the first dielectric 2 through the through hole 18 in the sixth dielectric 7. It is input to the second microwave circuit 14 through the metal wires 27i to 27j in FIG. Based on the control signal, the first microwave circuit and the second microwave circuit operate. Next, as a high-frequency signal, the high-frequency signal input from the first high-frequency connector 15 is input to the first microwave circuit 13 through the metal wire 27e shown in FIG. The high frequency signal processed based on the control signal is output from the microwave circuit 13 and connected to the signal transmission line of the fourth dielectric 5 through the metal wire 27a of FIG. The high frequency signal connected to the fourth dielectric 5 is electromagnetically coupled to the signal transmission line of the sixth dielectric 7 through the slot 19 having the structure shown in FIG. The electromagnetically coupled high-frequency signal is input to the second microwave circuit 14 through the metal wire 27f shown in FIG. The high frequency signal processed by the control signal is output from the microwave circuit 14 and connected to the signal transmission line of the sixth dielectric 7 through the metal wire 27k of FIG. The high frequency signal input to the sixth dielectric 7 is transmitted to the signal transmission line of the eighth dielectric 9 using the slot 20 similarly to the electromagnetic coupling using the slot 19, and the signal of the eighth dielectric 9 is transmitted. The high-frequency signal transmitted to the transmission line is connected to the core 23 of the second high-frequency connector 16 provided on the ground plane of the ninth dielectric 10 through the through hole 18g shown in FIG. At this time, inside the eighth dielectric 9 and the ninth dielectric 10, a plurality of through holes 18h parallel to each other are arranged in a horseshoe shape so as to surround the core 23, thereby connecting high-frequency signals similar to the coaxial connector Can be realized. The distance between each hole in the through hole 18h, the distance from the core 23, the diameter of the hole, and the like are appropriately set based on the electromagnetic shielding performance and the impedance required for the connector according to the frequency of the microwave used. By using this through hole 18h, the second coaxial connector 23 and the slot 20 to transmit a microwave signal in a direction perpendicular to the signal transmission line of the sixth dielectric 7, the two coaxial connectors are aligned in the same direction. Compared with the case where it is provided and arranged on the metal conductor 1 side, there are no restrictions on the mounting location. The second high-frequency connector 16 is formed by connecting the core 23 to the signal transmission line of the eighth dielectric 9 and providing a through hole 18h around the core 23, so that the coaxial connector and the signal transmission line are connected. It is not necessary to provide a metal wire for connection and a space for the connection, and is suitable for mounting on a multilayer dielectric. With the above configuration, the first and second microwave circuits 13 are connected by electromagnetically coupling the signal transmission line of the fourth dielectric 5 and the signal transmission line of the sixth dielectric 7 via the slot 19. 14 can be arranged in the vertical direction (stacking direction), the increase in the projected area of the microwave module can be prevented, and the microwave module can be miniaturized. Needless to say, the configuration of the microwave module can be applied to a high-frequency circuit that handles a frequency band other than the microwave, such as a high-frequency circuit in the millimeter wave band.

実施の形態2.
この発明における他の実施例を第7図に示す。第7図において、1から23は第1図と同じ、26は制御回路12と第二の誘電体3 及び第一のマイクロ波回路13と第四の誘電体5及び第二のマイクロ波回路14と第六の誘電体7とを接続する例えば金のボールで形成したバンプである。
Embodiment 2. FIG.
Another embodiment of the present invention is shown in FIG. In FIG. 7, 1 to 23 are the same as those in FIG. 1, and 26 is a control circuit 12, a second dielectric 3, a first microwave circuit 13, a fourth dielectric 5, and a second microwave circuit 14. For example, a bump formed of a gold ball is used to connect the first dielectric 7 and the sixth dielectric 7.

次に動作について説明する。まず、制御信号であるが、制御信号ピン17から入力された制御信号は第一の誘電体2に設けられたスルーホール18aを通り第二の誘電体3の信号伝達線路を通りバンプ26bを通り制御回路12に入力される。制御回路12で処理された信号はバンプ26aを通りスルーホール18d、18e、18fを通り第四の誘電体5の信号伝達線路に接続されバンプ26にて第一のマイクロ波回路13に入力される。また、同様に制御回路から出力された制御信号は第一の誘電体2から第六の誘電体7の内部のスルーホール18を通り第六の誘電体7上の信号伝達線路に接続され第二のマイクロ波回路14に入力される。上記制御信号にのっとり、第一のマイクロ波回路 及び第二のマイクロ波回路は動作を行う。次に高周波信号であるが、第一の高周波コネクタ15から入力された高周波信号は第1図の金属ワイヤ27lを通り第四の誘電体5の信号伝達線路に接続され、バンプ26dを通り第一のマイクロ波回路13に入力される。上記制御信号にのっとり処理された高周波信号はマイクロ波回路13から出力されバンプ26aを通り第四の誘電体5の信号伝達線路に接続される。この場合、誘電体5の信号伝達線路にコプレナー線路を用いると、バンプ接続構造上有利である。第四の誘電体に接続された高周波信号は第5図に示す構造をしたスロット19を介し第六の誘電体7の信号伝達線路に電磁結合される。電磁結合された高周波信号は第7図のバンプ26cを通り第二のマイクロ波回路14に入力される。上記制御信号にて処理された高周波信号はマイクロ波回路14から出力され第7図のバンプ26dを通り第六の誘電体7の信号伝達線路に接続される。第六の誘電体7に入力された高周波信号はスロット19を用いた電磁結合と同様にスロット20を用いて第八の誘電体9の信号伝達線路に伝達され、第九の信号伝達線路に伝達された高周波信号は第6図に示すスルーホール18gを介し第九の誘電体10の接地面に設けた第二の高周波コネクタ16の芯23に接続される。このとき、実施の形態1と同様に第八の誘電体9及び第九の誘電体10の内部に馬蹄形にスルーホール18を配置することで同軸コネクタと同様な高周波信号の接続が実現できる。また、バンプ接続を用いることにより、第一、第二のマイクロ波回路13、14の周辺にワイヤ接続のためのスペースをなくすことで、マイクロ波モジュールを一層小型化できる。   Next, the operation will be described. First, as a control signal, the control signal input from the control signal pin 17 passes through the through hole 18a provided in the first dielectric 2 and the signal transmission line of the second dielectric 3 and the bump 26b. Input to the control circuit 12. The signal processed by the control circuit 12 is connected to the signal transmission line of the fourth dielectric 5 through the through holes 18d, 18e and 18f through the bump 26a, and is input to the first microwave circuit 13 through the bump 26. . Similarly, the control signal output from the control circuit passes through the through hole 18 in the first dielectric 2 to the sixth dielectric 7 and is connected to the signal transmission line on the sixth dielectric 7. Are input to the microwave circuit 14. In accordance with the control signal, the first microwave circuit and the second microwave circuit operate. Next, as a high-frequency signal, the high-frequency signal input from the first high-frequency connector 15 is connected to the signal transmission line of the fourth dielectric 5 through the metal wire 27l in FIG. Is input to the microwave circuit 13. The high-frequency signal processed according to the control signal is output from the microwave circuit 13 and connected to the signal transmission line of the fourth dielectric 5 through the bump 26a. In this case, using a coplanar line as the signal transmission line of the dielectric 5 is advantageous in terms of the bump connection structure. The high frequency signal connected to the fourth dielectric is electromagnetically coupled to the signal transmission line of the sixth dielectric 7 through the slot 19 having the structure shown in FIG. The electromagnetically coupled high-frequency signal is input to the second microwave circuit 14 through the bump 26c in FIG. The high frequency signal processed by the control signal is output from the microwave circuit 14 and connected to the signal transmission line of the sixth dielectric 7 through the bump 26d of FIG. The high frequency signal input to the sixth dielectric 7 is transmitted to the signal transmission line of the eighth dielectric 9 using the slot 20 in the same manner as the electromagnetic coupling using the slot 19, and is transmitted to the ninth signal transmission line. The high frequency signal thus connected is connected to the core 23 of the second high frequency connector 16 provided on the ground plane of the ninth dielectric 10 through the through hole 18g shown in FIG. At this time, the same high frequency signal connection as that of the coaxial connector can be realized by arranging the through-holes 18 in a horseshoe shape inside the eighth dielectric 9 and the ninth dielectric 10 as in the first embodiment. In addition, by using bump connection, the microwave module can be further reduced in size by eliminating the space for wire connection around the first and second microwave circuits 13 and 14.

