JPH07191143A - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JPH07191143A
JPH07191143A JP5333180A JP33318093A JPH07191143A JP H07191143 A JPH07191143 A JP H07191143A JP 5333180 A JP5333180 A JP 5333180A JP 33318093 A JP33318093 A JP 33318093A JP H07191143 A JPH07191143 A JP H07191143A
Authority
JP
Japan
Prior art keywords
time
light receiving
unit
light
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5333180A
Other languages
Japanese (ja)
Other versions
JP3249003B2 (en
Inventor
Tsukasa Harada
司 原田
Kunihiko Matsumura
邦彦 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP33318093A priority Critical patent/JP3249003B2/en
Publication of JPH07191143A publication Critical patent/JPH07191143A/en
Application granted granted Critical
Publication of JP3249003B2 publication Critical patent/JP3249003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To eliminate a measurement error caused in accordance with an intensity change and a saturation degree of a light receiving pulse signal due to dispersion of radiated laser beams by providing a time correcting part for applying specified correction to a required time measured by a time measuring part. CONSTITUTION:A start pulse is outputted from a pulse generating part 21 of a time measuring unit 20 to an LD drive circuit 9 of a laser radar head 1. Then, the circuit 9 drives an LD being a light emitting element 2 by means of a trigger of the start pulse, and the laser pulse is received by either or both of light receiving elements 3, 4 to generate a specified output current which is amplified by a light receiving circuit 10 and outputs a stop pulse to a time measuring part 22. The measuring part 22 measures a time interval between a start pulse from the pulse generating part 21 and a stop pulse from the light receiving circuit 10 and outputs it as a time data to a distance measuring part 31, which calculates a distance to a preceding vehicle based on the time data to output it as a distance data to a control unit ASC 34.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、例えば車両に搭載し
て車両の進行方向に存在する先行車や障害物までの距離
を測定するのに有用な光学式の距離計測装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical distance measuring device mounted on a vehicle and useful for measuring the distance to a preceding vehicle or an obstacle existing in the traveling direction of the vehicle.

【0002】[0002]

【従来の技術】最近では上記車両の進行方向に存在する
先行車や障害物を検出し、先行車や障害物等までの距離
を測定する距離計測装置として、レーザビームを利用し
た光学式の距離計測装置が多く使用されるようになって
いる。
2. Description of the Related Art Recently, as a distance measuring device for detecting a preceding vehicle or an obstacle existing in the traveling direction of the vehicle and measuring a distance to the preceding vehicle or the obstacle, an optical distance using a laser beam is used. Many measuring devices are used.

【0003】一般に、この種のレーザ測距装置は、単一
短パルスのレーザ光を測距対象物に照射してその反射光
を検出し、当該レーザ光の送信時とその反射光受信時と
の間の時間間隔が光の往復時間である事から、それを計
時することによって測距を行う。
Generally, this type of laser distance measuring apparatus irradiates a distance measuring object with a laser beam of a single short pulse, detects the reflected light thereof, and transmits the laser light and receives the reflected light. Since the time interval between is the round trip time of light, distance measurement is performed by measuring it.

【0004】しかし、上記測距対象物から反射して測距
装置に捕らえられた反射光は、どうしても減衰してノイ
ズを含んでいるので、同ノイズによる誤測距を避けるた
めには受信回路に所定の閾値を有する波高弁別器を用い
て正確に信号成分のみを取り出す必要がある。
However, the reflected light reflected from the object to be measured and captured by the distance measuring device is inevitably attenuated and contains noise. Therefore, in order to avoid erroneous distance measurement due to the noise, the receiving circuit should be provided. It is necessary to accurately extract only the signal component by using a wave height discriminator having a predetermined threshold value.

【0005】そこで、従来一般のレーザ式距離計測装置
は、そのような信号処理回路を送信、受信回路にもち、
各々の波高弁別された立ち上がり点の時間間隔を計時す
るようにしていた(例えば特開昭62−134584号
公報参照)。
Therefore, a conventional general laser distance measuring device has such a signal processing circuit as a transmitting and receiving circuit,
The time intervals of the rising points discriminated by the respective wave heights are measured (see, for example, Japanese Patent Laid-Open No. 62-134584).

【0006】[0006]

【発明が解決しようとする課題】ところが、該従来のレ
ーザ式距離計測装置のように、受信信号を或る基準レベ
ルの波高弁別された立ち上がり点の時間間隔を計時する
ようにすると、波高弁別器の当該基準値は一定であるか
ら、ガウス型の時間波形をもつ受信光に強度変化がある
と、波高弁別された立ち上がり点は時間的に変化する
(遅れる)。通常、送信光の強度は一定に出来るが、受信
光は、測距対象物までの距離に対応した光の拡散度合や
途中の大気の通過率により大きく変化するため、図9に
示すように、その立ち上がり点は受信光のノイズから分
離できる最も弱い立ち上がり部から最大強度のピーク部
まで傾斜状に変化する。
However, like the conventional laser distance measuring device, when the received signal is timed at the time intervals of the rising points at which the wave height is discriminated at a certain reference level, the wave height discriminator. Since the reference value of is constant, if the intensity of the received light with a Gaussian time waveform changes, the rising point of the pulse height discrimination changes with time.
(I'll be late). Normally, the intensity of the transmitted light can be made constant, but the received light greatly changes depending on the degree of diffusion of light corresponding to the distance to the object to be measured and the passage rate of air in the middle, so that as shown in FIG. The rising point changes in an inclined shape from the weakest rising part that can be separated from the noise of the received light to the peak part of the maximum intensity.

【0007】従って従来のこの種のレーザ式距離計測装
置の測距精度は、測距に用いるパルスレーザ光の受光強
度に応じた立ち上がり時間により定まり、高精度の距離
計測ができない問題があった。
Therefore, the distance measuring accuracy of the conventional laser type distance measuring device is determined by the rising time according to the light receiving intensity of the pulsed laser light used for the distance measuring, and there is a problem that the distance measuring cannot be performed with high accuracy.

【0008】[0008]

【課題を解決するための手段】本願の請求項1〜4各項
記載の発明は、それぞれ上記従来の問題点を解決するこ
とを目的としてなされたものであって、各々次のように
構成されている。
The invention described in each of claims 1 to 4 of the present application has been made for the purpose of solving the above-mentioned conventional problems, and is configured as follows. ing.

【0009】(1) 請求項1記載の発明の構成 該発明の距離計測装置は、対象物に向けてパルスレーザ
光を放射する発光部と、該発光部から放射されたパルス
レーザ光の内上記対象物を介して反射されるパルスレー
ザ光を受光して受光パルス信号を出力する受光部と、該
受光部から出力される受光パルス信号のレベルが所定の
基準レベルを越えた時点を上記反射レーザ光の到達時刻
と判定して上記発光部のレーザ光放射時刻から当該到達
時刻までの所要時間を計測する時間計測部と、該時間計
測部で計測された上記所要時間に基いて上記発光部又は
受光部から対象物までの距離を計測する距離計測部とを
備えてなる距離計測装置において、上記時間計測部で計
測された所要時間に所定の補正を加える時間補正部を設
けたことを特徴としている。
(1) Structure of the Invention According to Claim 1 The distance measuring device of the present invention includes: a light emitting section which emits a pulse laser beam toward an object; and a pulse laser beam which is emitted from the light emitting section. The light receiving section that receives the pulsed laser light reflected through the object and outputs the light receiving pulse signal, and the reflection laser when the level of the light receiving pulse signal output from the light receiving section exceeds a predetermined reference level. A time measuring unit that determines the arrival time of light and measures the required time from the laser light emission time of the light emitting unit to the arrival time, and the light emitting unit based on the required time measured by the time measuring unit or A distance measuring device comprising a distance measuring unit for measuring a distance from a light receiving unit to an object, characterized in that a time correction unit for adding a predetermined correction to the required time measured by the time measuring unit is provided. There is.

【0010】(2) 請求項2記載の発明の構成 該発明の距離計測装置は、上記請求項1記載の発明の構
成を基本とし、同構成において、時間補正部が、発光部
から出力される受光パルス信号のレベルを所定の基準レ
ベルと比較し、同受光パルス信号の基準レベル以上のパ
ルス幅が大きい時ほど補正時間を小さくするように構成
されていることを特徴としている。
(2) Configuration of the Invention According to Claim 2 The distance measuring device according to the invention is based on the configuration of the invention according to claim 1, in which the time correction section is output from the light emitting section. It is characterized in that the level of the received light pulse signal is compared with a predetermined reference level, and the correction time is reduced as the pulse width of the received light pulse signal is larger than the reference level.

【0011】(3) 請求項3記載の発明の構成 該発明の距離計測装置は、上記請求項1又は2記載の発
明の構成を基本とし、同構成において、受光部から出力
される受光パルス信号の飽和状態を判定する飽和判定部
を設け、上記受光パルス信号の飽和状態が判定された時
には時間補正部による所要時間の補正動作をキャンセル
するようにしたことを特徴としている。
(3) Structure of the Invention According to Claim 3 The distance measuring device according to the invention is based on the structure of the invention according to claim 1 or 2, and in the same structure, a light receiving pulse signal output from the light receiving section. The saturation determining unit for determining the saturation state is provided, and when the saturation state of the light receiving pulse signal is determined, the correction operation for the required time by the time correction unit is canceled.

【0012】(4) 請求項4記載の発明の構成 該発明の距離計測装置は、上記請求項1又は2記載の発
明の構成を基本とし、同構成において、時間計測部で計
測された所要時間が大きい時は小さい時に比べて時間補
正部の補正時間を大きくするようにしている。
(4) Structure of the Invention of Claim 4 The distance measuring device of the invention is based on the structure of the invention of claim 1 or 2, and in the same structure, the required time measured by the time measuring unit. When is large, the correction time of the time correction unit is made longer than when it is small.

【0013】[0013]

【作用】そして、本願の上記請求項1〜4各項記載の発
明は、当該各構成に対応して各々次のように作用する。
The invention described in each of the above-mentioned claims 1 to 4 of the present application operates as follows corresponding to each of the constitutions.

【0014】(1) 請求項1記載の発明の作用 該発明の距離計測装置の構成では、上述のように、対象
物に向けてパルスレーザ光を放射する発光部と、該発光
部から放射されたパルスレーザ光の内上記対象物を介し
て反射されるパルスレーザ光を受光して受光パルス信号
を出力する受光部と、該受光部から出力受光パルス信号
のレベルが所定の基準レベルを越えた時点を上記反射レ
ーザ光の到達時刻と判定して上記発光部のレーザ光放射
時刻から当該到達時刻までの所要時間を計測する時間計
測部と、該時間計測部で計測された上記所要時間に基い
て上記発光部又は受光部から対象物までの距離を計測す
る距離計測部とを備えてなる距離計測装置において、上
記時間計測部で計測された所要時間に所定の補正を加え
る時間補正部を設けており、時間計測部で計測された発
光部ら受光部までのレーザ光の到達所要時間に適切な補
正がなされる。
(1) Operation of the Invention According to Claim 1 In the configuration of the distance measuring device of the invention, as described above, the light emitting section for emitting the pulsed laser beam toward the object and the light emitting section for emitting the pulsed laser beam. Of the pulsed laser light, which receives the pulsed laser light reflected through the object and outputs a received light pulse signal, and the level of the received light pulse signal output from the light receiver exceeds a predetermined reference level. A time measuring unit that determines the time point as the arrival time of the reflected laser light and measures the required time from the laser light emission time of the light emitting unit to the arrival time, and based on the necessary time measured by the time measuring unit. And a distance measuring device including a distance measuring unit that measures a distance from the light emitting unit or the light receiving unit to an object, and a time correcting unit that adds a predetermined correction to the required time measured by the time measuring unit is provided. And The time required for the laser light to reach the light receiving unit from the light emitting unit measured by the time measuring unit is appropriately corrected.

【0015】したがって、距離の遠近によるレーザ光の
拡散度の違いによる受光強度の相違等に拘わらず正確な
距離の計測が可能となる。
Therefore, it is possible to measure the distance accurately regardless of the difference in the received light intensity due to the difference in the diffusion degree of the laser light due to the distance or the distance.

【0016】(2) 請求項2記載の発明の作用 該発明の距離計測装置の構成では、その基本構成により
上記請求項1記載の発明と同様の作用を実現するに際
し、さらに具体的に当該時間補正部が、発光部から出力
される受光パルス信号のレベルを所定の基準レベルと比
較し、同受光パルス信号の基準レベル以上のパルス幅が
大きい時ほど補正時間を小さくするように構成されてい
ることから、受光強度が高く計測誤差が小さい時は小さ
く、受光強度が低く計測誤差が大きい時は大きく補正さ
れるようになり、より正確な補正が可能となる。
(2) Action of the invention described in claim 2 In the configuration of the distance measuring device of the invention, when the action similar to that of the invention described in claim 1 is realized by the basic configuration, more specifically, the time is concerned. The correction unit is configured to compare the level of the light receiving pulse signal output from the light emitting unit with a predetermined reference level, and to reduce the correction time when the pulse width of the light receiving pulse signal is larger than the reference level. Therefore, when the received light intensity is high and the measurement error is small, the correction is small, and when the received light intensity is low and the measurement error is large, the correction is large, and more accurate correction is possible.

【0017】(3) 請求項3記載の発明の作用 該発明の距離計測装置の構成では、その基本構成により
上記請求項1又は2記載の発明と同様の作用を実現する
に際し、さらに受光部から出力される受光パルス信号の
飽和状態を判定する飽和判定部を設け、上記受光パルス
信号の飽和状態が判定された時には時間補正部による所
要時間の補正動作をキャンセルするようにしたことか
ら、余りに近距離の時など受光強度が非常に強い時に受
光パルス信号が飽和して時間遅れがないような時には計
測システムの計測動作が簡略化される。
(3) Operation of the invention according to claim 3 In the structure of the distance measuring device of the invention, when the same operation as the invention according to claim 1 or 2 is realized by the basic structure, the distance measuring device further includes A saturation determination unit that determines the saturation state of the received light receiving pulse signal is provided, and when the saturation state of the received light receiving pulse signal is determined, the correction operation of the required time by the time correction unit is canceled, so it is too close. The measurement operation of the measurement system is simplified when the received light pulse signal is saturated and there is no time delay when the received light intensity is very strong such as at a distance.

【0018】(4) 請求項4記載の発明の作用 該発明の距離計測装置の構成では、その基本構成により
上記請求項1又は2記載の発明と同様の作用を実現する
に際し、当該時間計測部で計測された所要時間が大きい
時は小さい時に比べて時間補正部の補正時間を大きくす
るようにしたことから、距離が遠くなるに従って増大す
るレーザ光の拡散度合に応じた適正な補正が可能とな
り、遠距離時の計測誤差が可及的に小さくなる。
(4) Action of the invention of claim 4 In the configuration of the distance measuring device of the invention, when the action similar to that of the invention of claim 1 or 2 is realized by the basic configuration, the time measuring unit concerned Since the correction time of the time correction unit is set to be longer when the required time measured at is longer than when it is small, it is possible to perform appropriate correction according to the diffusion degree of the laser light that increases as the distance increases. , The measurement error at long distance is as small as possible.

【0019】[0019]

【発明の効果】以上の結果、本願発明の距離計測装置に
よると、常に適正な距離の計測が可能となり、計測装置
としての精度、信頼性が向上する。
As a result of the above, according to the distance measuring device of the present invention, it is possible to always measure an appropriate distance, and the accuracy and reliability of the measuring device are improved.

【0020】[0020]

【実施例】以下、本願発明を図1〜図8に示す実施例に
基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in FIGS.

【0021】先ず図1に同実施例に係る光学式距離計測
装置のシステム構成を示す。本実施例の場合、この距離
計測装置は例えば車両に搭載されるものとして構成され
ている。
First, FIG. 1 shows a system configuration of an optical distance measuring apparatus according to the embodiment. In the case of the present embodiment, this distance measuring device is configured to be mounted on a vehicle, for example.

【0022】図1における距離計測装置は、大別してレ
ーザーレーダヘッド1、時間計測ユニット20、信号処
理ユニット30の3つの部分に分れている。
The distance measuring device shown in FIG. 1 is roughly divided into three parts: a laser radar head 1, a time measuring unit 20, and a signal processing unit 30.

【0023】レーザーレーダヘッド1は、LD(レーザ
ーダイオード)から成る1つの発光素子2、PD(ピンフ
ォトダイオード)から成る第1、第2の2つの受光素子
3,4とを有し、発光素子2の前側には発光用レンズ(集
光レンズ)5が配置され、第1、第2の受光素子3,4の
前側にはそれぞれ格子状のメカニカルフィルタ8を備え
た受光用レンズ(集光レンズ)6,7が配置されている。
9はLDの駆動回路、10は受光回路である。
The laser radar head 1 has one light emitting element 2 composed of an LD (laser diode) and two first and second light receiving elements 3 and 4 composed of a PD (pin photodiode). A light-emitting lens (condensing lens) 5 is arranged on the front side of 2, and a light-receiving lens (condensing lens) having a lattice-shaped mechanical filter 8 on the front sides of the first and second light-receiving elements 3 and 4, respectively. ) 6, 7 are arranged.
Reference numeral 9 is an LD drive circuit, and 10 is a light receiving circuit.

【0024】上記1つの発光素子2と第1、第2の受光
素子3,4は、図2に示す如くターンテーブル14上に
載置され、それらに属するレンズ5,6,7及びメカニカ
ルフィルタ8もターンテーブル14上に搭載されてい
る。図2から理解されるように、発光素子2及びそのレ
ンズ5は、図1ではレーザーレーダヘッド1の片側に描
いてあるが、実際には図2の如く第1、第2の受光素子
3,4及びそのレンズ6,7の中間に位置するようになっ
ている。
The one light emitting element 2 and the first and second light receiving elements 3 and 4 are mounted on the turntable 14 as shown in FIG. 2, and the lenses 5, 6, and 7 and the mechanical filter 8 belonging to them are placed. Is also mounted on the turntable 14. As can be seen from FIG. 2, the light emitting element 2 and the lens 5 thereof are drawn on one side of the laser radar head 1 in FIG. 1, but in reality, as shown in FIG. 2, the first and second light receiving elements 3, 4 and the lenses 6 and 7 thereof.

【0025】時間計測ユニット20は、LDの駆動回路
に対するスタートパルスを発生するパルス発生部21
と、該スタートパルスにより計時を開始し受光回路10
からのスタートパルスで計時を終了する時間計測部22
と、電源部23とを各々有する。また、信号処理ユニッ
ト30は、上記時間計測部22で得られた時間データを
基に距離を算出する距離計測部31と、その結果を表示
する表示部32とを備えている。
The time measuring unit 20 includes a pulse generator 21 for generating a start pulse for the LD drive circuit.
And the light-receiving circuit 10 starts timing by the start pulse.
Time measuring unit 22 that finishes time measurement with a start pulse from
And a power supply unit 23. The signal processing unit 30 also includes a distance measuring unit 31 that calculates a distance based on the time data obtained by the time measuring unit 22 and a display unit 32 that displays the result.

【0026】更に、上記レーザーレーダヘッド1は、上
記ターンテーブル14を回転させて、第1、第2の受光
素子3,4の受光エリア43,44及び発光素子2の発光
エリア(図示せず)を図2から図4の如く偏向させるため
のサーボ機構11と、その駆動モータ12とを備えてい
る。尚、サーボ機構11の現在回転角度は駆動モータ1
2と連動するポテンショメータ13により検出されるよ
うになっている。
Further, the laser radar head 1 rotates the turntable 14 so that the light receiving areas 43 and 44 of the first and second light receiving elements 3 and 4 and the light emitting area of the light emitting element 2 (not shown). 2 to FIG. 4, a servo mechanism 11 for deflecting it and a drive motor 12 therefor are provided. The current rotation angle of the servo mechanism 11 is the drive motor 1
It is adapted to be detected by a potentiometer 13 which works in conjunction with 2.

【0027】また信号処理ユニット30は、先行車の反
射体40を、常に図2の如く第1、第2の2つの受光素
子3,4の受光エリア43,44の重なり領域内に捕捉す
るようにターンテーブル14を回転させる制御手段とし
て、サーボ機構11の駆動モータ12に対し適切な指令
を与えるサーボ操作部33を備えている。このサーボ操
作部33は、具体的には、上記距離計測部31で計測さ
れ第1、第2の受光素子3,4毎の計測値の大小関係の
組合わせから、サーボ機構11に対し、その駆動モータ
12の回転の有無及び回転方向についての指令を与える
ようになっている。
Further, the signal processing unit 30 always captures the reflector 40 of the preceding vehicle in the overlapping area of the light receiving areas 43 and 44 of the first and second two light receiving elements 3 and 4 as shown in FIG. Further, as a control means for rotating the turntable 14, a servo operating section 33 for giving an appropriate command to the drive motor 12 of the servo mechanism 11 is provided. More specifically, the servo operation unit 33 is configured to measure the servo mechanism 11 from the combination of the magnitude relationships of the measured values of the first and second light receiving elements 3 and 4 measured by the distance measuring unit 31. A command regarding whether or not the drive motor 12 is rotating and a rotation direction is given.

【0028】次に上記構成の作用について説明する。Next, the operation of the above configuration will be described.

【0029】今、例えば図1において、時間計測ユニッ
ト20のパスル発生部21からレーザーレーダヘッド1
のLD駆動回路9にスタートパルスが出力される。する
と、LD駆動回路9は、スタートパルスのトリガーによ
り発光素子2たるLDを駆動し、レーザパルスは、第
1、第2の受光素子3,4の一方又は両方により受光さ
れて所定の出力電流を発生し、受光回路10で増幅され
た後、ストップパルスを時間計測部22に出力する。時
間計測部22ではパルス発生部21からのスタートパル
スと、受光回路10からのストップパルスとの間の時間
間隔を計測し、時間データとして距離計測部31に出力
する。距離計測部31では時間データから先行車との距
離を演算(換算)し、距離データとして車両の制御ユニッ
ト(ASC)34へ出力する。
Now, referring to FIG. 1, for example, the pulse generator 21 of the time measuring unit 20 to the laser radar head 1
A start pulse is output to the LD drive circuit 9 of FIG. Then, the LD drive circuit 9 drives the LD which is the light emitting element 2 by the trigger of the start pulse, and the laser pulse is received by one or both of the first and second light receiving elements 3 and 4, and a predetermined output current is obtained. After being generated and amplified by the light receiving circuit 10, a stop pulse is output to the time measuring unit 22. The time measuring unit 22 measures the time interval between the start pulse from the pulse generating unit 21 and the stop pulse from the light receiving circuit 10, and outputs it as time data to the distance measuring unit 31. The distance measuring unit 31 calculates (converts) the distance to the preceding vehicle from the time data and outputs it as distance data to the vehicle control unit (ASC) 34.

【0030】ここで、第1、第2の受光素子3,4が反
射光を受光しないときは、距離計測部31における該当
する受光素子係数での距離計測値が「最大」となり、距離
データは“先行車がない"旨の信号して取り扱われる。
しかし、何がしかの距離計測値がある場合は“先行車あ
り"判断され、その旨の信号として取り扱われる。
Here, when the first and second light receiving elements 3 and 4 do not receive the reflected light, the distance measurement value at the corresponding light receiving element coefficient in the distance measuring section 31 becomes "maximum", and the distance data is It is treated as a signal that there is no preceding vehicle.
However, if there is some distance measurement value, it is determined that there is a preceding vehicle, and is treated as a signal to that effect.

【0031】次に、上記光学系の操作との関連について
説明する。
Next, the relationship with the operation of the optical system will be described.

【0032】図2は左側の第2の受光素子4の受光エリ
ア44内にだけ先行車の反射体40が位置する場合を、
また図4は左右両方の第1、第2の受光素子3,4の受
光エリア43,44内に反射体40が位置する場合を示
している。
FIG. 2 shows a case where the reflector 40 of the preceding vehicle is located only within the light receiving area 44 of the second light receiving element 4 on the left side.
Further, FIG. 4 shows a case where the reflector 40 is located in the light receiving areas 43 and 44 of the left and right first and second light receiving elements 3 and 4, respectively.

【0033】説明の便宜上、最初は先行車の反射体40
が、図2の如く、第2受光素子4の受光エリア44内に
のみ位置するものとする。この場合、先行車の反射体4
0からの反射光は第2の受光素子4のみにより受光さ
れ、第1、第2の各受光素子3,4の出力状態は図3の
如くになる。このとき、距離計測部31における距離計
測値は、第1の受光素子3について「距離最大」、第2の
受光素子4について「距離小」の関係となる。そして、信
号処理ユニット30のサーボ制御部33は、上記距離計
測値の信号の大小関係から、先行車は左方向にあると推
定し、サーボ機構11に対しターンテーブル14を反時
計方向に回転させる「左移動指令」を与える。これによ
り、駆動モータ12が正回転し、ターンテーブル14が
図2の矢印方向に回転移動し、受光エリア43,44が
左に移動して行く。先行車の反射体40が、図4の如く
受光エリア43,44の重なり領域内に入ると、第1、
第2の各受光素子3,4の出力状態は図5の如くにな
り、距離計測値は第1、第2の受光素子3,4のいずれ
についても「距離小」の関係となる。ここで、サーボ制御
部33は「左移動指令」を停止する。
For convenience of explanation, the reflector 40 of the preceding vehicle is first shown.
However, as shown in FIG. 2, it is assumed that it is located only within the light receiving area 44 of the second light receiving element 4. In this case, the reflector 4 of the preceding vehicle
The reflected light from 0 is received only by the second light receiving element 4, and the output states of the first and second light receiving elements 3 and 4 are as shown in FIG. At this time, the distance measurement value in the distance measuring unit 31 has a relationship of “maximum distance” for the first light receiving element 3 and “small distance” for the second light receiving element 4. Then, the servo control unit 33 of the signal processing unit 30 estimates that the preceding vehicle is in the left direction based on the magnitude relationship of the signals of the distance measurement values, and causes the servo mechanism 11 to rotate the turntable 14 counterclockwise. Give "left move command". As a result, the drive motor 12 rotates forward, the turntable 14 rotates in the direction of the arrow in FIG. 2, and the light receiving areas 43 and 44 move to the left. When the reflector 40 of the preceding vehicle enters the overlapping area of the light receiving areas 43 and 44 as shown in FIG.
The output state of each of the second light receiving elements 3 and 4 is as shown in FIG. 5, and the distance measurement value has a "small distance" relationship for both the first and second light receiving elements 3 and 4. Here, the servo control unit 33 stops the "left movement command".

【0034】上記とは逆に、反射光が第1の受光素子3
のみにより受光された場合には、距離計測値は第1の受
光素子3について「距離小」、第2の受光素子4について
「距離最大」の関係の関係となり、サーボ制御部33は先
行車が右方向にあると判断して、サーボ機構11に対し
ターンテーブル14を時計方向に移動される「右移動指
令」を与える。これにより、駆動モータ12が逆回転
し、ターンテーブル14が図2から時計方向に回転移動
し、受光エリア43,44が右方向に移動する。先行車
の反射体40が、受光エリア43,44の重なり領域内
に入ると、距離計測値は第1、第2の受光素子3,4に
ついていずれも「距離小」の関係となり、その時点でサー
ボ制御部33は「右移動指令」を停止する。尚、距離計測
値が第1、第2の受光素子3,4についていずれも「距離
最大」の場合、サーボ制御部33はサーボ機構11に対
し何の指示与えない。
Contrary to the above, the reflected light is reflected by the first light receiving element 3
When the light is received by only the distance measurement value, the first light receiving element 3 has a “small distance” and the second light receiving element 4 has a “maximum distance” relationship. When it is judged to be in the right direction, the servo mechanism 11 is given a "right movement command" for moving the turntable 14 in the clockwise direction. As a result, the drive motor 12 rotates in the reverse direction, the turntable 14 rotates clockwise from FIG. 2, and the light receiving areas 43 and 44 move to the right. When the reflector 40 of the preceding vehicle enters the overlapping area of the light receiving areas 43 and 44, the distance measurement values of both the first and second light receiving elements 3 and 4 have a "small distance" relationship at that time. The servo control unit 33 stops the "right movement command". When the distance measurement value is “maximum distance” for both the first and second light receiving elements 3 and 4, the servo control unit 33 gives no instruction to the servo mechanism 11.

【0035】このように、第1、第2の2つの受光素子
3,4の系統について、共に何がしかの距離計測値があ
る状態、即ち上記「距離小」が得られるまでターンテーブ
ル14を回転変位させることにより、常に先行車をレー
ザーレーダヘッド1の光学系の真正面で捕捉することが
できる。従って、むやみに発光視野を広げることなく、
また、広範囲なスキャニングをして不必要なデータ処理
を行うこともなく、距離計測エリアを広げることが可能
となる。
As described above, the turntable 14 is held until the distance measurement value of some value is obtained in both the first and second light receiving elements 3 and 4, that is, the above "small distance" is obtained. By rotationally displacing, the preceding vehicle can always be captured directly in front of the optical system of the laser radar head 1. Therefore, without unnecessarily expanding the light emission field,
In addition, it is possible to widen the distance measurement area without performing unnecessary data processing by performing wide-range scanning.

【0036】ところが、上記のような光学式の距離計測
装置では、例えば図9に示すように計測距離の遠近によ
って受光パルス信号の信号レベルの減衰度が相当に異な
り、受信信号のパルス波形そのものが変化してそのピー
クレベル、パルス幅も異なってくる。
However, in the optical distance measuring device as described above, the attenuation of the signal level of the received light pulse signal is considerably different depending on the distance of the measurement distance, as shown in FIG. The peak level and pulse width also change due to the change.

【0037】その結果、所定の基準レベルVsで判定さ
れる当該受光パルス信号の立ち上がりエッジによる到達
時刻が変化して計測誤差を招く問題がある。
As a result, there is a problem that the arrival time at the rising edge of the received light pulse signal, which is determined by the predetermined reference level Vs, changes and causes a measurement error.

【0038】又、極端な場合には、受光パルス信号が過
飽和状態となってパルス幅が図示のように著しく大きく
なってしまう。
Further, in an extreme case, the received light pulse signal becomes oversaturated and the pulse width becomes extremely large as shown in the figure.

【0039】そこで、次に該問題を解決するようにした
上記信号処理ユニット30による距離計測制御の内容に
ついて図6のフローチャートを参照して詳細に説明す
る。
Therefore, the content of the distance measurement control by the signal processing unit 30 for solving the problem will be described in detail next with reference to the flowchart of FIG.

【0040】すなわち、先ずステップS1で、上記発光
素子2の発光時刻から受光素子3へのレーザ光の到達時
刻までのレーザ光の到達時間tと受光パルス信号のパル
ス幅Wを各々演算検出して入力する。
That is, first, in step S 1 , the arrival time t of the laser light from the light emission time of the light emitting element 2 to the arrival time of the laser light to the light receiving element 3 and the pulse width W of the light receiving pulse signal are calculated and detected. Enter.

【0041】そして、ステップS2で、図7の特性のマ
ップを用いて上記レーザ光の到達時間tに応じた受光パ
ルス信号の飽和パルス幅Wmaxを演算する。
Then, in step S 2 , the saturation pulse width Wmax of the light receiving pulse signal corresponding to the arrival time t of the laser light is calculated using the characteristic map of FIG.

【0042】次に、その上でステップS3に進み、上記
ステップS1で検出入力した受光パルス信号のパルス幅
Wが、上記ステップS3で演算した飽和パルス幅Wmaxよ
りも大(過飽和)となっているか否かを判定する。
Next, the process proceeds to step S 3 thereon, the pulse width W of the light receiving pulse signal detected input at step S 1 is, than the saturation pulse width Wmax calculated in the step S 3 and the large (supersaturated) Is determined.

【0043】その結果、NOの過飽和でない時には、図
8の近距離と遠距離の場合で特性が異なるマップを使用
して計測距離に比例する当該受光信号のパルス幅W(例
えば図9のWa,Wb,Wc,Wd)に応じ、到達所要時間t毎
の補正時間Δtを演算する。
As a result, when NO is not oversaturated, a pulse width W of the light receiving signal proportional to the measured distance (for example, Wa, in FIG. 9) is used by using a map having different characteristics for short distance and long distance in FIG. According to (Wb, Wc, Wd), the correction time Δt is calculated for each required arrival time t.

【0044】そして、さらにステップS5で、上記到達
所要時間tをΔtで補正した時間(t−Δt)を最終的に距離
Dに換算する。
Then, in step S 5 , the time (t-Δt) obtained by correcting the arrival required time t with Δt is finally converted into the distance D.

【0045】一方、上記ステップS3の判定でNOと判
定されたパルス幅Wが図9のWdのような過飽和の時
は、ステップS6に移って上記図8のマップによる補正
を行うことなく上記ステップS1で入力したレーザ光の
到達所要時間tをそのまま距離Dに換算する。
On the other hand, when the pulse width W determined to be NO in the above step S 3 is oversaturated like Wd in FIG. 9, the process proceeds to step S 6 without performing the correction by the map in FIG. The time t required for arrival of the laser light input in step S 1 is converted into the distance D as it is.

【0046】以上の結果、本実施例の計測制御システム
によると、距離の大小による受光信号強度の変化や光の
拡散による受光パルス信号過飽和時の誤計測を防止し得
て、計測制度が向上する。
As a result, according to the measurement control system of the present embodiment, it is possible to prevent the erroneous measurement at the time of the light receiving pulse signal oversaturation due to the change of the light receiving signal intensity due to the size of the distance and the light diffusion, and the measurement accuracy is improved. .

【0047】また、受光パルス信号飽和時には無用な補
正を行わないから同過飽和時の制御シーケンスが簡単に
なる。
Further, since unnecessary correction is not performed when the light receiving pulse signal is saturated, the control sequence at the time of the same oversaturation is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本願発明の実施例に係る距離計測装置
のシステム構成を示す制御回路である。
FIG. 1 is a control circuit showing a system configuration of a distance measuring device according to an embodiment of the present invention.

【図2】図2は、同装置のレーザヘッドの第1の回転位
置と受光エリアの向きとの関係を示す概略図である。
FIG. 2 is a schematic diagram showing a relationship between a first rotation position of a laser head of the same apparatus and a direction of a light receiving area.

【図3】図3は、図2の状態におけるレーザヘッドの発
光素子と受光素子相互の発光、受光タイミングを示すタ
イムチャートである。
FIG. 3 is a time chart showing light emission and light reception timing between the light emitting element and the light receiving element of the laser head in the state of FIG.

【図4】図4は、同装置のレーザヘッドの第2の回転位
置と受光エリアの向きとの関係を示す概略図である。
FIG. 4 is a schematic diagram showing a relationship between a second rotation position of a laser head of the same apparatus and a direction of a light receiving area.

【図5】図5は、図4の状態におけるレーザヘッドの発
光素子と受光素子相互の発光、受光タイミングを示すタ
イムチャートである。
FIG. 5 is a time chart showing light emission and light reception timing between the light emitting element and the light receiving element of the laser head in the state of FIG.

【図6】図6は、同装置の距離計測制御内容を示すフロ
ーチャートである。
FIG. 6 is a flowchart showing the content of distance measurement control of the device.

【図7】図7は、図6の制御で使用される受光信号の飽
和パルス幅演算マップの特性図である。
7 is a characteristic diagram of a saturation pulse width calculation map of a light reception signal used in the control of FIG.

【図8】図8は、同じく図6の制御で使用される補正時
間演算マップの特性図である。
8 is a characteristic diagram of a correction time calculation map which is also used in the control of FIG.

【図9】図9は、従来の距離計測装置の問題点を示す受
光パルス信号のタイムチャートである。
FIG. 9 is a time chart of a light receiving pulse signal showing a problem of the conventional distance measuring device.

【符号の説明】[Explanation of symbols]

1はレーザーレーダヘッド、2は発光素子、3は第1の
受光素子、4は第2の受光素子、10は受光回路、20
は時間計測ユニット、21はパルス発生部、22は時間
計測部、30は信号処理ユニット、40は反射体であ
る。
1 is a laser radar head, 2 is a light emitting element, 3 is a first light receiving element, 4 is a second light receiving element, 10 is a light receiving circuit, 20
Is a time measuring unit, 21 is a pulse generating unit, 22 is a time measuring unit, 30 is a signal processing unit, and 40 is a reflector.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 対象物に向けてパルスレーザ光を放射す
る発光部と、該発光部から放射されたパルスレーザ光の
内上記対象物を介して反射されるパルスレーザ光を受光
して受光パルス信号を出力する受光部と、該受光部から
出力される受光パルス信号のレベルが所定の基準レベル
を越えた時点を上記反射レーザ光の到達時刻と判定して
上記発光部のレーザ光放射時刻から当該到達時刻までの
所要時間を計測する時間計測部と、該時間計測部で計測
された上記所要時間に基いて上記発光部又は受光部から
対象物までの距離を計測する距離計測部とを備えてなる
距離計測装置において、上記時間計測部で計測された所
要時間に所定の補正を加える時間補正部を設けたことを
特徴とする距離計測装置。
1. A light emitting section for emitting pulsed laser light toward an object, and pulsed laser light reflected through the object out of the pulsed laser light emitted from the light emitting section is received to receive pulses. A light receiving unit that outputs a signal, and a time when the level of the light receiving pulse signal output from the light receiving unit exceeds a predetermined reference level is determined as the arrival time of the reflected laser light, and from the laser light emission time of the light emitting unit. A time measuring unit that measures a time required to reach the arrival time and a distance measuring unit that measures a distance from the light emitting unit or the light receiving unit to the object based on the time required measured by the time measuring unit. In the distance measuring device, the distance measuring device is provided with a time correction unit that adds a predetermined correction to the required time measured by the time measuring unit.
【請求項2】 時間補正部は、発光部から出力される受
光パルス信号のレベルを所定の基準レベルと比較し、同
受光パルス信号の基準レベル以上のパルス幅が大きい時
ほど補正時間を小さくするように構成されていることを
特徴とする請求項1記載の距離計測装置。
2. The time correction unit compares the level of the light receiving pulse signal output from the light emitting unit with a predetermined reference level, and decreases the correction time as the pulse width of the light receiving pulse signal is larger than the reference level. The distance measuring device according to claim 1, wherein the distance measuring device is configured as described above.
【請求項3】 受光部から出力される受光パルス信号の
飽和状態を判定する飽和判定部を設け、上記受光パルス
信号の飽和状態が判定された時には時間補正部による所
要時間の補正動作をキャンセルするようにしたことを特
徴とする請求項1又は2記載の距離計測装置。
3. A saturation determination unit that determines the saturation state of the received light pulse signal output from the light receiving unit is provided, and when the saturation state of the received light pulse signal is determined, the correction operation for the required time by the time correction unit is canceled. The distance measuring device according to claim 1 or 2, characterized in that.
【請求項4】 時間計測部で計測された所要時間が大き
い時は小さい時に比べて時間補正部の補正時間を大きく
するようにしたことを特徴とする請求項1又は2記載の
距離計測装置。
4. The distance measuring device according to claim 1, wherein when the required time measured by the time measuring unit is long, the correction time of the time correcting unit is set longer than when the required time is small.
JP33318093A 1993-12-27 1993-12-27 Distance measuring device Expired - Fee Related JP3249003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33318093A JP3249003B2 (en) 1993-12-27 1993-12-27 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33318093A JP3249003B2 (en) 1993-12-27 1993-12-27 Distance measuring device

Publications (2)

Publication Number Publication Date
JPH07191143A true JPH07191143A (en) 1995-07-28
JP3249003B2 JP3249003B2 (en) 2002-01-21

Family

ID=18263202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33318093A Expired - Fee Related JP3249003B2 (en) 1993-12-27 1993-12-27 Distance measuring device

Country Status (1)

Country Link
JP (1) JP3249003B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7136753B2 (en) 2002-12-05 2006-11-14 Denso Corporation Object recognition apparatus for vehicle, inter-vehicle control apparatus, and distance measurement apparatus
JP2008267920A (en) * 2007-04-18 2008-11-06 Ihi Corp Laser range finding device and laser range finding method
WO2016002373A1 (en) * 2014-07-03 2016-01-07 シャープ株式会社 Optical reflection sensor and electronic device
WO2016121531A1 (en) * 2015-01-29 2016-08-04 シャープ株式会社 Distance measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990158B2 (en) 2018-09-18 2022-01-12 株式会社東芝 Distance measuring device and distance measuring method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7136753B2 (en) 2002-12-05 2006-11-14 Denso Corporation Object recognition apparatus for vehicle, inter-vehicle control apparatus, and distance measurement apparatus
US7496449B2 (en) 2002-12-05 2009-02-24 Denso Corporation Inter-vehicle control apparatus and distance measurement apparatus
US7761236B2 (en) 2002-12-05 2010-07-20 Denso Corporation Object recognition apparatus for vehicle and distance measurement apparatus
JP2008267920A (en) * 2007-04-18 2008-11-06 Ihi Corp Laser range finding device and laser range finding method
WO2016002373A1 (en) * 2014-07-03 2016-01-07 シャープ株式会社 Optical reflection sensor and electronic device
CN106471335A (en) * 2014-07-03 2017-03-01 夏普株式会社 Optical reflective-type sensor and electronic equipment
JPWO2016002373A1 (en) * 2014-07-03 2017-04-27 シャープ株式会社 Light reflection type sensor and electronic device
WO2016121531A1 (en) * 2015-01-29 2016-08-04 シャープ株式会社 Distance measuring device
JP2016142534A (en) * 2015-01-29 2016-08-08 シャープ株式会社 Distance measurement device

Also Published As

Publication number Publication date
JP3249003B2 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
JP4894360B2 (en) Radar equipment
US11204420B2 (en) Distance measurement apparatus
US5485155A (en) Radar system detecting plural obstacles and measuring distance based on full gain and automatic gain control
JPH06214027A (en) Detector of range of laser
US20230003882A1 (en) Lidar and method for range detection using lidar
WO1982001075A1 (en) Ocean depth sounding from the air by laser beam
JP2000075030A (en) Scanning laser radar
US5523835A (en) Distance measuring equipment
US20230065210A1 (en) Optical distance measuring device
JPH10197635A (en) Laser distance measuring equipment
JPH07191143A (en) Distance measuring device
JPH11352226A (en) Highly accurate distance-measuring apparatus
JP2000028720A (en) Distance measuring device
JPH06109842A (en) Distance detection apparatus
JP2001349943A (en) Laser range finder, laser range finding method, and measuring device
JP2765291B2 (en) Laser radar device
JPH0862331A (en) Laser rader
JPH05264719A (en) Laser rader apparatus
JPH07167954A (en) Distance measuring device
JPH0882679A (en) Radar apparatus for vehicle
JPH04366785A (en) Pulse laser distance measuring apparatus
JPH10253759A (en) Range finder
JPH07191145A (en) Obstacle detection device
JPH08240657A (en) Distance measuring apparatus
JP2001317935A (en) Range finder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees