JP7431487B2 - Vertical wafer boat and manufacturing method of vertical wafer boat - Google Patents

Vertical wafer boat and manufacturing method of vertical wafer boat Download PDF

Info

Publication number
JP7431487B2
JP7431487B2 JP2020037749A JP2020037749A JP7431487B2 JP 7431487 B2 JP7431487 B2 JP 7431487B2 JP 2020037749 A JP2020037749 A JP 2020037749A JP 2020037749 A JP2020037749 A JP 2020037749A JP 7431487 B2 JP7431487 B2 JP 7431487B2
Authority
JP
Japan
Prior art keywords
boat
wafers
shelf
wafer
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020037749A
Other languages
Japanese (ja)
Other versions
JP2021141198A (en
Inventor
茂明 黒井
Original Assignee
クアーズテック合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クアーズテック合同会社 filed Critical クアーズテック合同会社
Priority to JP2020037749A priority Critical patent/JP7431487B2/en
Publication of JP2021141198A publication Critical patent/JP2021141198A/en
Application granted granted Critical
Publication of JP7431487B2 publication Critical patent/JP7431487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、縦型ウエハボート及び縦型ウエハボートの製造方法に関し、詳しくは、シリコンウエハ等を熱処理する際、シリコンウエハ等を搭載する縦型ウエハボート及び縦型ウエハボートの製造方法に関する。 The present invention relates to a vertical wafer boat and a method for manufacturing a vertical wafer boat, and more particularly, to a vertical wafer boat on which silicon wafers and the like are mounted when heat treating silicon wafers and the like, and a method for manufacturing a vertical wafer boat.

従来から、シリコンウエハ等の半導体ウエハ(以下、単にウエハと称呼する)は、炉芯管等を有する縦型あるいは横型の熱処理炉内で各種の熱処理が施されている。これら熱処理は、一般にウエハボート等の支持載置治具にウエハをセットして、加熱した熱処理炉内に前記支持載置治具を挿入し、更に昇温加熱し、処理ガスを導入することによって行われている。 Conventionally, semiconductor wafers (hereinafter simply referred to as wafers) such as silicon wafers have been subjected to various heat treatments in a vertical or horizontal heat treatment furnace having a furnace core tube or the like. These heat treatments are generally carried out by setting the wafer on a support and mounting jig such as a wafer boat, inserting the support and mounting jig into a heated heat treatment furnace, further raising the temperature, and introducing a processing gas. It is being done.

例えば、図5に基づいて、一般的な縦型熱処理炉及びその熱処理の概略について説明すると、縦型熱処理炉50は、炉芯管51と、均熱領域を確保するために前記炉芯管51の外周囲に適宜の間隔を保持して配設された均熱管52と、前記炉芯管51内のウエハWを加熱するために前記均熱管52の外周囲に配設された加熱部材53とを備えている。
また、前記炉芯管51の出入口の温度を均一に保つための保温筒54と、ウエハWに対して処理ガスを炉芯管51の頂部より内部空間に向けて供給するガス供給管56と、炉芯管51内の処理ガスを排出する排気管55とを備えている。
For example, based on FIG. 5, a general vertical heat treatment furnace and its heat treatment will be explained briefly. The vertical heat treatment furnace 50 includes a furnace core tube 51, and a heating member 53 disposed around the outer circumference of the soaking tube 52 for heating the wafer W in the furnace core tube 51; It is equipped with
Further, a heat insulating tube 54 for maintaining uniform temperature at the entrance and exit of the furnace core tube 51, and a gas supply tube 56 for supplying processing gas to the wafer W from the top of the furnace core tube 51 toward the internal space; It is provided with an exhaust pipe 55 for discharging the processing gas in the furnace core tube 51.

そして、前記保温筒54の上面には、熱処理が施される多数のウエハWを積載した縦型ウエハボート10が載置されるように構成されている。この縦型ウエハボート10には、ウエハWを支持載置する棚部10aが複数設けられ、上下方向に複数枚のウエハWを載置できるように構成されている。 A vertical wafer boat 10 loaded with a large number of wafers W to be heat-treated is placed on the upper surface of the heat-insulating cylinder 54. This vertical wafer boat 10 is provided with a plurality of shelf sections 10a for supporting and placing wafers W, and is configured such that a plurality of wafers W can be placed in the vertical direction.

また、図6に模式的に示すように、前記縦型ウエハボート10に載置されるウエハWは、製品となるウエハ(製品ウエハともいう)PWと、製品ウエハPWの上下部分に、製品ウエハPWを挟んで、載置されるいわゆるダミーウエハDWとからなる。 Further, as schematically shown in FIG. 6, the wafers W placed on the vertical wafer boat 10 include a wafer PW to become a product (also referred to as a product wafer), and a product wafer on the upper and lower parts of the product wafer PW. It consists of a so-called dummy wafer DW placed on both sides of PW.

このように構成された縦型熱処理炉50においては、製品ウエハPW、ダミーウエハDWを積載したウエハボート10が炉芯管51に収容された後、炉芯管51内を加熱部材53により加熱すると共に、ガス供給管56によって処理ガスが上方から下方に向けて供給される。
これにより、炉芯管51内では、高温の処理ガス雰囲気とされ、ウエハW(製品ウエハPW、ダミーウエハDW)に所定の熱処理が施される。
In the vertical heat treatment furnace 50 configured in this way, after the wafer boat 10 loaded with product wafers PW and dummy wafers DW is accommodated in the furnace core tube 51, the inside of the furnace core tube 51 is heated by the heating member 53, and , the processing gas is supplied from above to below through the gas supply pipe 56.
As a result, a high-temperature processing gas atmosphere is created in the furnace core tube 51, and a predetermined heat treatment is performed on the wafer W (product wafer PW, dummy wafer DW).

このとき、ダミーウエハDWは、導入される処理ガスが、熱処理される製品ウエハPWに直接当たらないようにガス流を制御して、製品ウエハPW上に形成される膜厚の均一性を向上させ、またその断熱作用にてガス流を制御して炉内の均熱化を図っている。 At this time, the dummy wafer DW controls the gas flow so that the introduced processing gas does not directly hit the product wafer PW to be heat-treated, thereby improving the uniformity of the film thickness formed on the product wafer PW, In addition, its heat insulation effect controls the gas flow to ensure uniform heat inside the furnace.

このような縦型ウエハボートとダミーウエハDWについて、種々の提案がなされている。
例えば、特許文献1では、高品質の基板処理が行え、基板処理の基板面内均一性の向上を図るために、基板保持手段にてウエハ等の基板を保持する間隔は、基板保持手段の中央部分に保持されるプロダクトウエハ等の製品用基板間の間隔よりも、基板保持手段の両端部分に配置されるダミーウエハ等の非製品用基板間の間隔が狭いものすることが提案されている。
Various proposals have been made regarding such vertical wafer boats and dummy wafers DW.
For example, in Patent Document 1, in order to perform high-quality substrate processing and improve the uniformity of substrate processing within the substrate surface, the interval at which substrates such as wafers are held by the substrate holding means is set at the center of the substrate holding means. It has been proposed that the spacing between non-product substrates such as dummy wafers placed at both end portions of the substrate holding means be narrower than the spacing between product substrates such as product wafers held in one section.

また、特許文献2では、製品ウエハの面間膜厚均一性の向上を図るため、ボート上に、表面に凹凸が形成された複数の第1の基板(製品ウエハ)を積層保持するとともに第1の基板の上端若しくは下端に第1の基板よりも表面の凹凸が少ない第2の基板(ダミーウエハ)を保持し、処理室内にて第1の基板および第2の基板を処理する際に、第1の基板および第2の基板に向けて処理ガスを供給するとともに、第2の基板に向けて不活性ガスを供給することが提案されている。 Furthermore, in Patent Document 2, in order to improve the uniformity of the film thickness between the surfaces of product wafers, a plurality of first substrates (product wafers) each having an uneven surface are stacked and held on a boat. A second substrate (dummy wafer) whose surface is less uneven than the first substrate is held at the upper end or lower end of the substrate, and when processing the first substrate and the second substrate in the processing chamber, the first substrate is It has been proposed to supply a processing gas toward the substrate and the second substrate, and to supply an inert gas toward the second substrate.

特開2004-221227号公報Japanese Patent Application Publication No. 2004-221227 特開2011-249407号公報Japanese Patent Application Publication No. 2011-249407

ところで、特許文献1,2のように製品ウエハの膜厚均一性の向上を図るための提案はなされているものの、ダミーウエハが縦型ボートに固着することによって生じる技術的課題を解決する提案はなされていない。
例えば、成膜される製品ウエハは、縦型ウエハボートへ収容され、処理が終了すると、縦型ウエハボートから取出される。
一方、ダミーウエハは、縦型ウエハボートに装着したまま、製品ウエハの成膜処理に繰り返し使用される。そのため、縦型ウエハボートと、縦型ウエハボートに装着されているダミーウエハには、膜が厚く堆積し、ダミーウエハが縦型ウエハボートに固着することがあった。
By the way, although proposals have been made to improve the film thickness uniformity of product wafers as in Patent Documents 1 and 2, no proposals have been made to solve the technical problems caused by dummy wafers being stuck to vertical boats. Not yet.
For example, product wafers to be deposited are stored in a vertical wafer boat, and when processing is completed, they are taken out from the vertical wafer boat.
On the other hand, the dummy wafers are repeatedly used in the film forming process of product wafers while being mounted on the vertical wafer boat. Therefore, a thick film was deposited on the vertical wafer boat and the dummy wafers mounted on the vertical wafer boat, and the dummy wafers were sometimes stuck to the vertical wafer boat.

そして、ダミーウエハが縦型ウエハボートに固着した場合、縦型ウエハボートの洗浄等のメンテナンス時に、ダミーウエハは破壊して取り除かれる場合がある。
しかしながら、固着したダミーウエハの破片を完全に除去することは困難であり、未除去の破片が残存した状態で新たなダミーウエハを載置した場合、未除去の破片と新たなダミーウエハとの擦れがパーティクル発生の原因になるという技術的課題があった。
一方、ダミーウエハを連続使用せず、操炉毎に交換するとなると、製造コストや生産性が悪化するという技術的課題があった。
If the dummy wafer is stuck to the vertical wafer boat, the dummy wafer may be destroyed and removed during maintenance such as cleaning of the vertical wafer boat.
However, it is difficult to completely remove stuck dummy wafer debris, and if a new dummy wafer is placed with unremoved debris remaining, particles will be generated due to friction between the unremoved debris and the new dummy wafer. There was a technical problem in that it could cause
On the other hand, if dummy wafers are not used continuously and are replaced every time the furnace is operated, there is a technical problem in that manufacturing costs and productivity deteriorate.

本発明者は、ダミーウエハを縦型ウエハボートに装着したまま、連続使用し、縦型ウエハボートとダミーウエハに厚い膜が堆積した場合にも、ダミーウエハが固着し難い、縦型ウエハボート及びそのボートの製造方法を鋭意研究し、本発明を想到した。 The present inventor has discovered that a vertical wafer boat and its boat are capable of preventing dummy wafers from sticking even when a thick film is deposited on the vertical wafer boat and the dummy wafers when the dummy wafers are continuously used while mounted on the vertical wafer boat. The present invention was conceived after intensive research into manufacturing methods.

本発明は、前記したような事情の下になされたものであり、ダミーウエハの縦型ウエハボートに対する固着を抑制した縦型ウエハボート及び縦型ウエハボートの製造方法を提供することを目的とする。 The present invention has been made under the above-mentioned circumstances, and an object of the present invention is to provide a vertical wafer boat and a method for manufacturing a vertical wafer boat that suppresses the adhesion of dummy wafers to the vertical wafer boat.

前記した課題を解決するためになされた、本発明に係る縦型ウエハボートは、複数のウエハを上下方向に載置する縦型ウエハボートにおいて、前記複数のウエハを載置する、上下方向に配置された複数の棚部を有するボート支柱部と、前記ボート支柱を保持する天板と底板とを備え、ダミーウエハが搭載される棚部表面の表面粗さRaが、製品ウエハが搭載される棚部表面の表面粗さRaよりも大きいことを特徴としている。 A vertical wafer boat according to the present invention, which has been made to solve the above-mentioned problems, is a vertical wafer boat on which a plurality of wafers are placed vertically, and in which the plurality of wafers are placed vertically. a boat support section having a plurality of shelf sections, and a top plate and a bottom plate for holding the boat support section ; It is characterized by a surface roughness greater than the surface roughness Ra of the surface.

このように、本発明にかかる縦型ウエハボートでは、ダミーウエハが搭載される棚部表面の表面粗さRaが、製品ウエハが搭載される棚部表面の表面粗さRaよりも大きいため、ダミーウエハの縦型ウエハボートに対する固着が抑制される。 As described above, in the vertical wafer boat according to the present invention, the surface roughness Ra of the shelf surface on which the dummy wafers are mounted is larger than the surface roughness Ra of the shelf surface on which the product wafers are mounted. Adhesion to vertical wafer boats is suppressed.

ここで、ダミーウエハが搭載される棚部表面の表面粗さRaが10μm以上50μm以下であることが望ましい。
前記表面粗さが10μm未満の場合、ダミーウエハを連続使用すると、従来のようにダミーウエハが固着する虞がある。
また、前記表面粗さが50μmを超える場合、熱処理時に、棚部におけるダミーウエハの載置位置にズレが発生し易く、棚部表面との擦れによるパーティクルが発生する虞がある。
したがって、ダミーウエハが搭載される棚部表面の表面粗さRaが10μm以上50μm以下であることが好ましい。
Here, it is desirable that the surface roughness Ra of the shelf surface on which the dummy wafer is mounted is 10 μm or more and 50 μm or less.
When the surface roughness is less than 10 μm, if the dummy wafer is used continuously, there is a risk that the dummy wafer will stick as in the conventional case.
Furthermore, if the surface roughness exceeds 50 μm, the placement position of the dummy wafer on the shelf is likely to shift during heat treatment, and there is a risk that particles may be generated due to friction with the shelf surface.
Therefore, it is preferable that the surface roughness Ra of the shelf surface on which the dummy wafer is mounted is 10 μm or more and 50 μm or less.

また、製品ウエハが搭載される棚部表面の表面粗さRaが0.5μm以上3.0μm以下であることが好ましい。
このように、製品ウエハが搭載される棚部表面の表面粗さRaが0.5μm以上3.0μm以下であるため、ウエハの傷やスリップの発生を抑制することができる。
Further, it is preferable that the surface roughness Ra of the shelf surface on which the product wafers are mounted is 0.5 μm or more and 3.0 μm or less.
In this way, since the surface roughness Ra of the shelf surface on which the product wafers are mounted is 0.5 μm or more and 3.0 μm or less, it is possible to suppress the occurrence of scratches and slips on the wafers.

また、ボート支柱部、天板、底板がSi-SiC複合材あるいはSiC材からなり、その表面にSiC被膜層が形成されていることが好ましい。 Further, it is preferable that the boat support section, the top plate, and the bottom plate are made of a Si--SiC composite material or a SiC material, and a SiC coating layer is formed on the surface thereof.

また、ダミーウエハが搭載される棚部表面に、粒径10μm以上100μm以下のSiC粉を内在するSiC被膜層が形成されていることが好ましい。
このように、SiC被膜層に、粒径10μm以上100μm以下のSiC粉を内在させることにより、ダミーウエハが搭載される棚部表面の表面粗さRaを10μm以上50μm以下とすることができる。
Further, it is preferable that a SiC coating layer containing SiC powder having a particle size of 10 μm or more and 100 μm or less is formed on the surface of the shelf on which the dummy wafer is mounted.
In this way, by incorporating SiC powder with a particle size of 10 μm or more and 100 μm or less in the SiC coating layer, the surface roughness Ra of the shelf surface on which the dummy wafer is mounted can be made 10 μm or more and 50 μm or less.

前記した課題を解決するためになされた、本発明に係る縦型ウエハボートの製造方法は、複数のウエハを上下方向に載置する縦型ウエハボートの製造方法であって、前記複数のウエハを載置する、上下方向に配置された複数の棚部を有するボート支柱部と、前記ボート支柱を保持する天板と底板とを備え、ダミーウエハが搭載される棚部表面の表面粗さRaが、製品ウエハが搭載される棚部表面の表面粗さRaよりも大きい縦型ウエハボートの製造方法において、ボート支柱部、天板、底板を、Si-SiC複合材あるいはSiC材で形成し、ボートを組立てる組立工程と、前記組立工程の後、ダミーウエハが搭載される棚部表面に、粒径10μm以上100μm以下の炭化ケイ素粉を付着させる炭化ケイ素粉付着工程と、前記炭化ケイ素粉付着工程の後、ボート表面に、CVD法により、炭化ケイ素被膜層を形成する被膜層形成工程と、を少なくとも含むことを特徴としている。 A method for manufacturing a vertical wafer boat according to the present invention, which has been made to solve the above-mentioned problems, is a method for manufacturing a vertical wafer boat in which a plurality of wafers are placed vertically, the method comprising: A boat support section having a plurality of vertically arranged shelves on which dummy wafers are placed, and a top plate and a bottom plate for holding the boat support section , and a surface roughness Ra of the surface of the shelf section on which dummy wafers are mounted are provided. , in a method for manufacturing a vertical wafer boat whose surface roughness Ra is greater than the surface roughness Ra of the shelf surface on which product wafers are mounted, the boat support section, top plate, and bottom plate are formed of Si-SiC composite material or SiC material, and the boat After the assembly step, a silicon carbide powder adhesion step of adhering silicon carbide powder with a particle size of 10 μm or more and 100 μm or less to the shelf surface on which the dummy wafer is mounted, and after the silicon carbide powder adhesion step The present invention is characterized in that it includes at least a coating layer forming step of forming a silicon carbide coating layer on the boat surface by a CVD method.

このように、本発明にかかる縦型ウエハボートの製造方法にあっては、ダミーウエハが搭載される棚部表面に、粒径10μm以上100μm以下のSiC粉(炭化ケイ素粉)を付着させる炭化ケイ素粉付着工程と、前記SiC粉(炭化ケイ素粉)付着工程の後、ボート表面に、CVD法により、SiC(炭化ケイ素)被膜層を形成する被膜層形成工程を備えるため、ダミーウエハが搭載される棚部表面の表面粗さRaを、10μm以上50μm以下に容易にできる。 As described above, in the method for manufacturing a vertical wafer boat according to the present invention, SiC powder (silicon carbide powder) having a particle size of 10 μm or more and 100 μm or less is attached to the surface of the shelf on which dummy wafers are mounted. After the adhesion step and the SiC powder (silicon carbide powder) adhesion step, there is a coating layer forming step of forming a SiC (silicon carbide) coating layer on the boat surface by the CVD method, so the shelf section on which the dummy wafer is mounted is provided. The surface roughness Ra of the surface can be easily set to 10 μm or more and 50 μm or less.

本発明によれば、ダミーウエハの縦型ウエハボートに対する固着を抑制した縦型ウエハボート及び縦型ウエハボートの製造方法を得ることができる。 According to the present invention, it is possible to obtain a vertical wafer boat and a method for manufacturing a vertical wafer boat in which sticking of dummy wafers to the vertical wafer boat is suppressed.

図1は、本発明に係る縦型ウエハボートの概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of a vertical wafer boat according to the present invention. 図2は、図1に示した製品ウエハが搭載される棚部の斜視図である。FIG. 2 is a perspective view of the shelf section on which the product wafers shown in FIG. 1 are mounted. 図3は、図1に示したダミーウエハが搭載される棚部の斜視図である。FIG. 3 is a perspective view of the shelf section on which the dummy wafers shown in FIG. 1 are mounted. 図4は、本発明に係る縦型ウエハボート(ダミーウエハが搭載される棚部)の製造方法を説明するための図である。FIG. 4 is a diagram for explaining a method of manufacturing a vertical wafer boat (shelf portion on which dummy wafers are mounted) according to the present invention. 図5は、縦型ウエハボートを収納した縦型熱処理炉の全体構成を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing the overall configuration of a vertical heat treatment furnace that accommodates a vertical wafer boat. 図6は、縦型ウエハボートにおけるダミーウエハと製品ウエハの配置状態を示す概念図である。FIG. 6 is a conceptual diagram showing the arrangement of dummy wafers and product wafers in a vertical wafer boat.

以下に、本発明にかかる一実施形態について、図1乃至図3に基づいて説明する。なお、図1は本発明の一実施形態にかかる縦型ウエハボートを示す斜視図、図2は図1に示した縦型ウエハボートにおける製品ウエハが搭載される棚部の要部拡大図、図3は図1に示した縦型ウエハボートにおけるダミーウエハが搭載される棚部の要部拡大図、図4は図1に示した縦型ウエハボート(ダミーウエハが搭載される棚部)の製造方法を示す図である。 EMBODIMENT OF THE INVENTION Below, one Embodiment concerning this invention is described based on FIG. 1 thru|or FIG. 3. Note that FIG. 1 is a perspective view showing a vertical wafer boat according to an embodiment of the present invention, and FIG. 2 is an enlarged view of a main part of a shelf section on which product wafers are mounted in the vertical wafer boat shown in FIG. 3 is an enlarged view of the main part of the shelf section on which dummy wafers are mounted in the vertical wafer boat shown in FIG. 1, and FIG. FIG.

図1に示すように、この縦型ウエハボート1は、成膜処理される製品ウエハPWを搭載するための棚部2a及びダミーウエハDWを搭載するための棚部2bが形成された複数本の支柱2と、前記支柱2の上下端部を固定する天板3及び底板4とを備えている。
なお、前記支柱2、天板3、底板4を構成する基材としては、SiC質基材(SiC材)が好ましく、反応焼結SiCすなわちカーボン成分を含むSiC焼成体にSiを含浸し、前記カーボン成分とSiの一部が反応し、SiC化されたSi-SiC(Si-SiC複合材)であることが好ましく、SiCの成形体を高温で熱処理した再結晶質SiC、焼結助剤を添加し焼結した自焼結SiC等でもよい。
As shown in FIG. 1, this vertical wafer boat 1 has a plurality of support columns on which are formed a shelf section 2a for mounting product wafers PW to be subjected to film formation processing and a shelf section 2b for mounting dummy wafers DW. 2, and a top plate 3 and a bottom plate 4 for fixing the upper and lower ends of the support column 2.
The base material constituting the pillars 2, the top plate 3, and the bottom plate 4 is preferably a SiC base material (SiC material). It is preferable to use Si-SiC (Si-SiC composite material) in which a carbon component and a part of Si react to form SiC, and recrystallized SiC obtained by heat-treating a SiC molded body at a high temperature, and a sintering aid are used. Self-sintering SiC added and sintered may also be used.

また、図2に示すように、前記棚部2aの上面部2a1は、製品ウエハPWを載置するウエハ載置部である。この上面部(ウエハ載置部)2a1の先端部には先端面取り部2a2が形成され、左右側面部には、側部面取り部2a3が形成されている。
尚、図中、この先端面取り部2a2、側部面取り部2a3は平面状に示されているが、これに限定されるものではなく、曲面状、いわゆるR形状に形成されていても良い。
Further, as shown in FIG. 2, the upper surface portion 2a1 of the shelf portion 2a is a wafer placement portion on which a product wafer PW is placed. A tip chamfered portion 2a2 is formed at the tip of this upper surface portion (wafer placement portion) 2a1, and side chamfered portions 2a3 are formed at the left and right side portions.
Note that although the tip chamfered portion 2a2 and the side chamfered portion 2a3 are shown in a planar shape in the figure, they are not limited to this, and may be formed in a curved shape, a so-called R shape.

また、このウエハ載置部2a1は、製品ウエハPWが搭載される棚部表面(ウエハ当接部表面)であり、その表面粗さRaは0.5μm以上3.0μm以下に形成されている。先端面取り部2a2、側部面取り部2a3についても、ウエハ載置部2a1と同様に、表面粗さRaが0.5μm以上3.0μm以下に形成されている。先端面取り部2a2、側部面取り部2a3に製品ウエハが当接する可能性があるため、表面粗さRaが0.5μm以上3.0μm以下に形成されるのが好ましい。 Further, the wafer mounting section two a1 is a shelf surface (wafer contact surface) on which the product wafer PW is mounted, and its surface roughness Ra is formed to be 0.5 μm or more and 3.0 μm or less. The top chamfered portion 2a2 and the side chamfered portion 2a3 are also formed to have a surface roughness Ra of 0.5 μm or more and 3.0 μm or less, similarly to the wafer placement portion 2a1. Since the product wafer may come into contact with the tip chamfered portion 2a2 and the side chamfered portion 2a3, it is preferable that the surface roughness Ra be formed to be 0.5 μm or more and 3.0 μm or less.

ここで、前記表面の表面粗さRaが0.5μm未満では、ウエハ載置部2a1上にウエハを載置した際に、滑りが生じ、ウエハボート移動時に製品ウエハPWが落下するおそれがあり、あるいは高温環境下で製品ウエハPWを加熱処理した場合に製品ウエハPWがボートの当接部で融着するおそれがあり好ましくない。
また、表面の表面粗さRaが3.0μmを超える場合には、ウエハ搭載時あるいは成膜処理等を行なった際に、製品ウエハPW裏面に傷やスリップが生じることとなり好ましくない。
Here, if the surface roughness Ra of the surface is less than 0.5 μm, slippage may occur when the wafer is placed on the wafer placement portion 2a1, and the product wafer PW may fall when the wafer boat is moved. Alternatively, when the product wafer PW is heat-treated in a high-temperature environment, the product wafer PW may be fused at the contact portion of the boat, which is not preferable.
Furthermore, if the surface roughness Ra exceeds 3.0 μm, scratches or slips may occur on the back surface of the product wafer PW when the wafer is mounted or when a film forming process is performed, which is not preferable.

また、図3に示すように、前記棚部2bの上面部2b1は、ダミーウエハDWを載置するウエハ載置部である。この上面部(ウエハ載置部)2b1の先端部には、前記棚部2aと同様に、先端面取り部2b2が形成され、左右側面部には、側部面取り部2b3が形成されている。
尚、図中、この先端面取り部2b2、側部面取り部2b3は平面状に示されているが、前記棚部2aと同様に、曲面状、いわゆるR形状に形成されていても良い。
Further, as shown in FIG. 3, the upper surface portion 2b1 of the shelf portion 2b is a wafer placement portion on which a dummy wafer DW is placed. A top chamfered portion 2b2 is formed at the tip of the upper surface portion (wafer placement portion) 2b1, similar to the shelf portion 2a, and side chamfered portions 2b3 are formed on the left and right side portions.
In addition, although the tip chamfered part 2b2 and the side chamfered part 2b3 are shown in a planar shape in the figure, they may be formed in a curved shape, a so-called R shape, similarly to the shelf part 2a.

また、このウエハ載置部2b1は、製品ウエハが搭載される棚部表面(ウエハ当接部表面)であり、その表面粗さRaが10μm以上50μm以下になされている。
先端面取り部2b2、側部面取り部2b3についても、ウエハ載置部2b1と同様に、表面粗さRaが10μm以上50μm以下に形成されている。先端面取り部2b2、側部面取り部2b3に製品ウエハが当接する可能性があるため、表面粗さRaが10μm以上50μm以下に形成されるのが好ましい。
Further, the wafer mounting portion 2b1 is a shelf surface (wafer contact surface) on which product wafers are mounted, and has a surface roughness Ra of 10 μm or more and 50 μm or less.
The top chamfered portion 2b2 and the side chamfered portion 2b3 are also formed to have a surface roughness Ra of 10 μm or more and 50 μm or less, similarly to the wafer placement portion 2b1. Since the product wafer may come into contact with the tip chamfered portion 2b2 and the side chamfered portion 2b3, it is preferable that the surface roughness Ra is formed to be 10 μm or more and 50 μm or less.

ここで、前記表面粗さが10μm未満の場合、ダミーウエハDWを連続使用すると、従来のようにダミーウエハDWの固着が発生する虞がある。また、前記表面粗さが50μmを超える場合、熱処理時に、棚部2bにおけるダミーウエハDWの載置位置にズレが発生し易く、棚部表面との擦れによるパーティクルが発生する虞がある。
したがって、ダミーウエハが搭載される棚部表面の表面粗さRaが10μm以上50μm以下であることが好ましい。また、ダミーウエハが搭載される棚部表面の表面粗さRaが10μm以上50μm以下であるため、膜が付着した際、アンカー効果が大きく、膜の剥離をより効果的に抑制することができる。
Here, if the surface roughness is less than 10 μm, if the dummy wafer DW is continuously used, there is a risk that the dummy wafer DW will stick as in the conventional case. Furthermore, if the surface roughness exceeds 50 μm, the placement position of the dummy wafer DW on the shelf 2b is likely to shift during heat treatment, and there is a risk that particles may be generated due to friction with the shelf surface.
Therefore, it is preferable that the surface roughness Ra of the shelf surface on which the dummy wafer is mounted is 10 μm or more and 50 μm or less. Furthermore, since the surface roughness Ra of the shelf surface on which the dummy wafer is mounted is 10 μm or more and 50 μm or less, when the film is attached, the anchoring effect is large and peeling of the film can be more effectively suppressed.

次に、本発明にかかる縦型ウエハボートの製造方法について、図4に基づいて説明する。
先ず、SiC質基材を支柱2、天板3、底板4を所定の形状に機械加工し、またこれら基材の表面を研磨し、所定の表面粗さを有する部材を製作する。例えば支柱2には、図4(a)に示すように、棚部2bが形成される。
Next, a method for manufacturing a vertical wafer boat according to the present invention will be explained based on FIG. 4.
First, the pillar 2, top plate 3, and bottom plate 4 are machined into a predetermined shape from a SiC base material, and the surfaces of these base materials are polished to produce a member having a predetermined surface roughness. For example, a shelf 2b is formed on the support 2, as shown in FIG. 4(a).

そして、図4(b)に示すように、ダミーウエハDWが搭載される棚部2b表面に、粒径10μm以上100μm以下のSiC粉5を付着させる。
このSiC粉5は、エタノール溶媒に混合して、塗布あるいは吹き付けによって付着させる。尚、製品ウエハPWが搭載される棚部2a表面には、表面粗さが大きくなるため、前記SiC粉5を付着させない。
Then, as shown in FIG. 4(b), SiC powder 5 having a particle size of 10 μm or more and 100 μm or less is attached to the surface of the shelf 2b on which the dummy wafer DW is mounted.
This SiC powder 5 is mixed with an ethanol solvent and attached by coating or spraying. Note that the SiC powder 5 is not attached to the surface of the shelf 2a on which the product wafers PW are mounted, since the surface roughness becomes large.

その後、図4(c)に示すように、縦型ウエハボート表面に、CVD法により、SiC被膜層6を形成する。一般的には、高温減圧の条件のもと、20μm~100μmのSiC被膜層6を成膜する。
このとき、ダミーウエハDWが搭載される棚部2b表面に、粒径10μm以上100μm以下のSiC粉5を付着させているために、ダミーウエハDWが搭載される棚部2b表面の表面粗さRaは10μm以上50μm以下に形成される。
Thereafter, as shown in FIG. 4C, a SiC coating layer 6 is formed on the surface of the vertical wafer boat by CVD. Generally, a SiC coating layer 6 of 20 μm to 100 μm is formed under conditions of high temperature and reduced pressure.
At this time, since SiC powder 5 with a particle size of 10 μm or more and 100 μm or less is attached to the surface of the shelf 2b on which the dummy wafer DW is mounted, the surface roughness Ra of the surface of the shelf 2b on which the dummy wafer DW is mounted is 10 μm. The thickness is formed to be greater than or equal to 50 μm.

一方、製品ウエハPWが搭載される棚部2b表面の表面粗さRaは、粒径10μm以上100μm以下のSiC粉が存在しないため、0.5μm以上3.0μm以下に形成される。尚、SiC被膜層の表面粗さRaが、3.0μmを超える場合には、研磨処理がなされる。 On the other hand, the surface roughness Ra of the surface of the shelf section 2b on which the product wafers PW are mounted is set to 0.5 μm or more and 3.0 μm or less since there is no SiC powder with a particle size of 10 μm or more and 100 μm or less. Incidentally, if the surface roughness Ra of the SiC coating layer exceeds 3.0 μm, polishing treatment is performed.

更に、本発明にかかる実施例について説明する。
(実施例1)
先ず、反応焼結法によってSi-SiC複合材からなる3本の支柱、天板、底板を製作し、これら基材の表面を研磨し、算術平均表面粗さRa(JIS B0601-2001)が、0.5μmの部材を製作した。そして、これら部材を組立て、6インチ用のボートを製作した。
次に、ダミーウエハが搭載される棚部表面に、平均粒径60μmのSiC粉を、エタノール溶媒に混合して、塗布して付着させた。
尚、製品ウエハが搭載される棚部表面には、表面粗さが大きくなるため、前記SiC粉を付着させなかった。
Further, embodiments according to the present invention will be described.
(Example 1)
First, three pillars, a top plate, and a bottom plate made of Si-SiC composite material were manufactured using the reaction sintering method, and the surfaces of these base materials were polished to obtain an arithmetic mean surface roughness Ra (JIS B0601-2001) of A 0.5 μm member was manufactured. These parts were then assembled to create a 6-inch boat.
Next, SiC powder having an average particle size of 60 μm was mixed with an ethanol solvent and applied and adhered to the surface of the shelf on which the dummy wafer was mounted.
Note that the SiC powder was not attached to the surface of the shelf on which the product wafers were mounted, since the surface roughness would become large.

続いて、CVD炉内70torr、1200℃の条件下で、メチルトリクロロシランとHガスを、流量比3:30で適量導入し、前記6インチ用のボートを構成する支柱、天板、底板の表面に、厚さ50μmのSiC被覆膜を形成した。
このときの製品ウエハが搭載される棚部の表面粗さRaは1.5μmであった。ダミーウエハが搭載される棚部の表面粗さRaは、30μmであった。
Next, in a CVD furnace under conditions of 70 torr and 1200°C, appropriate amounts of methyltrichlorosilane and H2 gas were introduced at a flow rate ratio of 3:30 to form the columns, top plate, and bottom plate of the 6-inch boat. A 50 μm thick SiC coating film was formed on the surface.
At this time, the surface roughness Ra of the shelf portion on which the product wafers were mounted was 1.5 μm. The surface roughness Ra of the shelf portion on which the dummy wafer was mounted was 30 μm.

(実施例2)
実施例2では、実施例1と同じ条件で製作したボートのダミーウエハが搭載される棚部表面に、平均粒径20μmのSiC粉を、エタノール溶媒に混合して、塗布して付着させた。製品ウエハが搭載される棚部表面には、表面粗さが大きくなるため、前記SiC粉を付着させなかった。
(Example 2)
In Example 2, SiC powder having an average particle size of 20 μm was mixed with an ethanol solvent and applied to the surface of the shelf on which the dummy wafers were mounted in a boat manufactured under the same conditions as in Example 1. The SiC powder was not attached to the surface of the shelf on which the product wafers were mounted, since the surface roughness would become large.

続いて、実施例1と同じ条件で前記ボートを構成する支柱、天板、底板の表面に、厚さ50μmのSiC被覆膜を形成した。
このときの製品ウエハが搭載される棚部の表面粗さRaは2.1μmであった。ダミーウエハが搭載される棚部の表面粗さRaは、10μmであった。
Subsequently, under the same conditions as in Example 1, a SiC coating film with a thickness of 50 μm was formed on the surfaces of the pillars, top plate, and bottom plate constituting the boat.
At this time, the surface roughness Ra of the shelf portion on which the product wafers were mounted was 2.1 μm. The surface roughness Ra of the shelf portion on which the dummy wafer was mounted was 10 μm.

(実施例3)
実施例3では、実施例1と同じ条件で製作したボートのダミーウエハが搭載される棚部表面に、平均粒径100μmのSiC粉を、エタノール溶媒に混合して、塗布して付着させた。製品ウエハが搭載される棚部表面には、表面粗さが大きくなるため、前記SiC粉を付着させなかった。
(Example 3)
In Example 3, SiC powder having an average particle size of 100 μm was mixed with an ethanol solvent and applied and adhered to the surface of the shelf on which the dummy wafers were mounted in a boat manufactured under the same conditions as Example 1. The SiC powder was not attached to the surface of the shelf on which the product wafers were mounted, since the surface roughness would become large.

続いて、実施例1と同じ条件で前記ボートを構成する支柱、天板、底板の表面に、厚さ50μmのSiC被覆膜を形成した。
このときの製品ウエハが搭載される棚部の表面粗さRaは1.2μmであった。ダミーウエハが搭載される棚部の表面粗さRaは、50μmであった。
Subsequently, under the same conditions as in Example 1, a SiC coating film with a thickness of 50 μm was formed on the surfaces of the pillars, top plate, and bottom plate constituting the boat.
At this time, the surface roughness Ra of the shelf portion on which the product wafers were mounted was 1.2 μm. The surface roughness Ra of the shelf portion on which the dummy wafer was mounted was 50 μm.

(比較例1)
比較例1では、実施例1と同じ条件で製作したボートのダミーウエハが搭載される棚部表面および製品ウエハが搭載される棚部表面にSiC粉を付着させなかった。
(Comparative example 1)
In Comparative Example 1, SiC powder was not attached to the surface of the shelf on which the dummy wafers were mounted and the surface of the shelf on which the product wafers were mounted, of the boat manufactured under the same conditions as in Example 1.

続いて、実施例1と同じ条件で前記ボートを構成する支柱、天板、底板の表面に、厚さ50μmのSiC被覆膜を形成した。
このときのダミーウエハが搭載される棚部表面粗さ、および製品ウエハが搭載される棚部の表面粗さRaは共に1.5μmであった。
Subsequently, under the same conditions as in Example 1, a SiC coating film with a thickness of 50 μm was formed on the surfaces of the pillars, top plate, and bottom plate constituting the boat.
At this time, the surface roughness Ra of the shelf on which the dummy wafer was mounted and the surface roughness Ra of the shelf on which the product wafer was mounted were both 1.5 μm.

(比較例2)
比較例2では、実施例1と同じ条件で製作したボートのダミーウエハが搭載される棚部表面に、平均粒径150μmのSiC粉を、エタノール溶媒に混合して、塗布して付着させた。製品ウエハが搭載される棚部表面には、表面粗さが大きくなるため、前記SiC粉を付着させなかった。
(Comparative example 2)
In Comparative Example 2, SiC powder having an average particle size of 150 μm was mixed with an ethanol solvent and applied to the surface of the shelf on which the dummy wafers were mounted in a boat manufactured under the same conditions as in Example 1. The SiC powder was not attached to the surface of the shelf on which the product wafers were mounted, since the surface roughness would become large.

続いて、実施例1と同じ条件で前記ボートを構成する支柱、天板、底板の表面に、厚さ50μmのSiC被覆膜を形成した。
このときの製品ウエハが搭載される棚部の表面粗さRaは1.8μmであった。ダミーウエハが搭載される棚部の表面粗さRaは、80μmであった。
Subsequently, under the same conditions as in Example 1, a SiC coating film with a thickness of 50 μm was formed on the surfaces of the pillars, top plate, and bottom plate constituting the boat.
At this time, the surface roughness Ra of the shelf portion on which the product wafers were mounted was 1.8 μm. The surface roughness Ra of the shelf portion on which the dummy wafer was mounted was 80 μm.

そして、実施例1~3、比較例1及び比較例2の6インチウエハボートの棚部の全てに製品ウエハ、ダミーウエハを載置し、これをLP-CVD装置内に配置し、SiN膜を5μm積層させた後、ウエハボートをLP-CVD装置から取り出し、ウエハボートから製品ウエハを取り出す。
更に、新たな製品ウエハをウエハボートに載置し、ダミーウエハは連続使用し、SiN膜を5μm積層させた。そして、ダミーウエハは連続50回使用し、ダミーウエハとウエハボートの棚部との固着状況を調べた。
固着状況は、ダミーウエハを取り外した際にウエハボートの棚部にダミーウエハの破片の有無で評価した。
その結果を表1に示す。
Then, product wafers and dummy wafers were placed on all the shelves of the 6-inch wafer boat of Examples 1 to 3, Comparative Example 1, and Comparative Example 2, and these were placed in the LP-CVD apparatus, and a 5 μm thick SiN film was placed on the 6-inch wafer boat. After stacking, the wafer boat is taken out from the LP-CVD apparatus, and product wafers are taken out from the wafer boat.
Furthermore, new product wafers were placed on the wafer boat, dummy wafers were used continuously, and a 5 μm thick SiN film was deposited. Then, the dummy wafer was used 50 times in a row, and the state of adhesion between the dummy wafer and the shelf of the wafer boat was examined.
The adhesion status was evaluated by the presence or absence of pieces of the dummy wafer on the shelf of the wafer boat when the dummy wafer was removed.
The results are shown in Table 1.

Figure 0007431487000001
Figure 0007431487000001

以上のように、ダミーウエハが搭載される棚部表面の表面粗さRaが10μm以上50μm以下である場合には、ダミーウエハの縦型ウエハボートに対する固着が抑制されることが確認された。 As described above, it was confirmed that when the surface roughness Ra of the shelf surface on which the dummy wafer is mounted is 10 μm or more and 50 μm or less, the dummy wafer is prevented from sticking to the vertical wafer boat.

1 縦型ウエハボート
2 支柱
2a 製品ウエハが搭載される棚部
2b ダミーウエハが搭載される棚部
3 天板
4 底板
5 SiC粉
6 SiC被覆膜
DW ダミーウエハ
PW 製品ウエハ
1 Vertical wafer boat 2 Support 2a Shelf section on which product wafers are mounted 2b Shelf section on which dummy wafers are mounted 3 Top plate 4 Bottom plate 5 SiC powder 6 SiC coating film DW Dummy wafer PW Product wafer

Claims (6)

複数のウエハを上下方向に載置する縦型ウエハボートにおいて、
前記複数のウエハを載置する、上下方向に配置された複数の棚部を有するボート支柱部と、前記ボート支柱を保持する天板と底板とを備え、
ダミーウエハが搭載される棚部表面の表面粗さRaが、製品ウエハが搭載される棚部表面の表面粗さRaよりも大きいことを特徴する縦型ウエハボート。
In a vertical wafer boat where multiple wafers are placed vertically,
A boat support section having a plurality of vertically arranged shelves on which the plurality of wafers are placed, and a top plate and a bottom plate that hold the boat support section ,
A vertical wafer boat characterized in that surface roughness Ra of a shelf surface on which dummy wafers are mounted is greater than surface roughness Ra of a shelf surface on which product wafers are mounted.
ダミーウエハが搭載される棚部表面の表面粗さRaが10μm以上50μm以下であることを特徴する請求項1記載の縦型ウエハボート。 2. The vertical wafer boat according to claim 1, wherein the surface of the shelf on which the dummy wafers are mounted has a surface roughness Ra of 10 μm or more and 50 μm or less. 製品ウエハが搭載される棚部表面の表面粗さRaが0.5μm以上3μm以下であることを特徴する請求項1または請求項2記載の縦型ウエハボート。 3. The vertical wafer boat according to claim 1, wherein the surface of the shelf on which the product wafers are mounted has a surface roughness Ra of 0.5 μm or more and 3 μm or less. ボート支柱部、天板、底板がSi-SiC複合材あるいはSiC材からなり、その表面にSiC被膜層が形成されていることを特徴とする請求項1乃至請求項3のいずれかに記載の縦型ウエハボート。 The vertical boat according to any one of claims 1 to 3, wherein the boat support section, the top plate, and the bottom plate are made of a Si-SiC composite material or a SiC material, and a SiC coating layer is formed on the surface thereof. type wafer boat. ダミーウエハが搭載される棚部表面に、粒径10μm以上100μm以下の炭化ケイ素粉を内在するSiC被膜層が形成されていることを特徴とする請求項1乃至請求項のいずれかに記載の縦型ウエハボート。 5. The vertical plane according to claim 1 , wherein a SiC coating layer containing silicon carbide powder having a particle size of 10 μm or more and 100 μm or less is formed on the surface of the shelf on which the dummy wafer is mounted. type wafer boat. 複数のウエハを上下方向に載置する縦型ウエハボートの製造方法であって、前記複数のウエハを載置する、上下方向に配置された複数の棚部を有するボート支柱部と、前記ボート支柱を保持する天板と底板とを備え、ダミーウエハが搭載される棚部表面の表面粗さRaが、製品ウエハが搭載される棚部表面の表面粗さRaよりも大きい縦型ウエハボートの製造方法において、
ボート支柱部、天板、底板を、Si-SiC複合材あるいはSiC材で形成し、ボートを組立てる組立工程と、
前記組立工程の後、ダミーウエハが搭載される棚部表面に、粒径10μm以上100μm以下の炭化ケイ素粉を付着させる炭化ケイ素粉付着工程と、
前記炭化ケイ素粉付着工程の後、ボート表面に、CVD法により、炭化ケイ素被膜層を形成する被膜層形成工程と、
を少なくとも含むことを特徴とする縦型ウエハボートの製造方法。
A method for manufacturing a vertical wafer boat on which a plurality of wafers are placed vertically, the boat support having a plurality of shelves arranged in the vertical direction on which the plurality of wafers are placed, and the boat support. Manufacturing of a vertical wafer boat comprising a top plate and a bottom plate for holding the wafers, and the surface roughness Ra of the surface of the shelf on which dummy wafers are mounted is larger than the surface roughness Ra of the surface of the shelf on which product wafers are mounted. In the method,
an assembly process of assembling a boat by forming a boat support section, a top plate, and a bottom plate from Si-SiC composite material or SiC material;
After the assembly step, a silicon carbide powder adhesion step of adhering silicon carbide powder with a particle size of 10 μm or more and 100 μm or less on the surface of the shelf on which the dummy wafer is mounted;
After the silicon carbide powder adhering step, a coating layer forming step of forming a silicon carbide coating layer on the boat surface by a CVD method;
A method for manufacturing a vertical wafer boat, comprising at least the following:
JP2020037749A 2020-03-05 2020-03-05 Vertical wafer boat and manufacturing method of vertical wafer boat Active JP7431487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020037749A JP7431487B2 (en) 2020-03-05 2020-03-05 Vertical wafer boat and manufacturing method of vertical wafer boat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020037749A JP7431487B2 (en) 2020-03-05 2020-03-05 Vertical wafer boat and manufacturing method of vertical wafer boat

Publications (2)

Publication Number Publication Date
JP2021141198A JP2021141198A (en) 2021-09-16
JP7431487B2 true JP7431487B2 (en) 2024-02-15

Family

ID=77669032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020037749A Active JP7431487B2 (en) 2020-03-05 2020-03-05 Vertical wafer boat and manufacturing method of vertical wafer boat

Country Status (1)

Country Link
JP (1) JP7431487B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269150A (en) 1999-03-19 2000-09-29 Toshiba Ceramics Co Ltd Semiconductor wafer heating tool and semiconductor wafer heater using the same
JP2002043239A (en) 2000-07-24 2002-02-08 Toshiba Ceramics Co Ltd Jig for heat treating semiconductor wafer and method for manufacturing the same
JP2005328008A (en) 2004-05-17 2005-11-24 Shin Etsu Handotai Co Ltd Vertical boat for heat-treating semiconductor wafer, and heat treatment method
JP2006005274A (en) 2004-06-21 2006-01-05 Sumco Corp Heat treatment jig semiconductor silicon substrate
JP2008108926A (en) 2006-10-26 2008-05-08 Bridgestone Corp Jig for thermally treating wafer
JP2010034185A (en) 2008-07-28 2010-02-12 Sumco Corp Susceptor for vapor deposition apparatus and method of manufacturing epitaxial wafer
JP2017017080A (en) 2015-06-29 2017-01-19 クアーズテック株式会社 Wafer boat and manufacturing method for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269150A (en) 1999-03-19 2000-09-29 Toshiba Ceramics Co Ltd Semiconductor wafer heating tool and semiconductor wafer heater using the same
JP2002043239A (en) 2000-07-24 2002-02-08 Toshiba Ceramics Co Ltd Jig for heat treating semiconductor wafer and method for manufacturing the same
JP2005328008A (en) 2004-05-17 2005-11-24 Shin Etsu Handotai Co Ltd Vertical boat for heat-treating semiconductor wafer, and heat treatment method
JP2006005274A (en) 2004-06-21 2006-01-05 Sumco Corp Heat treatment jig semiconductor silicon substrate
JP2008108926A (en) 2006-10-26 2008-05-08 Bridgestone Corp Jig for thermally treating wafer
JP2010034185A (en) 2008-07-28 2010-02-12 Sumco Corp Susceptor for vapor deposition apparatus and method of manufacturing epitaxial wafer
JP2017017080A (en) 2015-06-29 2017-01-19 クアーズテック株式会社 Wafer boat and manufacturing method for the same

Also Published As

Publication number Publication date
JP2021141198A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US7077913B2 (en) Apparatus for fabricating a semiconductor device
JP5051909B2 (en) Vertical wafer boat
JP2006086534A (en) Rough side susceptor for high-temperature substrate processing
WO2005045917A1 (en) Jig for heat treating semiconductor substrate and method for heat treating semiconductor substrate
JP2007201417A (en) Boat for heat treatment and vertical-type heat treatment device
JP2007201406A (en) Deposition device, depositing method, pre-coat layer and its forming method
JP3377996B1 (en) Heat treatment boat and vertical heat treatment equipment
JP3004846B2 (en) Susceptor for vapor phase growth equipment
JP5110464B2 (en) Manufacturing method of CVD-SiC simple substance film
JP7431487B2 (en) Vertical wafer boat and manufacturing method of vertical wafer boat
JPH10251062A (en) Production of silicon carbide formed body
JP5130808B2 (en) Wafer heat treatment jig and vertical heat treatment boat equipped with the jig
JP2018107383A (en) Vertical wafer boat
JP2013007121A (en) Film forming apparatus and film forming method
JP4007598B2 (en) Susceptor and manufacturing method thereof
CN109314056B (en) Quartz glass component with increased exposure area, method for manufacturing same, and multiple peripheral edge blade
JP3868933B2 (en) Atmospheric pressure CVD equipment
JP6934342B2 (en) Manufacturing method of silicon carbide member
JP4788575B2 (en) Holder for semiconductor manufacturing equipment
JPS6339093B2 (en)
JP2005166823A (en) Semiconductor substrate heat treatment apparatus, wafer boat therefor, and heat treatment method of semiconductor substrate
US20050229857A1 (en) Support fixture for semiconductor wafers and associated fabrication method
JP3599257B2 (en) Dummy wafer for semiconductor heat treatment
JP5087375B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2022092223A (en) Vertical wafer boat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R150 Certificate of patent or registration of utility model

Ref document number: 7431487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150