JP2008267920A - Laser range finding device and laser range finding method - Google Patents

Laser range finding device and laser range finding method Download PDF

Info

Publication number
JP2008267920A
JP2008267920A JP2007109738A JP2007109738A JP2008267920A JP 2008267920 A JP2008267920 A JP 2008267920A JP 2007109738 A JP2007109738 A JP 2007109738A JP 2007109738 A JP2007109738 A JP 2007109738A JP 2008267920 A JP2008267920 A JP 2008267920A
Authority
JP
Japan
Prior art keywords
time
correction
measurement
intensity
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007109738A
Other languages
Japanese (ja)
Inventor
Tsutomu Terauchi
強 寺内
Taketoshi Takano
武寿 高野
Makoto Yamaguchi
真 山口
Yuuki Hiraiwa
勇樹 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007109738A priority Critical patent/JP2008267920A/en
Publication of JP2008267920A publication Critical patent/JP2008267920A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser range finding device shortening a range finding time by reducing a signal processing burden so as to be effective particularly in the case of high measuring density per unit time. <P>SOLUTION: The device includes a transmitting part 1 transmitting laser beams toward a measuring object; a receiving part 2 receiving a receive signal 21 reflected and returned from the measuring object; a time measuring part 3 and an intensity measuring part 4 branching and inputting the output of the receiving part 2; a constant fraction discriminator for suppressing a time measuring error included in a time measured value Δt<SB>1</SB>output by the time measuring part 3; a correcting part 5 correcting the time measuring error which exceeds the suppression limit at the constant fraction discriminator; and a correction table in which a correction quantity to an intensity measured value P<SB>1</SB>measured by the intensity measuring part 4 is predetermined and stored in a referable manner in the correcting part 5. The correcting part 5 is operated only when the intensity measured value P<SB>1</SB>exceeds a predetermined value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザ測距装置レーザ測距方法に関する。   The present invention relates to a laser distance measuring device laser distance measuring method.

下記特許文献1には、反射波の強度が高すぎることに起因する物体の検出精度の悪化を防止するレーダ装置が記載されている。このレーダ装置において、レーザレーダセンサは、レーザ光を発光するレーザダイオードと、レーザダイオードの発光したレーザ光を反射して、所定の測定エリアを走査させるポリゴンミラーを有する。このポリゴンミラーには、レーザ光の反射率が異なる反射面が形成されており、車両の走行速度、反射物体との距離、反射物体からの反射波の受光強度等に基づいて、ポリゴンミラーの反射面を切り換えて、出力するレーザ光の強度を変更する。その結果、遠距離の物体や、レーザ光の反射率の低い物体を検出する場合には、レーザ光の強度を高くし、近距離の物体や、レーザ光の反射率の高い物体を検出する場合には、レーザ光の強度を低くするように強度を変更できるので、物体の検出精度を向上することができる、というものである。   Patent Document 1 below describes a radar apparatus that prevents deterioration in detection accuracy of an object due to the intensity of reflected waves being too high. In this radar apparatus, the laser radar sensor has a laser diode that emits laser light, and a polygon mirror that reflects the laser light emitted from the laser diode and scans a predetermined measurement area. This polygon mirror has reflecting surfaces with different laser beam reflectivities. Based on the traveling speed of the vehicle, the distance to the reflecting object, the received light intensity of the reflected wave from the reflecting object, etc. Switch the surface to change the intensity of the output laser beam. As a result, when detecting an object at a long distance or an object with a low reflectance of laser light, the intensity of the laser light is increased to detect an object at a short distance or an object with a high reflectance of laser light. Since the intensity can be changed so as to reduce the intensity of the laser beam, the object detection accuracy can be improved.

また、下記特許文献2には、レーザ測距において受光量の変化による計測距離の変動を防止するレーザ測距装置が記載されている。このレーザ測距装置は、受光したレーザ光をアナログ電気信号に変換し出力する受光回路と、この受光回路が出力するアナログ電気信号を矩形波に変換し出力するデジタル化回路と、このデジタル化回路の出力する矩形波の入力により時間計測を行い記録する時間計測装置とを有し、デジタル化回路は、所定電圧以上のアナログ電気信号が入力されると矩形波の出力を抑止する飽和対策手段として、アナログ電気信号を増幅する増幅回路の出力が上限閾値以上になると制御信号を出力する飽和レベル検出回路と、制御信号が入力されるとアナログ電気信号から矩形波への変換を抑止する比較回路を有する、というものである。   Patent Document 2 below describes a laser distance measuring device that prevents fluctuations in measurement distance due to changes in the amount of received light in laser distance measurement. The laser distance measuring device includes a light receiving circuit that converts received laser light into an analog electric signal and outputs the signal, a digitizing circuit that converts the analog electric signal output from the light receiving circuit into a rectangular wave, and outputs the signal. A time measuring device that measures and records time by inputting a rectangular wave output from the digital circuit, and the digitizing circuit is a saturation countermeasure means that suppresses the output of the rectangular wave when an analog electric signal of a predetermined voltage or more is input. A saturation level detection circuit that outputs a control signal when an output of an amplification circuit that amplifies an analog electric signal exceeds an upper threshold, and a comparison circuit that suppresses conversion of the analog electric signal to a rectangular wave when the control signal is input. It is to have.

また、下記特許文献3には、レーザレーダセンサの表面に、レーザ光が内部を伝播したり、散乱されたりする汚れが付着した時、その汚れの付着を検出することが可能な車両用物体認識装置が記載されている。この車両用物体認識装置は、レーザ光が汚れの内部を伝播したり、散乱されたりすると、その一部が、レーザレーダセンサの受光素子によって受光される。そこで、複数照射されるレーザ光の中で、照射からその反射光が受光されるまでの計測時間が所定計測時間より短く、かつ反射光の受光パルスが上閾値を超えるほど強度が強いレーザ光が第1の所定数以上であることを条件として、汚れが付着していると判定する。照射から受光までの時間が所定計測時間よりも短い場合、上述した汚れに起因する反射光であり、受光パルスが上閾値を超えるほど強度が強い場合、汚れの付着量も多くなっていると推測できる。従って、このような受光パルスの数が第1の所定数を超えた時、上述した汚れが付着したと判定できる、というものである。   Patent Document 3 listed below discloses a vehicle object recognition that can detect the adhesion of dirt on the surface of a laser radar sensor when laser light propagates inside or is scattered. An apparatus is described. In the vehicle object recognition device, when the laser light propagates inside the dirt or is scattered, a part of the laser light is received by the light receiving element of the laser radar sensor. Therefore, among the multiple irradiated laser beams, there is a laser beam whose intensity is so strong that the measurement time from irradiation until the reflected light is received is shorter than the predetermined measurement time and the received pulse of the reflected light exceeds the upper threshold. It is determined that dirt is attached on the condition that the number is not less than the first predetermined number. If the time from irradiation to light reception is shorter than the predetermined measurement time, it is reflected light due to the above-mentioned dirt, and if the intensity is so strong that the received light pulse exceeds the upper threshold, the amount of dirt attached is estimated to be large. it can. Therefore, when the number of such received light pulses exceeds the first predetermined number, it can be determined that the above-mentioned dirt has adhered.

さらに、この特許文献3には、つぎのような技術も開示されている。すなわち、受光強度に対応する時間幅と補正時間とは所定の対応関係を有する。具体的には、受光強度に対応する時間幅が大きくなるにしたがって補正時間も単調増加する傾向を有している。したがって、その対応関係を予め実験等により求めておくことにより、受光強度に対応する時間幅から補正時間を求めて補正することができる。受光信号が、最大電圧に達する時刻が算出されると、レーザダイオードの発光時刻から最大電圧に達する時刻までの時間差に基づいて反射物体までの距離を測定する。   Further, Patent Document 3 also discloses the following technique. That is, the time width corresponding to the received light intensity and the correction time have a predetermined correspondence. Specifically, the correction time tends to monotonically increase as the time width corresponding to the received light intensity increases. Therefore, by obtaining the correspondence relationship by an experiment or the like in advance, the correction time can be obtained and corrected from the time width corresponding to the received light intensity. When the time when the received light signal reaches the maximum voltage is calculated, the distance to the reflecting object is measured based on the time difference from the light emission time of the laser diode to the time when it reaches the maximum voltage.

これにより、反射波の受光強度の違いによる測定誤差は補正時間によって補正され、同一の時刻までの時間差として物体までの距離が測定される。なお、受光強度に対応する時間幅と補正時間との関係はマップ(以下、「補正テーブル」ともいう)としてROM等に記憶しておく、というものである。
特開2005−77379号公報 特開2003−294840号公報 特開2005−10094号公報
Thereby, the measurement error due to the difference in the received light intensity of the reflected wave is corrected by the correction time, and the distance to the object is measured as the time difference up to the same time. The relationship between the time width corresponding to the received light intensity and the correction time is stored in a ROM or the like as a map (hereinafter also referred to as “correction table”).
JP 2005-77379 A JP 2003-294840 A Japanese Patent Laying-Open No. 2005-10094

しかしながら、特許文献3に記載された技術において、前記ROM等に記憶された「補正テーブル」を参照することによりCPUの演算処理負担が増大するため、測距時間が長くなるという課題があった。   However, in the technique described in Patent Document 3, there is a problem that the distance measurement time becomes long because the calculation processing load of the CPU increases by referring to the “correction table” stored in the ROM or the like.

本発明は、上述した事情に鑑みてなされたものであり、測定誤差をなくすように補正するための信号処理負担を軽減することにより、測距時間を短縮したレーザ測距装置を提供することを目的とする。特に、単位時間当たりの測定密度が多い場合に効果的であるようにする。   The present invention has been made in view of the above-described circumstances, and provides a laser distance measuring device that shortens a distance measuring time by reducing a signal processing burden for correction so as to eliminate a measurement error. Objective. In particular, it is effective when the measurement density per unit time is large.

前記目的を達成するために、第1の発明に係るレーザ測距装置は、下記第1の手段を採用する。
計測対象へ向けてレーザ光を送信する送信部と、前記計測対象で反射されて戻ってきた受信信号を受信する受信部と、前記受信部の出力に接続された時間計測部および強度計測部と、前記時間計測部は前記受信信号の波高に依存しないタイミング情報を抽出可能なコンスタントフラクションディスクリミネータと、前記コンスタントフラクションディスクリミネータでの抑制限度を超える時間計測誤差を補正する補正部を備え、前記強度計測値が所定値を超えた時にのみ前記補正部を作動させる。
In order to achieve the object, the laser distance measuring apparatus according to the first invention employs the following first means.
A transmission unit that transmits laser light toward the measurement target, a reception unit that receives a reception signal reflected and returned from the measurement target, and a time measurement unit and an intensity measurement unit connected to the output of the reception unit; The time measurement unit includes a constant fraction discriminator that can extract timing information that does not depend on the wave height of the received signal, and a correction unit that corrects a time measurement error that exceeds a suppression limit in the constant fraction discriminator, The correction unit is operated only when the intensity measurement value exceeds a predetermined value.

第1の発明に係るレーザ測距装置によれば、送信部から計測対象へ向けてレーザ光を送信し、計測対象で反射されて戻ってきた受信信号を受信部で受信する。この受信部の出力を分岐して時間計測部および強度計測部へ入力する。
レーザ測距装置における受信信号を単一固定的な単純閾値によって検出すると、受信信号の波高の変動に伴う時間計測誤差(ジッター)が発生する。例えば、正弦波の昇り傾斜のタイミングで検出する場合、同一測定距離であっても信号強度が強い程早く検出されるため、真の測定距離よりも近くであるかのように誤認され、逆に信号強度が弱い程遅く検出されるため、真の測定距離よりも遠くであるかのように誤認される。
According to the laser range finder according to the first aspect of the invention, the laser beam is transmitted from the transmission unit to the measurement target, and the reception signal reflected and returned from the measurement target is received by the reception unit. The output of the receiving unit is branched and input to the time measuring unit and the intensity measuring unit.
When the received signal in the laser distance measuring device is detected by a single fixed simple threshold value, a time measurement error (jitter) accompanying fluctuation in the wave height of the received signal occurs. For example, when detecting at the timing of the rising slope of the sine wave, it is detected earlier as the signal strength is stronger even at the same measurement distance, so it is mistaken as if it is closer to the true measurement distance, and conversely Since it is detected later as the signal strength is weaker, it is mistaken as if it is farther than the true measurement distance.

このように時間計測部が出力する時間計測値に含まれる時間計測誤差を抑制するため、コンスタントフラクションディスクリミネータは常時作動している。しかし、コンスタントフラクションディスクリミネータでの抑制限度を超える時間計測誤差が発生した時は、補正部により補正する。このようにして、測定誤差を補正するための信号処理負担を軽減することにより、測距時間を短縮することが可能となる。特に、単位時間当たりの測定密度が多い場合に効果的であるようにする。   Thus, in order to suppress the time measurement error included in the time measurement value output from the time measurement unit, the constant fraction discriminator is always operating. However, when a time measurement error exceeding the suppression limit of the constant fraction discriminator occurs, it is corrected by the correction unit. In this way, the distance measurement time can be shortened by reducing the signal processing burden for correcting the measurement error. In particular, it is effective when the measurement density per unit time is large.

また、第2の発明に係るレーザ測距装置は、前記第1の手段に加えて下記第2の手段を採用する。
前記補正部には前記強度計測部の計測した強度計測値に対する補正量を予め定めて参照自在に記憶した補正テーブルと、前記補正テーブルを参照して前記時間計測誤差を補正する演算処理手段と、を備えた。
The laser distance measuring apparatus according to the second invention employs the following second means in addition to the first means.
A correction table that preliminarily stores a correction amount for the intensity measurement value measured by the intensity measurement unit in the correction unit, and a calculation processing unit that corrects the time measurement error with reference to the correction table; Equipped with.

請求項2に係るレーザ測距装置によれば、補正テーブルを参照して補正する時には演算処理手段(CPU)の演算処理負担が増大して測距時間が長くなるので、強度計測値が所定値を超えた時にのみ補正部を作動させる。そうすると、測定誤差を補正するための信号処理負担が軽減され、測距時間を短縮することが可能となる。特に、単位時間当たりの測定密度が多い場合に効果的であるようにする。   According to the laser range finder according to claim 2, when the correction is made with reference to the correction table, the calculation processing load of the calculation processing means (CPU) increases and the distance measurement time becomes long. The correction unit is activated only when the value exceeds Then, the signal processing burden for correcting the measurement error is reduced, and the distance measurement time can be shortened. In particular, it is effective when the measurement density per unit time is large.

また、第3の発明に係るレーザ測距方法は、下記第3の手段を採用する。
計測対象へ向けてレーザ光を送信し、前記計測対象で反射されて戻ってきた受信信号を受信し、前記レーザ光を送信した送信信号と前記受信信号との時間差から光速との関係式により計測対象までの距離を換算するレーザ測距装置において、
前記時間差を計測する時間計測終了ステップと、前記受信信号が飽和しているか否かを判別する飽和判別ステップと、この飽和判別ステップにおいて飽和していると判別されたならば飽和が原因による計測誤差を補正する飽和補正ステップと、前記飽和補正ステップにより正しく補正された後に距離換算ステップと、前記飽和判別ステップにおいて飽和していないと判別されたならば補正することなく計測された時間差から計測対象までの距離を算出する距離換算ステップと、を備えた。
The laser ranging method according to the third invention employs the following third means.
A laser beam is transmitted toward the measurement object, a reception signal reflected and returned from the measurement object is received, and a measurement is performed according to a relational expression of the speed of light from a time difference between the transmission signal that transmits the laser beam and the reception signal. In the laser distance measuring device that converts the distance to the target,
Time measurement end step for measuring the time difference, saturation determination step for determining whether or not the received signal is saturated, and measurement error caused by saturation if determined to be saturated in this saturation determination step From the time difference measured without correction to the measurement object if it is determined that it is not saturated in the saturation conversion step and the distance conversion step after the correction is correctly performed in the saturation correction step. And a distance conversion step for calculating the distance.

第3の発明に係るレーザ測距方法によれば、第1の発明に係るレーザ測距装置と、同様の作用効果を奏する。   According to the laser distance measuring method according to the third invention, the same effects as the laser distance measuring apparatus according to the first invention are obtained.

また、第4の発明に係るレーザ測距方法は、下記第4の手段を採用する。
前記飽和補正ステップにおいて、受信した受信信号の強度を計測した強度計測値に対する補正量を予め定めて記憶した補正テーブルを参照する。
The laser ranging method according to the fourth invention employs the following fourth means.
In the saturation correction step, a correction table in which a correction amount for the intensity measurement value obtained by measuring the intensity of the received signal is determined and stored is referred to.

第4の発明に係るレーザ測距方法によれば、第2の発明に係るレーザ測距装置と、同様の作用効果を奏する。   According to the laser distance measuring method according to the fourth aspect of the invention, the same effects as those of the laser distance measuring apparatus according to the second aspect of the invention can be achieved.

本発明によれば、信号処理負担を軽くして測距時間を短縮したレーザ測距装置を提供することが可能である。特に、単位時間当たりの測定密度(回数)が多い場合に測距時間を短縮する効果が高い。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the laser ranging apparatus which reduced the signal processing burden and shortened the ranging time. In particular, the effect of shortening the distance measurement time is high when the measurement density (number of times) per unit time is large.

以下、図面を参照して、本発明の一実施形態(以下、「本実施形態」という)について、構成と動作を適宜織り交ぜて説明する。なお、各図において、同一機能は同一符号を付して説明を省略する。   Hereinafter, with reference to the drawings, an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described by appropriately interweaving the configuration and operation. In addition, in each figure, the same function attaches | subjects the same code | symbol and abbreviate | omits description.

図1は、本実施形態に係るレーザ測距装置Eの概略構成を示すブロック図である。図1に示すように、レーザ測距装置Eは計測対象12(図2)へ向けてレーザ光を送信する送信部1と、計測対象12で反射されて戻ってきた受信信号21を受信する受信部2と、この受信部2の出力を分岐して入力する時間計測部3および強度計測部4と、時間計測部3が出力した時間計測値△tに含まれた誤差を補正する補正部5と、を備えて構成されている。補正部5は図示せぬ演算処理手段(以下、「CPU」と略す)と、パルス幅−補正量マップ(以下、「補正テーブル(図6(b))」ともいう)を含んで構成されている。 FIG. 1 is a block diagram showing a schematic configuration of a laser distance measuring device E according to the present embodiment. As shown in FIG. 1, the laser range finder E receives a transmission unit 1 that transmits laser light toward a measurement target 12 (FIG. 2) and a reception signal 21 that is reflected by the measurement target 12 and returned. Unit 2, time measuring unit 3 and intensity measuring unit 4 that branch and input the output of receiving unit 2, and correction unit that corrects an error included in time measurement value Δt 1 output by time measuring unit 3 5. The correction unit 5 includes arithmetic processing means (hereinafter abbreviated as “CPU”) and a pulse width-correction amount map (hereinafter also referred to as “correction table (FIG. 6B))”. Yes.

強度計測部4は受信信号21の強度を計測して強度計測値Pを出力する。補正部5へ入力された時間計測値△tは、強度計測値Pを用いて補正された後、時間計測値△tとして出力される。補正部5には強度計測値Pのパルス幅に対する補正量を予め定めた補正テーブルを具備しており、その「パルス幅−補正量マップ」に沿って、時間計測値△tを時間計測値△tに補正して出力する。すなわち、パルス幅に比例するように信号強度が推定できるという原理を応用している。 Intensity measurement unit 4 outputs an intensity measurement value P 1 by measuring the intensity of the received signal 21. The time measurement value Δt 1 input to the correction unit 5 is corrected using the intensity measurement value P 1 and then output as the time measurement value Δt 3 . The correction unit 5 is provided with a predetermined correction table correction amount for the pulse width of the intensity measured values P 1, that - along the "pulse width correction amount map", time measuring the time measurement value △ t 1 Corrected to a value Δt 3 and output. That is, the principle that the signal intensity can be estimated in proportion to the pulse width is applied.

図2は本実施形態に係るレーザ測距装置Eにおけるスキャナ22周辺の概略構成を示すブロック図である。図2に示すように、レーザ測距装置Eは送信部1から計測対象12へレーザ光による送信信号11を送信して受信信号2を受信する際、所定の測定エリアを走査するためのポリゴンミラーでなるスキャナ22を介在させる。すなわち、送信部1から送信された送信信号11は、まずスキャナ22に投射され、適宜方向に走査するように反射されて計測対象12へ投射される。   FIG. 2 is a block diagram showing a schematic configuration around the scanner 22 in the laser distance measuring device E according to the present embodiment. As shown in FIG. 2, when the laser distance measuring device E transmits a transmission signal 11 by laser light from the transmission unit 1 to the measurement object 12 and receives the reception signal 2, a polygon mirror for scanning a predetermined measurement area. Is interposed. That is, the transmission signal 11 transmitted from the transmission unit 1 is first projected onto the scanner 22, reflected so as to scan in an appropriate direction, and projected onto the measurement object 12.

計測対象12で反射されて戻ってきた受信信号21もスキャナ22に投射され適切に反射されて受信部2へ向かう。受信部2で受信された受信信号21は信号処理部23、時間計測部3、制御部25へ送られる。制御部25は時間計測部3から得られた時間計測値△tまたはそれを補正した時間計測値△tを用いてスキャナ22を制御する。 The reception signal 21 reflected and returned from the measurement object 12 is also projected onto the scanner 22 and appropriately reflected toward the reception unit 2. The reception signal 21 received by the reception unit 2 is sent to the signal processing unit 23, the time measurement unit 3, and the control unit 25. Control unit 25 controls the scanner 22 by using the time measurement value △ t 1 or the corrected time measurements △ t 3 obtained from the time measuring unit 3.

図3は本実施形態に係るレーザ測距装置Eにおける単純閾値による誤差の説明図である。図3に示すようにレーザ測距装置Eにおける受信信号21(図1,図4)を単一固定的な単純閾値32によって検出する際、例えば正弦波の昇り傾斜のタイミングで検出する場合、同一測定距離であっても信号強度が強い程早く検出されるため真の測定距離よりも近くであるかのように誤認され、逆に信号強度が弱い程遅く検出されるため、真の測定距離よりも遠くであるかのように誤認される。   FIG. 3 is an explanatory diagram of an error due to a simple threshold in the laser distance measuring device E according to the present embodiment. As shown in FIG. 3, when the received signal 21 (FIGS. 1 and 4) in the laser distance measuring device E is detected by the single fixed simple threshold 32, for example, when detecting at the timing of the rising slope of the sine wave, the same. Even if it is a measurement distance, it is detected earlier as the signal strength is stronger, so it is mistaken as if it is closer to the true measurement distance, and conversely, it is detected later as the signal strength is weaker. Are misunderstood as if they were far away.

また、レーザ測距装置Eにおける受信信号21を単一固定的な単純閾値32によって検出すると、受信信号21の波高の変動に伴う時間計測誤差(ジッター)が発生する。すなわち、受信信号21が過大入力である場合、例えば増幅器のダイナミックレンジからはみ出せば、増幅器の電源電圧より大きな増幅出力を得ることはできずに飽和信号31に示す歪みを伴って後段階の信号処理部23へ送られることになり、当然に測定誤差の原因になる。   Further, when the received signal 21 in the laser distance measuring device E is detected by a single fixed simple threshold 32, a time measurement error (jitter) accompanying a fluctuation in the wave height of the received signal 21 occurs. That is, when the received signal 21 is an excessive input, for example, if it exceeds the dynamic range of the amplifier, an amplified output larger than the power supply voltage of the amplifier cannot be obtained, and the subsequent signal processing with distortion shown in the saturated signal 31 occurs. It will be sent to the unit 23, which naturally causes measurement errors.

図4は本実施形態に係るレーザ測距装置Eにおけるコンスタントフラクションディスクリミネータ(以下、「CFD」と略す)の説明図であり、(a)ブロック図、(b)信号波形図である。図4(a)ブロック図に示すように、受信信号21は分岐して遅延回路41および減衰回路42へと入力される。これら遅延回路41および減衰回路42の出力端子はそれぞれがコンパレータ43に接続されている。   4A and 4B are explanatory diagrams of a constant fraction discriminator (hereinafter abbreviated as “CFD”) in the laser distance measuring device E according to the present embodiment, and FIG. 4A is a block diagram and FIG. 4B is a signal waveform diagram. As shown in the block diagram of FIG. 4A, the received signal 21 is branched and input to the delay circuit 41 and the attenuation circuit 42. The output terminals of the delay circuit 41 and the attenuation circuit 42 are connected to the comparator 43, respectively.

実際には、コンパレータ43の出力端子は図示せぬD型フリップフロップのD端子へ入力され、受信信号21の波高に依存しないタイミング情報をD型フリップフロップのQ端子から抽出する。D型フリップフロップのQ端子が図示せぬカウンタに接続され、そのカウンタがレーザ測距装置Eの送信部1から出力される送信信号11の投光タイミングでリセットされてからの時間を計測することにより、時間計測部3は時間計測カウンタとして機能する。ただし、この時間計測カウンタに関しては、既にワンチップ化されたものが実用化されているので、さらなる図解説明は省略する。   Actually, the output terminal of the comparator 43 is input to the D terminal of a D-type flip-flop (not shown), and timing information independent of the wave height of the received signal 21 is extracted from the Q terminal of the D-type flip-flop. The Q terminal of the D-type flip-flop is connected to a counter (not shown), and the time after the counter is reset at the projection timing of the transmission signal 11 output from the transmitter 1 of the laser distance measuring device E is measured. Thus, the time measuring unit 3 functions as a time measuring counter. However, this time measurement counter, which has already been made into one chip, has been put into practical use, and further illustration will be omitted.

遅延回路41の出力する遅延信号41aと、減衰回路42の出力する減衰信号42aはコンパレータ43に入力されて比較される。ここで、図4(b)信号波形図に示すように、CFDを用いた時間計測部3は受信信号21の波高に依存しないタイミング情報を抽出可能であるため、遅延信号41aと減衰信号42aの交点45aの位置はそれぞれの信号強度に依存することなく常に一定である。   The delay signal 41a output from the delay circuit 41 and the attenuation signal 42a output from the attenuation circuit 42 are input to the comparator 43 and compared. Here, as shown in the signal waveform diagram of FIG. 4B, the time measuring unit 3 using the CFD can extract timing information independent of the wave height of the received signal 21, so that the delay signal 41a and the attenuation signal 42a can be extracted. The position of the intersection 45a is always constant without depending on the signal intensity.

このように時間計測部4が出力する時間計測値△tに含まれる時間計測誤差を抑制するため、CFDは常時作動している。しかし、CFDでの抑制限度を超える時間計測誤差が発生した時に限定して補正部5が作動して補正する。補正部5が作動する際には、CPUがROMから読み出した補正テーブル(図6(b))を参照して補正する。 In this way, the CFD is always operating in order to suppress the time measurement error included in the time measurement value Δt 1 output from the time measurement unit 4. However, the correction unit 5 operates and corrects only when a time measurement error exceeding the suppression limit in the CFD occurs. When the correction unit 5 operates, the CPU performs correction with reference to the correction table (FIG. 6B) read from the ROM.

その時、CPUには相当の負担がかかると共に演算に所定の時間を要するので、CFDでの抑制限度を超えない時は補正部5を作動させない。このようにして、測定誤差を補正するための信号処理負担を軽減することにより、測距時間を短縮することが可能となる。特に、単位時間当たりの測定密度が多い場合に効果的であるようにする。   At that time, since a considerable burden is imposed on the CPU and a predetermined time is required for the calculation, the correction unit 5 is not operated when the suppression limit in the CFD is not exceeded. In this way, the distance measurement time can be shortened by reducing the signal processing burden for correcting the measurement error. In particular, it is effective when the measurement density per unit time is large.

図5は本実施形態に係るレーザ測距装置Eにおける飽和信号の交点を示す波形図である。図5に示すように、飽和した遅延信号41bと、同じく飽和した減衰信号42bの交点45bは、本来これらの信号が飽和していなければ得られたであろう真の交点45a(図4(b))よりも手前で検出されるので、この場合も真の測定距離よりも近く誤認される。   FIG. 5 is a waveform diagram showing intersections of saturation signals in the laser distance measuring device E according to the present embodiment. As shown in FIG. 5, the intersection 45b of the saturated delayed signal 41b and the saturated attenuation signal 42b is a true intersection 45a (FIG. 4 (b) that would otherwise have been obtained if these signals were not saturated. )) Is detected before this, and in this case as well, it is misunderstood closer than the true measurement distance.

図6は本実施形態に係るレーザ測距装置Eにおける補正方法の説明図であり、(a)飽和信号の波形図、(b)パルス幅と計測誤差の関係を示すグラフである。図6(a)に示すように、信号強度が強い順の飽和信号61c,62c,63cにおけるパルス幅61d,62d,63dも広いことが確認できる。このことから、信号強度が強くパルス幅が広い程、計測誤差も大きくなることがわかっている。   6A and 6B are explanatory diagrams of a correction method in the laser distance measuring device E according to the present embodiment, in which FIG. 6A is a waveform diagram of a saturation signal, and FIG. 6B is a graph showing a relationship between a pulse width and a measurement error. As shown in FIG. 6A, it can be confirmed that the pulse widths 61d, 62d, and 63d of the saturated signals 61c, 62c, and 63c in order of increasing signal intensity are also wide. From this, it is known that the measurement error increases as the signal intensity increases and the pulse width increases.

図6(b)に示すように、パルス幅と計測誤差の関係をバックデータとして保持しておくことにより、図1に示した補正部5において、正確な補正を施すことが可能となる。すなわち、パルス幅と計測誤差の関係をバックデータとして利用可能に記憶した「パルス幅−補正量マップ」に沿って、時間計測値△tを時間計測値△tに補正して出力する。 As shown in FIG. 6B, by maintaining the relationship between the pulse width and the measurement error as back data, the correction unit 5 shown in FIG. 1 can perform accurate correction. That is, the time measurement value Δt 1 is corrected to the time measurement value Δt 3 along with the “pulse width-correction amount map” stored so that the relationship between the pulse width and the measurement error can be used as back data.

図7は本実施形態に係るレーザ測距装置Eにおける飽和補正の手順を示すフローチャートである。図7に示すようにレーザ測距装置Eにおいて、時間計測終了(ステップS1)についで、受信信号21が強度計測部4において飽和しているか否か?を判別する飽和判別(ステップS2)が続き、この飽和判別(ステップS2)において飽和している(Yes)と判別されたならば飽和補正(ステップS3)へ進み、正しく補正された後に距離換算(ステップS4)を実行する。一方、飽和判別(ステップS2)において飽和していない(No)と判別されたならば、補正することなくそのまま距離換算(ステップS4)を実行する。   FIG. 7 is a flowchart showing the procedure of saturation correction in the laser distance measuring device E according to this embodiment. As shown in FIG. 7, in the laser distance measuring device E, whether or not the received signal 21 is saturated in the intensity measuring unit 4 after the time measurement is finished (step S1)? Saturation determination (step S2) is continued, and if it is determined in this saturation determination (step S2) that it is saturated (Yes), the process proceeds to saturation correction (step S3), and after correct correction, distance conversion ( Step S4) is executed. On the other hand, if it is determined in the saturation determination (step S2) that it is not saturated (No), the distance conversion (step S4) is executed without correction.

なお、上述した実施の形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。例えば、本発明にいう「補正テーブル」または「パルス幅−補正量マップ」の呼称にかかわりなく、図1における補正部5および図6(b)に示したように、受光強度(受信信号21)に対応する時間幅と補正時間との関係を、実験等により予め定めてROM等に記憶したものであれば、何れを用いても構わない。さらに、その記憶媒体もROMに限定することなく自由である。   The various shapes and combinations of the constituent members shown in the above-described embodiments are merely examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention. For example, regardless of the designation of “correction table” or “pulse width-correction amount map” in the present invention, as shown in the correction unit 5 in FIG. 1 and FIG. 6B, the received light intensity (received signal 21). Any relationship may be used as long as the relationship between the time width corresponding to the above and the correction time is stored in a ROM or the like in advance by experiments or the like. Further, the storage medium is not limited to the ROM and is free.

要するに、CFDでの抑制限度を超える時間計測誤差を補正する補正部5を備え、受信部2で受信された受信信号21を強度計測部4が計測したと強度計測値Pが所定値を超えた時にのみ補正部5を作動させて、不必要な演算処理手段CPUの処理負担を軽減することにより、パフォーマンスを向上させて測距速度を高めるようにしたレーザ測距装置Eに関する技術はすべて本発明に含まれる。 In short, when the intensity measuring unit 4 measures the received signal 21 received by the receiving unit 2, the intensity measuring value P 1 exceeds a predetermined value. All of the techniques related to the laser distance measuring device E that improve the performance and increase the distance measuring speed by activating the correction unit 5 only at the time and reducing the processing burden of unnecessary arithmetic processing means CPU. Included in the invention.

上記実施形態では、レーザ光を用いたレーザレーダセンサを採用したが、電磁波や光(ミリ波、X線等)や超音波を用いるものであってもよい。   In the above embodiment, a laser radar sensor using laser light is employed, but electromagnetic waves, light (millimeter waves, X-rays, etc.) and ultrasonic waves may be used.

本実施形態に係るレーザ測距装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the laser ranging apparatus which concerns on this embodiment. 本実施形態に係るレーザ測距装置におけるスキャナ周辺の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the scanner periphery in the laser distance measuring device which concerns on this embodiment. 本実施形態に係るレーザ測距装置における単純閾値による誤差の説明図である。It is explanatory drawing of the error by the simple threshold value in the laser distance measuring device which concerns on this embodiment. 本実施形態に係るレーザ測距装置におけるコンスタントフラクションディスクリミネータCFDの説明図であり、(a)ブロック図、(b)信号波形図である。It is explanatory drawing of the constant fraction discriminator CFD in the laser ranging apparatus which concerns on this embodiment, (a) A block diagram, (b) It is a signal waveform diagram. 本実施形態に係るレーザ測距装置における飽和信号の交点を示す波形図である。It is a wave form diagram which shows the intersection of the saturation signal in the laser distance measuring device which concerns on this embodiment. 本実施形態に係るレーザ測距装置における補正方法の説明図であり、(a)飽和信号の波形図、(b)パルス幅と計測誤差の関係を示すグラフである。It is explanatory drawing of the correction method in the laser ranging apparatus which concerns on this embodiment, (a) Waveform figure of a saturation signal, (b) It is a graph which shows the relationship between a pulse width and a measurement error. 本実施形態に係るレーザ測距装置における飽和補正の手順を示すフローチャートである。It is a flowchart which shows the procedure of the saturation correction | amendment in the laser ranging apparatus which concerns on this embodiment.

符号の説明Explanation of symbols

1 送信部
3 時間計測部
4 強度計測部
5 補正部
12 計測対象
21受信信号
E レーザ測距装置
△t 時間計測値
強度計測
CFD コンスタントフラクションディスクリミネータ
DESCRIPTION OF SYMBOLS 1 Transmission part 3 Time measurement part 4 Intensity measurement part 5 Correction | amendment part 12 Measurement object 21 Received signal E Laser ranging device Δt 1 hour measurement value P 1 Intensity measurement CFD Constant fraction discriminator

Claims (4)

計測対象へ向けてレーザ光を送信する送信部と、
前記計測対象で反射されて戻ってきた受信信号を受信する受信部と、
前記受信部の出力端に接続された時間計測部および強度計測部と、
前記時間計測部は前記受信信号の波高に依存しないタイミング情報を抽出可能なコンスタントフラクションディスクリミネータと、
前記コンスタントフラクションディスクリミネータでの抑制限度を超える時間計測誤差を補正する補正部を備え、
前記強度計測値が所定値を超えた時にのみ前記補正部を作動させることを特徴とするレーザ測距装置。
A transmitter for transmitting laser light toward the measurement target;
A receiving unit for receiving a reception signal reflected back from the measurement object;
A time measuring unit and an intensity measuring unit connected to the output end of the receiving unit;
The time measuring unit is a constant fraction discriminator capable of extracting timing information independent of the wave height of the received signal;
A correction unit that corrects a time measurement error that exceeds the suppression limit in the constant fraction discriminator,
The laser distance measuring device, wherein the correction unit is operated only when the intensity measurement value exceeds a predetermined value.
前記補正部には前記強度計測部の計測した強度計測値に対する補正量を予め定めて参照自在に記憶した補正テーブルと、
前記補正テーブルを参照して前記時間計測誤差を補正する演算処理手段と、を備えたことを特徴とする請求項1に記載のレーザ測距装置。
In the correction unit, a correction table in which a correction amount for the intensity measurement value measured by the intensity measurement unit is determined in advance and stored for reference, and
2. The laser distance measuring device according to claim 1, further comprising arithmetic processing means for correcting the time measurement error with reference to the correction table.
計測対象へ向けてレーザ光を送信し、
前記計測対象で反射されて戻ってきた受信信号を受信し、
前記レーザ光を送信した送信信号と前記受信信号との時間差から光速との関係式により計測対象までの距離を換算するレーザ測距装置において、
前記時間差を計測する時間計測終了ステップと、
前記受信信号が飽和しているか否かを判別する飽和判別ステップと、
この飽和判別ステップにおいて飽和していると判別されたならば飽和が原因による計測誤差を補正する飽和補正ステップと、
前記飽和補正ステップにより正しく補正された後に距離換算ステップと、
前記飽和判別ステップにおいて飽和していないと判別されたならば補正することなく計測された時間差から計測対象までの距離を算出する距離換算ステップと、を備えたことを特徴とするレーザ測距方法。
Send laser light to the measurement object,
Receive the received signal reflected back from the measurement object,
In the laser distance measuring device that converts the distance to the measurement object by the relational expression of the speed of light from the time difference between the transmission signal and the reception signal that transmitted the laser light,
A time measurement ending step for measuring the time difference; and
A saturation determination step of determining whether or not the received signal is saturated;
A saturation correction step for correcting a measurement error due to saturation if it is determined that it is saturated in this saturation determination step;
A distance conversion step after being correctly corrected by the saturation correction step;
A laser distance measuring method comprising: a distance conversion step of calculating a distance to a measurement object from a time difference measured without correction if it is determined in the saturation determination step that it is not saturated.
前記飽和補正ステップにおいて、
受信した受信信号の強度を計測した強度計測値に対する補正量を予め定めて記憶した補正テーブルを参照することを特徴とする請求項3に記載のレーザ測距方法。
In the saturation correction step,
4. The laser distance measuring method according to claim 3, wherein a correction table in which a correction amount for an intensity measurement value obtained by measuring the intensity of the received signal is determined and stored in advance is referred to.
JP2007109738A 2007-04-18 2007-04-18 Laser range finding device and laser range finding method Pending JP2008267920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109738A JP2008267920A (en) 2007-04-18 2007-04-18 Laser range finding device and laser range finding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109738A JP2008267920A (en) 2007-04-18 2007-04-18 Laser range finding device and laser range finding method

Publications (1)

Publication Number Publication Date
JP2008267920A true JP2008267920A (en) 2008-11-06

Family

ID=40047629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109738A Pending JP2008267920A (en) 2007-04-18 2007-04-18 Laser range finding device and laser range finding method

Country Status (1)

Country Link
JP (1) JP2008267920A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275331A (en) * 2007-04-25 2008-11-13 Ihi Corp Laser radar device and its ranging method
JP2008275379A (en) * 2007-04-26 2008-11-13 Ihi Corp Laser range finder and laser range finding method
JP2012122951A (en) * 2010-12-10 2012-06-28 Denso Corp Distance measuring device and distance measuring program
JP2014062767A (en) * 2012-09-20 2014-04-10 Omron Automotive Electronics Co Ltd Light receiving circuit, and laser radar
KR101483041B1 (en) 2012-09-04 2015-01-19 광운대학교 산학협력단 Constant fraction discriminator time pickoff apparatus and method thereof
JP2017110610A (en) * 2015-12-18 2017-06-22 株式会社Ihi Non-contact wing vibration meter and method
KR20180064826A (en) * 2016-12-06 2018-06-15 전자부품연구원 Apparatus and method for reducing measurement error due to signal size and LIDAR sensor system using the same
JP2018169215A (en) * 2017-03-29 2018-11-01 株式会社トプコン Three-dimensional measuring device
KR20180130381A (en) * 2017-05-29 2018-12-07 광주과학기술원 Lidar system
CN110809704A (en) * 2017-05-08 2020-02-18 威力登激光雷达有限公司 LIDAR data acquisition and control
CN112986962A (en) * 2021-02-21 2021-06-18 中山大学 Transmitting power regulating circuit and method applied to laser transmitting module
CN113050104A (en) * 2021-04-02 2021-06-29 中冶南方工程技术有限公司 Vehicle position measuring method based on position estimation, terminal equipment and storage medium
JP2021518549A (en) * 2018-03-20 2021-08-02 パノセンス インコーポレイテッド Selection of LIDAR pulse detector according to pulse type
JPWO2021255774A1 (en) * 2020-06-15 2021-12-23

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109840A (en) * 1992-09-24 1994-04-22 Mazda Motor Corp Distance detection apparatus
JPH06118173A (en) * 1992-10-05 1994-04-28 Nec Corp Range finder
JPH06249962A (en) * 1993-03-01 1994-09-09 Toyota Motor Corp Radar for vehicle
JPH07191143A (en) * 1993-12-27 1995-07-28 Mazda Motor Corp Distance measuring device
JPH0821872A (en) * 1994-07-07 1996-01-23 Nec Corp Laser radar device
JPH08179032A (en) * 1994-12-20 1996-07-12 Nikon Corp Distance measuring device
JPH09236661A (en) * 1995-12-27 1997-09-09 Denso Corp Distance measuring method and distance measuring device
JPH1020035A (en) * 1996-02-27 1998-01-23 Sick Ag Laser distance measuring equipment
JP2008070270A (en) * 2006-09-14 2008-03-27 Hokuyo Automatic Co Range finder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109840A (en) * 1992-09-24 1994-04-22 Mazda Motor Corp Distance detection apparatus
JPH06118173A (en) * 1992-10-05 1994-04-28 Nec Corp Range finder
JPH06249962A (en) * 1993-03-01 1994-09-09 Toyota Motor Corp Radar for vehicle
JPH07191143A (en) * 1993-12-27 1995-07-28 Mazda Motor Corp Distance measuring device
JPH0821872A (en) * 1994-07-07 1996-01-23 Nec Corp Laser radar device
JPH08179032A (en) * 1994-12-20 1996-07-12 Nikon Corp Distance measuring device
JPH09236661A (en) * 1995-12-27 1997-09-09 Denso Corp Distance measuring method and distance measuring device
JPH1020035A (en) * 1996-02-27 1998-01-23 Sick Ag Laser distance measuring equipment
JP2008070270A (en) * 2006-09-14 2008-03-27 Hokuyo Automatic Co Range finder

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275331A (en) * 2007-04-25 2008-11-13 Ihi Corp Laser radar device and its ranging method
JP2008275379A (en) * 2007-04-26 2008-11-13 Ihi Corp Laser range finder and laser range finding method
JP2012122951A (en) * 2010-12-10 2012-06-28 Denso Corp Distance measuring device and distance measuring program
KR101483041B1 (en) 2012-09-04 2015-01-19 광운대학교 산학협력단 Constant fraction discriminator time pickoff apparatus and method thereof
JP2014062767A (en) * 2012-09-20 2014-04-10 Omron Automotive Electronics Co Ltd Light receiving circuit, and laser radar
JP2017110610A (en) * 2015-12-18 2017-06-22 株式会社Ihi Non-contact wing vibration meter and method
KR20180064826A (en) * 2016-12-06 2018-06-15 전자부품연구원 Apparatus and method for reducing measurement error due to signal size and LIDAR sensor system using the same
KR101915858B1 (en) * 2016-12-06 2018-11-06 전자부품연구원 Apparatus and method for reducing measurement error due to signal size and LIDAR sensor system using the same
JP2018169215A (en) * 2017-03-29 2018-11-01 株式会社トプコン Three-dimensional measuring device
CN110809704A (en) * 2017-05-08 2020-02-18 威力登激光雷达有限公司 LIDAR data acquisition and control
JP2020519881A (en) * 2017-05-08 2020-07-02 ベロダイン ライダー, インク. LIDAR data collection and control
KR102013785B1 (en) * 2017-05-29 2019-08-23 광주과학기술원 Lidar system
KR20180130381A (en) * 2017-05-29 2018-12-07 광주과학기술원 Lidar system
JP2021518549A (en) * 2018-03-20 2021-08-02 パノセンス インコーポレイテッド Selection of LIDAR pulse detector according to pulse type
US11681029B2 (en) 2018-03-20 2023-06-20 Zoox, Inc. Detecting a laser pulse edge for real time detection
JP7321178B2 (en) 2018-03-20 2023-08-04 ズークス インコーポレイテッド Choosing a LIDAR Pulse Detector According to Pulse Type
JPWO2021255774A1 (en) * 2020-06-15 2021-12-23
JP7094463B2 (en) 2020-06-15 2022-07-01 三菱電機株式会社 Distance measuring device, distance measuring method, and laser radar device
CN112986962A (en) * 2021-02-21 2021-06-18 中山大学 Transmitting power regulating circuit and method applied to laser transmitting module
CN112986962B (en) * 2021-02-21 2023-10-10 中山大学 Transmitting power adjusting circuit and method applied to laser transmitting module
CN113050104A (en) * 2021-04-02 2021-06-29 中冶南方工程技术有限公司 Vehicle position measuring method based on position estimation, terminal equipment and storage medium

Similar Documents

Publication Publication Date Title
JP2008267920A (en) Laser range finding device and laser range finding method
CN109521435B (en) Distance measuring device
US20210325515A1 (en) Transmit signal design for an optical distance measurement system
JP4894360B2 (en) Radar equipment
JP5596011B2 (en) Photoelectric sensor, object detection and distance measuring method
WO2019163673A1 (en) Optical distance measurement device
JP4771795B2 (en) Optical distance measuring device
JP5716719B2 (en) Optical radar device
US11397251B2 (en) Distance measuring device
US11506764B2 (en) System and methods for ranging operations using multiple signals
JP2015200555A (en) Distance metrology device
JP2013096742A (en) Radar apparatus
US5523835A (en) Distance measuring equipment
JP2003167054A (en) Distance measuring method and distance measuring device
US7408628B2 (en) Radar apparatus
US20200041651A1 (en) System and method for improving range resolution in a lidar system
JP2008275379A (en) Laser range finder and laser range finding method
US20230341529A1 (en) Target detection method, lidar and storage medium
JP5602554B2 (en) Optical distance measuring device
JP2015194356A (en) Distance measurement device
JP3193148B2 (en) Distance detection device
JP6260418B2 (en) Distance measuring device, distance measuring method, and distance measuring program
JP7221029B2 (en) Error correction device, distance measuring device
JP7005722B2 (en) Distance measuring device
JPH07198846A (en) Distance measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

A131 Notification of reasons for refusal

Effective date: 20120327

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121002

Free format text: JAPANESE INTERMEDIATE CODE: A02