JP2008277781A - Vertical wafer board - Google Patents

Vertical wafer board Download PDF

Info

Publication number
JP2008277781A
JP2008277781A JP2008076240A JP2008076240A JP2008277781A JP 2008277781 A JP2008277781 A JP 2008277781A JP 2008076240 A JP2008076240 A JP 2008076240A JP 2008076240 A JP2008076240 A JP 2008076240A JP 2008277781 A JP2008277781 A JP 2008277781A
Authority
JP
Japan
Prior art keywords
wafer
sic
film
coating film
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008076240A
Other languages
Japanese (ja)
Other versions
JP5051909B2 (en
Inventor
Kazunori Yamazaki
和紀 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2008076240A priority Critical patent/JP5051909B2/en
Publication of JP2008277781A publication Critical patent/JP2008277781A/en
Application granted granted Critical
Publication of JP5051909B2 publication Critical patent/JP5051909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical wafer board in which a scratch and a slip are more certainly prevented from being generated on a wafer and besides no particle contamination is generated. <P>SOLUTION: There is provided the vertical wafer board which is equipped with a plurality of supporting posts formed with a shelf for mounting a wafer and with top and bottom panels to which superior and inferior extremities of the supporting posts are fixed and is formed with an SiC coating film on a surface of an SiC-based substrate. In the vertical wafer board, a wafer abutting portion in the shelf performs a flattening process by grind after a first SiC coating film has been formed. A second SiC coating film is formed on the upper surface of the first SiC coating film. The surface roughness Ra of the second SiC coating film is 0.1 μm to 0.9 μm. After the first SiC coating film has been formed, the second SiC film is formed on an upper surface of a portion other than the wafer abutting portion. The surface roughness Ra of the second SiC film is 1.0 μm to 8.0 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、縦型ウエハボートに関し、半導体製造プロセスで用いられる縦型ウエハボートに関する。   The present invention relates to a vertical wafer boat, and more particularly to a vertical wafer boat used in a semiconductor manufacturing process.

半導体製造プロセスのうちで加熱を伴う工程、例えば、LP−CVD(low pressure−chemical vapor deposition:低圧CVD)によるSi34(窒化ケイ素)膜デポ工程において、基材表面が多結晶のSiC(炭化ケイ素)により被覆されたSiC縦型ウエハボートが用いられている。
この縦型ウエハボートは、SiCの基材表面にCVD(化学気相成長)法によるSiCコーティングを施し、高純度のSiC被覆層を基材表面に形成したものである。この縦型ウエハボートにあっては、基材内部から外方への不純物の拡散を抑制することができる。
In a process involving heating in a semiconductor manufacturing process, for example, a Si 3 N 4 (silicon nitride) film deposition process by LP-CVD (low pressure-chemical vapor deposition: low pressure CVD), the substrate surface is made of polycrystalline SiC ( SiC vertical wafer boats coated with silicon carbide) are used.
This vertical wafer boat is obtained by applying a SiC coating by a CVD (chemical vapor deposition) method to the surface of a SiC substrate and forming a high-purity SiC coating layer on the surface of the substrate. In this vertical wafer boat, diffusion of impurities from the inside of the substrate to the outside can be suppressed.

しかしながら、SiC被覆層を基材表面に形成したSiC縦型ボートにあっては、半導体ウエハへのSi34等のCVD膜形成の際に、当該CVD膜の剥がれによるパーティクル汚染を生じるおそれがあり、比較的頻繁にCVD膜の洗浄、除去作業を行う必要があった。
そのため、前記CVD膜の密着強度を向上させる方法として、例えば、特許文献1のようにサンドブラスト等の表面処理でウエハボート表面を適度に粗面化する方法が提案されている。
However, in an SiC vertical boat in which a SiC coating layer is formed on the surface of a base material, there is a risk of causing particle contamination due to peeling of the CVD film when forming a CVD film such as Si 3 N 4 on a semiconductor wafer. In other words, the CVD film needs to be cleaned and removed relatively frequently.
Therefore, as a method for improving the adhesion strength of the CVD film, for example, a method for appropriately roughening the surface of the wafer boat by surface treatment such as sandblasting has been proposed as disclosed in Patent Document 1.

また、当該SiC縦型ボートにあっては、SiC被膜層が多結晶のSiC粒子からなりこの表面に露出するSiC粒子が大きく、鋭角であると、これに搭載されるウエハに傷やスリップが生じる虞がある。そのため、ウエハが搭載されるウエハ当接部のみ若しくはボート全体を研磨し、フラット化することで、傷やスリップ発生を防止する方法が検討されている。
特開平8−102443号公報
Further, in the SiC vertical boat, if the SiC coating layer is made of polycrystalline SiC particles, and the SiC particles exposed on the surface are large and have an acute angle, scratches and slips occur on the wafer mounted thereon. There is a fear. Therefore, a method for preventing the occurrence of scratches and slips by polishing and flattening only the wafer contact portion on which the wafer is mounted or the entire boat has been studied.
JP-A-8-102443

ところで、前記した特許文献1において提案されているSiC縦型ウエハボートは、SiC被覆層の研磨面に、当該研磨に伴うマイクロダメージ(マイクロクラック等)が残存するため、半導体ウエハの製造工程で受ける昇降温、また/若しくはCVD膜の除去のための酸洗浄の繰り返し等によって、SiC被覆層が破損し、SiC膜自体もしくはCVD膜の剥がれによるパーティクル発生やSiC基材からの不純物拡散によるウエハ汚染の虞がある。   By the way, the SiC vertical wafer boat proposed in the above-mentioned Patent Document 1 receives micro damages (micro cracks, etc.) associated with the polishing on the polished surface of the SiC coating layer, and is thus received in the semiconductor wafer manufacturing process. The SiC coating layer is damaged due to temperature rise and fall and / or repeated acid cleaning for removing the CVD film, etc., and the generation of particles due to peeling of the SiC film itself or the CVD film and the contamination of the wafer due to impurity diffusion from the SiC substrate. There is a fear.