以上説明した通り、2つ以上の高周波回路を電磁結合を用いて接続することで、上下方向(積層方向)に配置でき、高周波モジュールの投影面積の増大を防ぐことを可能とし、高周波モジュールを小型化できる効果がある。   As described above, by connecting two or more high-frequency circuits using electromagnetic coupling, they can be arranged in the vertical direction (stacking direction), making it possible to prevent an increase in the projected area of the high-frequency module, and reducing the size of the high-frequency module There is an effect that can be made.

また、2つ以上の高周波コネクタを設ける場合にも同一方向ではなく、相対する方向に設けることを可能とし、高周波モジュールの小型化の制限を緩和し、高周波モジュールをより小型化できる効果がある。   Further, when two or more high-frequency connectors are provided, they can be provided in opposite directions rather than in the same direction, and there is an effect that the restriction on miniaturization of the high-frequency module can be relaxed and the high-frequency module can be further miniaturized.

さらにまた、高周波回路と誘電体の接続をバンプ構造を用いて実施することで、高周波回路周辺にワイヤ接続のためのスペースをなくすことで、高周波モジュールをさらに一層小型化できる効果がある。   Furthermore, by connecting the high-frequency circuit and the dielectric using a bump structure, there is an effect that the high-frequency module can be further reduced in size by eliminating the space for wire connection around the high-frequency circuit.

この発明の実施の形態1の横断面図である。It is a cross-sectional view of Embodiment 1 of this invention. 図1の裏面視図である。It is a reverse view of FIG. 図1の第五の誘電体6と第六の誘電体7の接合部で切り離した時の断面の上視図である。FIG. 7 is a top view of a cross section when cut off at a junction between a fifth dielectric 6 and a sixth dielectric 7 in FIG. 1. 図1の第七の誘電体8と第八の誘電体9との接合部で切り離した時の断面の上視図である。FIG. 9 is a top view of a cross section when cut off at a junction between a seventh dielectric 8 and an eighth dielectric 9 in FIG. 1. 図1の第一のマイクロ波回路13と第二のマイクロ波回路14とを接続するための電磁結合部の拡大図である。FIG. 3 is an enlarged view of an electromagnetic coupling unit for connecting the first microwave circuit 13 and the second microwave circuit 14 of FIG. 1. 図1の第二の高周波コネクタと第八及び第九の誘電体との接続部の拡大図を示す。The enlarged view of the connection part of the 2nd high frequency connector of FIG. 1, and the 8th and 9th dielectric material is shown. この発明による実施の形態2の横断面図である。It is a cross-sectional view of Embodiment 2 by this invention. 従来の実施例の横断面図である。It is a cross-sectional view of a conventional example. 図8の裏面視図である。FIG. 9 is a rear view of FIG. 8. 従来の実施例の高周波コネクタと第一のマイクロ波回路との接続部の拡大図である。It is an enlarged view of the connection part of the high frequency connector of a conventional Example, and a 1st microwave circuit.

符号の説明Explanation of symbols

1 金属導体、2 第一の誘電体、3 第二の誘電体、4 第三の誘電体、5 第四の誘電体、6 第五の誘電体、7 第六の誘電体、8 第七の誘電体、9 第八の誘電体、10 第九の誘電体、11 下部金属カバー、12 マイクロ波回路の制御回路、13 第一マイクロ波回路、14 第二のマイクロh回路、15 第一の高周波コネクタ、16 第二の高周波コネクタ
17 制御信号ピン、18 誘電体内のスルーホール、19 スロット、20 スロット、21 第一の高周波コネクタの芯、22 第一の高周波コネクタの内部誘電体、23 第二の高周波コネクタの芯、24 シールリング、25 上部金属カバー、26 バンプ、27 金属ワイヤ。
1 Metal conductor, 2 First dielectric, 3 Second dielectric, 4 Third dielectric, 5 Fourth dielectric, 6 Fifth dielectric, 7 Sixth dielectric, 8 Seventh dielectric Dielectric, 9 8th dielectric, 10 9th dielectric, 11 Lower metal cover, 12 Microwave circuit control circuit, 13 1st microwave circuit, 14 2nd micro h circuit, 15 1st high frequency Connector, 16 second high frequency connector
17 Control signal pin, 18 Through hole in dielectric, 19 slot, 20 slot, 21 Core of first high frequency connector, 22 Internal dielectric of first high frequency connector, 23 Core of second high frequency connector, 24 Seal ring , 25 top metal cover, 26 bumps, 27 metal wires.

Claims (1)

複数の誘電体が積層されて形成された構造体に第一、第二の高周波回路を搭載して成る高周波モジュールにおいて、
第一の高周波回路に接続される第一の信号伝達線路が形成された第一の誘電体と、
第二の高周波回路に接続される第二、第三の信号伝達線路が形成された第二の誘電体と、
上記第一の信号伝達線路と第二の信号伝達線路の間で、積層方向に高周波信号を伝達する信号伝送路と、
上記第一の高周波回路に接続され、上記構造体の一方面との間で積層方向に高周波信号を伝達する第一の高周波伝送路と、
上記第二の高周波回路に接続された第三の信号伝送線路と上記構造体の他方面との間で高周波信号を伝達する第二の高周波伝送路とを備え、
上記第一の高周波回路と上記第二の高周波回路は、上記第一の誘電体と第二の誘電体の積層方向の投影面に互いに重なりを有するように、離間して接地面上に配置され、
上記第二の高周波伝送路は、上記構造体の他方面との間で積層方向に高周波信号を伝送する芯線と、その芯線の周囲を取り囲んで、馬蹄状に配置された複数のスルーホールとを有して構成された、
ことを特徴とする高周波モジュール。
In a high frequency module comprising a first and second high frequency circuits mounted on a structure formed by laminating a plurality of dielectrics,
A first dielectric formed with a first signal transmission line connected to the first high-frequency circuit;
A second dielectric formed with second and third signal transmission lines connected to the second high-frequency circuit;
Between the first signal transmission line and the second signal transmission line, a signal transmission line that transmits a high-frequency signal in the stacking direction;
A first high-frequency transmission line that is connected to the first high-frequency circuit and transmits a high-frequency signal in the stacking direction between one surface of the structure and
A second high-frequency transmission line for transmitting a high-frequency signal between the third signal transmission line connected to the second high-frequency circuit and the other surface of the structure;
The first high-frequency circuit and the second high-frequency circuit are arranged on a ground plane so as to be spaced apart from each other so that they overlap each other on the projection surface in the stacking direction of the first dielectric and the second dielectric. ,
The second high-frequency transmission line includes a core wire that transmits a high-frequency signal in the stacking direction between the other surface of the structure and a plurality of through-holes that surround the core wire and are arranged in a horseshoe shape. Configured with
A high-frequency module characterized by that.
JP2008133171A 2008-05-21 2008-05-21 High frequency module Expired - Fee Related JP4957652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133171A JP4957652B2 (en) 2008-05-21 2008-05-21 High frequency module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133171A JP4957652B2 (en) 2008-05-21 2008-05-21 High frequency module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18325099A Division JP4154806B2 (en) 1999-06-29 1999-06-29 High frequency module

Publications (2)

Publication Number Publication Date
JP2008277838A true JP2008277838A (en) 2008-11-13
JP4957652B2 JP4957652B2 (en) 2012-06-20

Family

ID=40055338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133171A Expired - Fee Related JP4957652B2 (en) 2008-05-21 2008-05-21 High frequency module

Country Status (1)

Country Link
JP (1) JP4957652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042266B1 (en) 2009-07-10 2011-06-17 한국과학기술원 Multi-layer Fabrication Technology fof MMICsMicrowave Monolithic Integrated Circuits

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268502A (en) * 1989-04-11 1990-11-02 Mitsubishi Electric Corp Microwave integrated circuit
JPH03250757A (en) * 1990-02-28 1991-11-08 Mitsubishi Electric Corp Semiconductor device
JPH0537208A (en) * 1991-07-31 1993-02-12 Mitsubishi Electric Corp Microwave package
JPH0992780A (en) * 1995-09-27 1997-04-04 Sony Corp Multi-layered wiring board and method for mounting surface mount electronic component
JPH09293826A (en) * 1996-04-26 1997-11-11 Kyocera Corp High frequency semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268502A (en) * 1989-04-11 1990-11-02 Mitsubishi Electric Corp Microwave integrated circuit
JPH03250757A (en) * 1990-02-28 1991-11-08 Mitsubishi Electric Corp Semiconductor device
JPH0537208A (en) * 1991-07-31 1993-02-12 Mitsubishi Electric Corp Microwave package
JPH0992780A (en) * 1995-09-27 1997-04-04 Sony Corp Multi-layered wiring board and method for mounting surface mount electronic component
JPH09293826A (en) * 1996-04-26 1997-11-11 Kyocera Corp High frequency semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042266B1 (en) 2009-07-10 2011-06-17 한국과학기술원 Multi-layer Fabrication Technology fof MMICsMicrowave Monolithic Integrated Circuits

Also Published As

Publication number Publication date
JP4957652B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
US7236070B2 (en) Electronic component module and manufacturing method thereof
US9648725B2 (en) High-frequency circuit package and sensor module
TWI506863B (en) Radio frequency (rf) integrated circuit (ic) packages having characteristics suitable for mass production
US8256685B2 (en) Compact millimeter wave packages with integrated antennas
EP2626897B1 (en) Transmission line transition having vertical structure and single chip package using land grid array joining
JP4786579B2 (en) High frequency module
US7768456B2 (en) Antenna device and radio communication device
JP2016116209A (en) Switchable transmission and reception phased array antenna
JP2004327641A (en) Electronic component module
US11328987B2 (en) Waver-level packaging based module and method for producing the same
US20080084677A1 (en) Electronic apparatus
KR20150108147A (en) Radar on a package for millimeter wave and radar assembly using the same
KR20120078697A (en) Precision waveguide interface
JP2005117139A (en) Microwave module, and array antenna system employing the same
JP5444915B2 (en) High frequency module and method for manufacturing high frequency module
JP7375936B2 (en) Antenna module, connection member, and communication device equipped with the same
JP2003309483A (en) High frequency module, active phased array antenna and communication equipment
JP2011187812A (en) High-frequency module
JP4957652B2 (en) High frequency module
JP2011097526A (en) Millimeter wave radio device
JP4154806B2 (en) High frequency module
JP2008141215A (en) Semiconductor device
WO2010130293A1 (en) A transition from a chip to a waveguide
JP2011233846A (en) Semiconductor mounting device
US11588217B2 (en) High-frequency module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees