JP2006221961A - Cross-sectional observation method of chip - Google Patents

Cross-sectional observation method of chip Download PDF

Info

Publication number
JP2006221961A
JP2006221961A JP2005034214A JP2005034214A JP2006221961A JP 2006221961 A JP2006221961 A JP 2006221961A JP 2005034214 A JP2005034214 A JP 2005034214A JP 2005034214 A JP2005034214 A JP 2005034214A JP 2006221961 A JP2006221961 A JP 2006221961A
Authority
JP
Japan
Prior art keywords
observation
chip
observed
observing
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005034214A
Other languages
Japanese (ja)
Inventor
Mitsutaka Inui
光隆 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005034214A priority Critical patent/JP2006221961A/en
Publication of JP2006221961A publication Critical patent/JP2006221961A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that, when a three-dimensional image is formed by repeating a process of removing the surface of a chip 101 so as to be sliced and performing cross-sectional observation by a SEM 107, a protection film 102 on the surface of the chip 101 is removed at first and discharge route of electric charge is lost and a charge-up phenomenon is brought about. <P>SOLUTION: The slanted face 105 is formed by using an FIB so that electron beam from the SEM 107 may not be cut off when the observation face 106 at the opposed position to the surface of the chip 101 is observed. After the observation face 106 is observed by the SEM 107, the observation face 106 is removed so as to be sliced, and a new observation face is observed by the SEM 107. Since a conductive protection film 102 is formed at the surface part of the chip 101, even if it is sliced and removed up to the uppermost surface, runaway route of the charge is secured, thereby charge-up phenomenon can be prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体集積回路などが表面に形成されたチップの側面から、当該側面への集束イオンビームの照射により加工されて得られる平面に、荷電粒子を照射して、得られた信号をもとにして断面構造を観察するチップの断面観察方法に関する。   The present invention irradiates a charged particle to a plane obtained by processing a side surface of a chip on which a semiconductor integrated circuit or the like is formed by irradiation of the focused ion beam to the side surface, and obtains the obtained signal. In particular, the present invention relates to a method for observing a cross section of a chip for observing a cross sectional structure.

上記した断面観察方法の一つでは、特許文献1に記載されているように、集束イオンビーム(以下「FIB」と略記)と、走査形電子顕微鏡(以下「SEM」と略記)または走査形イオン顕微鏡(以下「SIM」と略記)を用い、チップ表面の3次元構造を観察している。ここで、観察手段として、SEMを代表例として説明する。   In one of the cross-sectional observation methods described above, as described in Patent Document 1, a focused ion beam (hereinafter abbreviated as “FIB”) and a scanning electron microscope (hereinafter abbreviated as “SEM”) or a scanning ion. A three-dimensional structure of the chip surface is observed using a microscope (hereinafter abbreviated as “SIM”). Here, SEM will be described as a representative example as an observation means.

この方法では、FIBによりまずチップの表面に形成された被観察領域と隣接する領域に、前記チップの表面と略垂直な、SEM等による観察を行なうための観察面の形成と、前記観察面をSEM等で観察する際に影となる領域の除去とを行なう。   In this method, formation of an observation surface for performing observation with an SEM or the like, which is substantially perpendicular to the surface of the chip, is formed in an area adjacent to the observation area formed on the surface of the chip by FIB. A region that becomes a shadow when observing with an SEM or the like is removed.

次に、SEM等で前記観察面を観察し、前記観察面の2次元画像データを蓄積する。   Next, the observation surface is observed with an SEM or the like, and two-dimensional image data of the observation surface is accumulated.

次に、FIBを用いて前記観察面を除去し、前記観察面と略平行な新しい観察面を露出させる。   Next, the observation surface is removed using FIB, and a new observation surface substantially parallel to the observation surface is exposed.

そして、観察面の観察と、新しい観察面の露出との繰り返しを被観察領域がある限り行ない、3次元断面像を得るものである。   Then, observation of the observation surface and exposure of a new observation surface are repeated as long as there is a region to be observed, and a three-dimensional cross-sectional image is obtained.

また、公知の技術として、チップ表面をFIBのビーム方向に対して略垂直になるよう設置して、チップ表面方向から、FIBでチップ表面をスライスするよう除去し、新しい面を露出させて、チップ表面と略垂直な方向からSEM観察し、2次元データを収集した後、3次元像を得る方法が知られている。   In addition, as a known technique, the chip surface is installed so as to be substantially perpendicular to the FIB beam direction, and the chip surface is removed from the chip surface direction by slicing with the FIB to expose a new surface. A method of obtaining a three-dimensional image after SEM observation from a direction substantially perpendicular to the surface and collecting two-dimensional data is known.

特開平8−115699号公報(第2〜4頁、図2)JP-A-8-115699 (pages 2 to 4, FIG. 2)

しかしながら、特許文献1に記載されている観察方法では、SEM観察を用いた場合、その分解能は、1nm程度と優れているが、FIBによる新しい観察面の形成では、そのスライス厚みはFIBの制御限界である20nm程度の分解能でしか制御できないため、チップ表面の第1方向の軸では1nmの分解能があるのに対し、観察面で、その方向と垂直な第2方向の軸では20nmの分解能しか得ることができない。   However, in the observation method described in Patent Document 1, when SEM observation is used, the resolution is excellent at about 1 nm. However, in the formation of a new observation surface by FIB, the slice thickness is the control limit of FIB. Can be controlled only with a resolution of about 20 nm, so that there is a resolution of 1 nm on the axis in the first direction of the chip surface, whereas only a resolution of 20 nm is obtained on the axis of the second direction perpendicular to that direction on the observation surface. I can't.

そのため、表面に平行な面方向の構造を重視して3次元構造を観察する場合、一方の軸の方向では1nmの分解能が得られているのに対し、前記観察面内で一方の軸と直行する他方の軸の方向では20nm程度の分解能しか得られないため、平行な観察方向での分解能差が大きくなり、例えばチップの観察方向が異なった場合、3次元観察像が平面方向で変形して観察されてしまう場合があった。   Therefore, when observing a three-dimensional structure with an emphasis on the structure in the plane direction parallel to the surface, a resolution of 1 nm is obtained in the direction of one axis, whereas it is perpendicular to the one axis in the observation plane. Since only the resolution of about 20 nm is obtained in the direction of the other axis, the resolution difference in the parallel observation direction becomes large. For example, when the observation direction of the chip is different, the three-dimensional observation image is deformed in the plane direction. Sometimes it was observed.

また、公知技術である、チップ表面をスライスするように除去して、チップ表面と略垂直な方向からSEM観察を行なう場合、表面に平行な面方向の分解能は均一になるが、この場合ではチップ表面が一番先に除去されるため、チップ表面上にチャージアップを防ぐための導通膜を形成しても、導通膜が除去されてからチップの観察が始まることとなり、SEM観察に用いられる電子線が注入されることで蓄積される電荷を逃がすことができず、SEM観察のための電子線が観察面からはじかれることにより生じる、観察面が白く光り、観察を困難とするチャージアップ現象が発生してしまう場合があった。   In addition, when the SEM observation is performed from a direction substantially perpendicular to the chip surface by removing the chip surface so as to slice, which is a known technique, the resolution in the plane direction parallel to the surface becomes uniform. Since the surface is removed first, even if a conductive film for preventing charge-up is formed on the chip surface, the observation of the chip starts after the conductive film is removed, and the electrons used for SEM observation A charge-up phenomenon that makes it difficult to observe due to the fact that the accumulated charge cannot be released due to the injection of the line and the electron beam for SEM observation is repelled from the observation surface and the observation surface shines white. It might happen.

そこで本発明は、チップの平面方向の分解能が略等しい値を持ち、かつ観察を困難とするチャージアップ現象を抑制してチップの平面方向の情報を観察した2次元データを得て、さらに前記2次元データを収集し、3次元構造の断面構造を獲得するためのチップの断面観察方法を提供することを目的としている。   Therefore, the present invention obtains two-dimensional data obtained by observing information in the plane direction of the chip while suppressing the charge-up phenomenon that the resolution in the plane direction of the chip has substantially the same value and making observation difficult, and further An object of the present invention is to provide a chip cross-sectional observation method for collecting three-dimensional data and obtaining a cross-sectional structure of a three-dimensional structure.

上記目的を達成するために本発明のチップの断面観察方法は、表面側には被観察領域が形成されており、また前記表面側には導電体からなる、前記被観察領域を保護するための保護膜が形成されたチップを用い、前記チップの表面から、前記チップの裏面に垂直に向かう方向を正とした深さと、前記チップの一つの側面と垂直で、前記チップの前記側面から前記チップの内部に向かう方向を正とした奥行きと、前記チップの前記側面及び前記表面と平行で、前記チップの外部から前記側面を見て、左から右に向かう方向を正とした幅と、を用いて配置が特定される前記チップの断面観察方法であって、幅方向の両端では、一端が前記被観察領域の幅の最大値以上の値を有し、また他端が前記被観察領域の幅の最小値以下の値を有し、また前記被観察領域の最大奥行き以上の奥行きと、前記被観察領域の最大深さ以上の深さと、を有してなる観察面を、前記表面と平行で、かつ前記被観察領域を挟んで対向する位置に配置し、前記観察面に1次の荷電粒子を照射して得られた前記観察面からの2次電子、または2次イオン、または2次光線を収集して前記観察面を観察する際に、前記1次の荷電粒子が前記観察面へ到達することを妨げる領域を、前記チップの前記側面から集束イオンビームを照射して除去する工程と、前記信号を用いて、前記観察面を観察し、断面像のデータを蓄積することと、前記観察面を前記集束イオンビームを用いて前記表面と平行に除去し、新しい観察面を形成することとを、前記被観察領域を全て観察するまで繰り返し行なう、または観察面を解釈するために必要となる情報が観察途中で得られた場合、繰り返しを打ち切る工程とを有することを特徴とする。   In order to achieve the above object, the method for observing a cross section of a chip according to the present invention has a region to be observed formed on the surface side, and is made of a conductor on the surface side for protecting the region to be observed. Using a chip on which a protective film is formed, a depth that is positive in a direction perpendicular to the back surface of the chip from the front surface of the chip, and perpendicular to one side surface of the chip, from the side surface of the chip to the chip A depth that is positive in the direction toward the inside of the chip, and a width that is parallel to the side surface and the surface of the chip and that is positive from the left to the right when viewed from the outside of the chip. The cross-section observation method of the chip in which the arrangement is specified, wherein at both ends in the width direction, one end has a value greater than or equal to the maximum value of the width of the observed region, and the other end is the width of the observed region. Less than or equal to the minimum value of An observation surface having a depth equal to or greater than the maximum depth of the observation region and a depth equal to or greater than the maximum depth of the observation region is positioned parallel to the surface and facing the observation region. When observing the observation surface by collecting and collecting secondary electrons, or secondary ions, or secondary rays from the observation surface obtained by irradiating the observation surface with primary charged particles, Irradiating a focused ion beam from the side surface of the chip to remove a region that prevents the primary charged particles from reaching the observation surface, and using the signal, observing the observation surface; Accumulating cross-sectional image data, removing the observation surface in parallel with the surface using the focused ion beam, and forming a new observation surface are repeated until all the observation region is observed. Or to interpret the observation surface If the information required is obtained on the way observed, characterized by a step of aborting the repetition.

この観察方法によれば、前記観察面が、前記表面と平行で、前記被観察領域を挟んで対向する位置にあり、前記観察面を観察し、前記断面像のデータを蓄積する第1の工程と、前記観察面を前記集束イオンビームを用いて前記表面と平行にスライスするよう除去し、新しい観察面を形成する第2の工程と、第1の工程と第2の工程を前記被観察領域を全て観察するまで繰り返し行なう工程を有するため、前記被観察領域をチップの深い位置から浅い位置に向けて観察することができる。そのため、前記チップの表面に導電膜を形成することで、前記観察面に侵入してきた1次の荷電粒子の電荷を、前記表面上に導電体からなる保護膜を通じて逃がすことで、侵入してきた1次の荷電粒子の電荷の蓄積によりコントラストが低下してしまうチャージアップ現象を抑制することができる。   According to this observation method, the first step of observing the observation surface and accumulating the data of the cross-sectional image, the observation surface being in a position parallel to the surface and facing the observation region. And removing the observation surface so as to be sliced parallel to the surface using the focused ion beam, and forming a new observation surface, and the first step and the second step are the observation region. Therefore, the region to be observed can be observed from a deep position to a shallow position on the chip. Therefore, by forming a conductive film on the surface of the chip, the charge of the primary charged particles that have entered the observation surface has escaped through the protective film made of a conductor on the surface. It is possible to suppress the charge-up phenomenon that the contrast is lowered due to the accumulation of charges of the next charged particles.

また、前記表面と平行で、前記被観察領域を挟んで対向する位置にある前記観察面を観察するため、前記チップ表面方向に、同一の分解能を有する2次元像観察手段を割り当て、深さ方向に前記集束イオンビームのスライス量に応じた分解能を割り当てることができるため、表面方向の構造の分解能を優先した3次元構造を観察する場合、表面方向での分解能差をなくすことができ、平面方向の構造を主とした3次元構造をより精密に観察することができる。   Further, in order to observe the observation surface in a position parallel to the surface and facing the observation region, a two-dimensional image observation means having the same resolution is assigned to the chip surface direction, and the depth direction Since the resolution corresponding to the slice amount of the focused ion beam can be assigned to the surface, when observing a three-dimensional structure giving priority to the resolution of the structure in the surface direction, the resolution difference in the surface direction can be eliminated, and the plane direction It is possible to observe a three-dimensional structure mainly composed of

また、上記した本発明のチップの断面観察方法は、前記観察面を観察する工程では、走査形電子顕微鏡または走査形イオン顕微鏡を用いて観察することを特徴とする。   The above-described method for observing a cross section of a chip according to the present invention is characterized in that in the step of observing the observation surface, observation is performed using a scanning electron microscope or a scanning ion microscope.

この観察方法によれば、チップの構造を、走査形電子顕微鏡により観察するため、走査形電子顕微鏡の分解能である1nm程度の微細な構造を観察することができる。また、走査形電子顕微鏡と比べ結晶粒界の検出感度が高い走査形イオン顕微鏡を用いることで、ポリシリコンやアルミニウムの結晶粒界を高い感度で観察することが可能となる。   According to this observation method, since the structure of the chip is observed with a scanning electron microscope, a fine structure with a resolution of about 1 nm, which is the resolution of the scanning electron microscope, can be observed. In addition, by using a scanning ion microscope that has higher detection sensitivity of crystal grain boundaries than a scanning electron microscope, it becomes possible to observe the crystal grain boundaries of polysilicon or aluminum with high sensitivity.

また、上記した本発明のチップの断面観察方法は、前記観察面を観察した工程のデータから、前記被観察領域の3次元構造を合成し出力する工程を有することを特徴とする。   Further, the above-described chip cross-sectional observation method of the present invention includes a step of synthesizing and outputting the three-dimensional structure of the observed region from the data of the step of observing the observation surface.

この観察方法によれば、前記断面像のデータを用いて3次元構造を合成し出力するため、断面構造の観察結果を、視覚的に認識しやすい形式で表現することが可能となる。
また、上記した本発明のチップの断面観察方法は、前記保護膜が絶縁体からなることを特徴とする。
この観察方法によれば、チップの材質が導電体からなる場合に、導体からなる保護膜を用いた場合と比べ、高いコントラストを得ることができる。
According to this observation method, since the three-dimensional structure is synthesized and output using the cross-sectional image data, the observation result of the cross-sectional structure can be expressed in a format that is easily visually recognized.
In the above-described chip cross-sectional observation method of the present invention, the protective film is made of an insulator.
According to this observation method, when the material of the chip is made of a conductor, a high contrast can be obtained as compared with the case where a protective film made of a conductor is used.

以下、本発明に係るチップの断面観察方法について、図面を参照して説明する。なお、各図では、図面上で認識可能な程度の大きさとするため、各膜や各部材毎に縮尺を異ならせてある。   Hereinafter, a method for observing a cross section of a chip according to the present invention will be described with reference to the drawings. In each drawing, the scale is different for each film and each member in order to make the size recognizable on the drawing.

図1は、集束イオンビーム(以下「FIB」と略記)と走査型電子顕微鏡(以下「SEM」と略記)を用いて、チップを加工、観察する手法を示す概略断面図である。   FIG. 1 is a schematic sectional view showing a technique for processing and observing a chip using a focused ion beam (hereinafter abbreviated as “FIB”) and a scanning electron microscope (hereinafter abbreviated as “SEM”).

チップ101の表面には導電性の保護膜102が形成されている。そして、チップ101は、図面右側にチップ101の表面を向けて、電気的に接地されたステージ103上に導電性ペースト104を用いて固定されている。また、導電性の保護膜102は、導電性ペースト104を用いてステージ103と電気的に導通が取られている。   A conductive protective film 102 is formed on the surface of the chip 101. The chip 101 is fixed using the conductive paste 104 on the stage 103 that is electrically grounded with the surface of the chip 101 facing the right side of the drawing. In addition, the conductive protective film 102 is electrically connected to the stage 103 using a conductive paste 104.

チップ101の側面(図1での上面)には、SEM107による観察を行なう際に影となる領域をFIB源108からのFIBを用いて除去することで得られる斜面105が形成されており、チップ101の表面に略垂直な方向に作成された観察面106のSEM107による観察を可能としている。   On the side surface (upper surface in FIG. 1) of the chip 101, a slope 105 is formed which is obtained by removing a shadow area when observing with the SEM 107 using the FIB from the FIB source 108. The observation surface 106 created in a direction substantially perpendicular to the surface 101 can be observed by the SEM 107.

ここで、SEM107による観察は、観察面106を観察するために、チップ101の表面より深い位置(図1での左側)から、観察面106に向かってSEM107による観察用の電子線を照射する方式で行なわれる。また、観察面106のSEM107による観察が終了した後には、FIB源108からのFIBを用いてチップ101の観察面106をスライスするよう除去し、新たな観察面を露出させて観察する。   Here, the observation with the SEM 107 is a method of irradiating the observation surface 106 with an electron beam for observation from the position deeper than the surface of the chip 101 (left side in FIG. 1) in order to observe the observation surface 106. Is done. Further, after the observation of the observation surface 106 by the SEM 107 is completed, the observation surface 106 of the chip 101 is removed by slicing using the FIB from the FIB source 108, and the new observation surface is exposed and observed.

そのため、チップ101の表面に形成された導電性の保護膜102は、チップ101の観察が終了するまで残存することとなり、SEM107を用いてチップ101の観察をした場合、チップ101の観察が終了するまで導電性の保護膜102を経由して、導電性ペースト104、ステージ103を通じて電荷を放出することができる。   Therefore, the conductive protective film 102 formed on the surface of the chip 101 remains until the observation of the chip 101 is completed, and when the chip 101 is observed using the SEM 107, the observation of the chip 101 is completed. The charge can be discharged through the conductive paste 104 and the stage 103 through the conductive protective film 102.

従って、チップ101の表面に形成された観察面106に負電荷が蓄積し、蓄積した負電荷の影響により、SEM107による観察のための電子線が観察面からはじかれることにより生じる、観察面が白く光ることで観察を困難とするチャージアップ現象を抑制することができる。   Therefore, negative charges are accumulated on the observation surface 106 formed on the surface of the chip 101, and the observation surface is white due to the electron beam for observation by the SEM 107 being repelled from the observation surface due to the influence of the accumulated negative charges. The charge-up phenomenon that makes observation difficult by shining can be suppressed.

次に、図2、及び図3を用いて観察手順について説明する。図2、図3は本発明に係る観察手順を示すための工程断面図である。   Next, the observation procedure will be described with reference to FIGS. 2 and 3 are process cross-sectional views for illustrating an observation procedure according to the present invention.

(1)図2(A)に示すように、表面に導電性の保護膜102が形成されたチップ101を、導電性ペースト104を用いてステージ103上に固定する。この際、導電性の保護膜102と導電性ペースト104が電気的に導通するよう導電性ペースト104を塗布する。   (1) As shown in FIG. 2A, a chip 101 having a conductive protective film 102 formed on the surface is fixed on a stage 103 using a conductive paste 104. At this time, the conductive paste 104 is applied so that the conductive protective film 102 and the conductive paste 104 are electrically connected.

(2)図2(B)に示すように、表面方向を右側に向けたチップ101の直上から、FIB源108からのGaイオンをFIBとして用いることで被測定領域を加工して、SEM107による観察をする際に影となる領域を除去した斜面105を形成することで、SEM観察を行なうための観察面106aを露出させる工程を行なう。   (2) As shown in FIG. 2B, the region to be measured is processed by using Ga ions from the FIB source 108 as the FIB from directly above the chip 101 with the surface direction rightward, and observed by the SEM 107 The step of exposing the observation surface 106a for performing SEM observation is performed by forming the slope 105 from which the shadow area is removed.

(3)図3(A)に示すように、観察面106aを斜め方向からSEM107によリ観察し、2次元像データを得る。   (3) As shown in FIG. 3A, the observation surface 106a is observed by the SEM 107 from an oblique direction to obtain two-dimensional image data.

(4)図3(B)に示すように、観察面106aの直上からFIBを入射し、観察面106と平行にスライスするようにチップ101を除去し、新たな観察面106bを形成する。   (4) As shown in FIG. 3B, the FIB is incident from directly above the observation surface 106a, the chip 101 is removed so as to be sliced in parallel with the observation surface 106, and a new observation surface 106b is formed.

(5)被観察領域全てを観察するまで(3)、(4)の手順を繰り返す、あるいは断面像を解釈するために必要となる情報が観察途中で得られた場合のデータが得られた時点で繰り返しを打ち切る。   (5) Repeat the steps (3) and (4) until all the observed region is observed, or when data is obtained when information necessary for interpreting the cross-sectional image is obtained during observation To end the repetition.

この手順を用いて観察することで、チップ101の表面に平行な面に対してSEM107による観察が行なえるため、チップ101の表面に平行な面に対して高い分解能を必要とするチップ101の観察を精度良く行なうことができる。   By observing using this procedure, the plane parallel to the surface of the chip 101 can be observed by the SEM 107, and therefore the chip 101 that requires high resolution for the plane parallel to the surface of the chip 101 is observed. Can be performed with high accuracy.

次に図4を用いて、3次元像を観察した事例について説明する。   Next, a case where a three-dimensional image is observed will be described with reference to FIG.

図4は、異物が侵入していたチップについて、9枚の断面観察結果を測定順序(S1〜S9)に従って示した断面図である。   FIG. 4 is a cross-sectional view showing nine cross-sectional observation results according to the measurement order (S1 to S9) for the chip in which foreign matter has entered.

図5は、図4での9枚の断面図を組み合わせて3次元表示を行なった立体図である。チップ101と略平行な面に対して略同一の分解能を有する2次元像観察手段としてSEMを用いたためチップ101と略平行な面に対して高い分解能を得ることができる。単一のSEM107によるデータからは、球形の異物として観察されていたものが、実際の異物の形状は円錐形を成していることがわかった。   FIG. 5 is a three-dimensional view obtained by combining the nine cross-sectional views in FIG. 4 and performing three-dimensional display. Since SEM is used as a two-dimensional image observation means having substantially the same resolution with respect to a surface substantially parallel to the chip 101, a high resolution can be obtained with respect to a surface substantially parallel to the chip 101. From the data by a single SEM 107, it was found that what was observed as a spherical foreign object was actually a conical shape.

<変形例>
上記した、表面観察に用いたSEMに代えて、SIMを用いても良く、特に多結晶構造を持つ被観察領域の結晶粒界の観察ではSIMを用いることで、SEM107による観察に比べ粒界を高いコントラストを持って観察することができる。
<Modification>
In place of the above-described SEM used for surface observation, a SIM may be used. In particular, in observing a crystal grain boundary in a region to be observed having a polycrystalline structure, the grain boundary can be set as compared with the observation by the SEM 107 by using the SIM. It can be observed with high contrast.

また、SEM107からの電子線を妨げぬよう、斜面105を形成しているが、これは斜面に限定する意図はなく、階段状、あるいは矩形など、SEM107からの電子線を妨げぬよう加工された形状であれば良い。   In addition, the slope 105 is formed so as not to block the electron beam from the SEM 107, but this is not intended to be limited to the slope and is processed to prevent the electron beam from the SEM 107, such as a stepped shape or a rectangle. Any shape is acceptable.

また、保護膜102に導電性があるものを用いた例について説明したが、これはチップ101の材質によっては、絶縁性の保護膜を使っても良い。特に、チップが導体からなる場合には、絶縁体の保護膜を用いることで高いコントラストを得ることができる。   In addition, although an example in which the protective film 102 has conductivity has been described, an insulating protective film may be used depending on the material of the chip 101. In particular, when the chip is made of a conductor, high contrast can be obtained by using an insulating protective film.

また、3次元形状に加工するための手法について説明したが、これは単一の面についての観察結果を得ても良い。特に、チップ101の表面に近い部分のSEM107による観察では、チップ101の最表面に導電性の保護膜102が形成されているため、電荷の逃げ道があるためにチャージアップを抑えてSEM107を用いた観察が可能となる。   Moreover, although the method for processing to a three-dimensional shape was demonstrated, this may obtain the observation result about a single surface. In particular, when the portion near the surface of the chip 101 is observed with the SEM 107, since the conductive protective film 102 is formed on the outermost surface of the chip 101, the SEM 107 is used while suppressing charge-up because there is a charge escape path. Observation becomes possible.

次に、本実施形態の効果について記述する。   Next, the effect of this embodiment will be described.

(1)SEM107による観察は、観察面106を観察するために、チップ101の表面より深い位置から、観察面106に向かってSEM107による観察用の電子線を照射する方式で行なわれる。また、観察面106のSEM107による観察が終了した後には、FIB源108からのFIBを用いてチップ101の観察面106をスライスするよう除去し、新たな観察面を露出させて観察する。   (1) Observation by the SEM 107 is performed by irradiating an observation electron beam from the position deeper than the surface of the chip 101 toward the observation surface 106 in order to observe the observation surface 106. Further, after the observation of the observation surface 106 by the SEM 107 is completed, the observation surface 106 of the chip 101 is removed by slicing using the FIB from the FIB source 108, and the new observation surface is exposed and observed.

そのため、チップ101の表面に形成された導電性の保護膜102は、チップ101の観察が終了するまで残存することとなり、SEM107を用いてチップ101の観察をした場合、チップ101の観察が終了するまで導電性の保護膜102を経由して、導電性ペースト104、ステージ103を通じて電荷を放出することができる。   Therefore, the conductive protective film 102 formed on the surface of the chip 101 remains until the observation of the chip 101 is completed, and when the chip 101 is observed using the SEM 107, the observation of the chip 101 is completed. The charge can be discharged through the conductive paste 104 and the stage 103 through the conductive protective film 102.

従って、チップ101の表面に形成された観察面106に負電荷が蓄積し、蓄積した負電荷の影響により、SEM107による観察のための電子線が観察面からはじかれることにより生じる、観察面が白く光ることで観察を困難とするチャージアップ現象を抑制することができる。   Therefore, negative charges are accumulated on the observation surface 106 formed on the surface of the chip 101, and the observation surface is white due to the electron beam for observation by the SEM 107 being repelled from the observation surface due to the influence of the accumulated negative charges. The charge-up phenomenon that makes observation difficult by shining can be suppressed.

(2)チップ101の表面に平行な面に対してSEM107による観察が行なえるため、チップ101の表面に平行な面に対して高い分解能を必要とするチップ101の観察を、別断面で観察する場合と比べより精度良く行なうことができる。   (2) Since the surface parallel to the surface of the chip 101 can be observed by the SEM 107, the observation of the chip 101 that requires high resolution with respect to the surface parallel to the surface of the chip 101 is observed in another cross section. Compared to the case, it can be performed with higher accuracy.

(3)深さの異なる位置で観察した2次元像を元に3次元像を作成するため、異物を含んだチップ101の観察結果を2次元像のみで解釈した場合と比べ、より正しい解釈を行なうことが可能となる。   (3) Since a three-dimensional image is created on the basis of a two-dimensional image observed at different depths, a more accurate interpretation is possible compared to the case where the observation result of the chip 101 containing a foreign object is interpreted only with a two-dimensional image. Can be performed.

(4)断面像を解釈するために必要となる情報が観察途中で得られた場合には観察を打ち切るため、チップ101の観察に掛かる時間を短縮できる。   (4) When information necessary for interpreting the cross-sectional image is obtained during the observation, the observation is discontinued, so that the time required for the observation of the chip 101 can be shortened.

チップを加工、観察する手法を示す概略断面図。The schematic sectional drawing which shows the method of processing and observing a chip | tip. 本発明に係る観察手順を示すための工程断面図。Process sectional drawing for demonstrating the observation procedure which concerns on this invention. 本発明に係る観察手順を示すための工程断面図。Process sectional drawing for demonstrating the observation procedure which concerns on this invention. 断面観察結果を測定順序(S1〜S9)に従って示す断面図。Sectional drawing which shows a cross-section observation result according to a measurement order (S1-S9). 断面図を組み合わせて形成した3次元表示結果を示す立体図。The three-dimensional figure which shows the three-dimensional display result formed combining sectional drawing.

符号の説明Explanation of symbols

101…チップ、102…保護膜、103…ステージ、104…導電性ペースト、105…斜面、106…観察面、106a…観察面、106b…観察面、107…SEM、108…FIB源。
DESCRIPTION OF SYMBOLS 101 ... Chip, 102 ... Protective film, 103 ... Stage, 104 ... Conductive paste, 105 ... Slope, 106 ... Observation surface, 106a ... Observation surface, 106b ... Observation surface, 107 ... SEM, 108 ... FIB source.

Claims (4)

表面側には被観察領域が形成されており、また前記表面側には導電体からなる、前記被観察領域を保護するための保護膜が形成されたチップを用い、前記チップの表面から、前記チップの裏面に垂直に向かう方向を正とした深さと、
前記チップの一つの側面と垂直で、前記チップの前記側面から前記チップの内部に向かう方向を正とした奥行きと、
前記チップの前記側面及び前記表面と平行で、前記チップの外部から前記側面を見て、左から右に向かう方向を正とした幅と、を用いて配置が特定される前記チップの断面観察方法であって、
幅方向の両端では、一端が前記被観察領域の幅の最大値以上の値を有し、また他端が前記被観察領域の幅の最小値以下の値を有し、また前記被観察領域の最大奥行き以上の奥行きと、前記被観察領域の最大深さ以上の深さと、を有してなる観察面を、前記表面と平行で、かつ前記被観察領域を挟んで対向する位置に配置し、前記観察面に1次の荷電粒子を照射して得られた前記観察面からの2次電子、2次イオン、または2次光線を収集して前記観察面を観察する際に、前記1次の荷電粒子が前記観察面へ到達することを妨げる領域を、前記チップの前記側面から集束イオンビームを照射して除去する工程と、
前記1次の荷電粒子を前記観測面に照射して、前記観察面を観察し、断面像のデータを蓄積することと、前記観察面を前記集束イオンビームを用いて前記表面と平行に除去し、新しい観察面を形成することとを、前記被観察領域を全て観察するまで繰り返し行なう、または観察面を解釈するために必要となる情報が観察途中で得られた場合、繰り返しを打ち切る工程とを有することを特徴とするチップの断面観察方法。
An observation region is formed on the front surface side, and a chip formed of a conductor on the front surface side and having a protective film for protecting the observation region is used. With a depth that is positive in the direction perpendicular to the back of the chip,
A depth perpendicular to one side surface of the chip and positive from the side surface of the chip toward the inside of the chip;
A method of observing the cross section of the chip, wherein the arrangement is specified using a width parallel to the side surface and the surface of the chip and viewed from the outside of the chip from the left to the right. Because
At both ends in the width direction, one end has a value greater than or equal to the maximum value of the width of the observed region, and the other end has a value equal to or less than the minimum value of the width of the observed region, An observation surface having a depth equal to or greater than the maximum depth and a depth equal to or greater than the maximum depth of the observed region is disposed in a position parallel to the surface and facing the observed region. When observing the observation surface by collecting secondary electrons, secondary ions, or secondary rays from the observation surface obtained by irradiating the observation surface with primary charged particles, Irradiating a focused ion beam from the side surface of the chip to remove a region that prevents charged particles from reaching the observation surface; and
Irradiating the observation surface with the primary charged particles, observing the observation surface, accumulating cross-sectional image data, and removing the observation surface in parallel with the surface using the focused ion beam Forming a new observation surface, repeatedly until all of the observed region is observed, or when the information necessary for interpreting the observation surface is obtained during observation, A method for observing a cross section of a chip, comprising:
前記観察面を観察する工程では、走査形電子顕微鏡または走査形イオン顕微鏡を用いて観察することを特徴とする請求項1に記載のチップの断面観察方法。   2. The method for observing a cross section of a chip according to claim 1, wherein in the step of observing the observation surface, the observation is performed using a scanning electron microscope or a scanning ion microscope. 前記観察面を観察した工程のデータから、前記被観察領域の3次元構造を合成し出力する工程を有することを特徴とする請求項1または2に記載のチップの断面観察方法。   3. The method of observing a cross section of a chip according to claim 1, further comprising a step of synthesizing and outputting a three-dimensional structure of the region to be observed from data of a step of observing the observation surface. 前記保護膜が絶縁体からなることを特徴とする請求項1に記載のチップの断面観察方法。   The chip cross-sectional observation method according to claim 1, wherein the protective film is made of an insulator.
JP2005034214A 2005-02-10 2005-02-10 Cross-sectional observation method of chip Withdrawn JP2006221961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034214A JP2006221961A (en) 2005-02-10 2005-02-10 Cross-sectional observation method of chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034214A JP2006221961A (en) 2005-02-10 2005-02-10 Cross-sectional observation method of chip

Publications (1)

Publication Number Publication Date
JP2006221961A true JP2006221961A (en) 2006-08-24

Family

ID=36984128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034214A Withdrawn JP2006221961A (en) 2005-02-10 2005-02-10 Cross-sectional observation method of chip

Country Status (1)

Country Link
JP (1) JP2006221961A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270073A (en) * 2007-04-24 2008-11-06 Sii Nanotechnology Inc Three-dimensional image construction method
JP2010002314A (en) * 2008-06-20 2010-01-07 Bridgestone Corp Deformation behavior predicting device of rubber material and deformation behavior predicting method of rubber material
JP2011185845A (en) * 2010-03-10 2011-09-22 Sii Nanotechnology Inc Focused ion beam device and cross-sectional processing observation method
JP2011215135A (en) * 2010-03-31 2011-10-27 Fei Co Automated slice milling for viewing feature
CN102235947A (en) * 2010-04-29 2011-11-09 中芯国际集成电路制造(上海)有限公司 Method for preparing observation sample of transmission electron microscope
JP2011233523A (en) * 2010-04-29 2011-11-17 Fei Co Sem imaging method
JP2014167474A (en) * 2007-12-06 2014-09-11 Fei Co Slice and view with decoration
JP2015084345A (en) * 2015-02-04 2015-04-30 株式会社日立ハイテクサイエンス Focused ion beam device and cross-sectional processing observation method
CN109841534A (en) * 2017-11-28 2019-06-04 日本株式会社日立高新技术科学 Section processes observation method, charged particle beam apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270073A (en) * 2007-04-24 2008-11-06 Sii Nanotechnology Inc Three-dimensional image construction method
JP2014167474A (en) * 2007-12-06 2014-09-11 Fei Co Slice and view with decoration
JP2010002314A (en) * 2008-06-20 2010-01-07 Bridgestone Corp Deformation behavior predicting device of rubber material and deformation behavior predicting method of rubber material
JP2011185845A (en) * 2010-03-10 2011-09-22 Sii Nanotechnology Inc Focused ion beam device and cross-sectional processing observation method
JP2011215135A (en) * 2010-03-31 2011-10-27 Fei Co Automated slice milling for viewing feature
US9412559B2 (en) 2010-03-31 2016-08-09 Fei Company Automated slice milling for viewing a feature
CN102235947A (en) * 2010-04-29 2011-11-09 中芯国际集成电路制造(上海)有限公司 Method for preparing observation sample of transmission electron microscope
JP2011233523A (en) * 2010-04-29 2011-11-17 Fei Co Sem imaging method
JP2015084345A (en) * 2015-02-04 2015-04-30 株式会社日立ハイテクサイエンス Focused ion beam device and cross-sectional processing observation method
CN109841534A (en) * 2017-11-28 2019-06-04 日本株式会社日立高新技术科学 Section processes observation method, charged particle beam apparatus

Similar Documents

Publication Publication Date Title
JP2006221961A (en) Cross-sectional observation method of chip
US7164126B2 (en) Method of forming a sample image and charged particle beam apparatus
JP4947965B2 (en) Preparation method, observation method and structure of sample for transmission electron microscope
US7034296B2 (en) Method of forming a sample image and charged particle beam apparatus
US8399831B2 (en) Forming an image while milling a work piece
KR101463245B1 (en) Focused ion beam apparatus and sample section forming and thin-piece sample preparing methods
US10101246B2 (en) Method of preparing a plan-view transmission electron microscope sample used in an integrated circuit analysis
CN103196713A (en) Preparation method of analysis samples
CN104937369B (en) Pattern assay method, the device condition enactment method of charged particle beam apparatus and charged particle beam apparatus
US9383327B2 (en) Circuit tracing using a focused ion beam
CN103645073A (en) Method for preparing TEM sample
US7115865B2 (en) Method of applying micro-protection in defect analysis
TW200933700A (en) Exposure data preparation method and exposure method
US20100006754A1 (en) Method for treatment of samples for transmission electronic microscopes
Xia et al. Enhancement of XeF2-assisted gallium ion beam etching of silicon layer and endpoint detection from backside in circuit editing
CN105510092B (en) The preparation method of TEM sample
US7682844B2 (en) Silicon substrate processing method for observing defects in semiconductor devices and defect-detecting method
KR20210116266A (en) Method and system for backside planar view lamella preparation
CN105300754B (en) A method of prevent TEM chip sample from rupturing
JP2006228593A (en) Method of observing cross section
EP2537174B1 (en) Image processing method for mass spectrum image, program, and apparatus
JP2008232838A (en) Depth-directional element concentration analytical method
JP2006343101A (en) Sample preparation method for observing fault place of semiconductor device
JP2009121933A (en) Secondary-ion mass spectrometry method
JP5448243B2 (en) Sample analysis method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513