本発明は、上記課題を解決するためになされたものであり、ウエハに傷やスリップの発生をより確実に抑制し、かつパーティクル汚染を生じさせない縦型ウエハボートを提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vertical wafer boat that more reliably suppresses the generation of scratches and slips on the wafer and does not cause particle contamination. It is.

本発明は上記目的を達成するために成されたものであり、ウエハを搭載するための棚部が形成された複数本の支柱と、前記支柱の上下端部を固定する天板及び底板とを備えた、SiC質基材の表面にSiC被覆膜が形成された縦型ウエハボートにおいて、前記棚部におけるウエハ当接部が第1のSiC被膜形成後に研磨によるフラット化処理を行い、その上面に第2のSiC被膜が形成され、かつその表面の表面粗さRaが0.1μm以上0.9μm以下であって、前記ウエハ当接部を除く部分が、第1のSiC被膜形成後にその上面に第2のSiC膜が形成され、かつその表面粗さRaが1.0μm以上8.0μm以下であることを特徴としている。   The present invention has been made to achieve the above object, and includes a plurality of columns on which a shelf for mounting a wafer is formed, and a top plate and a bottom plate for fixing upper and lower ends of the columns. In a vertical wafer boat provided with a SiC coating film on the surface of a SiC substrate, the wafer abutting portion in the shelf performs a flattening process by polishing after the first SiC coating is formed, and the upper surface thereof And the surface roughness Ra of the surface is 0.1 μm or more and 0.9 μm or less, and a portion excluding the wafer contact portion is formed on the upper surface after the first SiC film is formed. The second SiC film is formed, and the surface roughness Ra is 1.0 μm or more and 8.0 μm or less.

このように、前記棚部におけるウエハ当接部が第1のSiC被膜形成後に研磨によるフラット化処理を行い、その上面に第2のSiC被膜が形成され、かつその表面の表面粗さRaが0.1μm以上0.9μm以下であるため、表面にマイクロクラックの如きダメージが残存することがなく、また適度な表面粗さになっていることで、上述したパーティクルの発生が抑制され、ウエハの傷やスリップの発生をより確実に抑制することができると共に、SiC膜破損による不純物汚染の虞がない。   As described above, the wafer contact portion in the shelf performs the flattening process by polishing after the first SiC film is formed, the second SiC film is formed on the upper surface, and the surface roughness Ra of the surface is 0. Since it is 1 μm or more and 0.9 μm or less, damage such as microcracks does not remain on the surface, and since the surface has an appropriate surface roughness, the generation of the above-described particles is suppressed, and the scratches on the wafer And the occurrence of slips can be more reliably suppressed, and there is no risk of impurity contamination due to SiC film breakage.

また、ウエハ当接部を除く部分が、第1のSiC被膜形成後にその上面に第2のSiC膜が形成され、かつその表面粗さRaが1.0μm以上8.0μm以下となっている。つまり、表面粗さRaが0.7μm〜7.5μm程度の第1のSiC被膜の表面に、更に上記第2の微細なSiC被覆膜が形成され、その表面が上記表面粗さとなっているため、CVD膜が付着した際、アンカー効果が大きく、CVD膜の剥離をより効果的に抑制することができる。   Further, the second SiC film is formed on the upper surface of the portion excluding the wafer contact portion after the first SiC film is formed, and the surface roughness Ra is 1.0 μm or more and 8.0 μm or less. That is, the second fine SiC coating film is further formed on the surface of the first SiC film having a surface roughness Ra of about 0.7 μm to 7.5 μm, and the surface has the surface roughness. Therefore, when the CVD film adheres, the anchor effect is large, and the peeling of the CVD film can be more effectively suppressed.

本発明によれば、ウエハに傷やスリップの発生をより確実に抑制し、かつパーティクル汚染を抑制できる縦型ウエハボートを得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the vertical wafer boat which can suppress generation | occurrence | production of the damage | wound and slip to a wafer more reliably, and can suppress particle contamination can be obtained.

以下に、本発明にかかる一実施形態について、図1乃至図3に基づいて説明する。なお、図1は本発明の一実施形態にかかる縦型ウエハボートを示す斜視図、図2は図1に示した縦型ウエハボートの要部拡大図、図3は図1に示した縦型ウエハボートの製造方法を示す図である。   An embodiment according to the present invention will be described below with reference to FIGS. 1 to 3. 1 is a perspective view showing a vertical wafer boat according to an embodiment of the present invention, FIG. 2 is an enlarged view of a main part of the vertical wafer boat shown in FIG. 1, and FIG. 3 is a vertical type shown in FIG. It is a figure which shows the manufacturing method of a wafer boat.

図1に示すように、この縦型ウエハボート1は、成膜処理されるウエハWを搭載するための棚部2aが形成された複数本の支柱2と、前記支柱2の上下端部を固定する天板3及び底板4とを備えている。
なお、前記SiC質基材としては、反応焼結SiCすなわちカーボン成分を含むSiC焼成体にSiを含浸し、前記カーボン成分とSiの一部が反応し、SiC化されたSi−SiCであることが好ましく、SiCの成形体を高温で熱処理した再結晶質SiC、焼結助剤を添加し焼結した自焼結SiC等でもよい。
As shown in FIG. 1, the vertical wafer boat 1 fixes a plurality of support columns 2 on which shelves 2a for mounting wafers W to be deposited are formed, and upper and lower ends of the support columns 2 are fixed. The top plate 3 and the bottom plate 4 are provided.
The SiC base material is Si-SiC obtained by reacting sintered SiC, that is, a SiC fired body containing a carbon component with Si, and reacting part of the carbon component with Si to form SiC. It is preferable to use recrystallized SiC obtained by heat-treating a molded body of SiC at a high temperature, self-sintered SiC obtained by adding a sintering aid and sintering.

