JP2008267996A - Semiconductor inspecting device - Google Patents

Semiconductor inspecting device Download PDF

Info

Publication number
JP2008267996A
JP2008267996A JP2007111727A JP2007111727A JP2008267996A JP 2008267996 A JP2008267996 A JP 2008267996A JP 2007111727 A JP2007111727 A JP 2007111727A JP 2007111727 A JP2007111727 A JP 2007111727A JP 2008267996 A JP2008267996 A JP 2008267996A
Authority
JP
Japan
Prior art keywords
divider
semiconductor
signal
output signal
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007111727A
Other languages
Japanese (ja)
Other versions
JP4910859B2 (en
Inventor
Nozomi Hasegawa
望 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007111727A priority Critical patent/JP4910859B2/en
Publication of JP2008267996A publication Critical patent/JP2008267996A/en
Application granted granted Critical
Publication of JP4910859B2 publication Critical patent/JP4910859B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor inspecting device causing no correction error even if there is a change in frequency setting during a period from the implementation of calibration to implementation of phase difference measurement via a DUT. <P>SOLUTION: The semiconductor inspecting device for applying a high frequency signal from a signal generating module to an input terminal of a semiconductor under inspection and measuring a signal of an output terminal of the semiconductor by a high frequency measuring module, includes a first divider for dividing the high frequency signal into two signals; a second divider for dividing one output signal of the first divider into two signals; a switching means for switching a signal direct or through the semiconductor under inspection from the other output signal of the first divider and one output signal of the second divider; a first high frequency measuring module for inputting the output signal of the switching means; and a second high frequency measuring module for inputting the other output signal of the second divider. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、信号発生モジュールからの高周波信号を検査対象半導体の入力端子に印加し、この半導体の出力端子の信号を高周波測定モジュールにより測定する半導体検査装置、特に検査対象半導体に生ずる位相ずれを測定する機能を備える半導体検査装置に関するものである。   The present invention applies a high-frequency signal from a signal generation module to an input terminal of a semiconductor to be inspected, and measures a phase shift occurring in the semiconductor to be inspected, in particular, a semiconductor inspection apparatus that measures the signal at the output terminal of the semiconductor with a high-frequency measurement module. The present invention relates to a semiconductor inspection apparatus having a function to perform.

2個の信号間の位相差を測定する位相差測定装置は、特許文献1に開示されている。図3は、検査対象半導体に生ずる位相ずれを測定する機能を備える従来の半導体検査装置の構成例を示す機能ブロック図である。   A phase difference measuring device for measuring a phase difference between two signals is disclosed in Patent Document 1. FIG. 3 is a functional block diagram showing a configuration example of a conventional semiconductor inspection apparatus having a function of measuring a phase shift generated in a semiconductor to be inspected.

信号発生モジュール1からのマイクロ波領域(例えば2.7GHz)の高周波信号Soは、第1のデバイダー2により信号S1およびS2に分配される。信号S1は、検査対象半導体(以下DUT:Device Under Test)3の入力端子に印加される。   A high-frequency signal So in the microwave region (for example, 2.7 GHz) from the signal generation module 1 is distributed to the signals S1 and S2 by the first divider 2. The signal S1 is applied to an input terminal of a semiconductor to be inspected (hereinafter DUT: Device Under Test) 3.

DUT3の出力端子の信号Sdは、第1の高周波測定モジュール5に入力される。分配された信号S2は、第2の高周波測定モジュール6に入力される。高周波測定モジュール5および6は、レベル選択計で構成されており、基準のクロックにより互いに同期している。   The signal Sd at the output terminal of the DUT 3 is input to the first high frequency measurement module 5. The distributed signal S2 is input to the second high frequency measurement module 6. The high-frequency measurement modules 5 and 6 are composed of level selectors and are synchronized with each other by a reference clock.

DUT3の入力端子および出力端子は、位相差測定のキャリブレーション時にバイパス手段4により短絡接続され、分配された信号S1が直接第1の高周波測定モジュール5に入力される。バイパス手段4は、DUT3の実装位置に装着され、入力端子と出力端子を短絡する治具手段で実現される。   The input terminal and the output terminal of the DUT 3 are short-circuited by the bypass means 4 during phase difference measurement calibration, and the distributed signal S1 is directly input to the first high-frequency measurement module 5. The bypass unit 4 is mounted at the mounting position of the DUT 3 and is realized by a jig unit that short-circuits the input terminal and the output terminal.

高周波測定モジュール5および6に入力されたマイクロ波領域の高周波信号は、VHF領域にダウンコンバートされ、デジタイザ7および8によりAD変換された後にDSP(Digital Signal Processor)9に入力されて信号処理される。   High frequency signals in the microwave region input to the high frequency measurement modules 5 and 6 are down-converted to the VHF region, AD converted by the digitizers 7 and 8, and then input to a DSP (Digital Signal Processor) 9 for signal processing. .

DSP9は、DUT3で生ずる位相ずれを演算する位相ずれ演算手段91を備えており、DUT3を短絡するキャリブレーション時に測定される高周波測定モジュール5および6間の位相差信号θ1と、DUT3を経由して測定される位相差信号θ2とを入力し、DUT3で生ずる位相ずれθdを、θd=(θ2−θ1)で演算して出力する。   The DSP 9 includes a phase shift calculation means 91 for calculating the phase shift generated in the DUT 3, and the phase difference signal θ 1 between the high frequency measurement modules 5 and 6 measured at the time of calibration for short-circuiting the DUT 3 and the DUT 3. The measured phase difference signal θ2 is input, and the phase shift θd generated in the DUT 3 is calculated by θd = (θ2-θ1) and output.

DUT3の位相ずれ測定に先立って、DUT3の入出力端子間をバイパス手段4により短絡接続した状態で実行するキャリブレーションは、分配されたマイクロ波領域の高周波信号S1およびS2が夫々別経路で高周波測定モジュール5および6に入力される経路環境の差で生ずる位相ずれを補償し、DUT3の位相ずれ測定の測定精度を高める。   Prior to the measurement of the phase shift of the DUT 3, the calibration executed in a state where the input / output terminals of the DUT 3 are short-circuited by the bypass means 4 is performed by the high-frequency signals S 1 and S 2 in the distributed microwave region being respectively measured by different paths. The phase shift caused by the difference in path environment input to the modules 5 and 6 is compensated, and the measurement accuracy of the phase shift measurement of the DUT 3 is increased.

特開平9−61472号公報Japanese Patent Laid-Open No. 9-61472

従来の位相差測定の手法では、次のような問題がある。
(1)高周波信号測定モジュール(レベル選択計)5,6では、測定周波数設定を変更すると、内部回路(PLL、DDS)の影響でダウンコンバートされた信号の出力の位相が変わってしまうという問題がある。
The conventional phase difference measurement method has the following problems.
(1) In the high-frequency signal measurement modules (level selectors) 5 and 6, when the measurement frequency setting is changed, the output phase of the down-converted signal changes due to the influence of the internal circuit (PLL, DDS). is there.

(2)キャリブレーション時は、量産前にDUT3の実装位置に治具手段を実装させ入出力端子間を短絡させてデータを取得しておく。その後に量産プログラムを実行するために周波数設定としては、キャリブレーション時とは一度は違う設定に変更されている可能性が高い。 (2) At the time of calibration, the jig means is mounted at the mounting position of the DUT 3 before mass production, and the input / output terminals are short-circuited to acquire data. After that, the frequency setting for executing the mass production program is likely to be changed to a setting different from that at the time of calibration.

(3)量産前のキャリブレーション時で測定された経路の位相差信号と、周波数設定が変更された経歴後の経路の位相差信号は同一ではなく変化している。従って、量産前のキャリブレーション時で測定された信号θ1でDUT3を経由した位相差信号θ2を補正した場合には、補正誤差を生ずる。 (3) The phase difference signal of the path measured at the time of calibration before mass production and the phase difference signal of the path after the history in which the frequency setting has been changed are not the same but have changed. Therefore, when the phase difference signal θ2 via the DUT 3 is corrected with the signal θ1 measured at the time of calibration before mass production, a correction error occurs.

本発明は上述した問題点を解決するためになされたものであり、キャリブレーション実施からDUT経由による位相差測定実施までの期間に周波数設定の変更があった場合でも、補正誤差が発生しない半導体検査装置の実現を目的としている。   The present invention has been made to solve the above-described problems, and even when there is a change in frequency setting during the period from calibration execution to phase difference measurement execution via the DUT, a semiconductor inspection in which no correction error occurs. The purpose is to realize the device.

このような課題を達成するために、本発明は次の通りの構成になっている。
(1)信号発生モジュールからの高周波信号を検査対象半導体の入力端子に印加し、この半導体の出力端子の信号を高周波測定モジュールにより測定する半導体検査装置において、
前記高周波信号を2分配する第1のデバイダーと、
この第1のデバイダーの一方の出力信号を2分配する第2のデバイダーと、
前記第1のデバイダーの他方の出力信号を直接または前記検査対象半導体を介した信号と、前記第2のデバイダーの一方の出力信号とを切り換える切り換え手段と、
この切り換え手段の出力信号を入力する第1の高周波測定モジュールと、
前記第2のデバイダーの他方の出力信号を入力する第2の高周波測定モジュールと、
を備えたことを特徴とする半導体検査装置。
In order to achieve such a subject, the present invention has the following configuration.
(1) In a semiconductor inspection apparatus that applies a high-frequency signal from a signal generation module to an input terminal of a semiconductor to be inspected, and measures a signal at the output terminal of the semiconductor with a high-frequency measurement module.
A first divider that distributes the high-frequency signal into two parts;
A second divider that distributes one output signal of the first divider into two;
Switching means for switching the other output signal of the first divider directly or through the semiconductor to be inspected and one output signal of the second divider;
A first high frequency measurement module for inputting an output signal of the switching means;
A second high frequency measurement module for inputting the other output signal of the second divider;
A semiconductor inspection apparatus comprising:

(2)前記切り換え手段が前記第2のデバイダーの一方の出力信号を選択した状態で、前記第1および第2の高周波測定モジュール間の位相差θ1を測定して保持するθ1測定手段と、
前記切り換え手段がバイパス手段により前記検査対象半導体をバイパスして前記第1のデバイダーの一方の出力信号を直接選択した状態で、前記第1および第2の高周波測定モジュール間の位相差θ2を測定して保持するθ2測定手段と、
前記切り換え手段が前記第2のデバイダーの一方の出力信号を選択した状態で、前記第1および第2の高周波測定モジュール間の位相差θ3を測定して保持するθ3測定手段と、
前記切り換え手段が前記検査対象半導体の出力信号を選択した状態で、前記第1および第2の高周波測定モジュール間の位相差θ4を測定して保持するθ4測定手段と、
測定された位相差信号θ1乃至θ4に基づいて、前記検査対象半導体にて生ずる位相ずれθdを、θd=(θ4−θ2)+(θ3−θ1)で演算する位相ずれ演算手段と、
を備えることを特徴とする(1)に記載の半導体検査装置。
(2) θ1 measuring means for measuring and holding a phase difference θ1 between the first and second high frequency measurement modules in a state where the switching means selects one output signal of the second divider;
With the switching means bypassing the semiconductor to be inspected by the bypass means and directly selecting one output signal of the first divider, the phase difference θ2 between the first and second high-frequency measurement modules is measured. Holding θ2 measuring means,
Θ3 measuring means for measuring and holding the phase difference θ3 between the first and second high frequency measurement modules in a state where the switching means selects one output signal of the second divider;
Θ4 measuring means for measuring and holding the phase difference θ4 between the first and second high frequency measurement modules in a state where the switching means selects the output signal of the semiconductor to be inspected;
A phase shift calculation means for calculating a phase shift θd generated in the semiconductor to be inspected based on the measured phase difference signals θ1 to θ4 by θd = (θ4−θ2) + (θ3−θ1);
(1) The semiconductor inspection apparatus according to (1).

(3)前記第1および第2の高周波測定モジュールは、レベル選択計であることを特徴とする(1)または(2)に記載の半導体検査装置。 (3) The semiconductor inspection apparatus according to (1) or (2), wherein the first and second high-frequency measurement modules are level selectors.

(4)前記バイパス手段は、前記検査対象半導体の実装位置に装着され、入力端子と出力端子を短絡する治具手段であることを特徴とする(2)または(3)に記載の半導体検査装置。 (4) The semiconductor inspection apparatus according to (2) or (3), wherein the bypass unit is a jig unit that is mounted at a mounting position of the inspection target semiconductor and short-circuits the input terminal and the output terminal. .

(5)前記θ3測定手段による測定は、前記θ1測定手段の測定実行の後に実行されることを特徴とする(2)乃至(4)のいずれかに記載の半導体検査装置。 (5) The semiconductor inspection apparatus according to any one of (2) to (4), wherein the measurement by the θ3 measurement unit is performed after the measurement execution by the θ1 measurement unit.

本発明によれば、次のような効果を期待することができる。
(1)治具手段を用いるキャリブレーション時およびDUT装着時の夫々において、経路のみに切り換えて経路の位相差測定を実施し、夫々の測定で得られた2個の位相差信号に基づく補正演算を実行することにより、キャリブレーション実施からDUT経由による位相差測定実施までの期間に周波数設定の変更があった場合でも、補正誤差が発生しない演算が可能となる。
According to the present invention, the following effects can be expected.
(1) At the time of calibration using the jig means and at the time of mounting the DUT, the phase difference measurement of the path is performed by switching only to the path, and the correction calculation based on the two phase difference signals obtained by each measurement By executing the above, even if there is a change in frequency setting during the period from the calibration execution to the phase difference measurement execution via the DUT, it is possible to perform an operation without generating a correction error.

(2)高周波信号測定モジュールとしては、レベル選択計であることは変えずに、DUTで生じる位相ずれの測定が可能であり、ネットワークアナライザ等の高級な測定器を用いずにDUTの位相ずれ検査を高精度で実現することができる。 (2) As a high-frequency signal measurement module, it is possible to measure the phase shift generated in the DUT without changing the level selection meter, and to detect the phase shift of the DUT without using a high-level measuring instrument such as a network analyzer. Can be realized with high accuracy.

以下、本発明を図面により詳細に説明する。図1は、本発明を適用した半導体検査装置の一実施形態を示す機能ブロック図である。図3で説明した従来装置と同一要素には同一符号を付して説明を省略する。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram showing an embodiment of a semiconductor inspection apparatus to which the present invention is applied. The same elements as those of the conventional apparatus described with reference to FIG.

従来装置の構成に追加された本発明の構成上の特徴部は、第2のデバイダー100と、経路切換え用の切換え手段200と、DSP300の構成にある。   The structural features of the present invention added to the configuration of the conventional apparatus lie in the configuration of the second divider 100, the switching means 200 for path switching, and the DSP 300.

第2のデバイダー100は、第1のデバイダー2で分配された信号S2を入力してさらに信号S3およびS4に2分配する。分配された信号の一方S3は切換え手段200に入力され、他方S4は第2の高周波測定モジュール6に入力される。   The second divider 100 receives the signal S2 distributed by the first divider 2 and further distributes it to the signals S3 and S4. One of the distributed signals S3 is input to the switching means 200, and the other S4 is input to the second high-frequency measurement module 6.

切換え手段200は、DUT3の出力信号Sdまたはバイパス手段4を経由した信号S1と、第2のデバイダー100で分配された一方の信号S3とを選択的に切換えて第1の高周波測定モジュール5に入力する。   The switching unit 200 selectively switches between the output signal Sd of the DUT 3 or the signal S1 via the bypass unit 4 and one signal S3 distributed by the second divider 100 and inputs the signal S1 to the first high-frequency measurement module 5. To do.

DSP300が備える位相ずれ演算手段301は、測定されて保持された位相差信号θ1乃至θ4を入力して、DUT3に生ずる位相ずれθdを演算して出力する。以下、位相差信号θ1乃至θ4の測定手順およびθdの演算について説明する。   The phase shift calculation means 301 provided in the DSP 300 inputs the measured and held phase difference signals θ1 to θ4, and calculates and outputs the phase shift θd generated in the DUT 3. Hereinafter, the measurement procedure of the phase difference signals θ1 to θ4 and the calculation of θd will be described.

(1)第1回キャリブレーション:スイッチ手段200を信号S3の選択状態に切換え、信号S3と信号S4の位相差を測定する。その測定結果θ1をDSP300内に保持する。 (1) First calibration: The switch means 200 is switched to the selected state of the signal S3, and the phase difference between the signal S3 and the signal S4 is measured. The measurement result θ1 is held in the DSP 300.

(2)スイッチ手段200をDUT3側に切換え、バイパス手段4経由の信号S1と信号S4の位相差を測定する。その測定結果θ2をDSP300内に保持する。 (2) The switch means 200 is switched to the DUT 3 side, and the phase difference between the signal S1 and the signal S4 via the bypass means 4 is measured. The measurement result θ2 is held in the DSP 300.

(3)第2回キャリブレーション:スイッチ手段200を信号S3の選択状態に切換え、信号S3と信号S4の位相差を測定する。その測定結果θ3をDSP300内に保持する。 (3) Second calibration: The switch means 200 is switched to the selected state of the signal S3, and the phase difference between the signal S3 and the signal S4 is measured. The measurement result θ3 is held in the DSP 300.

(4)スイッチ手段200をDUT3側に切換え、DUT3の出力信号Sdと信号S4の位相差を測定する。その測定結果θ4をDSP300内に保持する。 (4) The switch means 200 is switched to the DUT 3 side, and the phase difference between the output signal Sd of the DUT 3 and the signal S4 is measured. The measurement result θ4 is held in the DSP 300.

(5)DSP300の位相ずれ演算手段は、DSP内に保持された位相差信号θ1乃至θ4を入力し、DUT3に発生する位相ずれθdを、
θd=(θ4−θ2)+(θ3−θ1)
により演算して出力する。
(5) The phase shift calculation means of the DSP 300 inputs the phase difference signals θ1 to θ4 held in the DSP, and calculates the phase shift θd generated in the DUT 3.
θd = (θ4-θ2) + (θ3-θ1)
Calculate and output by.

図2は、本発明を適用した半導体検査装置の他の実施形態を示す機能ブロック図である。
図1の実施形態では、デジタイザ7,8とDSP300が高周波測定モジュール5,6とは別となっているが、各高周波測定モジュール10,11内にその機能を持たせることも可能である。
FIG. 2 is a functional block diagram showing another embodiment of a semiconductor inspection apparatus to which the present invention is applied.
In the embodiment of FIG. 1, the digitizers 7 and 8 and the DSP 300 are separate from the high frequency measurement modules 5 and 6, but each high frequency measurement module 10 and 11 can have the function.

一般的な高周波測定モジュールでは、内部にADCとCPUが搭載されているので、それを利用してデジタイザとDSPの機能を実現することができる。この構成を採用する場合には、位相ずれ演算手段は、高周波測定モジュール10,11のいずれかに構築すればよい。   In a general high-frequency measurement module, an ADC and a CPU are mounted inside, so that the functions of a digitizer and a DSP can be realized by using them. In the case of adopting this configuration, the phase shift calculation means may be constructed in one of the high frequency measurement modules 10 and 11.

本発明を適用した半導体検査装置の一実施形態を示す機能ブロック図である。It is a functional block diagram showing one embodiment of a semiconductor inspection device to which the present invention is applied. 本発明を適用した半導体検査装置の他の実施形態を示す機能ブロック図である。It is a functional block diagram which shows other embodiment of the semiconductor inspection apparatus to which this invention is applied. 従来の半導体検査装置の構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of the conventional semiconductor inspection apparatus.

符号の説明Explanation of symbols

1 信号発生モジュール
2 第1のデバイダー
3 検査対象半導体(DUTで表記)
4 バイパス手段
5 第1の高周波測定モジュール
6 第2の高周波測定モジュール
7,8 デジタイザ
100 第2のデバイダー
200 切り換え手段
300 DSP
301 位相ずれ演算手段
DESCRIPTION OF SYMBOLS 1 Signal generation module 2 1st divider 3 Semiconductor to be examined (denoted by DUT)
4 Bypass means 5 First high frequency measurement module 6 Second high frequency measurement module 7, 8 Digitizer 100 Second divider 200 Switching means 300 DSP
301 Phase shift calculation means

Claims (5)

信号発生モジュールからの高周波信号を検査対象半導体の入力端子に印加し、この半導体の出力端子の信号を高周波測定モジュールにより測定する半導体検査装置において、
前記高周波信号を2分配する第1のデバイダーと、
この第1のデバイダーの一方の出力信号を2分配する第2のデバイダーと、
前記第1のデバイダーの他方の出力信号を直接または前記検査対象半導体を介した信号と、前記第2のデバイダーの一方の出力信号とを切り換える切り換え手段と、
この切り換え手段の出力信号を入力する第1の高周波測定モジュールと、
前記第2のデバイダーの他方の出力信号を入力する第2の高周波測定モジュールと、
を備えたことを特徴とする半導体検査装置。
In a semiconductor inspection apparatus that applies a high-frequency signal from a signal generation module to an input terminal of a semiconductor to be inspected, and measures a signal at the output terminal of the semiconductor by a high-frequency measurement module,
A first divider that distributes the high-frequency signal into two parts;
A second divider that distributes one output signal of the first divider into two;
Switching means for switching the other output signal of the first divider directly or through the semiconductor to be inspected and one output signal of the second divider;
A first high frequency measurement module for inputting an output signal of the switching means;
A second high frequency measurement module for inputting the other output signal of the second divider;
A semiconductor inspection apparatus comprising:
前記切り換え手段が前記第2のデバイダーの一方の出力信号を選択した状態で、前記第1および第2の高周波測定モジュール間の位相差θ1を測定して保持するθ1測定手段と、
前記切り換え手段がバイパス手段により前記検査対象半導体をバイパスして前記第1のデバイダーの一方の出力信号を直接選択した状態で、前記第1および第2の高周波測定モジュール間の位相差θ2を測定して保持するθ2測定手段と、
前記切り換え手段が前記第2のデバイダーの一方の出力信号を選択した状態で、前記第1および第2の高周波測定モジュール間の位相差θ3を測定して保持するθ3測定手段と、
前記切り換え手段が前記検査対象半導体の出力信号を選択した状態で、前記第1および第2の高周波測定モジュール間の位相差θ4を測定して保持するθ4測定手段と、
測定された位相差信号θ1乃至θ4に基づいて、前記検査対象半導体にて生ずる位相ずれθdを、θd=(θ4−θ2)+(θ3−θ1)で演算する位相ずれ演算手段と、
を備えることを特徴とする請求項1に記載の半導体検査装置。
Θ1 measuring means for measuring and holding a phase difference θ1 between the first and second high frequency measurement modules in a state where the switching means selects one output signal of the second divider;
With the switching means bypassing the semiconductor to be inspected by the bypass means and directly selecting one output signal of the first divider, the phase difference θ2 between the first and second high-frequency measurement modules is measured. Holding θ2 measuring means,
Θ3 measuring means for measuring and holding the phase difference θ3 between the first and second high frequency measurement modules in a state where the switching means selects one output signal of the second divider;
Θ4 measuring means for measuring and holding the phase difference θ4 between the first and second high frequency measurement modules in a state where the switching means selects the output signal of the semiconductor to be inspected;
A phase shift calculation means for calculating a phase shift θd generated in the semiconductor to be inspected based on the measured phase difference signals θ1 to θ4 by θd = (θ4−θ2) + (θ3−θ1);
The semiconductor inspection apparatus according to claim 1, further comprising:
前記第1および第2の高周波測定モジュールは、レベル選択計であることを特徴とする請求項1または2に記載の半導体検査装置。   The semiconductor inspection apparatus according to claim 1, wherein the first and second high-frequency measurement modules are level selectors. 前記バイパス手段は、前記検査対象半導体の実装位置に装着され、入力端子と出力端子を短絡する治具手段であることを特徴とする請求項2または3に記載の半導体検査装置。   4. The semiconductor inspection apparatus according to claim 2, wherein the bypass means is a jig means that is mounted at a mounting position of the semiconductor to be inspected and short-circuits the input terminal and the output terminal. 前記θ3測定手段による測定は、前記θ1測定手段の測定実行の後に実行されることを特徴とする請求項2乃至4のいずれかに記載の半導体検査装置。   The semiconductor inspection apparatus according to claim 2, wherein the measurement by the θ3 measurement unit is performed after the measurement by the θ1 measurement unit.
JP2007111727A 2007-04-20 2007-04-20 Semiconductor inspection equipment Expired - Fee Related JP4910859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111727A JP4910859B2 (en) 2007-04-20 2007-04-20 Semiconductor inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111727A JP4910859B2 (en) 2007-04-20 2007-04-20 Semiconductor inspection equipment

Publications (2)

Publication Number Publication Date
JP2008267996A true JP2008267996A (en) 2008-11-06
JP4910859B2 JP4910859B2 (en) 2012-04-04

Family

ID=40047697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111727A Expired - Fee Related JP4910859B2 (en) 2007-04-20 2007-04-20 Semiconductor inspection equipment

Country Status (1)

Country Link
JP (1) JP4910859B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51160047U (en) * 1975-06-12 1976-12-20
JPH01130708U (en) * 1988-02-29 1989-09-05
JPH0749361A (en) * 1993-08-04 1995-02-21 Anritsu Corp Measuring device for circuit characteristic
JPH1010179A (en) * 1996-06-27 1998-01-16 Toshiba Corp Delay element tester and integrated circuit with test function
JPH11287844A (en) * 1998-04-03 1999-10-19 Advantest Corp Skew adjusting method in ic tester and pseudo device used for the method
JP2004239754A (en) * 2003-02-06 2004-08-26 Advantest Corp System and method for correcting interchannel skew of a plurality of sampling digitizers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51160047U (en) * 1975-06-12 1976-12-20
JPH01130708U (en) * 1988-02-29 1989-09-05
JPH0749361A (en) * 1993-08-04 1995-02-21 Anritsu Corp Measuring device for circuit characteristic
JPH1010179A (en) * 1996-06-27 1998-01-16 Toshiba Corp Delay element tester and integrated circuit with test function
JPH11287844A (en) * 1998-04-03 1999-10-19 Advantest Corp Skew adjusting method in ic tester and pseudo device used for the method
JP2004239754A (en) * 2003-02-06 2004-08-26 Advantest Corp System and method for correcting interchannel skew of a plurality of sampling digitizers

Also Published As

Publication number Publication date
JP4910859B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
TWI596523B (en) Carrier Touch Sensing System Capable of Performing Phase Calibration and Carrier Signal Demodulation
KR100809944B1 (en) Network analyzer, network analyzing method and recording medium
WO2008007636A1 (en) Tester, adjustment method, and adjustment program
US8368382B2 (en) Frequency characteristics measuring device
US9341658B2 (en) Fast on-chip oscillator trimming
JP5011559B2 (en) Reference signal generator
JP4910859B2 (en) Semiconductor inspection equipment
US8008958B2 (en) Electronic device and method of correcting clock signal deviations in an electronic device
JPWO2006022026A1 (en) Semiconductor test system
US20150025819A1 (en) Handling of Undesirable Distribution of Unknown Values in Testing of Circuit Using Automated Test Equipment
JP2010263408A (en) Integrated circuit, integrated circuit system, serial/parallel conversion device, and skew adjustment method
US9310423B2 (en) Detecting operating conditions
Saqib et al. Within-die delay variation measurement and power transient analysis using REBEL
JP2018017544A (en) Temperature detection circuit and temperature detection method
JP5249357B2 (en) Electronic device, test apparatus and test method
WO2010087009A1 (en) Electronic device, test equipment, and test method
JP2009002758A (en) Impedance measuring apparatus
KR101292047B1 (en) Testing apparaus for carbon resistor of pcb
US7705609B2 (en) Phase frequency distortion measurement system
JP2011085525A (en) Evaluation system of quartz oscillator
JP4032612B2 (en) Operating frequency measuring apparatus and image forming apparatus
JP2004219097A (en) Semiconductor testing apparatus
JP2004320613A (en) Performance measurement system and method of analog/digital converter and performance measurement system and method of digital analog/converter
Przygoda et al. FPGA implementation of multichannel detuning computation for sc linacs
JP2007285779A (en) Calibration circuit, calibration and testing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees