JP2008270310A - Group iii nitride compound semiconductor vertical type transistor and its manufacturing method - Google Patents

Group iii nitride compound semiconductor vertical type transistor and its manufacturing method Download PDF

Info

Publication number
JP2008270310A
JP2008270310A JP2007107774A JP2007107774A JP2008270310A JP 2008270310 A JP2008270310 A JP 2008270310A JP 2007107774 A JP2007107774 A JP 2007107774A JP 2007107774 A JP2007107774 A JP 2007107774A JP 2008270310 A JP2008270310 A JP 2008270310A
Authority
JP
Japan
Prior art keywords
layer
group iii
iii nitride
compound semiconductor
nitride compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007107774A
Other languages
Japanese (ja)
Inventor
Takahiro Ozawa
隆弘 小澤
Tsutomu Uesugi
勉 上杉
Masahiro Sugimoto
雅裕 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2007107774A priority Critical patent/JP2008270310A/en
Publication of JP2008270310A publication Critical patent/JP2008270310A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel group III nitride compound semiconductor vertical type transistor. <P>SOLUTION: An Al/Ti/Pt/Au multiple metal layer 32, an AuSn solder layer 33, an Au/Ni/Al/Ti multiple metal layer 15, an n<SP>+</SP>contact layer (n<SP>+</SP>-GaN) 14, and a drift part (n-GaN) 13 are formed on an n-type Si substrate 31. The drift part 13 is provided with a current constriction part 13bn of about 0.5 μm in thickness, and an AlN layer 21 and a p layer (p-GaN) 22 are formed on the right and left sides thereof. The uppermost part of the drift part 13 (current constriction part 13 bn) is on the same plane as that of the p layer (p-GaN) 22. A channel layer (n-GaN) 12 and an electron supply layer (AlGaN) 11 are formed thereon. An HEMT 100 is made by epitaxially growing it on a sapphire substrate, adhering it to a silicon substrate and removing the sapphire substrate by the laser lift-off method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主としてIII族窒化物系化合物半導体から成る新規な縦型トランジスタ及びその製造方法に関する。本発明は、特に、二次元電子ガスを利用する高電子移動度トランジスタ(HEMT)として作用するIII族窒化物系化合物半導体縦型トランジスタに関する。本明細書においてIII族窒化物系化合物半導体とは、AlxGayIn1-x-yNで表される2元系又は3元系又は4元系の半導体と、それらに伝導型の制御等のために任意の元素を添加したものを包括して言うものとし、更には、III族元素の一部組成をB、Tlで、V族元素の一部組成をP、As、Sb、Biで置換したものをも含むものとする。また、縦型トランジスタの縦型とは、基板主面の法線方向に電流が流れるものを言うものとする。 The present invention relates to a novel vertical transistor mainly composed of a group III nitride compound semiconductor and a method for manufacturing the same. The present invention particularly relates to a group III nitride compound semiconductor vertical transistor that functions as a high electron mobility transistor (HEMT) using a two-dimensional electron gas. In this specification, the group III nitride compound semiconductor means a binary, ternary, or quaternary semiconductor represented by Al x Ga y In 1-xy N, and conductivity type control, etc. Therefore, it is assumed that the elements added with any element are included, and further, the partial composition of the group III element is replaced with B and Tl, and the partial composition of the group V element is replaced with P, As, Sb, and Bi. Including those that have been made. Further, the vertical type of the vertical transistor means a transistor in which current flows in the normal direction of the substrate main surface.

高温下での動作や、高耐圧の素子として、III族窒化物系化合物半導体素子が種々検討されている。例えばIII族窒化物系化合物半導体を用いた電界効果トランジスタ(FET)としては、横方向に、即ち素子表面に並んでソース電極、ゲート電極、ドレイン電極を有するものが報告されている。これは高電子移動度トランジスタ(HEMT)として作用するIII族窒化物系化合物半導体トランジスタも同様である。
特開2004−260140号公報 特開2005−159207号公報
Various group III nitride compound semiconductor devices have been studied as devices operating at high temperatures and high breakdown voltage. For example, a field effect transistor (FET) using a group III nitride compound semiconductor has been reported which has a source electrode, a gate electrode, and a drain electrode in the lateral direction, that is, aligned with the element surface. The same applies to the group III nitride compound semiconductor transistor that acts as a high electron mobility transistor (HEMT).
JP 2004-260140 A JP 2005-159207 A

本発明者らは、HEMTとして作用する新規な構成のIII族窒化物系化合物半導体縦型トランジスタを検討した。縦型トランジスタを、例えば下層からドレイン部、ドレイン部の電流狭窄部(と領域制限のための絶縁領域等)、チャネル層、電子供与層をこの順にエピタキシャル成長により積層して形成することも考えられる。しかしこの順によった場合、電流狭窄部上部のチャネル層及び電子供与層の界面を平坦に形成することが困難であり、二次元電子ガスを利用した素子特性の良いHEMTの形成は困難であった。   The inventors of the present invention have studied a group III nitride compound semiconductor vertical transistor having a novel configuration that acts as a HEMT. It is also conceivable to form a vertical transistor by, for example, laminating a drain portion, a current constriction portion (and an insulating region for limiting the region), a channel layer, and an electron donating layer in this order from the lower layer by epitaxial growth. However, in this order, it is difficult to form a flat interface between the channel layer and the electron donating layer above the current confinement portion, and it is difficult to form a HEMT with good device characteristics using a two-dimensional electron gas. .

また、ドレイン電極を形成するためにはドレイン部を露出させるか、導電性の基板にHEMTを形成する必要があった。サファイア等の絶縁性基板にHEMTを形成してドレイン部を露出させる場合は、素子の占有面積に対して、実質的に素子として働く有効面積が小さいものとなる。また、現時点でIII族窒化物系化合物半導体を結晶性良くエピタキシャル成長可能な導電性の基板として、GaN自立基板やSiC基板等は非常に高価であり、しかも基板の大面積化が困難であるという問題がある。   Further, in order to form the drain electrode, it is necessary to expose the drain portion or to form the HEMT on a conductive substrate. When the HEMT is formed on an insulating substrate such as sapphire and the drain portion is exposed, the effective area acting as an element is substantially smaller than the occupied area of the element. Further, as a conductive substrate capable of epitaxially growing a group III nitride compound semiconductor with good crystallinity at present, GaN free-standing substrates, SiC substrates, etc. are very expensive, and it is difficult to increase the area of the substrate. There is.

本発明は上記課題を解決するために成されたものであり、全く新規なIII族窒化物系化合物半導体縦型トランジスタの構成と、その製造方法を着想して完成されたものである。   The present invention has been made in order to solve the above-mentioned problems, and has been completed with the idea of a completely new group III nitride compound semiconductor vertical transistor and a manufacturing method thereof.

請求項1に係る発明は、本発明者らが着想した新規な縦型トランジスタである。
その構成は、III族窒化物系化合物半導体を用いた縦型トランジスタであって、導電性の支持基板と、支持基板上に設けられ、III族窒化物系化合物半導体とは異なる材料から成る層を少なくとも1層有する導電層と、導電層の上に直接、又はIII族窒化物系化合物半導体層を介して形成されたIII族窒化物系化合物半導体から成るドリフト部と、ドリフト部上に設けられ、組成の異なる2種のIII族窒化物系化合物半導体からそれぞれ形成されたチャネル層及び電子供与層とを有し、ドリフト部は、絶縁領域、又はより低いキャリア濃度のIII族窒化物系化合物半導体領域若しくは伝導型の異なるIII族窒化物系化合物半導体領域により、横方向に領域制限された電流狭窄部を有し、ドリフト部の電流狭窄部上方の電子供与層表面に、絶縁体を介した、又はショットキー接続によるゲート電極を有し、チャネル層に電流を供給可能なソース電極を当該ゲート電極の横方向に有し、支持基板裏面にドレイン電極を有することを特徴とするIII族窒化物系化合物半導体縦型トランジスタである。
The invention according to claim 1 is a novel vertical transistor conceived by the present inventors.
The structure is a vertical transistor using a group III nitride compound semiconductor, and includes a conductive support substrate and a layer made of a material different from that of the group III nitride compound semiconductor provided on the support substrate. A conductive layer having at least one layer, a drift portion made of a group III nitride compound semiconductor formed directly on the conductive layer or via a group III nitride compound semiconductor layer, and provided on the drift portion; It has a channel layer and an electron donating layer respectively formed from two types of group III nitride compound semiconductors having different compositions, and the drift portion is an insulating region or a group III nitride compound semiconductor region having a lower carrier concentration Alternatively, a group III nitride compound semiconductor region having a different conductivity type has a current confinement portion laterally limited, and an insulator is interposed on the surface of the electron donating layer above the current confinement portion of the drift portion, or A group III nitride compound having a gate electrode by Schottky connection, a source electrode capable of supplying current to the channel layer in the lateral direction of the gate electrode, and a drain electrode on the back surface of the support substrate It is a semiconductor vertical transistor.

ここで、III族窒化物系化合物半導体とは異なる材料から成る層とは、例えば単層の金属層又は合金層、金属多重層、その他の導電性の材料から成る層であって、III族窒化物系化合物半導体ではないものを言うものとする。チャネル層に電流を供給可能なソース電極とは、例えばチャネル層に直接接触して設けても良く、或いは電子供与層を介している状態であっても、チャネル層に電流を供給可能であれば良いものとする。これらは、以下でも同様である。   Here, the layer made of a material different from the Group III nitride compound semiconductor is, for example, a single metal layer or alloy layer, a metal multilayer, or a layer made of another conductive material, and is made of Group III nitride. What is not a physical compound semiconductor shall be said. The source electrode capable of supplying current to the channel layer may be provided, for example, in direct contact with the channel layer, or provided that current can be supplied to the channel layer even when the channel layer is interposed. Be good. The same applies to the following.

請求項2に係る発明は、ゲート電極により、チャネル層と電子供与層との界面近傍における、ドリフト部の電流狭窄部上方への横方向の二次元電子ガスの拡散を許容又は阻止することにより、ソース電極からドレイン電極へのキャリアの伝達を許容又は阻止する、高電子移動度トランジスタ(HEMT)であることを特徴とする。また請求項3に係る発明は、ドリフト部の電流狭窄部は、伝導型の異なるIII族窒化物系化合物半導体領域により横方向に領域制限されており、ソース電極の電位が、当該伝導型の異なるIII族窒化物系化合物半導体領域にも印加されていることを特徴とする。   The invention according to claim 2 allows or prevents diffusion of the two-dimensional electron gas in the lateral direction above the current confinement portion of the drift portion in the vicinity of the interface between the channel layer and the electron donating layer by the gate electrode, It is a high electron mobility transistor (HEMT) that allows or blocks the transfer of carriers from the source electrode to the drain electrode. In the invention according to claim 3, the current confinement portion of the drift portion is laterally limited by a group III nitride compound semiconductor region having a different conductivity type, and the potential of the source electrode is different from that of the conductivity type. It is also applied to the group III nitride compound semiconductor region.

請求項4に係る発明は、請求項1乃至3の、本発明者らが着想した新規な縦型トランジスタを製造するための方法である。
即ち、エピタキシャル成長基板に、少なくとも犠牲層と、少なくともアルミニウムを含むIII族窒化物系化合物半導体から成る第1の層と、III族窒化物系化合物半導体から成りチャネル層を構成する第2の層と、アクセプタ不純物が添加されたIII族窒化物系化合物半導体から成る第3の層とをエピタキシャル形成したのち、第3の層を一部エッチングして第2の層を一部露出させ、当該露出した第2の層上にIII族窒化物系化合物半導体から成りドリフト部を形成する第4の層をエピタキシャル成長したのち、ドリフト部に直接、又は更に他のIII族窒化物系化合物半導体層又は導電性の層を介して、表面に導電層の形成された導電性の支持基板の導電層側を接続し、エピタキシャル成長基板と、犠牲層とを少なくとも除去して第1の層を露出させ、当該露出した第1の層の、ドリフト部の電流狭窄部の上方にゲート電極をショットキー接続により、又は絶縁層を介して形成し、当該ゲート電極の横方向において、第2の層に電流供給可能なソース電極をオーミック接続により形成することを特徴とするIII族窒化物系化合物半導体縦型トランジスタの製造方法である。
また、請求項5に係る発明は、ソース電極が、アクセプタ不純物が添加されたIII族窒化物系化合物半導体領域にも接するように形成されることを特徴とする。
The invention according to claim 4 is a method for manufacturing the novel vertical transistor of the first to third aspects, which is conceived by the present inventors.
That is, on the epitaxial growth substrate, at least a sacrificial layer, a first layer made of a group III nitride compound semiconductor containing at least aluminum, a second layer made of a group III nitride compound semiconductor and constituting a channel layer, After epitaxially forming a third layer made of a group III nitride compound semiconductor to which an acceptor impurity is added, the third layer is partially etched to partially expose the second layer. After epitaxially growing a fourth layer made of a group III nitride compound semiconductor on the layer 2 and forming a drift portion, the group III nitride compound semiconductor layer or a conductive layer directly or further on the drift portion And connecting the conductive layer side of the conductive support substrate having the conductive layer formed on the surface to remove at least the epitaxial growth substrate and the sacrificial layer to expose the first layer. A gate electrode is formed on the exposed first layer above the current confinement portion of the drift portion by Schottky connection or via an insulating layer, and current is supplied to the second layer in the lateral direction of the gate electrode. A method for producing a group III nitride compound semiconductor vertical transistor, characterized in that a possible source electrode is formed by ohmic connection.
The invention according to claim 5 is characterized in that the source electrode is formed so as to be in contact with the group III nitride compound semiconductor region to which the acceptor impurity is added.

請求項1乃至3に係る縦型トランジスタは新規な構成を有し当該新規な縦型トランジスタは、請求項4又は5に記載の製造方法によって容易に製造可能である。
当該製造方法によれば、エピタキシャル成長基板に、犠牲層となるIII族窒化物系化合物半導体層を介して、まず電子供与層次にチャネル層の順に形成されるので、電子供与層とチャネル層の平坦性は高く、特にそれらの界面は極めて平坦に形成することが可能となる。これにより、例えばその界面のチャネル層側に、二次元電子ガスが効率的に形成され得る。界面が平坦な電子供与層とチャネル層を形成した後の、電流狭窄部やドリフト部を構成する工程は全く任意に設計でき、且つドリフト部を層膜厚10μm以上と大きくして、大電流に耐えうるパワートランジスタとすることも容易となる。
また、導電性の支持基板裏面をドレイン電極とできるので、素子の水平方向の面積全体をトランジスタとして有効利用することが可能となる。
The vertical transistor according to claims 1 to 3 has a novel configuration, and the novel vertical transistor can be easily manufactured by the manufacturing method according to claim 4 or 5.
According to the manufacturing method, the electron donor layer and the channel layer are formed in this order on the epitaxial growth substrate through the group III nitride compound semiconductor layer serving as a sacrificial layer, and in this order, the flatness of the electron donor layer and the channel layer. In particular, their interfaces can be formed extremely flat. Thereby, for example, a two-dimensional electron gas can be efficiently formed on the channel layer side of the interface. After forming the electron donor layer and the channel layer with a flat interface, the process for forming the current confinement part and the drift part can be designed arbitrarily, and the drift part is increased to a layer thickness of 10 μm or more to increase the current. It is also easy to make a power transistor that can withstand.
Further, since the back surface of the conductive support substrate can be used as the drain electrode, the entire area in the horizontal direction of the element can be effectively used as a transistor.

異なる伝導型の層でドリフト部の電流狭窄部を挟み、ソース電位を当該異なる伝導型の層に印加することで、電流を縦方向に流すアパーチャ構造を形成することができる。例えばドリフト部(の電流狭窄部)がn型であれば、2つのp型領域で当該電流狭窄部を挟む。すると、ソース電位が当該2つのp型領域に印加されることで、空乏層が当該電流狭窄部を完全に閉じる事ができる。これにより、オフ時の高耐圧特性を付与できる。   By sandwiching the current confinement portion of the drift portion between layers of different conductivity types and applying a source potential to the layers of different conductivity types, an aperture structure that allows current to flow in the vertical direction can be formed. For example, if the drift portion (current constriction portion) is n-type, the current confinement portion is sandwiched between two p-type regions. Then, the source potential is applied to the two p-type regions, so that the depletion layer can completely close the current confinement portion. Thereby, the high pressure | voltage resistant characteristic at the time of OFF can be provided.

エピタキシャル成長基板をエピタキシャル膜から除去する場合には、レーザリフトオフ法と呼ばれる技術を用いることができる。これは当該エピタキシャル成長基板で吸収されず、例えばGaNで吸収される波長のレーザを当該GaN層とエピタキシャル成長基板との界面に焦点を併せて照射し、GaN層のエピタキシャル成長基板界面側のごく薄い一部(厚さで0.1μm以下)を溶融させる。当該レーザを走査して当該溶融部がエピタキシャル成長基板の全面となるようにすれば、エピタキシャル成長基板はエピタキシャル膜から容易に除去できる。レーザリフトオフに先立って、エピタキシャル膜のエピタキシャル成長基板とは逆側に支持基板を貼り付けておく。当該支持基板は、最終的に素子の基板となりうるよう、導電性の支持基板とすることが好適である。導電性の支持基板としては例えばn型シリコン基板が安価で好適に用いられる。   When removing the epitaxial growth substrate from the epitaxial film, a technique called a laser lift-off method can be used. This is not absorbed by the epitaxial growth substrate. For example, a laser having a wavelength that is absorbed by GaN is irradiated to the interface between the GaN layer and the epitaxial growth substrate in focus, and a very thin part of the GaN layer on the epitaxial growth substrate interface side ( Melt 0.1 μm or less in thickness). By scanning the laser so that the melted portion is the entire surface of the epitaxial growth substrate, the epitaxial growth substrate can be easily removed from the epitaxial film. Prior to laser lift-off, a support substrate is attached on the opposite side of the epitaxial film from the epitaxial growth substrate. The support substrate is preferably a conductive support substrate so that it can eventually become a substrate of an element. As the conductive support substrate, for example, an n-type silicon substrate is preferably used at low cost.

電流狭窄部を形成するため、例えばp型層に孔又は空隙を設けてチャネル層を露出させる際は、フォトレジスト又は酸化ケイ素などの絶縁膜をマスクとしたドライエッチングを用いると良い。   In order to form the current confinement portion, for example, when a hole or void is provided in the p-type layer to expose the channel layer, dry etching using an insulating film such as a photoresist or silicon oxide as a mask is preferably used.

図1.Aは本発明の具体的な第1の実施例に係るIII族窒化物系化合物半導体縦型トランジスタ(HEMT)100の構成を示す断面図である。図1.AのIII族窒化物系化合物半導体縦型トランジスタ(HEMT)100の構成は次の通りである。   FIG. 1A is a cross-sectional view showing a configuration of a group III nitride compound semiconductor vertical transistor (HEMT) 100 according to a first specific example of the present invention. FIG. FIG. The structure of group A nitride semiconductor compound vertical transistor (HEMT) 100 of A is as follows.

n型Si基板31上に、アルミニウム(Al)層/チタン(Ti)層/白金(Pt)層/金(Au)層が順に積層された多重金属層32が、その上に金スズ(AuSn)はんだ層33が、その上に金(Au)層/ニッケル(Ni)層/アルミニウム(Al)層/チタン(Ti)層が順に積層された多重金属層15が形成されている。尚、後に示す通り、多重金属層15の内部構成はn+コンタクト層(n+−GaN)14に積層した順に記載するため、図1.Aでは、多重金属層15の表示はTi/Al/Ni/Auとした。 A multi-metal layer 32 in which an aluminum (Al) layer / titanium (Ti) layer / platinum (Pt) layer / gold (Au) layer is laminated in this order on an n-type Si substrate 31, and gold tin (AuSn) thereon. A multiple metal layer 15 is formed on which a solder layer 33 is laminated in order of gold (Au) layer / nickel (Ni) layer / aluminum (Al) layer / titanium (Ti) layer. As shown later, the internal configuration of the multiple metal layer 15 is described in the order of stacking on the n + contact layer (n + -GaN) 14, so that FIG. In A, the indication of the multiple metal layer 15 was Ti / Al / Ni / Au.

多重金属層15の上には、膜厚0.1μm、電子濃度1×1018/cm3のシリコン(Si)が添加されたGaNから成るn+コンタクト層(n+−GaN)14が、その上には膜厚20μm、キャリア濃度2×1016/cm3のシリコン(Si)が添加されたGaNから成るドリフト部(n−GaN)13が形成されている。ドリフト部13は、厚さ約0.5μmの電流狭窄部13bnを有しており、当該電流狭窄部13bnの図1向って左右には、厚さ0.01μmのAlN層21とその上に厚さ0.5μmの正孔濃度2×1018/cm3のマグネシウム(Mg)が添加されたGaNから成るp層(p−GaN)22が形成されている。ドリフト部13(電流狭窄部13bn)の最上部と、p層(p−GaN)22の最上部は同一平面となっている。 An n + contact layer (n + -GaN) 14 made of GaN doped with silicon (Si) having a film thickness of 0.1 μm and an electron concentration of 1 × 10 18 / cm 3 is formed on the multiple metal layer 15. A drift portion (n-GaN) 13 made of GaN doped with silicon (Si) having a film thickness of 20 μm and a carrier concentration of 2 × 10 16 / cm 3 is formed thereon. The drift portion 13 has a current confinement portion 13bn having a thickness of about 0.5 μm, and an AlN layer 21 having a thickness of 0.01 μm and a thickness on the AlN layer 21 on the left and right of the current confinement portion 13bn in FIG. A p-layer (p-GaN) 22 made of GaN doped with magnesium (Mg) having a hole concentration of 2 × 10 18 / cm 3 and a thickness of 0.5 μm is formed. The uppermost portion of the drift portion 13 (current confinement portion 13bn) and the uppermost portion of the p layer (p-GaN) 22 are in the same plane.

ドリフト部13(電流狭窄部13bn)とp層(p−GaN)22の上には、膜厚0.1μm、電子濃度1×1016/cm3のシリコン(Si)が添加されたGaNから成るチャネル層(n−GaN)12が、チャネル層(n−GaN)12の上には膜厚0.03μmの不純物無添加のAlGaNから成る電子供与層(AlGaN)11及び厚さ0.05μmのSiO2から成る絶縁膜10が形成されている。 On the drift portion 13 (current confinement portion 13bn) and the p layer (p-GaN) 22, it is made of GaN doped with silicon (Si) having a film thickness of 0.1 μm and an electron concentration of 1 × 10 16 / cm 3. A channel layer (n-GaN) 12 is formed on the channel layer (n-GaN) 12 with an electron-donating layer (AlGaN) 11 made of AlGaN with no impurity added to a thickness of 0.03 μm and a SiO layer with a thickness of 0.05 μm. An insulating film 10 made of 2 is formed.

また、図1.Aに示す通り、SiO2から成る絶縁膜10の上に、電流狭窄部13bnの水平占有領域を含み且つそれよりも左右に広がってp層(p−GaN)22上部に達するように、多結晶シリコン(Poly−Si)から成るゲート電極41Gが形成されている。ゲート電極41Gから見て左右には、水平方向に間隔を置いて2つのソース電極40Sが形成されている。ソース電極40SはSiO2から成る絶縁膜10及び電子供与層(AlGaN)11を一部除去して露出したチャネル層(n−GaN)12に接する様に形成されている。また、n型Si基板31裏面には、ドレイン電極42Dが形成されている。ソース電極40Sの構成は、下側(チャネル層(n−GaN)12に接する側)からチタン(Ti)層/アルミニウム層(Al)/ニッケル(Ni)層/金(Au)層の順に積層されたものであり、ドレイン電極40Dの構成は、上側(n型Si基板31に接する側)からアルミニウム層(Al)/チタン(Ti)層/白金(Pt)層/金(Au)層の順に積層されたものである。 In addition, FIG. As shown in A, the polycrystal is formed on the insulating film 10 made of SiO 2 so as to include the horizontal occupation region of the current confinement portion 13bn and to extend to the upper side of the p layer (p-GaN) 22 extending to the left and right. A gate electrode 41G made of silicon (Poly-Si) is formed. Two source electrodes 40S are formed on the left and right sides as viewed from the gate electrode 41G with an interval in the horizontal direction. The source electrode 40S is formed to be in contact with the channel layer (n-GaN) 12 exposed by partially removing the insulating film 10 made of SiO 2 and the electron donating layer (AlGaN) 11. A drain electrode 42D is formed on the back surface of the n-type Si substrate 31. The structure of the source electrode 40S is laminated in the order of titanium (Ti) layer / aluminum layer (Al) / nickel (Ni) layer / gold (Au) layer from the lower side (side in contact with the channel layer (n-GaN) 12). The drain electrode 40D has a structure in which the aluminum layer (Al) / titanium (Ti) layer / platinum (Pt) layer / gold (Au) layer is laminated in this order from the upper side (side in contact with the n-type Si substrate 31). It has been done.

図1のIII族窒化物系化合物半導体縦型トランジスタ(HEMT)100の各構成要素を、請求項1に係る発明の記載と対応させると次の通りである。
n型シリコン基板31が導電性の支持基板に当たる。
多重金属層32、はんだ層33及び多重金属層15の積層構造が、III族窒化物系化合物半導体とは異なる材料から成る層を少なくとも1層有する導電層に当たる。
ドリフト部13を領域制限して電流狭窄部13bnを形成するp−GaN層22が伝導型の異なるIII族窒化物系化合物半導体領域に当たる。
ドリフト部、チャネル層、電気供与層及び各電極の対応は明確である。
Each component of the group III nitride compound semiconductor vertical transistor (HEMT) 100 in FIG. 1 corresponds to the description of the invention according to claim 1 as follows.
The n-type silicon substrate 31 hits the conductive support substrate.
The laminated structure of the multiple metal layer 32, the solder layer 33, and the multiple metal layer 15 corresponds to a conductive layer having at least one layer made of a material different from that of the group III nitride compound semiconductor.
The p-GaN layer 22 which forms the current confinement portion 13bn by limiting the drift portion 13 to the region corresponds to a group III nitride compound semiconductor region having a different conductivity type.
Correspondence between the drift portion, the channel layer, the electricity supply layer, and each electrode is clear.

次に、図1.AのIII族窒化物系化合物半導体縦型トランジスタ(HEMT)100の製造方法を図1.B乃至図1.Hの工程図として示す。尚、請求項4の記載との対応は個々に述べる。   Next, FIG. FIG. 1 shows a method for manufacturing a group III nitride compound semiconductor vertical transistor (HEMT) 100 of A. B to FIG. A process diagram of H is shown. The correspondence with the description of claim 4 will be described individually.

まず、図1.Bの構成のウエハ100s1が次のように形成される。C面を主面とするサファイア基板(エピタキシャル成長基板)1を用意し、公知の方法で、窒化アルミニウム(AlN)から成るバッファ層を形成し、その上に、不純物無添加の窒化ガリウムから成る犠牲層(i−GaN)2を4μmエピタキシャル成長させる。この後、犠牲層(i−GaN)2の上に、膜厚0.03μmの不純物無添加のAlGaNから成る電子供与層(AlGaN、第1の層)11、膜厚0.1μm、シリコンが添加された電子濃度1×1016/cm3のGaNから成るチャネル層(n−GaN、第2の層)12、厚さ0.5μm、マグネシウムが添加されたGaNから成るp層(p−GaN、アクセプタ不純物が添加された第3の層)22、厚さ0.01μmのAlN層21を順にエピタキシャル成長させる。この後、窒素雰囲気下の加熱によりp層(p−GaN、第3の層)22を活性化させて正孔濃度を2×1018/cm3とする。尚、図1.Bにおいては、サファイア基板(Sapph)1と犠牲層(i−GaN)2との間に形成されるAlNから成るバッファ層の記載を省略した。 First, FIG. The wafer 100s1 having the configuration B is formed as follows. A sapphire substrate (epitaxial growth substrate) 1 having a C-plane as a main surface is prepared, a buffer layer made of aluminum nitride (AlN) is formed by a known method, and a sacrificial layer made of gallium nitride without addition of impurities is formed thereon. (I-GaN) 2 is epitaxially grown by 4 μm. Thereafter, on the sacrificial layer (i-GaN) 2, an electron donating layer (AlGaN, first layer) 11 made of AlGaN with no impurity added and having a thickness of 0.03 μm, a thickness of 0.1 μm, and silicon added Channel layer (n-GaN, second layer) 12 made of GaN having an electron concentration of 1 × 10 16 / cm 3, a p-layer (p-GaN, p-GaN, second layer) having a thickness of 0.5 μm and added with magnesium. A third layer 22 to which an acceptor impurity is added and an AlN layer 21 having a thickness of 0.01 μm are epitaxially grown in this order. Thereafter, the p-layer (p-GaN, third layer) 22 is activated by heating in a nitrogen atmosphere so that the hole concentration becomes 2 × 10 18 / cm 3 . In addition, FIG. In B, the description of the buffer layer made of AlN formed between the sapphire substrate (Sapph) 1 and the sacrificial layer (i-GaN) 2 is omitted.

次に、n型のGaNから成るドリフト部13の電流狭窄部13bnを形成するため、AlN層21とp層(p−GaN、第3の層)22の中央部をエッチングして、空隙Hを形成する。この際、アルカリ水溶液によるウエットエッチングによりAlN層21をエッチングし、その後ドライエッチングによりp層(p−GaN)22をエッチングすると良い。こうして空隙Hの底にチャネル層(n−GaN、第2の層)12が露出する(図1.C)。   Next, in order to form the current confinement part 13bn of the drift part 13 made of n-type GaN, the central part of the AlN layer 21 and the p layer (p-GaN, third layer) 22 is etched to form the gap H. Form. At this time, the AlN layer 21 may be etched by wet etching with an alkaline aqueous solution, and then the p layer (p-GaN) 22 may be etched by dry etching. Thus, the channel layer (n-GaN, second layer) 12 is exposed at the bottom of the gap H (FIG. 1.C).

次に、シリコンが添加された窒化ガリウム(GaN)をエピタキシャル成長させると、空隙Hにおいては、その底のチャネル層(n−GaN、第2の層)12表面から、また、AlN層21の表面からもエピタキシャル成長が生じて、空隙Hが埋められ、ウエハ全体として平坦なエピタキシャル成長が生じる。こうして、チャネル層(n−GaN、第2の層)12表面から20μmの厚さでキャリア濃度2×1016/cm3のGaNから成るドリフト部(n−GaN、第4の層)13を形成する。この際、空隙Hはキャリア濃度2×1016/cm3のGaNから成る電流狭窄部13bnとして埋められる(図1.D)。 Next, when gallium nitride (GaN) doped with silicon is epitaxially grown, in the gap H, from the surface of the channel layer (n-GaN, second layer) 12 at the bottom and from the surface of the AlN layer 21. Also, epitaxial growth occurs, the gap H is filled, and flat epitaxial growth occurs as a whole wafer. Thus, a drift portion (n-GaN, fourth layer) 13 made of GaN having a carrier concentration of 2 × 10 16 / cm 3 and a thickness of 20 μm from the surface of the channel layer (n-GaN, second layer) 12 is formed. To do. At this time, the gap H is filled as a current confinement portion 13bn made of GaN having a carrier concentration of 2 × 10 16 / cm 3 (FIG. 1.D).

この後、膜厚0.1μm、電子濃度1×1018/cm3のシリコンが添加されたGaNから成るn+コンタクト層(n+−GaN)14をエピタキシャル成長により形成し、多重金属層15を蒸着により形成する。多重金属層15は、n+コンタクト層(n+−GaN)14に近い側から、チタン(Ti)層、アルミニウム(Al)層、ニッケル(Ni)層、金(Au)層の順に形成される。こうしてウエハ100s2が得られる(図1.E)。 Thereafter, an n + contact layer (n + -GaN) 14 made of GaN doped with silicon having a film thickness of 0.1 μm and an electron concentration of 1 × 10 18 / cm 3 is formed by epitaxial growth, and a multiple metal layer 15 is deposited. To form. The multiple metal layer 15 is formed in the order of a titanium (Ti) layer, an aluminum (Al) layer, a nickel (Ni) layer, and a gold (Au) layer from the side close to the n + contact layer (n + -GaN) 14. . In this way, a wafer 100s2 is obtained (FIG. 1.E).

次に、ウエハ100s2(サファイア基板(Sapph)1)と同じ形状のn型シリコン基板(n−Si、導電性の支持基板)31を用意し、表面に順にアルミニウム(Al)層、チタン(Ti)層、白金(Pt)層、金(Au)層を成膜して多重金属層32を形成する。この後、金スズはんだ(AuSn)33を用いて、n型シリコン基板(n−Si)31の多重金属層32を形成した側(導電層側)と、ウエハ100s2の多重金属層15側とを接合させてウエハ100ssを得る(図1.F)。接合は350℃5分間の加熱で良い。   Next, an n-type silicon substrate (n-Si, conductive support substrate) 31 having the same shape as the wafer 100s2 (sapphire substrate (Sapph) 1) is prepared, and an aluminum (Al) layer and titanium (Ti) are sequentially formed on the surface. The multiple metal layer 32 is formed by forming a layer, a platinum (Pt) layer, and a gold (Au) layer. Thereafter, using the gold tin solder (AuSn) 33, the side (conductive layer side) of the n-type silicon substrate (n-Si) 31 on which the multiple metal layer 32 is formed and the multiple metal layer 15 side of the wafer 100s2 are connected. The wafer 100ss is obtained by bonding (FIG. 1.F). Joining may be performed by heating at 350 ° C. for 5 minutes.

この後、良く知られたレーザリフトオフ法により、ウエハ100ssの、犠牲層(i−GaN)2のサファイア基板(Sapph)1側の界面のごく一部(厚さ0.1μm以下)を溶融させて、サファイア基板(Sapph)1を除去する(図1.G)。この後、犠牲層(i−GaN)2をドライエッチングにより除去すれば、不純物無添加のAlGaNから成る電子供与層(AlGaN、第1の層)11が露出したウエハ100sが得られる(図1.H)。   Thereafter, a very small part (thickness of 0.1 μm or less) of the interface of the sacrificial layer (i-GaN) 2 on the sapphire substrate (Sapph) 1 side of the wafer 100 ss is melted by a well-known laser lift-off method. The sapphire substrate (Sapph) 1 is removed (FIG. 1.G). Thereafter, if the sacrificial layer (i-GaN) 2 is removed by dry etching, a wafer 100s with an electron donor layer (AlGaN, first layer) 11 made of AlGaN having no impurities added exposed is obtained (FIG. 1). H).

この後、不純物無添加のAlGaNから成る電子供与層(AlGaN、第1の層)11の表面に、電流狭窄部13bnの水平占有面を覆うように、絶縁膜10とゲート電極41Gを形成する。また、ゲート電極41Gと距離を置いてソース電極40Sを形成するため、絶縁膜10と不純物無添加のAlGaNから成る電子供与層(AlGaN、第1の層)11の一部をエッチングにより除去してGaNから成るチャネル層(n−GaN、第2の層)12を露出させる。ソース電極40Sの構成は、上述した通りである。また、n型シリコン基板(n−Si、導電性の支持基板)31の裏面にはドレイン電極42Dを形成する。ドレイン電極42Dの構成も、上述した通りである。   Thereafter, the insulating film 10 and the gate electrode 41G are formed on the surface of the electron donating layer (AlGaN, first layer) 11 made of AlGaN to which no impurities are added so as to cover the horizontal occupying surface of the current confinement portion 13bn. In addition, in order to form the source electrode 40S at a distance from the gate electrode 41G, the insulating film 10 and a part of the electron donating layer (AlGaN, first layer) 11 made of AlGaN to which no impurities are added are removed by etching. The channel layer (n-GaN, second layer) 12 made of GaN is exposed. The configuration of the source electrode 40S is as described above. A drain electrode 42D is formed on the back surface of the n-type silicon substrate (n-Si, conductive support substrate) 31. The configuration of the drain electrode 42D is also as described above.

図1.AのIII族窒化物系化合物半導体縦型トランジスタ(HEMT)100においては、チャネル層(n−GaN)12の電子供与層(AlGaN)11との界面近傍に二次元電子ガス(2−DEG)が形成される。これを図1.Aで太い破線で示した。即ち、ソース40S/ドレイン42D間に電圧を印加し、ゲート電極41Gに閾値電圧以上の電圧を印加すると、ソース40Sから電流狭窄部13bn上方まで二次元電子ガス(2−DEG)が形成され、電流狭窄部13bnを通って、即ちドリフト部13を通ってドレイン電極42Dまで電子が伝導する。一方、ゲート電極41Gに閾値電圧以下の電圧を印加すると、二次元電子ガス(2−DEG)はソース40Sから電流狭窄部13bn上方まで達せず、電流狭窄部13bn(ドリフト部13)を通ってドレイン電極42Dまで電子が伝導することができない。   FIG. In the group III nitride compound semiconductor vertical transistor (HEMT) 100 of A, a two-dimensional electron gas (2-DEG) is present in the vicinity of the interface between the channel layer (n-GaN) 12 and the electron donating layer (AlGaN) 11. It is formed. This is illustrated in FIG. A with thick broken lines. That is, when a voltage is applied between the source 40S / drain 42D and a voltage equal to or higher than the threshold voltage is applied to the gate electrode 41G, a two-dimensional electron gas (2-DEG) is formed from the source 40S to above the current confinement portion 13bn. Electrons are conducted through the constriction portion 13bn, that is, through the drift portion 13 to the drain electrode 42D. On the other hand, when a voltage equal to or lower than the threshold voltage is applied to the gate electrode 41G, the two-dimensional electron gas (2-DEG) does not reach the current confinement portion 13bn from the source 40S, passes through the current confinement portion 13bn (drift portion 13), and drains. Electrons cannot conduct to the electrode 42D.

図2は本発明の具体的な第2の実施例に係るIII族窒化物系化合物半導体縦型トランジスタ(HEMT)200の構成を示す断面図である。
図2のIII族窒化物系化合物半導体縦型トランジスタ(HEMT)200の構成は、p層(p−GaN)22を10μmと厚く形成して(電流狭窄部13bnも厚さ10μmとなる)、AlN層21を形成せず、p層(p−GaN)22がn+コンタクト層(n+−GaN)14に接する点、ソース電極40S2の電位をp層(p−GaN)22にも印加したこと、各電極と多重金属層152、金属層322、はんだ332の構成金属が異なる他は、基本的には図1.AのIII族窒化物系化合物半導体縦型トランジスタ(HEMT)100の構成と同様であって、製造方法もほぼ同様である。
FIG. 2 is a cross-sectional view showing the configuration of a group III nitride compound semiconductor vertical transistor (HEMT) 200 according to a second specific example of the present invention.
The group III nitride compound semiconductor vertical transistor (HEMT) 200 in FIG. 2 has a p-layer (p-GaN) 22 as thick as 10 μm (the current confinement portion 13bn is also 10 μm in thickness). The layer 21 is not formed, the p layer (p-GaN) 22 is in contact with the n + contact layer (n + -GaN) 14, and the potential of the source electrode 40S2 is also applied to the p layer (p-GaN) 22 Basically, each electrode is different from that of the multiple metal layer 152, the metal layer 322, and the solder 332 except that the constituent metals are different. The structure is the same as that of the group III nitride compound semiconductor vertical transistor (HEMT) 100 of A, and the manufacturing method is also substantially the same.

図2のIII族窒化物系化合物半導体縦型トランジスタ(HEMT)200のnドレインの電流狭窄部13bnを2つのp層22で挟んだ構成は、最小単位のスーパージャンクション構造である。即ち、2つのp層22にはソース電位が印加されており、電流狭窄部13bnと2つのp層22との界面は空乏層が広がり、電流狭窄部13bnを閉じるまで当該空乏層を形成することが可能である。これにより、高耐圧の縦型トランジスタとすることができる。   The configuration in which the current confining portion 13bn of the n drain of the group III nitride compound semiconductor vertical transistor (HEMT) 200 in FIG. 2 is sandwiched between two p layers 22 is a minimum unit super junction structure. That is, the source potential is applied to the two p layers 22, and the depletion layer extends at the interface between the current confinement portion 13 bn and the two p layers 22, and the depletion layer is formed until the current confinement portion 13 bn is closed. Is possible. Thereby, a high breakdown voltage vertical transistor can be obtained.

当該スーパージャンクション構造を形成するためには、深いトレンチエッチングが必要である。この際、ドライエッチングに、TMAHを用いたウエットエッチングを組み合わせるとトレンチ側壁を垂直にすることが容易である。   In order to form the super junction structure, deep trench etching is required. At this time, if dry etching is combined with wet etching using TMAH, it is easy to make the trench sidewall vertical.

〔変形例について〕
上記実施例においては、不純物無添加のAlGaNから成る電子供与層とn−GaNから成るチャネル層の構成を示したが、本願発明はこれに限定されない。III族窒化物系化合物半導体により二次元電子ガスを生成する場合は、組成の異なる2つのIII族窒化物系化合物半導体層間の歪が重要であり、各々の伝導型は必ずしも重要ではない。即ち、電子供与層とチャネル層を異なる他の組成で構成し、界面に二次元電子ガスを生成するようにしても良い。この場合、いずれの層にドナー不純物を添加しても良く、或いはいずれの層にもドナー不純物を添加しなくても良い。
[Modification]
In the above embodiment, the structure of the electron donating layer made of AlGaN to which no impurities are added and the channel layer made of n-GaN is shown, but the present invention is not limited to this. When a two-dimensional electron gas is generated by a group III nitride compound semiconductor, strain between two group III nitride compound semiconductor layers having different compositions is important, and the respective conductivity types are not necessarily important. That is, the electron donating layer and the channel layer may be formed of different compositions, and a two-dimensional electron gas may be generated at the interface. In this case, the donor impurity may be added to any layer, or the donor impurity may not be added to any layer.

また、実施例1では、図1.Aのように、p層(p−GaN)22の下面にAlN層21を設ける構成のIII族窒化物系化合物半導体縦型トランジスタ(HEMT)100を示したが、AlN層をp層(p−GaN)22の上下にそれぞれ設ける構成としても良い。この構成によれば、深さ方向に精度の高い、即ち壁面が垂直の空孔Hを形成することが可能である。これを図3.A乃至図3.Cを用いて説明する。   In the first embodiment, FIG. Although a group III nitride compound semiconductor vertical transistor (HEMT) 100 having a configuration in which an AlN layer 21 is provided on the lower surface of a p layer (p-GaN) 22 as shown in A, the AlN layer is represented by a p layer (p− It is good also as a structure provided in the upper and lower sides of (GaN) 22, respectively. According to this configuration, it is possible to form the hole H with high accuracy in the depth direction, that is, the vertical wall surface. This is shown in FIG. A to FIG. A description will be given using C.

図3.Aは、図1.Bと同様に、C面を主面とするサファイア基板(エピタキシャル成長基板)1に、不純物無添加の窒化ガリウムから成る犠牲層(i−GaN)2、不純物無添加のAlGaNから成る電子供与層(AlGaN)11、シリコンが添加された電子濃度1×1016/cm3のGaNから成るチャネル層(n−GaN)12を形成した後、厚さ0.01μmのAlN層23、厚さ0.5μm、マグネシウムが添加されたGaNから成るp層(p−GaN)22、厚さ0.01μmのAlN層21を順にエピタキシャル成長させたものである。この後、実施例1と同様にp層(p−GaN)22を活性化させる。
次にn型のGaNから成るドリフト部13の電流狭窄部13bnを形成するため、アルカリ水溶液によるウエットエッチングによりAlN層21をエッチングし、その後ドライエッチングによりp層(p−GaN)22をエッチングする。この時、p層(p−GaN)22の下に位置するAlN層23がドライエッチングに対するストッパ層として働く(図3.B)。
この後、アルカリ水溶液によるウエットエッチングによりAlN層23をエッチングすれば、AlN層23のみをエッチングすることができ、チャネル層(n−GaN)12をエッチングすることはない(図3.C)。
このように、AlN層23を設けることにより、深さ方向に精度の高い空孔Hの形成が可能となる。
FIG. A is shown in FIG. Similar to B, a sapphire substrate (epitaxial growth substrate) 1 having a C-plane as a main surface, a sacrificial layer (i-GaN) 2 made of gallium nitride without addition of impurities, and an electron donation layer (AlGaN made of AlGaN without addition of impurities) 11) After forming a channel layer (n-GaN) 12 made of GaN having an electron concentration of 1 × 10 16 / cm 3 doped with silicon, an AlN layer 23 having a thickness of 0.01 μm, a thickness of 0.5 μm, A p-layer (p-GaN) 22 made of GaN doped with magnesium and an AlN layer 21 having a thickness of 0.01 μm are epitaxially grown in this order. Thereafter, the p layer (p-GaN) 22 is activated as in the first embodiment.
Next, in order to form the current confinement portion 13bn of the drift portion 13 made of n-type GaN, the AlN layer 21 is etched by wet etching with an alkaline aqueous solution, and then the p layer (p-GaN) 22 is etched by dry etching. At this time, the AlN layer 23 located under the p layer (p-GaN) 22 serves as a stopper layer for dry etching (FIG. 3.B).
Thereafter, if the AlN layer 23 is etched by wet etching with an alkaline aqueous solution, only the AlN layer 23 can be etched, and the channel layer (n-GaN) 12 is not etched (FIG. 3.C).
Thus, by providing the AlN layer 23, it is possible to form the holes H with high accuracy in the depth direction.

上記実施例においては、高抵抗のAlGaNから成る電子供与層に酸化ケイ素から成る絶縁層を介してゲート電極40Gを設ける構成を示したが、例えば直接ゲート電極を形成してショットキーゲートとしても良い。   In the above embodiment, the gate electrode 40G is provided on the electron donating layer made of high resistance AlGaN via the insulating layer made of silicon oxide. However, for example, a direct gate electrode may be formed to form a Schottky gate. .

上記実施例においては二次元電子ガスを利用したHEMTを示したが、HEMTでないFETを構成しても本願発明に包含される。   Although the HEMT using the two-dimensional electron gas is shown in the above embodiment, a non-HEMT FET is also included in the present invention.

本願の具体的な第1の実施例に係るIII族窒化物系化合物半導体縦型トランジスタ(HEMT)100の構成を示す断面図。Sectional drawing which shows the structure of the group III nitride compound semiconductor vertical transistor (HEMT) 100 which concerns on the specific 1st Example of this application. III族窒化物系化合物半導体縦型トランジスタ(HEMT)100の製造方法の1工程における断面図。Sectional drawing in 1 process of the manufacturing method of group III nitride type compound semiconductor vertical transistor (HEMT) 100. III族窒化物系化合物半導体縦型トランジスタ(HEMT)100の製造方法の1工程における断面図。Sectional drawing in 1 process of the manufacturing method of group III nitride type compound semiconductor vertical transistor (HEMT) 100. III族窒化物系化合物半導体縦型トランジスタ(HEMT)100の製造方法の1工程における断面図。Sectional drawing in 1 process of the manufacturing method of group III nitride type compound semiconductor vertical transistor (HEMT) 100. III族窒化物系化合物半導体縦型トランジスタ(HEMT)100の製造方法の1工程における断面図。Sectional drawing in 1 process of the manufacturing method of group III nitride type compound semiconductor vertical transistor (HEMT) 100. III族窒化物系化合物半導体縦型トランジスタ(HEMT)100の製造方法の1工程における断面図。Sectional drawing in 1 process of the manufacturing method of group III nitride type compound semiconductor vertical transistor (HEMT) 100. III族窒化物系化合物半導体縦型トランジスタ(HEMT)100の製造方法の1工程における断面図。Sectional drawing in 1 process of the manufacturing method of group III nitride type compound semiconductor vertical transistor (HEMT) 100. III族窒化物系化合物半導体縦型トランジスタ(HEMT)100の製造方法の1工程における断面図。Sectional drawing in 1 process of the manufacturing method of group III nitride type compound semiconductor vertical transistor (HEMT) 100. 本願の具体的な第2の実施例に係るIII族窒化物系化合物半導体縦型トランジスタ(HEMT)200の構成を示す断面図。Sectional drawing which shows the structure of the group III nitride type compound semiconductor vertical transistor (HEMT) 200 which concerns on the specific 2nd Example of this application. 変形例の製造方法の1工程における断面図。Sectional drawing in 1 process of the manufacturing method of a modification. 変形例の製造方法の1工程における断面図。Sectional drawing in 1 process of the manufacturing method of a modification. 変形例の製造方法の1工程における断面図。Sectional drawing in 1 process of the manufacturing method of a modification.

符号の説明Explanation of symbols

100、200:III族窒化物系化合物半導体縦型トランジスタ(HEMT)
1:サファイア基板(エピタキシャル成長基板)
2:GaNからなる犠牲層(i−GaN)
11:AlGaNから成る電子供与層(第1の層)
12:n−GaNから成るチャネル層(第2の層)
13:n−GaNから成るドリフト部(第4の層)
13nb:ドリフト部13の電流狭窄部
14:n−GaNから成るコンタクト層
15、152、32:多重金属層
21:AlN層
22:p−GaN層(第3の層)
31:n型シリコン基板(導電性の支持基板)
322:金属層
33、332:はんだ層
40S、40S2:ソース電極
41G:ゲート電極
42D、42D2:ドレイン電極
100, 200: Group III nitride compound semiconductor vertical transistor (HEMT)
1: Sapphire substrate (epitaxial growth substrate)
2: Sacrificial layer made of GaN (i-GaN)
11: Electron donating layer (first layer) made of AlGaN
12: channel layer (second layer) made of n-GaN
13: Drift portion (fourth layer) made of n-GaN
13nb: Current constriction part of drift part 13 14: Contact layer made of n-GaN 15, 152, 32: Multiple metal layer 21: AlN layer 22: p-GaN layer (third layer)
31: n-type silicon substrate (conductive support substrate)
322: Metal layer 33, 332: Solder layer 40S, 40S2: Source electrode 41G: Gate electrode 42D, 42D2: Drain electrode

Claims (5)

III族窒化物系化合物半導体を用いた縦型トランジスタであって、
導電性の支持基板と、
前記支持基板上に設けられ、III族窒化物系化合物半導体とは異なる材料から成る層を少なくとも1層有する導電層と、
前記導電層の上に直接、又はIII族窒化物系化合物半導体層を介して形成されたIII族窒化物系化合物半導体から成るドリフト部と、
前記ドリフト部上に設けられ、組成の異なる2種のIII族窒化物系化合物半導体からそれぞれ形成されたチャネル層及び電子供与層とを有し、
前記ドリフト部は、絶縁領域、又はより低いキャリア濃度のIII族窒化物系化合物半導体領域若しくは伝導型の異なるIII族窒化物系化合物半導体領域により、横方向に領域制限された電流狭窄部を有し、
前記ドリフト部の前記電流狭窄部上方の前記電子供与層表面に、絶縁体を介した、又はショットキー接続によるゲート電極を有し、
前記チャネル層に電流を供給可能なソース電極を当該ゲート電極の横方向に有し、
前記支持基板裏面にドレイン電極を有することを特徴とするIII族窒化物系化合物半導体縦型トランジスタ。
A vertical transistor using a group III nitride compound semiconductor,
A conductive support substrate;
A conductive layer provided on the support substrate and having at least one layer made of a material different from the group III nitride compound semiconductor;
A drift portion made of a group III nitride compound semiconductor formed directly on the conductive layer or via a group III nitride compound semiconductor layer;
A channel layer and an electron donating layer provided on the drift portion, each formed from two group III nitride compound semiconductors having different compositions;
The drift portion has a current confinement portion laterally limited by an insulating region, a group III nitride compound semiconductor region having a lower carrier concentration, or a group III nitride compound semiconductor region having a different conductivity type. ,
On the surface of the electron donating layer above the current confinement portion of the drift portion, a gate electrode via an insulator or by Schottky connection,
A source electrode capable of supplying current to the channel layer in a lateral direction of the gate electrode;
A group III nitride compound semiconductor vertical transistor comprising a drain electrode on the back surface of the support substrate.
前記ゲート電極により、前記チャネル層と前記電子供与層との界面近傍における、前記ドリフト部の電流狭窄部上方への横方向の二次元電子ガスの拡散を許容又は阻止することにより、前記ソース電極から前記ドレイン電極へのキャリアの伝達を許容又は阻止する、高電子移動度トランジスタであることを特徴とする請求項1に記載のIII族窒化物系化合物半導体縦型トランジスタ。 By allowing or preventing the diffusion of the two-dimensional electron gas in the lateral direction above the current confinement part of the drift part in the vicinity of the interface between the channel layer and the electron donating layer by the gate electrode, 2. The group III nitride compound semiconductor vertical transistor according to claim 1, wherein the group III nitride compound semiconductor vertical transistor is a high electron mobility transistor that allows or blocks transmission of carriers to the drain electrode. 前記ドリフト部の電流狭窄部は、伝導型の異なるIII族窒化物系化合物半導体領域により横方向に領域制限されており、
前記ソース電極の電位が、当該伝導型の異なるIII族窒化物系化合物半導体領域にも印加されていることを特徴とする請求項2に記載のIII族窒化物系化合物半導体縦型トランジスタ。
The current confinement part of the drift part is region-limited in the lateral direction by a group III nitride compound semiconductor region having a different conductivity type,
3. The group III nitride compound semiconductor vertical transistor according to claim 2, wherein the potential of the source electrode is also applied to a group III nitride compound semiconductor region having a different conductivity type.
エピタキシャル成長基板に、
少なくとも犠牲層と、
少なくともアルミニウムを含むIII族窒化物系化合物半導体から成る第1の層と、
III族窒化物系化合物半導体から成りチャネル層を構成する第2の層と、
アクセプタ不純物が添加されたIII族窒化物系化合物半導体から成る第3の層とをエピタキシャル形成したのち、
前記第3の層を一部エッチングして前記第2の層を一部露出させ、
当該露出した前記第2の層上にIII族窒化物系化合物半導体から成りドリフト部を形成する第4の層をエピタキシャル成長したのち、
前記ドリフト部に直接、又は更に他のIII族窒化物系化合物半導体層又は導電性の層を介して、表面に導電層の形成された導電性の支持基板の前記導電層側を接続し、
前記エピタキシャル成長基板と、前記犠牲層とを少なくとも除去して前記第1の層を露出させ、
当該露出した前記第1の層の、ドリフト部の前記電流狭窄部の上方にゲート電極をショットキー接続により、又は絶縁層を介して形成し、
当該ゲート電極の横方向において、前記第2の層に電流供給可能なソース電極をオーミック接続により形成することを特徴とするIII族窒化物系化合物半導体縦型トランジスタの製造方法。
On the epitaxial growth substrate,
At least with a sacrificial layer,
A first layer comprising a group III nitride compound semiconductor containing at least aluminum;
A second layer comprising a group III nitride compound semiconductor and constituting a channel layer;
After epitaxially forming a third layer made of a group III nitride compound semiconductor to which an acceptor impurity is added,
Partially etching the third layer to partially expose the second layer;
After epitaxially growing a fourth layer made of a group III nitride compound semiconductor and forming a drift portion on the exposed second layer,
Connect the conductive layer side of the conductive support substrate formed with a conductive layer on the surface directly or through another group III nitride compound semiconductor layer or conductive layer to the drift portion,
Removing at least the epitaxial growth substrate and the sacrificial layer to expose the first layer;
Forming a gate electrode by Schottky connection or via an insulating layer above the current confinement portion of the drift portion of the exposed first layer;
A method of manufacturing a group III nitride compound semiconductor vertical transistor, comprising forming a source electrode capable of supplying current to the second layer by ohmic connection in a lateral direction of the gate electrode.
前記ソース電極が、前記アクセプタ不純物が添加されたIII族窒化物系化合物半導体領域にも接するように形成されることを特徴とする請求項4に記載のIII族窒化物系化合物半導体縦型トランジスタの製造方法。 5. The group III nitride compound semiconductor vertical transistor according to claim 4, wherein the source electrode is formed so as to be in contact with the group III nitride compound semiconductor region to which the acceptor impurity is added. Production method.
JP2007107774A 2007-04-17 2007-04-17 Group iii nitride compound semiconductor vertical type transistor and its manufacturing method Pending JP2008270310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107774A JP2008270310A (en) 2007-04-17 2007-04-17 Group iii nitride compound semiconductor vertical type transistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107774A JP2008270310A (en) 2007-04-17 2007-04-17 Group iii nitride compound semiconductor vertical type transistor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008270310A true JP2008270310A (en) 2008-11-06

Family

ID=40049464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107774A Pending JP2008270310A (en) 2007-04-17 2007-04-17 Group iii nitride compound semiconductor vertical type transistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008270310A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148154A (en) * 2010-12-21 2011-08-10 中国电子科技集团公司第五十五研究所 Multilayer ohmic contact system of gallium nitride device with composite metal barrier layer
JP2011210781A (en) * 2010-03-29 2011-10-20 Oki Electric Industry Co Ltd VERTICAL AlGaN/GaN-HEMT AND METHOD FOR MANUFACTURING THE SAME
JP2012084617A (en) * 2010-10-07 2012-04-26 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
JP2014045210A (en) * 2013-10-25 2014-03-13 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same
US8698162B2 (en) 2010-09-14 2014-04-15 Samsung Electronics Co., Ltd. Gallium nitride based semiconductor devices and methods of manufacturing the same
JP2014068019A (en) * 2008-09-24 2014-04-17 Wi-A Corp Method of manufacturing laser reflective mask
US8969915B2 (en) 2010-09-14 2015-03-03 Samsung Electronics Co., Ltd. Methods of manufacturing the gallium nitride based semiconductor devices
US9245947B2 (en) 2011-06-28 2016-01-26 Samsung Electronics Co., Ltd. High electron mobility transistors and methods of manufacturing the same
CN105428412A (en) * 2015-12-22 2016-03-23 工业和信息化部电子第五研究所 Algan/gan heterojunction field effect transistor and preparation method thereof
CN108447899A (en) * 2018-02-09 2018-08-24 江苏如高第三代半导体产业研究院有限公司 A kind of preparation method of vertical structure GaN power devices
CN110707153A (en) * 2019-05-28 2020-01-17 聚力成半导体(重庆)有限公司 Semiconductor device with a plurality of semiconductor chips
CN111863958A (en) * 2020-06-09 2020-10-30 江苏大学 Normally-on high electron mobility transistor structure and manufacturing method thereof
CN111863959A (en) * 2020-06-09 2020-10-30 江苏大学 Vertical-structure high-electron-mobility transistor structure and manufacturing method thereof
CN111863957A (en) * 2020-06-09 2020-10-30 江苏大学 Normally-off high electron mobility transistor and manufacturing method thereof
CN112018177A (en) * 2019-05-31 2020-12-01 中国科学院苏州纳米技术与纳米仿生研究所 Full-vertical Si-based GaN UMOSFET power device and preparation method thereof
CN113658856A (en) * 2021-08-06 2021-11-16 西安电子科技大学广州研究院 P-GaN gate enhanced HEMT device and preparation method thereof
CN114582957A (en) * 2021-11-09 2022-06-03 英诺赛科(苏州)科技有限公司 Nitride-based semiconductor device and method for manufacturing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068019A (en) * 2008-09-24 2014-04-17 Wi-A Corp Method of manufacturing laser reflective mask
JP2011210781A (en) * 2010-03-29 2011-10-20 Oki Electric Industry Co Ltd VERTICAL AlGaN/GaN-HEMT AND METHOD FOR MANUFACTURING THE SAME
US8698162B2 (en) 2010-09-14 2014-04-15 Samsung Electronics Co., Ltd. Gallium nitride based semiconductor devices and methods of manufacturing the same
US8969915B2 (en) 2010-09-14 2015-03-03 Samsung Electronics Co., Ltd. Methods of manufacturing the gallium nitride based semiconductor devices
US9029916B2 (en) 2010-09-14 2015-05-12 Samsung Electronics Co., Ltd. Gallium nitride based semiconductor devices and methods of manufacturing the same
JP2012084617A (en) * 2010-10-07 2012-04-26 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
CN102148154A (en) * 2010-12-21 2011-08-10 中国电子科技集团公司第五十五研究所 Multilayer ohmic contact system of gallium nitride device with composite metal barrier layer
US9245947B2 (en) 2011-06-28 2016-01-26 Samsung Electronics Co., Ltd. High electron mobility transistors and methods of manufacturing the same
JP2014045210A (en) * 2013-10-25 2014-03-13 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same
CN105428412A (en) * 2015-12-22 2016-03-23 工业和信息化部电子第五研究所 Algan/gan heterojunction field effect transistor and preparation method thereof
CN108447899A (en) * 2018-02-09 2018-08-24 江苏如高第三代半导体产业研究院有限公司 A kind of preparation method of vertical structure GaN power devices
CN110707153A (en) * 2019-05-28 2020-01-17 聚力成半导体(重庆)有限公司 Semiconductor device with a plurality of semiconductor chips
CN112018177A (en) * 2019-05-31 2020-12-01 中国科学院苏州纳米技术与纳米仿生研究所 Full-vertical Si-based GaN UMOSFET power device and preparation method thereof
CN112018177B (en) * 2019-05-31 2024-06-07 中国科学院苏州纳米技术与纳米仿生研究所 Full-vertical Si-based GaN UMOSFET power device and preparation method thereof
CN111863958A (en) * 2020-06-09 2020-10-30 江苏大学 Normally-on high electron mobility transistor structure and manufacturing method thereof
CN111863957A (en) * 2020-06-09 2020-10-30 江苏大学 Normally-off high electron mobility transistor and manufacturing method thereof
CN111863958B (en) * 2020-06-09 2024-03-19 江苏大学 Normally-on high electron mobility transistor structure and manufacturing method thereof
CN111863957B (en) * 2020-06-09 2024-03-19 江苏大学 Normally-off high electron mobility transistor and manufacturing method thereof
CN111863959B (en) * 2020-06-09 2024-05-14 江苏大学 Vertical structure high electron mobility transistor structure and manufacturing method thereof
CN111863959A (en) * 2020-06-09 2020-10-30 江苏大学 Vertical-structure high-electron-mobility transistor structure and manufacturing method thereof
CN113658856A (en) * 2021-08-06 2021-11-16 西安电子科技大学广州研究院 P-GaN gate enhanced HEMT device and preparation method thereof
CN113658856B (en) * 2021-08-06 2024-04-19 西安电子科技大学 P-GaN gate enhanced HEMT device and preparation method thereof
CN114582957A (en) * 2021-11-09 2022-06-03 英诺赛科(苏州)科技有限公司 Nitride-based semiconductor device and method for manufacturing the same
CN114582957B (en) * 2021-11-09 2023-12-22 英诺赛科(苏州)科技有限公司 Nitride-based semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2008270310A (en) Group iii nitride compound semiconductor vertical type transistor and its manufacturing method
TWI647846B (en) Method of manufacturing a semiconductor device and the semiconductor device
JP5203725B2 (en) III-nitride power semiconductor devices
JP4389935B2 (en) Semiconductor device
JP2004363563A (en) Semiconductor device
JP2008193123A (en) Semiconductor device
JP2014154887A (en) Vertical gallium nitride transistors and method for manufacturing the same
JP2010103425A (en) Nitride semiconductor device
JP2012019186A (en) Nitride-based semiconductor device and method for manufacturing the same
TW201607035A (en) Semiconductor device
JP2007180330A (en) Semiconductor device and its manufacturing method
TWI626747B (en) Hetero-junction semiconductor device and method of manufacturing a hetero-junction semiconductor device
JP4327114B2 (en) Nitride semiconductor device
US20230361207A1 (en) High electron mobility transistor and method for fabricating the same
JP2007250727A (en) Field effect transistor
JP2014110311A (en) Semiconductor device
JP5000159B2 (en) Field effect transistor
WO2019163075A1 (en) Semiconductor device
JP5113375B2 (en) Nitride semiconductor device
JP2009004566A (en) Semiconductor device and method of manufacturing semiconductor device
JP2015119028A (en) Semiconductor device, field effect transistor and diode
JP4925596B2 (en) Nitride semiconductor device
US11024717B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2009060065A (en) Nitride semiconductor device
JP2007088186A (en) Semiconductor device and its fabrication process