また、図2に示すように、前記棚部2aの上面部2a1は、ウエハWを載置するウエハ載置部である。この上面部(ウエハ載置部)2a1の先端部には先端面取り部2a2が形成され、左右側面部には、側部面取り部2a3が形成されている。尚、図中、この先端面取り部2a2、側部面取り部2a3は平面状に示されているが、これに限定されるものではなく、曲面状、いわゆるR形状に形成されていても良い。   As shown in FIG. 2, the upper surface 2 a 1 of the shelf 2 a is a wafer mounting unit on which the wafer W is mounted. A tip chamfered portion 2a2 is formed at the tip portion of the upper surface portion (wafer mounting portion) 2a1, and side chamfered portions 2a3 are formed at the left and right side portions. In the drawing, the tip chamfered portion 2a2 and the side chamfered portion 2a3 are shown in a planar shape, but are not limited to this, and may be formed in a curved shape, that is, a so-called R shape.

また、前記ウエハ載置部2a1と、このウエハ載置部2a1と連続し隣接する先端面取り部2a2及び側部面取り部2a3、更にこのウエハ載置部2a1と連続し隣接する、支柱2のウエハ挿入側側面2bの下側部2b1(ウエハ載置部2a1上面から寸法tの部分)は、ウエハが接する部分あるいは接する可能性がある部分であり、これらが成膜処理等の間にウエハが当接するウエハ当接部である。
このウエハ当接部は、表面粗さがRaが0.7μm〜7.5μmの第1のSiC被膜形成後に研磨によるフラット化処理を行い、その上面に第2のSiC被膜が形成され、かつその表面の表面粗さRaが0.1μm以上0.9μm以下に形成されている。
Further, the wafer mounting portion 2a1, the tip chamfered portion 2a2 and the side chamfered portion 2a3 that are continuous and adjacent to the wafer mounting portion 2a1, and the wafer insertion of the support column 2 that is continuous and adjacent to the wafer mounting portion 2a1. The lower portion 2b1 (the portion of the dimension t from the upper surface of the wafer mounting portion 2a1) is a portion that is in contact with or possibly in contact with the wafer, and these are in contact with the wafer during the film forming process or the like. This is a wafer contact portion.
The wafer contact portion is flattened by polishing after the first SiC film having a surface roughness Ra of 0.7 μm to 7.5 μm, and a second SiC film is formed on the upper surface thereof, and The surface roughness Ra of the surface is 0.1 μm or more and 0.9 μm or less.

このように、第1のSiC被膜形成後に研磨によるフラット化処理を行い、その上面に第2のSiC被膜が形成され、かつその表面の表面粗さRaが0.1μm以上0.9μm以下に形成されているため、表面にマイクロクラックの如きダメージが残存することがなく、また適度な表面粗さになっていることで、上述したパーティクルの発生が抑制され、ウエハのスリップをより確実に抑制することができると共に、SiC膜破損による不純物汚染の虞がない。   Thus, the flattening process by polishing is performed after the first SiC film is formed, the second SiC film is formed on the upper surface, and the surface roughness Ra of the surface is 0.1 μm or more and 0.9 μm or less. Therefore, damage such as microcracks does not remain on the surface and the surface roughness is moderate, so that the generation of the above-mentioned particles is suppressed, and the wafer slip is more reliably suppressed. In addition, there is no risk of impurity contamination due to SiC film breakage.

ここで、前記表面の表面粗さRaが0.1μm未満では、ウエハ載置部2a1上にウエハを載置した際に、滑りが生じ、ウエハボート移動時にウエハが落下するおそれがあり、あるいは高温環境下でウエハを加熱処理した場合にウエハがボートの当接部で融着するおそれがあり好ましくなく、また表面の表面粗さRaが0.9μmを超える場合には、ウエハ搭載時あるいは成膜処理等を行なった際に、ウエハ裏面に傷やスリップが生じることとなり好ましくない。   Here, if the surface roughness Ra of the surface is less than 0.1 μm, slipping may occur when the wafer is placed on the wafer placement portion 2a1, and the wafer may fall when the wafer boat is moved, or the temperature may be high. If the wafer is heat-treated in an environment, the wafer may be fused at the contact portion of the boat, which is not preferable. If the surface roughness Ra exceeds 0.9 μm, the wafer is mounted or deposited. When processing or the like is performed, scratches and slips are generated on the back surface of the wafer, which is not preferable.

また、ウエハ当接部を除く部分(ウエハ載置部2a1と、先端面取り部2a2、側部面取り部2a3、ウエハ挿入側側面2bの下側部2b1以外の部分)は、第1のSiC被膜形成後にその上面に第2のSiC膜が形成され、かつその表面粗さRaが1.0μm以上8.0μm以下となっている。
つまり、表面粗さRaが0.7μm〜7.5μmの第1のSiC被膜の表面に、更に上記表面粗さRaで0.1μm以上0.9μm以下となる第2のSiC被覆膜が形成され、その表面がRa1.0μm〜8.0μmとなっているため、CVD膜が付着した際、アンカー効果が大きく、CVD膜の剥離をより効果的に抑制することができる。
Further, a portion other than the wafer contact portion (a portion other than the wafer mounting portion 2a1, the tip chamfered portion 2a2, the side chamfered portion 2a3, and the lower portion 2b1 of the wafer insertion side surface 2b) is formed with the first SiC film. Later, a second SiC film is formed on the upper surface, and the surface roughness Ra is 1.0 μm or more and 8.0 μm or less.
That is, a second SiC coating film having a surface roughness Ra of 0.1 μm to 0.9 μm is formed on the surface of the first SiC film having a surface roughness Ra of 0.7 μm to 7.5 μm. And since the surface is Ra1.0micrometer-8.0micrometer, when a CVD film adheres, an anchor effect is large and it can suppress peeling of a CVD film more effectively.

