JP2008270073A - Three-dimensional image construction method - Google Patents

Three-dimensional image construction method Download PDF

Info

Publication number
JP2008270073A
JP2008270073A JP2007114001A JP2007114001A JP2008270073A JP 2008270073 A JP2008270073 A JP 2008270073A JP 2007114001 A JP2007114001 A JP 2007114001A JP 2007114001 A JP2007114001 A JP 2007114001A JP 2008270073 A JP2008270073 A JP 2008270073A
Authority
JP
Japan
Prior art keywords
cross
dimensional image
sample
deposition film
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007114001A
Other languages
Japanese (ja)
Other versions
JP5039961B2 (en
JP2008270073A5 (en
Inventor
Koji Iwasaki
浩二 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2007114001A priority Critical patent/JP5039961B2/en
Publication of JP2008270073A publication Critical patent/JP2008270073A/en
Publication of JP2008270073A5 publication Critical patent/JP2008270073A5/ja
Application granted granted Critical
Publication of JP5039961B2 publication Critical patent/JP5039961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To construct an accurate and clear three-dimensional image of a sample by superposing a plurality of continuously-acquired cross-sectional images without being affected by drift. <P>SOLUTION: A three-dimensional image construction method executes the following steps, that is, a step for forming a deposition film DP on the surface of a sample 2, a step for forming a correction mark M, linearly extending toward one direction, on the deposition film, a step for executing etching so as to cross the correction mark and exposing the cross-section of the deposition film and that of the sample, a step for acquiring an exposed cross-sectional image of the deposition film and that of the sample, a step for continuously acquiring a plurality of cross-sectional images by repeatedly executing each of the above steps, and a step for constructing a basic three-dimensional image by superposing the plurality of cross-sectional images in the acquisition order on the basis of the correction mark. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、試料の断面像を取得した後、これら断面像を重ね合わせて三次元画像を構築する三次元画像構築方法に関するものである。   The present invention relates to a three-dimensional image construction method for obtaining a cross-sectional image of a sample and then superimposing the cross-sectional images to construct a three-dimensional image.

半導体デバイス等の試料の内部構造を解析したり、立体的な観察を行ったりする手法の1つとして、集束イオンビーム(FIB)を利用したエッチング加工を繰り返しながら試料の断面像を複数枚取得した後、これら複数の断面像を重ね合わせて三次元画像を構築する方法が知られている。
この方法は、荷電粒子ビーム装置を利用したCut&Seeと呼ばれる手法で、試料の断面像を見ることができることに加え、試料の立体的な観察を様々な方向から行うことができるという、他の方法にはない利点を有している。具体的には、試料に対してFIBを照射してエッチング加工を行い、断面を露出させる。続いて、露出した断面をSEM観察して断面像を取得する。続いて、再度エッチング加工を行って、次の断面を露出させた後、SEM観察により2枚目の断面像を取得する。このように、エッチング加工とSEM観察とを繰り返して、複数枚の断面像を取得する。そして、最後に取得した複数枚の断面像を重ね合わせることで、三次元画像を構築する方法である。
As one of the methods for analyzing the internal structure of a sample such as a semiconductor device or performing a three-dimensional observation, a plurality of cross-sectional images of the sample were obtained while repeating etching using a focused ion beam (FIB). Thereafter, a method of constructing a three-dimensional image by superimposing these cross-sectional images is known.
This method is a method called Cut & Seee using a charged particle beam device, and in addition to being able to see a cross-sectional image of a sample, it is possible to perform other three-dimensional observations of a sample from various directions. Has no advantage. Specifically, the sample is irradiated with FIB and etched to expose the cross section. Subsequently, the exposed cross section is observed with an SEM to obtain a cross-sectional image. Subsequently, etching is performed again to expose the next cross section, and then a second cross-sectional image is acquired by SEM observation. In this way, a plurality of cross-sectional images are acquired by repeating the etching process and the SEM observation. And it is a method of constructing a three-dimensional image by superimposing a plurality of cross-sectional images acquired last.

ところで、正確な三次元画像を構築するには、複数枚の断面像をそれぞれ位置ずれしないように重ね合わせることが必要である。しかしながら、実際の荷電粒子ビーム装置は、ドリフトが生じてしまうので、複数枚の断面像を取得した時点で各断面像が微妙に位置ずれしてしまう。そのため、正確で鮮明な三次元画像を構築することが難しかった。なお、ドリフトの原因としては、例えば、試料を載置するステージ等の温度変化による温度ドリフトや装置構成ユニットの機械的な揺れや、エッチング加工する際のFIBの照射精度や、SEM観察する際の電子ビーム(EB)の照射精度等がある。   By the way, in order to construct an accurate three-dimensional image, it is necessary to superimpose a plurality of cross-sectional images so as not to shift their positions. However, in the actual charged particle beam apparatus, drift occurs, so that each cross-sectional image is slightly displaced when a plurality of cross-sectional images are acquired. Therefore, it has been difficult to construct an accurate and clear three-dimensional image. In addition, as a cause of drift, for example, temperature drift due to temperature change of a stage or the like on which a sample is placed, mechanical shake of an apparatus constituent unit, FIB irradiation accuracy at the time of etching processing, and SEM observation There are irradiation accuracy of an electron beam (EB) and the like.

そこで、ドリフトの原因の1つとされるFIBの照射精度を向上する装置が知られている(特許文献1参照)。この装置によれば、ドリフトの影響を低減できるので、各断面像を重ね合わせる際の位置ずれをできるだけなくすことができる。
また、三次元画像を構築する際に、試料の断面画像を重ね合わせるのではなく、平面画像を重ね合わせることで三次元画像を構築する装置も知られている(特許文献2参照)。
特開2003−331775号公報 特開平4−188553号公報
Thus, an apparatus that improves FIB irradiation accuracy, which is one of the causes of drift, is known (see Patent Document 1). According to this apparatus, since the influence of drift can be reduced, it is possible to eliminate as much position displacement as possible when superimposing the sectional images.
In addition, when constructing a three-dimensional image, an apparatus that constructs a three-dimensional image by superimposing planar images instead of superimposing cross-sectional images of a sample is also known (see Patent Document 2).
JP 2003-331775 A Japanese Patent Laid-Open No. 4-188553

しかしながら、上記従来の方法では、以下の課題が残されている。
即ち、特許文献1に記載された装置によれば、ドリフトの原因の1つとされるFIBの照射精度を向上してドリフトを低減しているだけであり、僅かながらでも生じてしまうものである。なお、ドリフトそのものを完全になくすことは不可能である。
そのため、この方法でドリフトを低減させたとしても、できるだけ正確な三次元画像を構築するために、複数の断面像を重ね合わせる際に手動で微調整したり、何らかのパターンを有する試料である場合には、そのパターンが連続して繋がるように自動補正したりする等の作業を並行して行わざるを得なかった。
However, the following problems remain in the conventional method.
That is, according to the apparatus described in Patent Document 1, only the FIB irradiation accuracy, which is one of the causes of drift, is improved to reduce drift, but it occurs even slightly. It is impossible to completely eliminate the drift itself.
Therefore, even if drift is reduced by this method, in order to construct a three-dimensional image that is as accurate as possible, it is necessary to make fine adjustments manually when overlaying multiple cross-sectional images, or when the sample has a certain pattern. In other words, work such as automatic correction so that the patterns are continuously connected must be performed in parallel.

ところが、この自動補正する方法は、近年のICやLSIのような微小なパターンでは断面の変化が大きく、パターンマッチングを利用して位置ずれを補正することは困難である。その結果、オペレータが1枚1枚手動で断面像の位置ずれ調整を行っているのが現状である。   However, this automatic correction method has a large cross-sectional change in a minute pattern such as an IC or LSI in recent years, and it is difficult to correct a positional deviation using pattern matching. As a result, the operator currently adjusts the positional deviation of the cross-sectional images manually one by one.

また、上記特許文献2に記載された装置は、重ね合わせる画像の種類が異なるだけで、やはりドリフトの影響により正確な三次元画像を構築することが難しいものであった。特にこの場合の断面像は、平面画像が重なり合ったものであるので、ドリフトの影響を受けてこの断面像さえも正確に表示することができるものではなかった。   In addition, the apparatus described in Patent Document 2 is different only in the types of images to be superimposed, and it is difficult to construct an accurate three-dimensional image due to the influence of drift. Particularly, since the cross-sectional images in this case are obtained by overlapping the planar images, even the cross-sectional images cannot be accurately displayed due to the influence of drift.

本発明は、このような事情に考慮してなされたもので、その目的は、ドリフトの影響を受けずに、連続的に取得した複数枚の断面像を重ね合わせて、正確で鮮明な試料の三次元画像を構築することができる三次元画像構築方法を提供することである。   The present invention has been made in consideration of such circumstances, and its purpose is to superimpose a plurality of continuously acquired cross-sectional images without being affected by drift, and to obtain an accurate and clear sample. To provide a 3D image construction method capable of constructing a 3D image.

本発明は、前記課題を解決するために以下の手段を提供する。
本発明に係る三次元画像構築方法は、試料の表面に集束イオンビームを照射すると共に原料ガスを供給して、表面を保護するデポジション膜を形成する保護工程と、前記集束イオンビームを利用して、一方向に向かってライン状に延びる補正用マークを前記デポジション膜に形成するマーク形成工程と、前記補正用マークを横切るように前記集束イオンビームを照射しながら前記デポジション膜及び前記試料をエッチング加工して、デポジション膜及び試料の断面を露出させる露出工程と、露出した前記デポジション膜及び前記試料の断面に荷電粒子ビームを照射すると共に、該照射によってデポジション膜及び試料から放出された二次荷電粒子に基づいて断面像を取得する取得工程と、前記露出工程及び前記取得工程を所定回数繰り返し行って、前記一方向に向かって前記断面像を連続的に複数枚取得する繰り返し工程と、前記マーク形成工程時に形成した補正用マークを構築するように、前記断面像に写り込んだ補正用マークを基準にして、前記複数枚の断面像を取得した順番に重ね合わせて基礎三次元画像を構築する構築工程と、を行うことを特徴とするものである。
The present invention provides the following means in order to solve the above problems.
A three-dimensional image construction method according to the present invention uses a protection step of irradiating a surface of a sample with a focused ion beam and supplying a source gas to form a deposition film for protecting the surface, and using the focused ion beam. Forming a correction mark extending in a line in one direction on the deposition film, and irradiating the focused ion beam across the correction mark while irradiating the focused ion beam and the sample Etching process to expose the cross section of the deposition film and the sample, and irradiating the exposed cross section of the deposition film and the sample with the charged particle beam and releasing from the deposition film and the sample by the irradiation An acquisition step of acquiring a cross-sectional image based on the secondary charged particles, and repeating the exposure step and the acquisition step a predetermined number of times The correction mark reflected in the cross-sectional image is constructed so as to construct a repetitive step of acquiring a plurality of the cross-sectional images continuously toward the one direction and a correction mark formed during the mark forming step. And a construction step of constructing a basic three-dimensional image by superimposing the plurality of cross-sectional images in the order in which they are acquired as a reference.

この発明に係る三次元画像構築方法においては、断面像を連続的に複数枚取得した後、これら複数枚の断面像を重ね合わせることで試料の三次元画像を構築することができる。
まず、試料の表面に集束イオンビーム(FIB)、又は、電子ビーム(EB)を照射すると共に、デポジション膜を形成するための原料ガスを供給して、試料の表面を保護するためのデポジション膜を形成する保護工程を行う。次いで、この保護膜として形成したデポジション膜を利用して補正用マークを形成するマーク形成工程を行う。この際、FIBを利用して、一方向に向かってライン状に延びるように補正用マークを形成する。
In the three-dimensional image construction method according to the present invention, it is possible to construct a three-dimensional image of a sample by continuously obtaining a plurality of cross-sectional images and then superimposing the plurality of cross-sectional images.
First, a focused ion beam (FIB) or electron beam (EB) is irradiated on the surface of the sample, and a source gas for forming a deposition film is supplied to protect the surface of the sample. A protective process for forming a film is performed. Next, a mark forming process is performed for forming a correction mark using the deposition film formed as the protective film. At this time, the correction mark is formed so as to extend in a line in one direction by using the FIB.

次いで、ライン状に形成した補正用マークを横切るようにFIBを照射しながらデポジション膜及び試料をエッチング加工して、デポジション膜及び試料の断面をそれぞれ露出させる露出工程を行う。この際、補正用マークを横切るようにFIBを照射しているので、デポジション膜の断面に補正用マークの断面も露出した状態となっている。
次いで、露出したデポジション膜及び試料の断面に荷電粒子ビームを照射する。すると、この荷電粒子ビームの照射によって、デポジション膜及び試料の断面から二次荷電粒子が発生する。そして、この二次荷電粒子に基づいて、デポジション膜及び試料の断面像を取得する。この取得工程によって、1枚目の断面像を取得することができる。なお、この断面像には、補正用マークの断面も写り込んだ状態となっている。
Next, an exposure process is performed in which the deposition film and the sample are etched while irradiating the FIB so as to cross the correction mark formed in a line shape, and the cross sections of the deposition film and the sample are exposed. At this time, since the FIB is irradiated across the correction mark, the cross section of the correction mark is also exposed on the cross section of the deposition film.
Next, the exposed deposition film and the cross section of the sample are irradiated with a charged particle beam. Then, secondary charged particles are generated from the deposition film and the cross section of the sample by the irradiation of the charged particle beam. Then, a cross-sectional image of the deposition film and the sample is acquired based on the secondary charged particles. By this acquisition step, the first cross-sectional image can be acquired. Note that this cross-sectional image also includes the cross section of the correction mark.

続いて、上述した露出工程及び取得工程を一方向に向かって所定回数繰り返し行う繰り返し工程を行う。これにより、デポジション膜及び試料の断面像を連続的に複数枚取得することができる。しかも、全ての断面像には、共通して補正用マークが写り込んだ状態となっている。
そして、複数枚の断面像を取得した後、各断面像を取得した順番に重ね合わせる構築工程を行う。この際、断面像に写り込んだ補正用マークを基準にして、隣接する断面像同士を順々に重ね合わせていく。つまり、マーク形成工程時に形成したライン状の補正用マークを構築するように複数枚の断面像を重ね合わせる。これにより、各断面像を取得した時に、各断面像がドリフトの影響を受けていたとしても、位置ずれを補正しながら断面像同士を重ね合わせることができる。
Subsequently, a repetition process is performed in which the exposure process and the acquisition process described above are repeated a predetermined number of times in one direction. Thereby, a plurality of cross-sectional images of the deposition film and the sample can be obtained continuously. In addition, the correction mark is reflected in all the cross-sectional images in common.
Then, after acquiring a plurality of cross-sectional images, a construction process is performed in which the cross-sectional images are superimposed in the order of acquisition. At this time, the adjacent cross-sectional images are sequentially overlapped with each other based on the correction mark reflected in the cross-sectional image. That is, a plurality of cross-sectional images are overlaid so as to construct a linear correction mark formed during the mark forming process. Thereby, even if each cross-sectional image is affected by drift when each cross-sectional image is acquired, the cross-sectional images can be superimposed while correcting the positional deviation.

その結果、正確で鮮明なデポジション膜及び試料の三次元画像、即ち、基礎三次元画像を構築することができる。従って、試料の立体的な観察や内部構造の解析を正確に行うことができる。また、従来のように、オペレータが断面像を1枚1枚手動で位置ずれ調整する必要がないので、画像処理を行うときのオペレータの負担を極力低減することができる。   As a result, an accurate and clear three-dimensional image of the deposition film and sample, that is, a basic three-dimensional image can be constructed. Therefore, the three-dimensional observation of the sample and the analysis of the internal structure can be performed accurately. Further, unlike the prior art, it is not necessary for the operator to manually adjust the positional deviation of the cross-sectional images one by one, so that the burden on the operator when performing image processing can be reduced as much as possible.

また、本発明に係る三次元画像構築方法は、上記本発明の三次元画像構築方法において、前記構築工程後、前記基礎三次元画像から前記デポジション膜の三次元画像を除去して、前記試料の三次元画像だけを抽出する抽出工程を行うことを特徴とするものである。   The three-dimensional image construction method according to the present invention is the three-dimensional image construction method according to the present invention, wherein after the construction step, the three-dimensional image of the deposition film is removed from the basic three-dimensional image, and the sample The extraction step of extracting only the three-dimensional image is performed.