ここで、ウエハ当接部を除く部分の表面粗さがRa1.0μm未満の場合には、CVD膜の剥離抑制効果がなく、また表面粗さが8.0μmを超える場合には、縦型ボートの移送あるいはセッティングの際に移送用治具等との接触によってパーティクルが発生し、好ましくない。   Here, when the surface roughness of the portion excluding the wafer contact portion is less than Ra 1.0 μm, there is no effect of suppressing the peeling of the CVD film, and when the surface roughness exceeds 8.0 μm, the vertical boat During the transfer or setting, particles are generated by contact with a transfer jig or the like, which is not preferable.

次に、本発明にかかる縦型ウエハボートの製造方法について、図3に基づいて説明する。
先ず、SiC質基材を支柱2、天板3、底板4を所定の形状に機械加工し、またこれら基材の表面を研磨し、所定の表面粗さを有する部材を製作する。例えば支柱2には、図3(a)に示すように、棚部2aが形成される。
そして、図3(b)に示すように、これら部材の表面に、表面粗さRaが概ね0.7μm〜7.5μmとなるように、例えば、結晶粒径5μm以上30μm以下のSiCの結晶粒を有する第1のSiC被覆膜AをCVD法により形成する。
Next, the manufacturing method of the vertical wafer boat concerning this invention is demonstrated based on FIG.
First, the support 2, the top plate 3, and the bottom plate 4 are machined into a predetermined shape on the SiC base material, and the surfaces of these base materials are polished to produce a member having a predetermined surface roughness. For example, as shown in FIG. 3A, a shelf 2 a is formed on the column 2.
Then, as shown in FIG. 3B, on the surfaces of these members, for example, SiC crystal grains having a crystal grain size of 5 μm to 30 μm so that the surface roughness Ra is approximately 0.7 μm to 7.5 μm. A first SiC coating film A having the following is formed by a CVD method.

続いて、図3(c)に示すように、棚部2aのウエハ載置部2a1、先端面取り部2a2、側部面取り部2a3、支柱2のウエハ挿入側面2bの下側部2b1に形成された前記第1のSiC被覆膜Aを、表面粗さRaが0.1μm未満となるように研磨加工(フラット化処理)する。   Subsequently, as shown in FIG. 3C, the wafer mounting portion 2a1, the tip chamfered portion 2a2, the side chamfered portion 2a3 of the shelf portion 2a, and the lower portion 2b1 of the wafer insertion side surface 2b of the support column 2 were formed. The first SiC coating film A is polished (flattened) so that the surface roughness Ra is less than 0.1 μm.

更に、図3(d)に示すように、これら部材の表面全域に、前記研磨面の表面粗さRaが0.1μm以上0.9μm以下となるように、例えば、結晶粒径0.1μm以上5μm以下のSiCの結晶粒を有する第2のSiC被覆膜BをCVD法により形成する。   Further, as shown in FIG. 3D, for example, the crystal grain size is 0.1 μm or more so that the surface roughness Ra of the polishing surface is 0.1 μm or more and 0.9 μm or less over the entire surface of these members. A second SiC coating film B having SiC crystal grains of 5 μm or less is formed by a CVD method.

その結果、棚部2aのウエハ載置部2a1、先端面取り部2a2、側部面取り部2a3、支柱2のウエハ挿入側面2bの下側部2b1の上面は、フラット化処理化された第1のSiC被覆膜Aの表面に第2のSiC被覆膜Bが形成され、表面粗さRaが0.1μm以上0.9μm以下の構造となる。   As a result, the wafer mounting portion 2a1, the tip chamfered portion 2a2, the side chamfered portion 2a3 of the shelf 2a, and the upper surface of the lower side portion 2b1 of the wafer insertion side surface 2b of the support column 2 are flattened. The second SiC coating film B is formed on the surface of the coating film A, and the surface roughness Ra is 0.1 μm or more and 0.9 μm or less.

また、棚部2aのウエハ載置部2a1、先端面取り部2a2、側部面取り部2a3、支柱2のウエハ挿入側面2bの下側部2b1の上面を除いた部分には、比較的粗い表面のSiC被覆膜Aの表面に微細な粗さとなるSiC被覆膜Bが形成され、表面粗さRaが1.0μm以上8.0μm以下の構造となる。   In addition, the portion of the shelf 2a excluding the wafer placing portion 2a1, the tip chamfered portion 2a2, the side chamfered portion 2a3, and the upper surface of the lower side portion 2b1 of the wafer insertion side surface 2b of the support column 2 has a relatively rough surface SiC. A SiC coating film B having a fine roughness is formed on the surface of the coating film A, and the surface roughness Ra is 1.0 μm or more and 8.0 μm or less.

なお、異なる結晶粒を有するSiC被覆膜A,Bは、公知のCVD法において処理温度、原料ガス比、減圧程度を適宜に変えることによって、形成することができる。
結晶粒径5μm以上30μm以下のSiCの結晶粒を有するSiC被覆膜Aを形成するには、例えば、500torr以下に減圧脱気後、10℃/分の昇温速度で1000〜1400℃まで加熱し、次いで原料化合物をキャリアガスとともに導入した後、さらに10℃/分の昇温速度で1000〜1400℃の成膜温度に加熱し、圧力を0〜500torrの成膜圧力に調整する。次いで、原料化合物をキャリアガスとともに導入し、原料化合物を熱分解または化学反応させることにより、前記SiC被覆膜を形成することができる。
The SiC coating films A and B having different crystal grains can be formed by appropriately changing the processing temperature, the raw material gas ratio, and the reduced pressure in a known CVD method.
In order to form SiC coating film A having SiC crystal grains having a crystal grain size of 5 μm or more and 30 μm or less, for example, after degassing under reduced pressure to 500 torr or less, heating to 1000 to 1400 ° C. at a heating rate of 10 ° C./min. Then, after introducing the raw material compound together with the carrier gas, it is further heated to a film forming temperature of 1000 to 1400 ° C. at a temperature rising rate of 10 ° C./min, and the pressure is adjusted to a film forming pressure of 0 to 500 torr. Next, the SiC coating film can be formed by introducing the raw material compound together with the carrier gas and thermally decomposing or reacting the raw material compound.

また、結晶粒径0.1μm以上5μm以下のSiCの結晶粒を有するSiC被覆膜Bを形成するには、例えば、500torr以下に減圧脱気後、10℃/分の昇温速度で1000〜1300℃まで加熱し、次いで非酸化性ガスを導入した後、さらに10℃/分の昇温速度で1000〜1300℃の成膜温度に加熱し、圧力を0〜500torrの成膜圧力に調整する。次いで、原料化合物をキャリアガスとともに導入し、原料化合物を熱分解または化学反応させることにより、前記SiC被覆膜を形成することができる。   In order to form the SiC coating film B having SiC crystal grains having a crystal grain size of 0.1 μm or more and 5 μm or less, for example, after degassing under reduced pressure to 500 torr or less, the temperature is increased from 1000 to 1000 ° C. After heating to 1300 ° C. and then introducing a non-oxidizing gas, the film is further heated to a film formation temperature of 1000 to 1300 ° C. at a temperature increase rate of 10 ° C./min, and the pressure is adjusted to a film formation pressure of 0 to 500 torr. . Next, the SiC coating film can be formed by introducing the raw material compound together with the carrier gas and thermally decomposing or reacting the raw material compound.

尚、原料化合物としては、例えば、CH3SiCl3、CH3SiHCl2などの分子内にSi原子とC原子を含む有機ケイ素化合物が挙げられる。また、原料化合物として、SiCl4のようなケイ素化合物とCH4などの炭素化合物とを併用してもよい。キャリアガスとしては、水素やアルゴンなどの非酸化性ガスが例示される。 As the starting compound, for example, an organic silicon compound containing Si atoms and C atom in the molecule such as CH 3 SiCl 3, CH 3 SiHCl 2. Further, as the starting compound, it may be used in combination with carbon compounds such as silicon compounds and CH 4 as SiCl 4. Examples of the carrier gas include non-oxidizing gases such as hydrogen and argon.

更に、本発明にかかる実施例について説明する。
(実施例1)
先ず、反応焼結法によってSi−SiC基材からなる3本の支柱、天板、底板を製作し、これら基材の表面を研磨し、算術平均表面粗さRa(JIS B0601−2001)が、2.0μmの部材を製作した。そして、これら部材を組立て、6インチ用のボートを製作した。
更に、CVD炉内70torr、1200℃の条件下で、メチルトリクロロシランとH2ガスを、流量比3:30で適量導入し、前記6インチ用のボートを構成する支柱、天板、底板の表面に、厚さ50μmの第1のSiC被覆膜を形成した。このときのRaは2.5μmであった。
Furthermore, the Example concerning this invention is described.
Example 1
First, three struts, a top plate, and a bottom plate made of a Si—SiC base material are produced by a reactive sintering method, the surfaces of these base materials are polished, and an arithmetic average surface roughness Ra (JIS B0601-2001) is A 2.0 μm member was produced. These members were assembled to produce a 6-inch boat.
Furthermore, under conditions of 70 torr and 1200 ° C. in the CVD furnace, appropriate amounts of methyltrichlorosilane and H 2 gas are introduced at a flow ratio of 3:30, and the surfaces of the columns, top plate, and bottom plate constituting the 6-inch boat Then, a first SiC coating film having a thickness of 50 μm was formed. At this time, Ra was 2.5 μm.

そして、ウエハ当接部におけるSiC被覆膜をメッシュ800のダイヤモンド砥石で研磨し、Raを0.01μmにした。
更に、CVD炉内50torr、1100℃の条件下で、メチルトリクロロシランとH2ガスを、流量比3:30で適量導入し、前記6インチ用のボートを構成する支柱、天板、底板の表面に第2のSiC被覆膜を形成した。
このときのウエハ当接部の表面粗さ及びウエハ当接部以外のRaは、表1に示すように、0.5μm、2.5μmであった。
Then, the SiC coating film at the wafer contact portion was polished with a diamond whetstone of mesh 800 to make Ra 0.01 μm.
Furthermore, under conditions of 50 torr and 1100 ° C. in the CVD furnace, appropriate amounts of methyltrichlorosilane and H 2 gas are introduced at a flow ratio of 3:30, and the surfaces of the columns, top plate, and bottom plate constituting the 6-inch boat A second SiC coating film was formed.
At this time, the surface roughness of the wafer contact portion and Ra other than the wafer contact portion were 0.5 μm and 2.5 μm, as shown in Table 1.

(実施例2〜実施例5)
上記実施例1における上記CVD法の条件のうち処理温度、原料ガス比、減圧程度を適宜に変えることにより、表1に示すようなウエハ当接部の表面粗さ及びウエハ当接部以外の表面粗さのウエハボートを得た。
(Example 2 to Example 5)
By appropriately changing the processing temperature, the raw material gas ratio, and the reduced pressure level among the conditions of the CVD method in Example 1, the surface roughness of the wafer contact portion and the surface other than the wafer contact portion as shown in Table 1 A rough wafer boat was obtained.

(比較例1)
実施例1と同様に、反応焼結法によってSi−SiC基材からなる3本の支柱、天板、底板を製作し、これら基材の表面を研磨し、算術平均表面粗さRa(JIS B0601−2001)が、2.0μmの部材を製作した。そして、これら部材を組立て、6インチ用のボートを製作した。
更に、CVD炉内70torr、1200℃の条件下で、メチルトリクロロシランとH2ガスを、流量比3:30で適量導入し、前記6インチ用のボートを構成する支柱、天板、底板の表面に、厚さ50μmの第1のSiC被覆膜を形成した。このときのウエハ当接部及びそれ以外の部分のRaは2.5μm、2.4μmであった。
その後のウエハ当接部の研磨、第2のSiC被覆膜の形成を行なうことなく、比較例1とした。
(Comparative Example 1)
In the same manner as in Example 1, three struts, a top plate, and a bottom plate made of a Si—SiC substrate were manufactured by a reactive sintering method, the surfaces of these substrates were polished, and an arithmetic average surface roughness Ra (JIS B0601) was obtained. -2001) produced a 2.0 μm member. These members were assembled to produce a 6-inch boat.
Furthermore, under conditions of 70 torr and 1200 ° C. in the CVD furnace, appropriate amounts of methyltrichlorosilane and H 2 gas are introduced at a flow ratio of 3:30, and the surfaces of the columns, top plate, and bottom plate constituting the 6-inch boat Then, a first SiC coating film having a thickness of 50 μm was formed. At this time, Ra of the wafer contact portion and the other portions was 2.5 μm and 2.4 μm.
It was set as the comparative example 1 without performing grinding | polishing of a wafer contact part after that, and formation of a 2nd SiC coating film.

(比較例2)
比較例1において、第1のSiC被覆膜を形成した後、ウエハ当接部をRaが0.01μmとなるように研磨を行なったものを、比較例2とした。
(比較例3〜比較例5)
比較例3〜5は、上記実施例1と同様に処理し、第2のSiC被覆膜を形成する際、上記CVD法の条件のうち処理温度、原料ガス比、減圧程度を適宜に変えることにより、表2に示すようなウエハ当接部の表面粗さ及びウエハ当接部以外の表面粗さのウエハボートを得た。
(Comparative Example 2)
In Comparative Example 1, the first SiC coating film was formed, and then the wafer contact portion was polished so that Ra was 0.01 μm, which was referred to as Comparative Example 2.
(Comparative Example 3 to Comparative Example 5)
In Comparative Examples 3 to 5, when the same treatment as in Example 1 was performed to form the second SiC coating film, among the conditions of the CVD method, the processing temperature, the raw material gas ratio, and the reduced pressure were appropriately changed. Thus, a wafer boat having the surface roughness of the wafer contact portion and the surface roughness other than the wafer contact portion as shown in Table 2 was obtained.

そして、実施例1〜5、比較例1〜5にかかる6インチウエハボートの溝部の全てにウエハを載置し、これをLP−CVD装置内に配置し、SiN膜を10μm積層させた後、ウエハボートをLP−CVD装置から取り出し、このウエハボートの最上部、センター部、最低部に載置されていた3枚のウエハ上の0.3μm以上のパーティクル数をカウントし、これらのパーティクル数の1枚当たりの平均値を算出した。その結果を表3に示す。   And after mounting a wafer in all the groove parts of the 6-inch wafer boat concerning Examples 1-5 and Comparative Examples 1-5, this is arrange | positioned in LP-CVD apparatus, and 10 micrometer of SiN films were laminated | stacked, The wafer boat is taken out from the LP-CVD apparatus, and the number of particles of 0.3 μm or more on the three wafers placed on the top, center and bottom of the wafer boat is counted. The average value per sheet was calculated. The results are shown in Table 3.

表3に示されるように、実施例1〜5にかかる6インチウエハボートにあっては、パーティクル汚染を抑制できることが確認できた。また、いずれの実施例のものも、パーティクル数を測定したウエハいずれの表面にもスリップが確認されなかった。   As shown in Table 3, in the 6-inch wafer boat according to Examples 1 to 5, it was confirmed that particle contamination can be suppressed. In any of the examples, no slip was observed on the surface of any wafer whose number of particles was measured.

Figure 2008277781
Figure 2008277781

Figure 2008277781
Figure 2008277781

Figure 2008277781
Figure 2008277781

図1は本発明の一実施形態にかかる縦型ウエハボートを示す斜視図である。FIG. 1 is a perspective view showing a vertical wafer boat according to an embodiment of the present invention. 図2は図1に示した縦型ウエハボートの要部拡大図である。FIG. 2 is an enlarged view of the main part of the vertical wafer boat shown in FIG. 図3は図1に示した縦型ウエハボートの製造方法を示す図である。FIG. 3 is a view showing a method of manufacturing the vertical wafer boat shown in FIG.

符号の説明Explanation of symbols

1 縦型ウエハボート(縦型ウエハボート)
2 支柱
2a 棚部
2a1 ウエハ載置部
2a2 先端面取り部(隣接部)
2a3 側部面取り部(隣接部)
2b ウエハ挿入側側面
2b1 ウエハ挿入側側面の下側部
3 天板
4 底板
A 第1のSiC被覆膜
B 第2のSiC被覆膜
1 Vertical wafer boat (Vertical wafer boat)
2 Support 2a Shelf 2a1 Wafer mounting part 2a2 Tip chamfered part (adjacent part)
2a3 Side chamfered part (adjacent part)
2b Wafer insertion side side surface 2b1 Lower side portion 3 of wafer insertion side side surface 4 Top plate 4 Bottom plate A First SiC coating film B Second SiC coating film

Claims (1)

ウエハを搭載するための棚部が形成された複数本の支柱と、前記支柱の上下端部を固定する天板及び底板とを備えた、SiC質基材の表面にSiC被覆膜が形成された縦型ウエハボートにおいて、
前記棚部におけるウエハ当接部が第1のSiC被膜形成後に研磨によるフラット化処理を行い、その上面に第2のSiC被膜が形成され、かつその表面の表面粗さRaが0.1μm以上0.9μm以下であって、
前記ウエハ当接部を除く部分が、第1のSiC被膜形成後にその上面に第2のSiC膜が形成され、かつその表面粗さRaが1.0μm以上8.0μm以下であることを特徴とする縦型ウエハボート。
A SiC coating film is formed on the surface of the SiC base material, which includes a plurality of pillars on which shelves for mounting a wafer are formed, and top and bottom plates for fixing upper and lower ends of the pillars. In vertical wafer boats
The wafer contact portion in the shelf performs a flattening process by polishing after the first SiC film is formed, the second SiC film is formed on the upper surface, and the surface roughness Ra of the surface is 0.1 μm or more 0 .9 μm or less,
The portion excluding the wafer contact portion has a second SiC film formed on the upper surface after the first SiC film is formed, and the surface roughness Ra is 1.0 μm or more and 8.0 μm or less. A vertical wafer boat.
JP2008076240A 2007-03-30 2008-03-24 Vertical wafer boat Active JP5051909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076240A JP5051909B2 (en) 2007-03-30 2008-03-24 Vertical wafer boat

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007094043 2007-03-30
JP2007094043 2007-03-30
JP2008076240A JP5051909B2 (en) 2007-03-30 2008-03-24 Vertical wafer boat

Publications (2)

Publication Number Publication Date
JP2008277781A true JP2008277781A (en) 2008-11-13
JP5051909B2 JP5051909B2 (en) 2012-10-17

Family

ID=40055322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076240A Active JP5051909B2 (en) 2007-03-30 2008-03-24 Vertical wafer boat

Country Status (1)

Country Link
JP (1) JP5051909B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079621A1 (en) * 2013-11-26 2015-06-04 信越半導体株式会社 Heat treatment method
JP2016204736A (en) * 2015-04-28 2016-12-08 イビデン株式会社 Ceramic structure and method for manufacturing ceramic structure
JP2017017080A (en) * 2015-06-29 2017-01-19 クアーズテック株式会社 Wafer boat and manufacturing method for the same
KR20180071952A (en) * 2016-12-20 2018-06-28 주식회사 티씨케이 A PART FOR SEMICONDUCTOR MANUFACTORING WITH SiC DEPOSITION LAYER AND MANUFACTORING METHOD THE SAME
WO2018117559A1 (en) * 2016-12-20 2018-06-28 주식회사 티씨케이 Semiconductor manufacturing parts comprising sic deposition layer, and manufacturing method therefor
JP2018104737A (en) * 2016-12-22 2018-07-05 クアーズテック株式会社 Method of manufacturing vertical wafer boat
JP2019526525A (en) * 2016-08-18 2019-09-19 トカイ カーボン コリア カンパニー,リミティド SiC material and SiC composite material
JP2019192688A (en) * 2018-04-19 2019-10-31 三菱電機株式会社 Wafer boat and method of manufacturing the same
JP2020077724A (en) * 2018-11-07 2020-05-21 クアーズテック株式会社 Wafer boat
CN116516468A (en) * 2023-07-04 2023-08-01 苏州优晶光电科技有限公司 Device and method for simultaneously treating multiple silicon carbide seed crystal coatings
JP7431489B2 (en) 2020-12-23 2024-02-15 クアーズテック合同会社 vertical wafer boat

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164522A (en) * 1998-11-25 2000-06-16 Toshiba Ceramics Co Ltd Silicon carbide assembling wafer boat for semiconductor manufacture
JP2002274983A (en) * 2001-03-12 2002-09-25 Tokai Konetsu Kogyo Co Ltd Member for semiconductor manufacturing apparatus coated with sic film and method of manufacturing the same
JP2003197722A (en) * 2001-12-26 2003-07-11 Toshiba Ceramics Co Ltd Jig for heat-treating semiconductor wafer, heat treatment unit using the same and method for manufacturing the same
JP2003243319A (en) * 2002-02-19 2003-08-29 Tokyo Electron Ltd Boat for heat treatment and vertical thermal treatment equipment
JP2004079845A (en) * 2002-08-20 2004-03-11 Hitachi Kokusai Electric Inc Substrate processing device
JP2005203648A (en) * 2004-01-19 2005-07-28 Shin Etsu Handotai Co Ltd Vertical type boat for heat treating silicon wafer and heat treating method
JP2006086534A (en) * 2004-09-17 2006-03-30 Asm Internatl Nv Rough side susceptor for high-temperature substrate processing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164522A (en) * 1998-11-25 2000-06-16 Toshiba Ceramics Co Ltd Silicon carbide assembling wafer boat for semiconductor manufacture
JP2002274983A (en) * 2001-03-12 2002-09-25 Tokai Konetsu Kogyo Co Ltd Member for semiconductor manufacturing apparatus coated with sic film and method of manufacturing the same
JP2003197722A (en) * 2001-12-26 2003-07-11 Toshiba Ceramics Co Ltd Jig for heat-treating semiconductor wafer, heat treatment unit using the same and method for manufacturing the same
JP2003243319A (en) * 2002-02-19 2003-08-29 Tokyo Electron Ltd Boat for heat treatment and vertical thermal treatment equipment
JP2004079845A (en) * 2002-08-20 2004-03-11 Hitachi Kokusai Electric Inc Substrate processing device
JP2005203648A (en) * 2004-01-19 2005-07-28 Shin Etsu Handotai Co Ltd Vertical type boat for heat treating silicon wafer and heat treating method
JP2006086534A (en) * 2004-09-17 2006-03-30 Asm Internatl Nv Rough side susceptor for high-temperature substrate processing

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9922842B2 (en) 2013-11-26 2018-03-20 Shin-Etsu Handotai Co., Ltd. Heat treatment method
WO2015079621A1 (en) * 2013-11-26 2015-06-04 信越半導体株式会社 Heat treatment method
JP2016204736A (en) * 2015-04-28 2016-12-08 イビデン株式会社 Ceramic structure and method for manufacturing ceramic structure
US10026633B2 (en) 2015-06-29 2018-07-17 Coorstek Kk Wafer boat and manufacturing method of the same
JP2017017080A (en) * 2015-06-29 2017-01-19 クアーズテック株式会社 Wafer boat and manufacturing method for the same
TWI608559B (en) * 2015-06-29 2017-12-11 闊斯泰股份有限公司 Wafer boat and manufacturing method of the same
JP2019526525A (en) * 2016-08-18 2019-09-19 トカイ カーボン コリア カンパニー,リミティド SiC material and SiC composite material
US11591227B2 (en) 2016-08-18 2023-02-28 Tokai Carbon Korea Co., Ltd. SiC material and SiC composite material
WO2018117559A1 (en) * 2016-12-20 2018-06-28 주식회사 티씨케이 Semiconductor manufacturing parts comprising sic deposition layer, and manufacturing method therefor
KR20180071952A (en) * 2016-12-20 2018-06-28 주식회사 티씨케이 A PART FOR SEMICONDUCTOR MANUFACTORING WITH SiC DEPOSITION LAYER AND MANUFACTORING METHOD THE SAME
KR102051668B1 (en) * 2016-12-20 2019-12-04 주식회사 티씨케이 A PART FOR SEMICONDUCTOR MANUFACTORING WITH SiC DEPOSITION LAYER AND MANUFACTORING METHOD THE SAME
JP2020502806A (en) * 2016-12-20 2020-01-23 トーカイ カーボン コリア カンパニー.,リミテッド Semiconductor manufacturing component including SiC vapor deposited layer and method of manufacturing the same
US11694893B2 (en) 2016-12-20 2023-07-04 Tokai Carbon Korea Co., Ltd. Semiconductor manufacturing parts comprising SiC deposition layer, and manufacturing method therefor
JP6995856B2 (en) 2016-12-20 2022-01-17 トーカイ カーボン コリア カンパニー.,リミテッド Semiconductor manufacturing parts including SiC thin-film deposition layer and its manufacturing method
JP2018104737A (en) * 2016-12-22 2018-07-05 クアーズテック株式会社 Method of manufacturing vertical wafer boat
JP2019192688A (en) * 2018-04-19 2019-10-31 三菱電機株式会社 Wafer boat and method of manufacturing the same
JP7030604B2 (en) 2018-04-19 2022-03-07 三菱電機株式会社 Wafer boat and its manufacturing method
JP7150567B2 (en) 2018-11-07 2022-10-11 クアーズテック株式会社 Wafer boat manufacturing method
JP2020077724A (en) * 2018-11-07 2020-05-21 クアーズテック株式会社 Wafer boat
JP7431489B2 (en) 2020-12-23 2024-02-15 クアーズテック合同会社 vertical wafer boat
CN116516468A (en) * 2023-07-04 2023-08-01 苏州优晶光电科技有限公司 Device and method for simultaneously treating multiple silicon carbide seed crystal coatings
CN116516468B (en) * 2023-07-04 2023-10-13 苏州优晶光电科技有限公司 Device and method for simultaneously treating multiple silicon carbide seed crystal coatings

Also Published As

Publication number Publication date
JP5051909B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5051909B2 (en) Vertical wafer boat
KR100953707B1 (en) Semiconductor processing components and semiconductor processing utilizing same
JP2004088077A (en) Member for processing semiconductor wafer
TWI671802B (en) Vertical wafer boat
JP2006086534A (en) Rough side susceptor for high-temperature substrate processing
TWI608559B (en) Wafer boat and manufacturing method of the same
JP3494554B2 (en) Jig for semiconductor and manufacturing method thereof
JPH08188468A (en) Formed silicon carbide produced by chemical vapor deposition and its production
WO2009116233A1 (en) Silicon epitaxial wafer and method for manufacturing the same
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JP3094312B2 (en) Susceptor
JP2011014771A (en) Epitaxial growth method
JP7220844B2 (en) Manufacturing method of SiC polycrystalline substrate
JP7255473B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JPH10251062A (en) Production of silicon carbide formed body
JP2018104737A (en) Method of manufacturing vertical wafer boat
JP7413768B2 (en) Method for manufacturing polycrystalline substrate
JP7431487B2 (en) Vertical wafer boat and manufacturing method of vertical wafer boat
WO2011074436A1 (en) Substrate and method for manufacturing same
JP5087375B2 (en) Method for manufacturing silicon carbide semiconductor device
JP7247819B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JP7367541B2 (en) Method for manufacturing silicon carbide polycrystalline substrate
JP4255019B2 (en) Material for heat treatment
JP3599257B2 (en) Dummy wafer for semiconductor heat treatment
JP2004119810A (en) Tray for gaseous phase process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5051909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350