この発明に係る三次元画像構築方法においては、基礎三次元画像からデポジション膜の三次元画像を除去して、試料の三次元画像だけを抽出するので、より正確に試料の立体的観察や内部構造の解析を行うことができる。   In the three-dimensional image construction method according to the present invention, the three-dimensional image of the deposition film is removed from the basic three-dimensional image and only the three-dimensional image of the sample is extracted. Structural analysis can be performed.

また、本発明に係る三次元画像構築方法は、上記本発明の三次元画像構築方法において、前記露出工程の際、前記集束イオンビームを照射する前に、前記補正用マークを基準として照射位置を補正することを特徴とするものである。   The three-dimensional image construction method according to the present invention is the above-described three-dimensional image construction method according to the present invention, wherein the irradiation position is determined with reference to the correction mark before the focused ion beam is irradiated in the exposure step. It is characterized by correcting.

この発明に係る三次元画像構築方法においては、FIBを照射してデポジション膜及び
試料の断面を露出させる露出工程の際に、補正用マークを基準としてFIBの照射位置を補正する。つまり、FIBのドリフト補正を行った後、エッチング加工を行う。これにより、FIBの照射位置誤差に伴うドリフトを極力低減できるので、後に行う構築工程の際に画像処理の負担を減少することができる。よって、構築工程を効率良く行うことができる。また、複数枚の断面像をより正確に重ね合わせることができる。
In the three-dimensional image construction method according to the present invention, the irradiation position of the FIB is corrected with reference to the correction mark in the exposure process in which the FIB is irradiated to expose the cross section of the deposition film and the sample. That is, after performing FIB drift correction, etching is performed. Thereby, since the drift accompanying the irradiation position error of FIB can be reduced as much as possible, the burden of image processing can be reduced in the construction process to be performed later. Therefore, the construction process can be performed efficiently. In addition, a plurality of cross-sectional images can be superimposed more accurately.

また、本発明に係る三次元画像構築方法は、上記本発明のいずれかの三次元画像構築方法において、前記取得工程の際、前記荷電粒子ビームを照射する前に、前記補正用マークを基準として照射位置を補正することを特徴とするものである。   Further, the three-dimensional image construction method according to the present invention is the three-dimensional image construction method according to any one of the present invention, wherein the correction mark is used as a reference before the charged particle beam is irradiated in the acquisition step. The irradiation position is corrected.

この発明に係る三次元画像構築方法においては、荷電粒子ビームを照射してデポジション膜及び試料の断面像を取得する取得工程の際に、補正用マークを基準として荷電粒子ビームの照射位置を補正する。つまり、荷電粒子ビームのドリフト補正を行った後、断面像の取得を行う。これにより、荷電粒子ビームの照射位置誤差に伴うドリフトを極力低減できるので、後に行う構築工程の際に画像処理の負担を減少することができる。よって、構築工程を効率良く行うことができる。また、複数枚の断面像をより正確に重ね合わせることができる。   In the three-dimensional image construction method according to the present invention, the irradiation position of the charged particle beam is corrected with reference to the correction mark in the acquisition step of acquiring the sectional image of the deposition film and the sample by irradiating the charged particle beam. To do. That is, the cross-sectional image is acquired after correcting the drift of the charged particle beam. Thereby, since the drift accompanying the irradiation position error of the charged particle beam can be reduced as much as possible, the burden of image processing can be reduced during the construction process to be performed later. Therefore, the construction process can be performed efficiently. In addition, a plurality of cross-sectional images can be superimposed more accurately.

また、本発明に係る三次元画像構築方法は、上記本発明のいずれかの三次元画像構築方法において、前記マーク形成工程の際、前記集束イオンビームの照射により前記デポジション膜をエッチング加工することで前記補正用マークを形成することを特徴とするものである。   The three-dimensional image construction method according to the present invention is the above three-dimensional image construction method according to the present invention, wherein the deposition film is etched by irradiation with the focused ion beam in the mark forming step. The correction mark is formed by the method described above.

この発明に係る三次元画像構築方法においては、デポジション膜をエッチング加工して補正用マークを形成するので、該補正用マークが剥がれて取れてしまうといった不具合がなく、指標としての信頼性を向上することができる。   In the three-dimensional image construction method according to the present invention, since the correction film is formed by etching the deposition film, there is no problem that the correction mark is peeled off and the reliability as an index is improved. can do.

また、本発明に係る三次元画像構築方法は、上記本発明のいずれかの三次元画像構築方法において、前記マーク形成工程の際、前記集束イオンビームの照射と同時に前記原料ガスを供給して、前記デポジション膜上にさらにデポジション膜を堆積させることで前記補正用マークを形成することを特徴とするものである。   Further, the three-dimensional image construction method according to the present invention is the three-dimensional image construction method according to any one of the present invention, wherein the source gas is supplied simultaneously with the irradiation of the focused ion beam during the mark formation step. The correction mark is formed by further depositing a deposition film on the deposition film.

この発明に係る三次元画像構築方法においては、デポジション膜上にさらにデポジション膜を堆積させて補正用マークを形成するので、エッチング加工で補正用マークを形成する場合と異なり、エッチング加工時に試料の意図しない箇所を万が一にも加工してしまう恐れがない。   In the three-dimensional image construction method according to the present invention, a correction film is formed by further depositing a deposition film on the deposition film. Therefore, unlike the case where the correction mark is formed by etching, the sample is etched. There is no risk of unintended parts being processed.

また、本発明に係る三次元画像構築方法は、上記本発明のいずれかの三次元画像構築方法において、前記マーク形成工程の際、前記補正用マークを並行に複数本形成することを特徴とするものである。   The three-dimensional image construction method according to the present invention is characterized in that, in the three-dimensional image construction method according to any one of the above-described present invention, a plurality of the correction marks are formed in parallel during the mark formation step. Is.

この発明に係る三次元画像構築方法においては、各断面像を取得した際に、補正用マークの断面が複数露出する。よって、構築工程を行う際に、位置ずれ補正を複数の補正用マークを基準として行えるので、さらに正確な試料の三次元画像を構築することができる。   In the three-dimensional image construction method according to the present invention, when each cross-sectional image is acquired, a plurality of cross-sections of the correction mark are exposed. Therefore, when performing the construction process, the positional deviation correction can be performed based on a plurality of correction marks, so that a more accurate three-dimensional image of the sample can be constructed.

本発明に係る三次元画像構築方法によれば、ドリフトの影響を受けずに、正確で綺麗な断面像を重ね合わせた試料の三次元画像を構築することができ、試料の立体的な観察や内部構造の解析を正確に行うことができる。また、画像処理を行うときのオペレータの負担を極力軽減することができる。   According to the three-dimensional image construction method according to the present invention, it is possible to construct a three-dimensional image of a sample on which accurate and clean cross-sectional images are superimposed without being affected by drift, The internal structure can be analyzed accurately. In addition, the burden on the operator when performing image processing can be reduced as much as possible.

以下、本発明に係る三次元画像構築方法の一実施形態を、図1から図9を参照して説明する。また本実施形態では、集束イオンビーム(FIB)及び電子ビーム(EB)の2種類の荷電粒子ビームをそれぞれ照射することができる、FIB−SEM複合タイプの荷電粒子ビーム装置を例に挙げて説明する。   Hereinafter, an embodiment of a three-dimensional image construction method according to the present invention will be described with reference to FIGS. In the present embodiment, a FIB-SEM composite type charged particle beam apparatus capable of irradiating two types of charged particle beams of a focused ion beam (FIB) and an electron beam (EB) will be described as an example. .

始めに、この荷電粒子ビーム装置について説明する。
この荷電粒子ビーム装置1は、図1に示すように、試料2が載置される試料台3と、該試料台3を変位させるステージ4と、試料2に対してFIB及びEBを照射する照射機構5と、FIB及びEBの照射によって発生した二次荷電粒子Eを検出する二次荷電粒子検出器6と、FIBが照射される試料2の表面付近にデポジション膜DPを形成する原料ガスGを供給するガス銃7と、検出された二次荷電粒子Eに基づいて、試料2の画像データを生成する制御部8と、生成された画像データを試料像として表示する表示部9とを備えている。
First, the charged particle beam apparatus will be described.
As shown in FIG. 1, the charged particle beam apparatus 1 includes a sample stage 3 on which a sample 2 is placed, a stage 4 that displaces the sample stage 3, and irradiation that irradiates the sample 2 with FIB and EB. A mechanism 5, a secondary charged particle detector 6 that detects secondary charged particles E generated by irradiation with FIB and EB, and a source gas G that forms a deposition film DP near the surface of the sample 2 irradiated with FIB , A control unit 8 that generates image data of the sample 2 based on the detected secondary charged particles E, and a display unit 9 that displays the generated image data as a sample image. ing.

上記試料2は、真空試料室10内に収納されており、該真空試料室10内でFIB及びEBの照射や原料ガスGの供給等が行われるようになっている。また、本実施形態の試料2は、図2に示すように、両面に開口が開いたスルーホール2a内に金属材料2bが充填されたコンタクトホール2cが形成されている半導体デバイスである場合を例に挙げて説明する。
上記ステージ4は、制御部8の指示にしたがって作動するようになっており、例えば、試料台3を5軸で変位させることができるようになっている。即ち、図1に示すように、試料台3を水平面に平行で且つ互いに直交するX軸及びY軸と、これらX軸及びY軸に対して直交するZ軸とに沿ってそれぞれ移動させたり、試料台3をZ軸回りにローテーションさせたり、試料台3をX軸(又はY軸)回りにチルトさせたりすることができるようになっている。このように試料台3を5軸に変位させることで、試料2をあらゆる姿勢に変位させた状態で、FIB及びEBを照射できるようになっている。
The sample 2 is housed in a vacuum sample chamber 10, and FIB and EB irradiation, supply of a source gas G, and the like are performed in the vacuum sample chamber 10. Further, as shown in FIG. 2, the sample 2 of the present embodiment is an example of a semiconductor device in which a contact hole 2c filled with a metal material 2b is formed in a through hole 2a having openings on both sides. Will be described.
The stage 4 is operated in accordance with an instruction from the control unit 8, and for example, the sample stage 3 can be displaced about five axes. That is, as shown in FIG. 1, the sample stage 3 is moved along the X axis and the Y axis that are parallel to the horizontal plane and orthogonal to each other, and the Z axis that is orthogonal to the X axis and the Y axis, respectively. The sample stage 3 can be rotated about the Z axis, and the sample stage 3 can be tilted about the X axis (or Y axis). In this way, by displacing the sample stage 3 along the five axes, the FIB and EB can be irradiated with the sample 2 being displaced in any posture.

上記照射機構5は、試料2に対してFIBを照射するFIB鏡筒15と、EBを照射するSEM鏡筒16とから構成されている。FIB鏡筒15は、イオン発生源15a及びイオン光学系15bを有しており、イオン発生源15aで発生したイオンCをイオン光学系15bで細く絞ってFIBにした後、試料2に向けて照射するようになっている。また、SEM鏡筒16は、電子発生源16a及び電子光学系16bを有しており、電子発生源16aで発生した電子Dを電子光学系16bで細く絞って電子ビームEBとした後、照射するようになっている。   The irradiation mechanism 5 includes a FIB column 15 that irradiates the sample 2 with FIB and an SEM column 16 that irradiates EB. The FIB column 15 includes an ion generation source 15a and an ion optical system 15b. After the ions C generated by the ion generation source 15a are finely squeezed into an FIB by the ion optical system 15b, the sample 2 is irradiated. It is supposed to be. The SEM column 16 includes an electron generation source 16a and an electron optical system 16b. The electron D generated by the electron generation source 16a is narrowed down by the electron optical system 16b to form an electron beam EB, and then irradiated. It is like that.

制御部8は、上記各構成品を総合的に制御していると共に、二次荷電粒子検出器6で検出された二次荷電粒子Eを輝度信号に変換して試料像(SEM画像)を生成している。そして、生成した試料像をメモリ部8aに記憶して取得すると共に、表示部9に表示させている。これにより、オペレータは、生成された試料像を確認できるようになっている。また、制御部8には、オペレータが入力可能な入力部8bが接続されており、該入力部8bによって入力された信号に基づいて各構成品を制御することもできるようになっている。つまり、オペレータは、ステージ4を作動させて試料台3及び試料2を変位させたり、FIBやEBの照射タイミング、原料ガスGの供給タイミング等をコントロールしたりすることができるようになっている。また、制御部8に試料像の取得等を自動的に行わせることもできるようになっている。   The control unit 8 comprehensively controls each of the above components and converts the secondary charged particle E detected by the secondary charged particle detector 6 into a luminance signal to generate a sample image (SEM image). is doing. And the produced | generated sample image is memorize | stored in the memory part 8a, and it is displayed on the display part 9. FIG. As a result, the operator can confirm the generated sample image. Further, an input unit 8b that can be input by an operator is connected to the control unit 8, and each component can be controlled based on a signal input by the input unit 8b. That is, the operator can operate the stage 4 to displace the sample stage 3 and the sample 2, and can control the irradiation timing of the FIB or EB, the supply timing of the source gas G, and the like. In addition, the control unit 8 can automatically acquire a sample image and the like.

次に、このように構成された荷電粒子ビーム装置1を利用して、試料2の三次元画像を構築する三次元画像構築方法について説明する。
この三次元画像構築方法は、保護工程、マーク形成工程、露出工程、取得工程、繰り返し工程、構築工程、抽出工程を順次行って、断面像(試料像)Xを連続的に複数枚取得した後、これら複数枚の断面像Xを重ね合わせることで試料2の三次元画像を構築する方法である。これら各工程について、以下に詳細に説明する。なお本実施形態では、試料2全体の三次元画像を構築するのではなく、コンタクトホール2cが形成されている領域の断面像Xを取得して、三次元画像を構築する場合を説明する。
Next, a three-dimensional image construction method for constructing a three-dimensional image of the sample 2 using the charged particle beam apparatus 1 configured as described above will be described.
In this 3D image construction method, a protection process, a mark formation process, an exposure process, an acquisition process, a repetition process, a construction process, and an extraction process are sequentially performed to obtain a plurality of cross-sectional images (sample images) X continuously. This is a method of constructing a three-dimensional image of the sample 2 by superimposing these plural cross-sectional images X. Each of these steps will be described in detail below. In the present embodiment, a case will be described in which a three-dimensional image is constructed by acquiring a cross-sectional image X of a region where the contact hole 2c is formed, instead of constructing a three-dimensional image of the entire sample 2.

まず、図1に示すように、ステージ4によって試料2をXY方向に適宜移動させながら試料2の表面にFIBを照射すると共に、原料ガスGを供給して試料2の表面を保護するためのデポジション膜DPを形成する保護工程を行う。この際、図3に示すように、試料2の表面全体ではなく、コンタクトホール2cが形成されている領域を少なくとも覆うようにデポジション膜DPを形成する。
続いて、以降の工程で断面像Xを取得する際の視野を確保するための粗加工を行う。つまり、観察開始位置にFIBを照射してエッチング加工(深堀加工)を行い、図4に示すようにV字状の溝部20を形成する。
First, as shown in FIG. 1, FIB is irradiated on the surface of the sample 2 while appropriately moving the sample 2 in the XY directions by the stage 4, and a source gas G is supplied to protect the surface of the sample 2. A protection process for forming the position film DP is performed. At this time, as shown in FIG. 3, the deposition film DP is formed so as to cover at least the region where the contact hole 2 c is formed rather than the entire surface of the sample 2.
Subsequently, rough processing is performed to ensure a field of view when the cross-sectional image X is acquired in the subsequent steps. That is, the observation start position is irradiated with FIB and etching (deep drilling) is performed to form a V-shaped groove 20 as shown in FIG.

次いで、保護膜として形成したデポジション膜DPを利用して補正用マークMを形成するマーク形成工程を行う。この際、ステージ4によって試料2を一方向に向かって移動させながらFIBを照射して、デポジション膜DPをライン状にエッチング加工する。これにより、図5に示すように、一方向に向かってライン状に延びるように補正用マークMを形成することができる。   Next, a mark forming process for forming the correction mark M using the deposition film DP formed as the protective film is performed. At this time, FIB is irradiated while moving the sample 2 in one direction by the stage 4, and the deposition film DP is etched into a line shape. Thereby, as shown in FIG. 5, the correction mark M can be formed so as to extend in a line in one direction.

補正用マークMを形成した後、断面像Xの取得を開始する。最初に、オペレータは、図6に示すように断面像Xの幅(1ライン加工幅)Wや、取得する断面像Xの枚数を、入力部8bを介して制御部8に入力する。制御部8は、この入力条件に基づいて以降の工程を自動的に行って、所定枚数の断面像Xの取得を行う。
まず、ライン状に形成した補正用マークMを横切るように、ステージ4によって試料台3を移動させながらFIBを照射してエッチング加工を行い、デポジション膜DP及び試料2の断面をそれぞれ露出させる露出工程を行う。この際、デポジション膜DP及び試料2の断面が補正用マークMに直交する面となるように、試料台3を移動させながらFIBを照射してエッチング加工を行う。特に、この工程では補正用マークMを横切るようにFIBを照射しているので、図7に示すように、デポジション膜DPの断面に補正用マークMの断面も露出した状態となっている。
After forming the correction mark M, the acquisition of the cross-sectional image X is started. First, as shown in FIG. 6, the operator inputs the width (1-line processing width) W of the cross-sectional image X and the number of cross-sectional images X to be acquired to the control unit 8 via the input unit 8b. Based on this input condition, the controller 8 automatically performs the subsequent steps to acquire a predetermined number of cross-sectional images X.
First, etching is performed by irradiating FIB while moving the sample stage 3 by the stage 4 so as to cross the correction mark M formed in a line, and exposing the cross section of the deposition film DP and the sample 2 respectively. Perform the process. At this time, the etching process is performed by irradiating the FIB while moving the sample stage 3 so that the cross section of the deposition film DP and the sample 2 becomes a plane orthogonal to the correction mark M. In particular, since FIB is irradiated across the correction mark M in this step, the cross section of the correction mark M is exposed on the cross section of the deposition film DP as shown in FIG.

次いで、図6に示すように、露出したデポジション膜DP及び試料2の断面にEBを照射する。すると、このEBの照射によって、デポジション膜DP及び試料2の断面から二次荷電粒子Eが発生する。二次荷電粒子検出器6は、この二次荷電粒子Eを検出すると共に、制御部8に出力する。制御部8は、送られてきた二次荷電粒子Eから図8に示すように、断面像Xを生成した後、該断面像Xをメモリ部8aに記憶させると共に、表示部9に表示させる。この取得工程によって、1枚目の断面像Xを取得することができる。なお、この断面像Xには、補正用マークMの断面も写り込んだ状態となっている。また、オペレータは、表示部9によってこの断面像Xを確認することができる。   Next, as shown in FIG. 6, the exposed deposition film DP and the cross section of the sample 2 are irradiated with EB. Then, secondary charged particles E are generated from the deposition film DP and the cross section of the sample 2 by the irradiation of the EB. The secondary charged particle detector 6 detects the secondary charged particle E and outputs it to the control unit 8. As shown in FIG. 8, the control unit 8 generates a cross-sectional image X from the transmitted secondary charged particles E, and then stores the cross-sectional image X in the memory unit 8 a and displays it on the display unit 9. By this acquisition step, the first cross-sectional image X can be acquired. In this cross-sectional image X, the cross-section of the correction mark M is also reflected. Further, the operator can confirm the cross-sectional image X by the display unit 9.

続いて、制御部8は、上述した露出工程及び取得工程を一方向に向かって予め設定した所定回数繰り返し行う繰り返し工程を行う。これにより、デポジション膜DP及び試料2の断面像Xを連続的に複数枚取得することができる。しかも、全ての断面像Xには、共通して補正用マークMが写り込んだ状態となっている。
そして、複数枚の断面像Xの取得が終了した後、オペレータはメモリ部8aに記憶されている各断面像Xを取得した順番に重ね合わせる構築工程を制御部8に行わせる。或いは、オペレータ自身が、この構築工程を行う。この際、断面像Xに写り込んだ補正用マークMを基準にして、図8に示すように、隣接する断面像X同士を順々に重ね合わせていく。つまり、マーク形成工程時に形成したライン状の補正用マークMを構築するように複数枚の断面像Xを重ね合わせる。これにより、各断面像Xを取得したときに、各断面像Xがドリフトの影響を受けていたとしても、位置ずれを補正しながら断面像X同士を重ね合わせることができる。
Subsequently, the control unit 8 performs a repetition process in which the exposure process and the acquisition process described above are repeatedly performed a predetermined number of times in one direction. Thereby, a plurality of deposition images DP and a plurality of cross-sectional images X of the sample 2 can be obtained continuously. Moreover, the correction mark M is reflected in all the cross-sectional images X in common.
Then, after the acquisition of the plurality of cross-sectional images X is completed, the operator causes the control unit 8 to perform a construction process of superimposing the cross-sectional images X stored in the memory unit 8a in the order of acquisition. Alternatively, the operator himself performs this construction process. At this time, with reference to the correction mark M reflected in the cross-sectional image X, the adjacent cross-sectional images X are sequentially superimposed as shown in FIG. That is, a plurality of cross-sectional images X are overlaid so as to construct a linear correction mark M formed during the mark forming process. Thereby, when each cross-sectional image X is acquired, even if each cross-sectional image X is affected by the drift, the cross-sectional images X can be superimposed while correcting the positional deviation.

その結果、図9に示すように、正確で鮮明なデポジション膜DP及び試料2の三次元画像、即ち、基礎三次元画像を構築することができる。そして最後に、基礎三次元画像から、デポジション膜DPの三次元画像を除去して、試料2の三次元画像を抽出する抽出工程を行う。これにより、ドリフトの影響を受けずに、正確で綺麗な試料2の三次元画像を構築することができる。従って、オペレータは、コンタクトホール2cが形成された試料2の立体的な観察や、内部構造の解析を正確に行うことができる。また、画像処理を行うときのオペレータの負担を極力軽減することができる。
更に本実施形態では、デポジション膜DPをエッチング加工して補正用マークMを形成しているので、該補正用マークMが剥がれて取れてしまうといった不具合がなく、指標としての信頼性を向上することができる。
As a result, as shown in FIG. 9, an accurate and clear three-dimensional image of the deposition film DP and the sample 2, that is, a basic three-dimensional image can be constructed. Finally, an extraction process is performed in which the three-dimensional image of the deposition film DP is removed from the basic three-dimensional image to extract the three-dimensional image of the sample 2. As a result, an accurate and beautiful three-dimensional image of the sample 2 can be constructed without being affected by drift. Therefore, the operator can accurately perform the three-dimensional observation of the sample 2 in which the contact hole 2c is formed and the analysis of the internal structure. In addition, the burden on the operator when performing image processing can be reduced as much as possible.
Further, in the present embodiment, since the correction mark M is formed by etching the deposition film DP, there is no problem that the correction mark M is peeled off and the reliability as an index is improved. be able to.

なお、上記実施形態において、FIBを照射する前に、補正用マークMを基準として照射位置を補正しても構わない。つまり、FIBを照射してデポジション膜DP及び試料2の断面を露出させる露出工程の際に、FIBのドリフト補正を行った後にエッチング加工を行う。こうすることで、FIBの照射位置誤差に伴うドリフトを極力低減できるので、後に行う構築工程の際に画像処理の負担を減少することができる。よって、構築工程を効率良く行うことができる。また、複数枚の断面像Xをより正確に重ね合わせることができる。   In the above embodiment, the irradiation position may be corrected using the correction mark M as a reference before the FIB is irradiated. That is, in the exposure process in which the FIB is irradiated to expose the deposition film DP and the cross section of the sample 2, the etching process is performed after the FIB drift correction is performed. By doing so, the drift accompanying the FIB irradiation position error can be reduced as much as possible, so that the burden of image processing can be reduced during the construction process to be performed later. Therefore, the construction process can be performed efficiently. In addition, a plurality of cross-sectional images X can be more accurately superimposed.

また、FIBの照射時だけではなく、EBを照射する際にも補正用マークMを基準として照射位置を補正しても構わない。つまり、EBを照射してデポジション膜DP及び試料2の断面像Xを取得する取得工程の際に、EBのドリフト補正を行った後に断面像Xの取得を行う。こうすることで、EBの照射位置誤差に伴うドリフトをも極力低減することができる。   Further, the irradiation position may be corrected based on the correction mark M not only when the FIB is irradiated but also when the EB is irradiated. In other words, in the acquisition step of acquiring the deposition film DP and the cross-sectional image X of the sample 2 by irradiating EB, the cross-sectional image X is acquired after performing the EB drift correction. By doing so, it is possible to reduce the drift accompanying the EB irradiation position error as much as possible.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施形態では、デポジション膜DPをエッチング加工することで、補正用マークMを形成したが、この場合に限られることはない。例えば、マーク形成工程の際に、FIBの照射と同時に原料ガスGを供給して、図10に示すように、デポジション膜DP上にさらにデポジション膜DPを堆積させることで補正用マークMを形成しても構わない。この場合であっても、同様の作用効果を奏することができる。それに加え、エッチング加工で補正用マークMを形成する場合とは異なり、エッチング加工時に試料2の意図しない箇所を万が一にも加工してしまう恐れがない。   For example, in the above embodiment, the correction mark M is formed by etching the deposition film DP. However, the present invention is not limited to this case. For example, in the mark forming process, the source gas G is supplied simultaneously with the FIB irradiation, and the deposition mark DP is further deposited on the deposition film DP as shown in FIG. It may be formed. Even in this case, the same effects can be achieved. In addition, unlike the case where the correction mark M is formed by etching, there is no possibility that an unintended portion of the sample 2 is processed by any chance during the etching.

また、上記実施形態では、補正用マークMを1本形成したが、1本に限られるものではなく、並行に複数本形成しても構わない。この場合には、各断面像Xを取得した際に、補正用マークMの断面が複数露出することになる。よって、構築工程を行う際に、位置ずれ補正を複数の補正用マークMを基準として行えるので、さらに正確な試料2の三次元画像を構築することができる。   In the above embodiment, one correction mark M is formed. However, the number is not limited to one, and a plurality of correction marks M may be formed in parallel. In this case, when each cross-sectional image X is acquired, a plurality of cross-sections of the correction mark M are exposed. Therefore, when performing the construction process, the positional deviation correction can be performed based on the plurality of correction marks M, so that a more accurate three-dimensional image of the sample 2 can be constructed.

また、上記実施形態では、FIB鏡筒15及びSEM鏡筒16を有するFIB-SEM複合タイプの荷電粒子ビーム装置1を利用したが、本発明に係る三次元画像構築方法は、この荷電粒子ビーム装置1に限定されるものではない。例えば、SEM鏡筒16の代わりにFIB鏡筒15を採用したFIB-FIB複合タイプの荷電粒子ビーム装置でも構わない。この場合には、断面像Xを取得する際に、EBではなくFIBを照射することで、断面像X(試料像)をSIM像として取得することができる。この場合であっても同様の作用効果を奏することができる。つまり、断面像Xを取得する際には、FIBやEB等、荷電粒子ビームを照射できる構成であれば構わない。   In the above embodiment, the FIB-SEM composite type charged particle beam device 1 having the FIB column 15 and the SEM column 16 is used. However, the three-dimensional image construction method according to the present invention uses this charged particle beam device. It is not limited to 1. For example, a FIB-FIB composite type charged particle beam apparatus that employs the FIB column 15 instead of the SEM column 16 may be used. In this case, when the cross-sectional image X is acquired, the cross-sectional image X (sample image) can be acquired as a SIM image by irradiating FIB instead of EB. Even in this case, the same effect can be obtained. That is, when acquiring the cross-sectional image X, any configuration that can irradiate a charged particle beam, such as FIB or EB, may be used.

また、上述した複合タイプではなく、FIB鏡筒15を1つだけ備えたFIBシングルタイプの荷電粒子ビーム装置でも構わない。この場合には、ステージ4を傾斜して試料2に対するFIBの入射角度を可変できるように設計して、エッチング加工時及び断面像X取得時にFIBの照射角度が変わるようにしておく。また、FIBの条件を、エッチング加工時と断面像X取得時とで切り替わるように設計しておく。こうすることで、FIB鏡筒15が1つだけの場合であっても、試料2の三次元画像を構築することができる。また、エッチング加工時、断面像観察時の条件をレシピ化することで、自動で三次元画像の構築を行わせることも可能である。   Further, instead of the composite type described above, an FIB single type charged particle beam apparatus provided with only one FIB column 15 may be used. In this case, the stage 4 is tilted so that the incident angle of the FIB with respect to the sample 2 can be varied, so that the FIB irradiation angle changes during the etching process and when the cross-sectional image X is acquired. In addition, the FIB conditions are designed so as to be switched between the time of etching processing and the time of obtaining the cross-sectional image X. By doing so, a three-dimensional image of the sample 2 can be constructed even when only one FIB column 15 is provided. It is also possible to automatically construct a three-dimensional image by creating a recipe for the conditions at the time of etching processing and observing the cross-sectional image.

本発明に係る三次元画像構築方法を行うために使用する荷電粒子ビーム装置の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the charged particle beam apparatus used in order to perform the three-dimensional image construction method which concerns on this invention. 三次元画像構築を行う試料の斜視図である。It is a perspective view of the sample which performs a three-dimensional image construction. 図2に示す試料の三次元画像を構築する際の一工程を説明するための図であって、試料の表面にデポジション膜を形成した状態を示す図である。It is a figure for demonstrating one process at the time of constructing the three-dimensional image of the sample shown in FIG. 2, Comprising: It is a figure which shows the state which formed the deposition film on the surface of the sample. 図3に示す状態から、試料をV字状に粗加工して、試料及びデポジション膜の断面を露出させた状態である。From the state shown in FIG. 3, the sample is roughly processed into a V shape to expose the cross section of the sample and the deposition film. 図4に示す状態から、デポジション膜上に補正用マークを形成した状態である。From the state shown in FIG. 4, a correction mark is formed on the deposition film. 図5に示す状態から、エッチング加工と断面像の取得とを一方向に向かって繰り返し行って、複数枚の断面像を連続的に取得している状態を示す図である。FIG. 6 is a diagram illustrating a state in which a plurality of cross-sectional images are continuously acquired by repeatedly performing etching processing and cross-sectional image acquisition in one direction from the state illustrated in FIG. 5. エッチング加工によって露出したデポジション膜及び試料の断面を示す図である。It is a figure which shows the cross section of the deposition film and sample which were exposed by the etching process. 補正用マークを基準として、断面像を重ね合わせている状態を示す図である。It is a figure which shows the state which has overlapped the cross-sectional image on the basis of the correction mark. (a)は断面像を重ね合わせて構築した三次元画像を試料の上方から見た図であり、(b)は(a)のA−A線に沿った断面斜視図である。(A) is the figure which looked at the three-dimensional image constructed by superimposing the cross-sectional images from above the sample, and (b) is a cross-sectional perspective view along the AA line of (a). 補正用マークの変形例を示した図である。It is the figure which showed the modification of the correction mark.

符号の説明Explanation of symbols

E 二次荷電粒子
G 原料ガス
M 補正用マーク
X 断面像
DP デポジション膜
EB 電子ビーム(荷電粒子ビーム)
FIB 集束イオンビーム(荷電粒子ビーム)
2 試料
E Secondary charged particle G Raw material gas M Correction mark X Cross-sectional image DP Deposition film EB Electron beam (charged particle beam)
FIB Focused ion beam (charged particle beam)
2 samples

Claims (7)

試料の表面に集束イオンビームを照射すると共に原料ガスを供給して、表面を保護するデポジション膜を形成する保護工程と、
前記集束イオンビームを利用して、一方向に向かってライン状に延びる補正用マークを前記デポジション膜に形成するマーク形成工程と、
前記補正用マークを横切るように前記集束イオンビームを照射しながら前記デポジション膜及び前記試料をエッチング加工して、デポジション膜及び試料の断面を露出させる露出工程と、
露出した前記デポジション膜及び前記試料の断面に荷電粒子ビームを照射すると共に、該照射によってデポジション膜及び試料から放出された二次荷電粒子に基づいて断面像を取得する取得工程と、
前記露出工程及び前記取得工程を所定回数繰り返し行って、前記一方向に向かって前記断面像を連続的に複数枚取得する繰り返し工程と、
前記マーク形成工程時に形成した補正用マークを構築するように、前記断面像に写り込んだ補正用マークを基準にして、前記複数枚の断面像を取得した順番に重ね合わせて基礎三次元画像を構築する構築工程と、を行うことを特徴とする三次元画像構築方法。
A protection step of irradiating the surface of the sample with a focused ion beam and supplying a source gas to form a deposition film for protecting the surface;
A mark forming step of forming a correction mark on the deposition film extending in a line shape in one direction using the focused ion beam;
An exposure step of etching the deposition film and the sample while irradiating the focused ion beam across the correction mark to expose a cross section of the deposition film and the sample;
An acquisition step of irradiating a cross section of the exposed deposition film and the sample with a charged particle beam and acquiring a cross-sectional image based on secondary charged particles emitted from the deposition film and the sample by the irradiation;
Repeating the exposure step and the acquisition step a predetermined number of times, continuously acquiring a plurality of the cross-sectional images toward the one direction, and
In order to construct the correction mark formed during the mark forming step, the basic three-dimensional image is formed by superimposing the plurality of cross-sectional images in the order in which the plurality of cross-sectional images are acquired with reference to the correction mark reflected in the cross-sectional image. A three-dimensional image construction method characterized by performing a construction step for construction.
請求項1に記載の三次元画像構築方法において、
前記構築工程後、前記基礎三次元画像から前記デポジション膜の三次元画像を除去して、前記試料の三次元画像だけを抽出する抽出工程を行うことを特徴とする三次元画像構築方法。
In the three-dimensional image construction method according to claim 1,
After the construction step, a three-dimensional image construction method comprising performing an extraction step of removing only the three-dimensional image of the sample by removing the three-dimensional image of the deposition film from the basic three-dimensional image.
請求項1又は2に記載の三次元画像構築方法において、
前記露出工程の際、前記集束イオンビームを照射する前に、前記補正用マークを基準として照射位置を補正することを特徴とする三次元画像構築方法。
In the three-dimensional image construction method according to claim 1 or 2,
In the exposure step, the irradiation position is corrected using the correction mark as a reference before the focused ion beam is irradiated.
請求項1から3のいずれか1項に記載の三次元画像構築方法において、
前記取得工程の際、前記荷電粒子ビームを照射する前に、前記補正用マークを基準として照射位置を補正することを特徴とする三次元画像構築方法。
In the three-dimensional image construction method according to any one of claims 1 to 3,
In the acquisition step, the irradiation position is corrected using the correction mark as a reference before irradiating the charged particle beam.
請求項1から4のいずれか1項に記載の三次元画像構築方法において、
前記マーク形成工程の際、前記集束イオンビームの照射により前記デポジション膜をエッチング加工することで前記補正用マークを形成することを特徴とする三次元画像構築方法。
In the three-dimensional image construction method according to any one of claims 1 to 4,
In the mark formation step, the correction mark is formed by etching the deposition film by irradiation with the focused ion beam.
請求項1から4のいずれか1項に記載の三次元画像構築方法において、
前記マーク形成工程の際、前記集束イオンビームの照射と同時に前記原料ガスを供給して、前記デポジション膜上にさらにデポジション膜を堆積させることで前記補正用マークを形成することを特徴とする三次元画像構築方法。
In the three-dimensional image construction method according to any one of claims 1 to 4,
In the mark formation step, the correction gas is formed by supplying the source gas simultaneously with the irradiation of the focused ion beam and further depositing a deposition film on the deposition film. 3D image construction method.
請求項1から6のいずれか1項に記載の三次元画像構築方法において、
前記マーク形成工程の際、前記補正用マークを並行に複数本形成することを特徴とする三次元画像構築方法。
In the three-dimensional image construction method according to any one of claims 1 to 6,
A three-dimensional image construction method, wherein a plurality of the correction marks are formed in parallel in the mark forming step.
JP2007114001A 2007-04-24 2007-04-24 3D image construction method Active JP5039961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007114001A JP5039961B2 (en) 2007-04-24 2007-04-24 3D image construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007114001A JP5039961B2 (en) 2007-04-24 2007-04-24 3D image construction method

Publications (3)

Publication Number Publication Date
JP2008270073A true JP2008270073A (en) 2008-11-06
JP2008270073A5 JP2008270073A5 (en) 2010-07-01
JP5039961B2 JP5039961B2 (en) 2012-10-03

Family

ID=40049302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007114001A Active JP5039961B2 (en) 2007-04-24 2007-04-24 3D image construction method

Country Status (1)

Country Link
JP (1) JP5039961B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155275A1 (en) * 2008-06-20 2009-12-23 Carl Zeiss Smt. Inc. Sample imaging with charged particles
US7786451B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7786452B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7804068B2 (en) 2006-11-15 2010-09-28 Alis Corporation Determining dopant information
JP2011086606A (en) * 2009-09-15 2011-04-28 Sii Nanotechnology Inc Cross-sectional working observation method and device
JP2011185845A (en) * 2010-03-10 2011-09-22 Sii Nanotechnology Inc Focused ion beam device and cross-sectional processing observation method
US8110814B2 (en) 2003-10-16 2012-02-07 Alis Corporation Ion sources, systems and methods
DE102013102776A1 (en) 2012-03-22 2013-09-26 Hitachi High-Tech Science Corporation CROSS-SECTION PROCESSING AND OBSERVATION METHOD AND CROSS-SECTION PROCESSING AND OBSERVATION EQUIPMENT
DE102013112492A1 (en) 2012-11-15 2014-05-15 Hitachi High-Tech Science Corporation Cross-section processing and observation method and cross-section processing and observation device
JP2015084345A (en) * 2015-02-04 2015-04-30 株式会社日立ハイテクサイエンス Focused ion beam device and cross-sectional processing observation method
KR20150047427A (en) 2013-10-24 2015-05-04 가부시키가이샤 히다치 하이테크 사이언스 Section processing method, section processing apparatus
US9159527B2 (en) 2003-10-16 2015-10-13 Carl Zeiss Microscopy, Llc Systems and methods for a gas field ionization source
CN104990773A (en) * 2010-03-31 2015-10-21 Fei公司 Automated slice milling for viewing a feature
JP2016503890A (en) * 2012-12-31 2016-02-08 エフ・イ−・アイ・カンパニー Reference mark design for tilt or glancing angle milling operations using charged particle beams
EP3021280A1 (en) 2014-11-07 2016-05-18 JEOL Ltd. Image evaluation method and charged particle beam device
US9347896B2 (en) 2013-09-03 2016-05-24 Hitachi High-Tech Science Corporation Cross-section processing-and-observation method and cross-section processing-and-observation apparatus
JP2017517120A (en) * 2014-05-30 2017-06-22 エフ・イ−・アイ・カンパニー Method and apparatus for slice and view sample imaging
EP3220407A1 (en) 2016-03-18 2017-09-20 Hitachi High-Tech Science Corporation Focused ion beam apparatus
EP3223298A2 (en) 2016-03-25 2017-09-27 Hitachi High-Tech Science Corporation Method for 3d-imaging from cross-section processing and observation, and fib-sem apparatus therefor
EP3223297A1 (en) 2016-03-18 2017-09-27 Hitachi High-Tech Science Corporation Dual-beam charged particle apparatus with anti-contamination shield
EP3226279A1 (en) 2016-03-28 2017-10-04 Hitachi High-Tech Science Corporation Sample holder and focused ion beam apparatus
KR20170113204A (en) 2016-03-25 2017-10-12 가부시키가이샤 히다치 하이테크 사이언스 Method for observing section processing and apparatus therefor
KR20180109734A (en) 2017-03-27 2018-10-08 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus and sample processing method
KR20190100025A (en) 2018-02-20 2019-08-28 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus and sample processing observation method
WO2019220543A1 (en) * 2018-05-15 2019-11-21 株式会社日立ハイテクノロジーズ Charged particle beam device, sample processing method, and observation method
JP2021532562A (en) * 2018-08-07 2021-11-25 アプライド マテリアルズ イスラエル リミテッド A method for evaluating an area of an object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835921A (en) * 1994-07-22 1996-02-06 Kanagawa Kagaku Gijutsu Akad Sample block and its automatic inspection apparatus
JP2001015570A (en) * 1999-06-28 2001-01-19 Toshiba Microelectronics Corp Fib processing method and positioning method for fib processing position
JP2005164611A (en) * 2000-03-27 2005-06-23 Palm Microlaser Technologies Ag Control system of method and device for operating biological or non-biological object
JP2005308400A (en) * 2004-04-16 2005-11-04 Hitachi High-Technologies Corp Sample machining method, sample machining device and sample observing method
JP2006221961A (en) * 2005-02-10 2006-08-24 Seiko Epson Corp Cross-sectional observation method of chip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835921A (en) * 1994-07-22 1996-02-06 Kanagawa Kagaku Gijutsu Akad Sample block and its automatic inspection apparatus
JP2001015570A (en) * 1999-06-28 2001-01-19 Toshiba Microelectronics Corp Fib processing method and positioning method for fib processing position
JP2005164611A (en) * 2000-03-27 2005-06-23 Palm Microlaser Technologies Ag Control system of method and device for operating biological or non-biological object
JP2005308400A (en) * 2004-04-16 2005-11-04 Hitachi High-Technologies Corp Sample machining method, sample machining device and sample observing method
JP2006221961A (en) * 2005-02-10 2006-08-24 Seiko Epson Corp Cross-sectional observation method of chip

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7786451B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7786452B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US9159527B2 (en) 2003-10-16 2015-10-13 Carl Zeiss Microscopy, Llc Systems and methods for a gas field ionization source
US9236225B2 (en) 2003-10-16 2016-01-12 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
US8110814B2 (en) 2003-10-16 2012-02-07 Alis Corporation Ion sources, systems and methods
US9012867B2 (en) 2003-10-16 2015-04-21 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
US8748845B2 (en) 2003-10-16 2014-06-10 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
US7804068B2 (en) 2006-11-15 2010-09-28 Alis Corporation Determining dopant information
WO2009155275A1 (en) * 2008-06-20 2009-12-23 Carl Zeiss Smt. Inc. Sample imaging with charged particles
JP2011086606A (en) * 2009-09-15 2011-04-28 Sii Nanotechnology Inc Cross-sectional working observation method and device
JP2011185845A (en) * 2010-03-10 2011-09-22 Sii Nanotechnology Inc Focused ion beam device and cross-sectional processing observation method
CN104990773B (en) * 2010-03-31 2018-02-23 Fei 公司 For observing the automated slice milling of feature
CN104990773A (en) * 2010-03-31 2015-10-21 Fei公司 Automated slice milling for viewing a feature
JP2013197044A (en) * 2012-03-22 2013-09-30 Hitachi High-Tech Science Corp Method and device for cross-sectional processing observation
US8853629B2 (en) 2012-03-22 2014-10-07 Hitachi High-Tech Science Corporation Cross-section processing and observation method and cross-section processing and observation apparatus
DE102013102776A1 (en) 2012-03-22 2013-09-26 Hitachi High-Tech Science Corporation CROSS-SECTION PROCESSING AND OBSERVATION METHOD AND CROSS-SECTION PROCESSING AND OBSERVATION EQUIPMENT
US9966226B2 (en) 2012-11-15 2018-05-08 Hitachi High-Tech Science Corporation Cross-section processing and observation method and cross-section processing and observation apparatus
US9080945B2 (en) 2012-11-15 2015-07-14 Hitachi High-Tech Science Corporation Cross-section processing and observation method and cross-section processing and observation apparatus
DE102013112492A1 (en) 2012-11-15 2014-05-15 Hitachi High-Tech Science Corporation Cross-section processing and observation method and cross-section processing and observation device
JP2016503890A (en) * 2012-12-31 2016-02-08 エフ・イ−・アイ・カンパニー Reference mark design for tilt or glancing angle milling operations using charged particle beams
US9347896B2 (en) 2013-09-03 2016-05-24 Hitachi High-Tech Science Corporation Cross-section processing-and-observation method and cross-section processing-and-observation apparatus
US10096449B2 (en) 2013-09-03 2018-10-09 Hitachi High-Tech Science Corporation Cross-section processing-and-observation method and cross-section processing-and-observation apparatus
KR20150047427A (en) 2013-10-24 2015-05-04 가부시키가이샤 히다치 하이테크 사이언스 Section processing method, section processing apparatus
US9548185B2 (en) 2013-10-24 2017-01-17 Hitachi High-Tech Science Corporation Cross section processing method and cross section processing apparatus
JP2017517120A (en) * 2014-05-30 2017-06-22 エフ・イ−・アイ・カンパニー Method and apparatus for slice and view sample imaging
EP3021280A1 (en) 2014-11-07 2016-05-18 JEOL Ltd. Image evaluation method and charged particle beam device
US9396905B2 (en) 2014-11-07 2016-07-19 Jeol Ltd. Image evaluation method and charged particle beam device
JP2015084345A (en) * 2015-02-04 2015-04-30 株式会社日立ハイテクサイエンス Focused ion beam device and cross-sectional processing observation method
EP3220407A1 (en) 2016-03-18 2017-09-20 Hitachi High-Tech Science Corporation Focused ion beam apparatus
EP3223297A1 (en) 2016-03-18 2017-09-27 Hitachi High-Tech Science Corporation Dual-beam charged particle apparatus with anti-contamination shield
KR20170108805A (en) 2016-03-18 2017-09-27 가부시키가이샤 히다치 하이테크 사이언스 Focused ion beam apparatus
US10056227B2 (en) 2016-03-18 2018-08-21 Hitachi High-Tech Science Corporation Focused ion beam apparatus
US10242842B2 (en) 2016-03-25 2019-03-26 Hitachi High-Tech Science Corporation Method for cross-section processing and observation and apparatus therefor
KR20170113204A (en) 2016-03-25 2017-10-12 가부시키가이샤 히다치 하이테크 사이언스 Method for observing section processing and apparatus therefor
EP3223298A2 (en) 2016-03-25 2017-09-27 Hitachi High-Tech Science Corporation Method for 3d-imaging from cross-section processing and observation, and fib-sem apparatus therefor
US9947506B2 (en) 2016-03-28 2018-04-17 Hitachi High-Tech Science Corporation Sample holder and focused ion beam apparatus
EP3226279A1 (en) 2016-03-28 2017-10-04 Hitachi High-Tech Science Corporation Sample holder and focused ion beam apparatus
KR20180109734A (en) 2017-03-27 2018-10-08 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus and sample processing method
KR20190100025A (en) 2018-02-20 2019-08-28 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus and sample processing observation method
US10622187B2 (en) 2018-02-20 2020-04-14 Hitachi High-Tech Science Corporation Charged particle beam apparatus and sample processing observation method
TWI803572B (en) * 2018-02-20 2023-06-01 日商日立高新技術科學股份有限公司 Charged particle beam device, sample processing and observation method
WO2019220543A1 (en) * 2018-05-15 2019-11-21 株式会社日立ハイテクノロジーズ Charged particle beam device, sample processing method, and observation method
JPWO2019220543A1 (en) * 2018-05-15 2021-06-10 株式会社日立ハイテク Charged particle beam device, sample processing method and observation method
US11268915B2 (en) 2018-05-15 2022-03-08 Hitachi High-Tech Corporation Charged particle beam device, method for processing sample, and observation method
JP7061187B2 (en) 2018-05-15 2022-04-27 株式会社日立ハイテク Charged particle beam device, sample processing method and observation method
JP2021532562A (en) * 2018-08-07 2021-11-25 アプライド マテリアルズ イスラエル リミテッド A method for evaluating an area of an object

Also Published As

Publication number Publication date
JP5039961B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5039961B2 (en) 3D image construction method
JP6105204B2 (en) Sample preparation method for TEM observation
JP6188792B2 (en) Preparation of slices for TEM observation
TWI442440B (en) Composite focusing ion beam device and the use of this processing observation method, processing methods
JP6290559B2 (en) Cross-section processing observation method, cross-section processing observation device
TWI642079B (en) Charged particle beam device and sample observation method
KR102183078B1 (en) Charged particle beam apparatus
JP2009277536A (en) Cross section image acquiring method using combined charged particle beam device, and combined charged particle beam device
JP6226781B2 (en) Focused ion beam apparatus, sample processing method using the same, and computer program for focused ion beam processing
KR101550921B1 (en) Section processing method and its apparatus
JP2007164992A (en) Compound charged particle beam device
JP2008270072A (en) Charged-particle beam device
JP6250294B2 (en) Focused ion beam device, sample cross-section observation method using the same, and computer program for sample cross-section observation using a focused ion beam
KR20170026298A (en) CAD-assisted TEM prep recipe creation
JP5695818B2 (en) Cross-section processing method and cross-section observation sample manufacturing method
JP2009059516A (en) Ion beam processing device and test piece processing method
JP2005243275A (en) Fib-sem complex device
JP2006236836A (en) Sample height adjustment method, sample observation method, sample processing method, and charged particle beam device
US20080224198A1 (en) Apparatus for working and observing samples and method of working and observing cross sections
JP2008258149A (en) Apparatus for working and observing sample, and method of working and observing cross section
KR102545776B1 (en) Dynamic creation of backup fiducials
JP2011086606A (en) Cross-sectional working observation method and device
JP2010177217A (en) Fib-sem complex device
JP2018163067A (en) Automatic processing device
JP6487225B2 (en) Charged particle beam apparatus and defect inspection system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5039961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250