JP2015194356A - Distance measurement device - Google Patents

Distance measurement device Download PDF

Info

Publication number
JP2015194356A
JP2015194356A JP2014071478A JP2014071478A JP2015194356A JP 2015194356 A JP2015194356 A JP 2015194356A JP 2014071478 A JP2014071478 A JP 2014071478A JP 2014071478 A JP2014071478 A JP 2014071478A JP 2015194356 A JP2015194356 A JP 2015194356A
Authority
JP
Japan
Prior art keywords
distance
threshold
clutter
time
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014071478A
Other languages
Japanese (ja)
Inventor
真悟 角
Shingo Sumi
真悟 角
今川 保美
Yasumi Imagawa
保美 今川
則明 朝岡
Noriaki Asaoka
則明 朝岡
福田 久哉
Hisaya Fukuda
久哉 福田
篤史 野尻
Atsushi Nojiri
篤史 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014071478A priority Critical patent/JP2015194356A/en
Publication of JP2015194356A publication Critical patent/JP2015194356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distance measurement device which, even if a desired wave and a clutter are synthesized, can be decomposed into two waves and can measure range of an object hidden behind fog or the like.SOLUTION: The distance measurement device includes: a light projection part 200 for outputting a transmission wave around an own vehicle; a light reception part 300 for receiving a refection wave of the transmission wave outputted by the light projection part 200; a time measurement part 500 for measuring the time in which the amplitude of the reflection wave received by the light reception part 300 exceeds a first predetermined threshold value and the time exceeding a second threshold value larger than the first threshold value; and a signal processing part 100 for estimating a distance up to a reflection object on the basis of a measurement result of the time measurement part 500. The second threshold value is set higher than a clatter amplitude value under adverse environment. The signal processing part 100 estimates the distance up to the measurement object on the basis of the first threshold value and the second threshold value.

Description

本発明は距離測定装置に関するものであって、特に、TDC(Time to Digital Converter)など時間計測器により実現するTOF(Time Of
Flight)方式のレーザレーダのうち、マルチエコーを測距するものに関する。
The present invention relates to a distance measuring device, and in particular, TOF (Time Of) realized by a time measuring device such as TDC (Time to Digital Converter).
The present invention relates to a multi-echo ranging type radar among the (Flight) type laser radars.

従来から、光源より照射した光が計測対象物体に反射して帰ってくるまでの往復時間を計測することにより測距するアクティブレーザ方式としてTOF(Time Of Flight)方式が知られている。このTOF方式では、光が照射されてから受光されるまでのわずかな時間を測定する手段として、時間というアナログ情報を量子化してデジタル出力するデバイスであるTDC(Time to Digital Converter)が用いられることがある。TDCではADC(Analog to Digital Converter)に対して、受光波形の振幅が得られない代わりに時間分解能に優れており、例えば数十psオーダでの出力も可能である。そして、一般に、レーザレーダのTOF方式においては、光パルスの投光タイミングと受光タイミングの時間差の計測結果に基づいて、以下の式によって距離が算出される。   Conventionally, a TOF (Time Of Flight) method is known as an active laser method for measuring a distance by measuring a round-trip time until light irradiated from a light source is reflected by an object to be measured and returns. In this TOF method, a time-to-digital converter (TDC), which is a device that quantizes analog information of time and digitally outputs it, is used as a means for measuring a short time from when light is irradiated until it is received. There is. The TDC is superior to the ADC (Analog to Digital Converter) in that it has excellent time resolution instead of obtaining the amplitude of the received light waveform, and can output in the order of several tens of ps, for example. In general, in the laser radar TOF method, the distance is calculated by the following equation based on the measurement result of the time difference between the light projection timing and the light reception timing.

(数1) 距離[m]=光速[m/s]×投光タイミングと受光タイミングの時間差(往復時間)[s]/2+(回路の遅延など)オフセット値[m]…(式1)
ここで、レーザレーダにおいては、雨や霧、雪などの天候の影響や光透過物質があると、1つの投光パルスに対して、それらの反射と、その先にある計測対象物体による反射によって、複数の受光パルス(エコー)を測距する状況が生じる。例えば図13に示すように、霧等による反射波(以下、クラッタと呼ぶ)をまず1stエコーとして検出し、この霧の奥に隠れた計測対象物体(先行車)による反射波(以下、所望波と呼ぶ)を2ndエコーとして検出することがある。ここで、図13に示すように、計測対象物体が自車両から十分に離れていると、図14(a)に示すように、1stエコーと2ndエコーとはそれぞれの波形として検出される。一方、計測対象物体が自車両の近距離に存在すると、図14(b)に示すように複数の受光パルスが合成されて1つの受光パルスとして検出されることがある。このとき、1stエコーは検出されるが、2ndエコーは検出されなくなる。
(Equation 1) Distance [m] = light speed [m / s] × time difference between light projection timing and light reception timing (round trip time) [s] / 2 + (circuit delay etc.) offset value [m] (Equation 1)
Here, in the laser radar, if there is an influence of weather such as rain, fog, snow, or a light transmitting substance, the reflection of one projection pulse and the reflection by the object to be measured ahead of it are reflected. A situation occurs in which a range of a plurality of received light pulses (echoes) is measured. For example, as shown in FIG. 13, a reflected wave (hereinafter referred to as clutter) due to fog or the like is first detected as a 1st echo, and a reflected wave (hereinafter referred to as desired wave) from a measurement target object (preceding vehicle) hidden behind this fog. May be detected as a 2nd echo. Here, as shown in FIG. 13, when the measurement target object is sufficiently away from the host vehicle, as shown in FIG. 14A, the 1st echo and the 2nd echo are detected as respective waveforms. On the other hand, when the measurement target object exists at a short distance from the host vehicle, a plurality of light reception pulses may be combined and detected as one light reception pulse as shown in FIG. At this time, the 1st echo is detected, but the 2nd echo is not detected.

TDCを用いたTOF方式では、ADCを用いたTOF方式に対して、そのデバイスの特性から、距離分解能に優れる傾向にあるが、受光パルスの振幅情報が得られない。このため、計測対象物体が自車両の近距離に存在して図14(b)のように、閾値(TDCの検出点)で、所望波とクラッタが2波合成された場合、受光パルスから所望波を検出できない場合が生じる。   The TOF method using TDC tends to be superior in distance resolution due to the characteristics of the device as compared with the TOF method using ADC, but the amplitude information of the received light pulse cannot be obtained. For this reason, when the object to be measured exists at a short distance of the host vehicle and two desired waves and clutter are synthesized at the threshold (TDC detection point) as shown in FIG. There are cases where waves cannot be detected.

そこで、従来の距離測定装置では、上下2つの閾値を用いて、投光タイミングと受光タイミングの時間差と、受光パルスのパルス幅を測定し、反射波の受信信号が上閾値に満たないにも関わらず下閾値における受光パルス幅が基準時間幅以上である場合は所望波とクラッタが2波合成された信号と判断して測距を行わないようにしている(例えば、特許文献1を参照)。   Therefore, in the conventional distance measuring apparatus, the time difference between the light projection timing and the light reception timing and the pulse width of the light reception pulse are measured using two upper and lower threshold values, and the received signal of the reflected wave is less than the upper threshold value. If the light receiving pulse width at the lower threshold is equal to or greater than the reference time width, it is determined that the desired wave and the clutter are combined signals of two waves, and distance measurement is not performed (see, for example, Patent Document 1).

特開2004−184333号公報JP 2004-184333 A

しかし、従来の距離測定装置では、2つの反射波が合成されていることは判別できるが、2つの反射波を分解できず、2つの反射波が合成された信号を測距対象から除外するのみであるため、依然として、霧等に隠れた計測対象物体を測距できないという問題があった。   However, in the conventional distance measuring device, it can be determined that the two reflected waves are combined, but the two reflected waves cannot be decomposed, and only the signal in which the two reflected waves are combined is excluded from the object to be measured. Therefore, there is still a problem that the object to be measured hidden in fog or the like cannot be measured.

本発明は、従来の課題を解決するものであって、所望波とクラッタとが合成された信号となっていても、所望波とクラッタを分解することができ、霧等に隠れた計測対象物体を測距することができる距離測定装置を提供することを目的とする。   The present invention solves the conventional problem, and even if the signal is a signal in which the desired wave and the clutter are combined, the desired wave and the clutter can be decomposed and the measurement target object hidden in fog or the like An object of the present invention is to provide a distance measuring device capable of measuring a distance.

上記目的を達成するために本発明は、自車両周囲に送信波を出力する投光手段と、投光手段が出力した送信波の反射波を受信する受光手段と、受光手段が受信した反射波の振幅が所定の第1の閾値を超えた時間、および、第1の閾値より大きい第2の閾値を超えた時間を計測する計測手段と、計測手段の計測結果に基づいて、反射物体までの距離を推定する推定手段とを備え、第2の閾値は、悪環境下におけるクラッタ振幅値より高く設定され、推定手段は、第1の閾値と第2の閾値に基づいて計測対象物体までの距離を推定することを特徴とする。   In order to achieve the above object, the present invention provides a light projecting means for outputting a transmission wave around the host vehicle, a light receiving means for receiving a reflected wave of the transmission wave output from the light projecting means, and a reflected wave received by the light receiving means. Based on the measurement result of the measurement means, the measurement means for measuring the time when the amplitude of the signal exceeds the predetermined first threshold, and the time when the amplitude exceeds the second threshold greater than the first threshold. An estimation means for estimating the distance, wherein the second threshold is set to be higher than the clutter amplitude value in a bad environment, and the estimation means determines the distance to the measurement target object based on the first threshold and the second threshold. Is estimated.

本発明によれば、所望波とクラッタとが合成された信号となっていても、所望波とクラッタを分解することができ、霧等に隠れた計測対象物体を測距することができるという効果を奏する。   According to the present invention, even if the desired wave and the clutter are combined signals, the desired wave and the clutter can be decomposed, and the measurement target object hidden in the fog or the like can be measured. Play.

本発明の第1の実施形態に係る距離測定装置の構成を示すブロック図The block diagram which shows the structure of the distance measuring device which concerns on the 1st Embodiment of this invention. 図1の時間計測部の動作をイメージで説明する図The figure explaining the operation | movement of the time measurement part of FIG. 1 with an image 本発明の第1の実施形態に係る距離測定装置による2波合成された受光パルスから所望波を分解する第1の方法をイメージで説明する図The figure explaining the 1st method which decomposes | disassembles a desired wave from the received light pulse by which 2 waves were combined by the distance measuring device which concerns on the 1st Embodiment of this invention with an image. 本発明の第1の実施形態に係る距離測定装置による測定条件をイメージで説明する図The figure explaining the measurement conditions by the distance measuring device which concerns on the 1st Embodiment of this invention with an image 本発明の第3の実施形態に係る距離測定装置による2波合成された受光パルスから所望波を分解する第3の方法のフローチャート図The flowchart figure of the 3rd method which decomposes | disassembles a desired wave from the light reception pulse by which 2 distance synthesis | combination by the distance measuring device which concerns on the 3rd Embodiment of this invention was carried out. 本発明の第3の実施形態に係る距離測定装置による2波合成された受光パルスから所望波を分解する第3の方法をイメージで説明する図The figure explaining the 3rd method which decomposes | disassembles a desired wave from the light reception pulse by which 2 distance synthesis | combination by the distance measuring device which concerns on the 3rd Embodiment of this invention was carried out with an image. 本発明の第4の実施形態に係る距離測定装置の構成を示すブロック図The block diagram which shows the structure of the distance measuring device which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る距離測定装置による2波合成された受光パルスから所望波を分解する第4の方法のフローチャート図The flowchart figure of the 4th method which decomposes | disassembles a desired wave from the light reception pulse by which 2 distance synthesis | combination was carried out by the distance measuring device which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る距離測定装置で想定される2波合成された受光パルスのワーストケースをイメージで説明する図The figure explaining the worst case of the two-wave synthetic | combination light reception pulse assumed with the distance measuring device which concerns on the 4th Embodiment of this invention with an image 本発明の第4の実施形態に係る距離測定装置の感度時間調整回路のゲインを説明する図The figure explaining the gain of the sensitivity time adjustment circuit of the distance measuring device which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る距離測定装置の構成を示すブロック図The block diagram which shows the structure of the distance measuring device which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る距離測定装置で想定される2波合成された受光パルスをイメージで説明する図The figure explaining the light reception pulse by which the 2 wave synthesis | combination assumed with the distance measuring device which concerns on the 5th Embodiment of this invention was combined with an image マルチエコーの測距をイメージで説明する図Diagram explaining multi-echo ranging with an image 2波合成された受光パルスをイメージで説明する図The figure which explains the light reception pulse which is synthesized 2 waves with the image

(第1の実施形態)
以下、本発明の第1の実施形態について、図面を参照して詳細に説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1の実施形態の距離測定装置の構成を示すブロック図である。図1において、距離測定装置は、信号処理部100と、投光部200と、受光部300と、検出部400と、時間計測部500とを有する。   FIG. 1 is a block diagram showing the configuration of the distance measuring apparatus according to the first embodiment of the present invention. In FIG. 1, the distance measuring device includes a signal processing unit 100, a light projecting unit 200, a light receiving unit 300, a detecting unit 400, and a time measuring unit 500.

本発明の第1の実施形態の距離測定装置では、信号処理部100の命令に従って、投光部200は自車両周囲に送信波(投光パルス)を出力する。投光部200が出力した送信波は、周囲の物体600に反射し、この反射物体600からの反射波(受光パルス)を受光部300が受信する。受光部300が受信した反射波は、検出部400に入力される。検出部400は、この入力された波形の振幅が、所定のLow閾値(第1の閾値)を超えるか否か、および、Low閾値よりも大きい所定のHigh閾値(第2の閾値)を超えるか否かを検出する。ここで、Low閾値は、通常の測距に用いられる閾値(図14に示される従来の閾値に相当)であり、測距目標とする距離まで計測対象物体を検知でき、かつ、ノイズによる影響を受けない程度の所定の閾値に設定される。時間計測部500は、検出部400の検出結果から、受光部300が受信した反射波の振幅が所定のLow閾値を超えた時間、および、High閾値を超えた時間を計測する。信号処理部100は、この計測結果やLow閾値、High閾値を適宜用いて、反射物体600までの距離を推定する。反射物体600は、計測対象物体または雨や霧、雪等のクラッタを含む。なお、ここでLow閾値やHigh閾値を超えた、の意味としては、Low閾値やHigh閾値より大きいであってもよいし、Low閾値やHigh閾値以上であってもよい。すなわち、等号の有無は適宜選択可能な設計事項であり、発明の本質に影響するものではない。以下の説明についても同様である。   In the distance measuring device according to the first embodiment of the present invention, the light projecting unit 200 outputs a transmission wave (light projecting pulse) around the host vehicle in accordance with a command from the signal processing unit 100. The transmission wave output from the light projecting unit 200 is reflected by the surrounding object 600, and the light receiving unit 300 receives the reflected wave (light reception pulse) from the reflection object 600. The reflected wave received by the light receiving unit 300 is input to the detection unit 400. The detection unit 400 determines whether the amplitude of the input waveform exceeds a predetermined low threshold (first threshold) and whether the amplitude exceeds a predetermined high threshold (second threshold) that is greater than the low threshold. Detect whether or not. Here, the Low threshold value is a threshold value used for normal distance measurement (corresponding to the conventional threshold value shown in FIG. 14), can detect the measurement target object up to the distance to be a distance measurement target, and is affected by noise. The predetermined threshold is set so as not to be received. The time measuring unit 500 measures the time when the amplitude of the reflected wave received by the light receiving unit 300 exceeds a predetermined Low threshold and the time when the reflected wave received by the light receiving unit 300 exceeds the High threshold from the detection result of the detection unit 400. The signal processing unit 100 estimates the distance to the reflective object 600 using the measurement result, the Low threshold value, and the High threshold value as appropriate. The reflective object 600 includes a measurement target object or clutter such as rain, fog, and snow. Here, the meaning of exceeding the Low threshold or the High threshold may be greater than the Low threshold or the High threshold, or may be greater than or equal to the Low threshold or the High threshold. That is, the presence or absence of an equal sign is a design item that can be selected as appropriate, and does not affect the essence of the invention. The same applies to the following description.

次に、距離測定装置の内部構成について説明する。   Next, the internal configuration of the distance measuring device will be described.

信号処理部100は、例えばCPUやメモリを有し、各種演算処理を行う。信号処理部100は、投光部200や時間計測部500に投光パルスのタイミング信号を出力する。   The signal processing unit 100 includes, for example, a CPU and a memory, and performs various arithmetic processes. The signal processing unit 100 outputs a timing signal of the projection pulse to the projection unit 200 and the time measurement unit 500.

投光部200は、例えば広角にレーザ光を照射して3次元測距可能なレーザレーダであり、LD駆動回路201とLD(Laser Diode)202を有する。LD駆動回路201は、信号処理部100から入力された投光パルスのタイミング信号に基づいてLD202を駆動する。LD202は、LD駆動回路201の制御に従い回転する図示しないミラーにレーザ光(投光パルス)を反射させて、この反射光を自車両周囲に照射する。   The light projecting unit 200 is, for example, a laser radar capable of performing three-dimensional distance measurement by irradiating laser light at a wide angle, and includes an LD driving circuit 201 and an LD (Laser Diode) 202. The LD drive circuit 201 drives the LD 202 based on the timing signal of the light projection pulse input from the signal processing unit 100. The LD 202 reflects laser light (light projection pulse) to a mirror (not shown) that rotates according to the control of the LD drive circuit 201 and irradiates the reflected light around the host vehicle.

受光部300は、受光素子301と、電流・電圧変換部302とを有する。受光素子301は自車両周囲の物体600から反射されたレーザ光を取得して電流パルスに変換する。電流・電圧変換部302は例えばトランスインピーダンスアンプで構成され、受光素子301から入力された電流パルスを電圧パルスに変換する。   The light receiving unit 300 includes a light receiving element 301 and a current / voltage conversion unit 302. The light receiving element 301 acquires the laser beam reflected from the object 600 around the host vehicle and converts it into a current pulse. The current / voltage conversion unit 302 is composed of, for example, a transimpedance amplifier, and converts the current pulse input from the light receiving element 301 into a voltage pulse.

検出部400は、増幅部401と、第1のコンパレータ402と、第2のコンパレータ403とを有する。増幅部401は電流・電圧変換部302から入力された電圧パルスを増幅してこの増幅信号を第1のコンパレータ402と、第2のコンパレータ403に出力する。第1のコンパレータ402はこの増幅信号と予め定められたHigh閾値とを比較してHigh閾値以上のパルス(Highエコー)を検出する。一方、第2のコンパレータ403はこの増幅信号と予め定められたLow閾値とを比較してLow閾値以上のパルス(Lowエコー)を検出する。   The detection unit 400 includes an amplification unit 401, a first comparator 402, and a second comparator 403. The amplifier 401 amplifies the voltage pulse input from the current / voltage converter 302 and outputs the amplified signal to the first comparator 402 and the second comparator 403. The first comparator 402 compares this amplified signal with a predetermined high threshold value, and detects a pulse (high echo) equal to or higher than the high threshold value. On the other hand, the second comparator 403 compares the amplified signal with a predetermined low threshold value, and detects a pulse (Low echo) that is equal to or higher than the low threshold value.

時間計測部500は、High閾値時間計測部501とLow閾値時間計測部502と
を有する。High閾値時間計測部501とLow閾値時間計測部502とは、それぞれ第1のコンパレータ402と第2のコンパレータ403とから入力された各パルスの立ち上がり(受光タイミング)と信号処理部100から入力された投光パルスの立ち上がり(投光タイミング)との時間差を信号処理部100にデジタル出力する。この時間差は、図2に示すように、LD202からレーザ光(投光パルス)が照射されて、物体600に反射して、この反射光(受光パルス)が受光素子301に受光されるまでの光パルスの往復時間を示す。信号処理部100は、この時間差に基づいて、前述の式(1)から自車両から物体までの距離を算出する。また、信号処理部100は、受光パルスの立ち上がりと立ち下がりの時間をパルス幅として算出する。
The time measurement unit 500 includes a high threshold time measurement unit 501 and a low threshold time measurement unit 502. The high threshold time measurement unit 501 and the low threshold time measurement unit 502 are input from the rising edge (light reception timing) of each pulse input from the first comparator 402 and the second comparator 403 and from the signal processing unit 100, respectively. The time difference from the rise of the light projection pulse (light projection timing) is digitally output to the signal processing unit 100. As shown in FIG. 2, this time difference is the light from when the laser beam (projection pulse) is irradiated from the LD 202 and reflected by the object 600 until the reflected light (received pulse) is received by the light receiving element 301. Indicates the round trip time of the pulse. Based on this time difference, the signal processing unit 100 calculates the distance from the host vehicle to the object from the above equation (1). Further, the signal processing unit 100 calculates the rising and falling times of the received light pulse as the pulse width.

次に、所望波とクラッタが合成された受光パルスから所望波を分解する方法について説明する。図3は、本発明の第1の実施形態に係る距離測定装置による所望波とクラッタが合成された受光パルスから所望波を分解する第1の方法をイメージで説明する図である。また、図4は、本発明の第1の実施形態に係る距離測定装置による測定条件をイメージで説明する図である。以下では、検出部400の増幅部401で増幅された後のパルスを単に受光パルスと記す。   Next, a method for decomposing a desired wave from a received light pulse in which the desired wave and clutter are combined will be described. FIG. 3 is a diagram for explaining in image form a first method for decomposing a desired wave from a received pulse in which the desired wave and clutter are combined by the distance measuring apparatus according to the first embodiment of the present invention. Moreover, FIG. 4 is a figure explaining the measurement conditions by the distance measuring device based on the 1st Embodiment of this invention with an image. Hereinafter, the pulse after being amplified by the amplification unit 401 of the detection unit 400 is simply referred to as a light reception pulse.

図3に示すように、受光パルスは、霧等のクラッタと計測対象物体の所望波の2波が合成した状態で第1のコンパレータ402と第2のコンパレータ403に入力される。ここで第1のコンパレータ402で設定されるHigh閾値は、想定される雨や霧、雪などによる影響(以下、悪環境と呼ぶ)の強度、換言すると悪環境下でのクラッタ振幅値よりも高く設定される。悪環境の強度は、少なくとも環境の関数を有する。環境の関数は、例えば濃霧の場合は視程、降雨の場合は粒径や降雨強度を変数とする関数であるがこれに限られない。想定する環境によって環境の関数が切替えられてもよい。また、悪環境の強度は、距離測定装置の光学特性の関数を有していてもよい。例えば、光学特性の関数は投光部200や受光部300の光学特性や回路特性に応じた関数であるがこれに限られない。このようにHigh閾値が、悪環境下におけるクラッタ振幅値より高く設定されることで、クラッタのパルス振幅はHigh閾値を超えず、計測対象物体のパルス振幅のみがHigh閾値を超える。このため、信号処理部100は、受光パルスがHigh閾値を超えたことを第1のコンパレータ402が検出した場合に、High閾値時間計測部501が計測した時間を計測対象物体からの往復時間として、計測対象物体の距離を推定する。   As shown in FIG. 3, the received light pulse is input to the first comparator 402 and the second comparator 403 in a state in which clutter such as fog and two desired waves of the measurement target object are combined. Here, the High threshold value set by the first comparator 402 is higher than the intensity of the assumed influence (hereinafter referred to as a bad environment) due to rain, fog, snow, or the like, in other words, the clutter amplitude value in the bad environment. Is set. The strength of the bad environment has at least a function of the environment. The environmental function is, for example, a function having visibility as a variable in the case of dense fog and a particle size or rainfall intensity as a variable in the case of rain, but is not limited thereto. The environment function may be switched according to the assumed environment. Further, the strength of the bad environment may have a function of the optical characteristics of the distance measuring device. For example, the function of optical characteristics is a function according to the optical characteristics and circuit characteristics of the light projecting unit 200 and the light receiving unit 300, but is not limited thereto. Thus, by setting the High threshold value higher than the clutter amplitude value in a bad environment, the pulse amplitude of the clutter does not exceed the High threshold value, and only the pulse amplitude of the measurement target object exceeds the High threshold value. For this reason, when the first comparator 402 detects that the received light pulse has exceeded the high threshold, the signal processing unit 100 uses the time measured by the high threshold time measuring unit 501 as the round trip time from the measurement target object. Estimate the distance of the object to be measured.

ここで、一般にクラッタの反射率は計測対象物体の所望波の反射率よりも十分に低いため、2波合成されるほど計測対象物体とクラッタとの距離が近接している場合、計測対象物体のパルス振幅値がクラッタのパルス振幅値よりも十分に大きくなり、High閾値の設定は容易となる。しかしながら、クラッタのパルス振幅値は悪環境下であるほど大きくなる。例えば霧の場合、図4に示すように、濃霧で視程が悪くなるほど、クラッタの振幅は指数関数的に大きくなる。このため、次第に所望波との区別がつくHigh閾値の設定が難しくなり、計測対象物体の距離の推定精度も悪化する。そこで、図示しない悪環境検出手段を設けてもよい。   Here, in general, the reflectivity of the clutter is sufficiently lower than the reflectivity of the desired wave of the measurement target object. Therefore, when the distance between the measurement target object and the clutter is so close that the two waves are combined, Since the pulse amplitude value is sufficiently larger than the pulse amplitude value of the clutter, the high threshold value can be easily set. However, the pulse amplitude value of the clutter becomes larger as the environment is worse. For example, in the case of fog, as shown in FIG. 4, the visibility of clutter increases exponentially as visibility decreases in dense fog. For this reason, it becomes difficult to set a high threshold value that can be gradually distinguished from the desired wave, and the estimation accuracy of the distance of the measurement target object also deteriorates. Therefore, a bad environment detection means (not shown) may be provided.

悪環境検出手段は、例えば濃霧センサや降雨センサ、ワイパーやフォグランプの少なくとも1つの動作検出によって悪環境を検出してもよいし、カメラの画像解析やレーザレーダの走査計測結果からのパターン認識によって悪環境を検出してもよい。この悪環境検出手段が自車両が悪環境下にあることを検出した場合には、信号処理部100は、計測対象物体までの距離の推定を行わず、悪環境検出手段が自車両が悪環境下にないことを検出した場合にのみ計測対象物体までの距離の推定を行うようにしてもよい。例えば、信号処理部100は、図4に示すように、悪環境閾値より高いクラッタ振幅値となるA領域については計測対象物体までの距離の推定を行わず、悪環境閾値より低いクラッタ振幅値となるB領域についてのみ計測対象物体までの距離の推定を行うようにしてもよい。この悪環境
閾値またはこの悪環境閾値に所定のマージンを加算した値が上述のHigh閾値に設定される。また、さらに、悪環境検出手段が自車両が悪環境下にあることを検出した場合に自車両が悪環境下にあることを通知する通知手段をさらに備えてもよい。
The bad environment detection means may detect the bad environment by detecting at least one operation of, for example, a dense fog sensor, a rain sensor, a wiper, or a fog lamp, or may be bad by detecting a pattern from a camera image analysis or a laser radar scanning measurement result. The environment may be detected. When the bad environment detection means detects that the host vehicle is in a bad environment, the signal processing unit 100 does not estimate the distance to the measurement target object, and the bad environment detection means detects that the host vehicle has a bad environment. The distance to the measurement target object may be estimated only when it is detected that it is not below. For example, as shown in FIG. 4, the signal processing unit 100 does not estimate the distance to the measurement target object for the A region having a clutter amplitude value higher than the bad environment threshold value, and the clutter amplitude value lower than the bad environment threshold value. The distance to the measurement target object may be estimated only for the B region. This bad environment threshold or a value obtained by adding a predetermined margin to this bad environment threshold is set as the above-mentioned High threshold. Further, it may further comprise notification means for notifying that the host vehicle is in a bad environment when the bad environment detection unit detects that the host vehicle is in a bad environment.

以上のように、本発明の第1の実施形態によれば、霧等の悪環境下においても、クラッタと所望波が合成されているか判別することができ、所望波とクラッタとが合成された信号となっていても、所望波とクラッタを分解することができ、霧等に隠れた計測対象物体を測距することができる。
(第2の実施形態)
次に、第2の実施形態について説明する。なお、第1の実施形態と同様の構成や処理については詳細な説明を省略し、符号のみを付す。以下の実施形態でも同様である。
As described above, according to the first embodiment of the present invention, it is possible to determine whether the clutter and the desired wave are combined even in a bad environment such as fog, and the desired wave and the clutter are combined. Even if it is a signal, the desired wave and the clutter can be decomposed, and the object to be measured hidden in the fog can be measured.
(Second Embodiment)
Next, a second embodiment will be described. Note that detailed description of the same configuration and processing as those in the first embodiment is omitted, and only the reference numerals are given. The same applies to the following embodiments.

第2の実施形態の距離測定装置では、上述の第1の実施形態に加え、さらにHigh閾値が、クラッタの最近接距離よりも近い位置にある計測対象物体の所望波の最低振幅値より低い値に設定されてもよい。クラッタの最近接距離は、クラッタ強度毎に計測したクラッタの発生位置のうち最も自車両に近接した計測結果として予め記憶されている距離である。この設定されたHigh閾値によって、第1のコンパレータ402は、クラッタより近距離に所望波がある場合にHigh閾値を超えたパルスを所望波として検出することができる。クラッタよりも近距離の計測対象物体の所望波はHigh閾値を超えたことで検出される。一方、High閾値を超えない低振幅の所望波はすべてクラッタよりも遠い距離に位置することになる。ここで、クラッタの反射率は計測対象物体の所望波の反射率に対して十分に小さいため、クラッタよりも近距離の所望波は、一般に常にクラッタよりも十分に高い振幅を有する。このため、High閾値は、悪環境下におけるクラッタ振幅値より高く、クラッタの最近接距離における所望波の最低振幅値より低い値に設定される。所望波の最低振幅値は、測距目標とする計測対象物体の反射率と、レーザ光のスポット光が計測対象物体に当たる範囲や入射角毎に、上述のクラッタの最近接距離に計測対象物体を置いた場合の所望波の計測結果のうち最低のものを予め記憶したものである。
(第3の実施形態)
上述の実施形態に加え、さらに第3の実施形態の距離測定装置では、High閾値を超えない低振幅の所望波に対して、そのピーク振幅値を推定する。このとき、High閾値に到達しない低振幅の所望波のピーク振幅値として、所望波およびクラッタのパルス1波がHigh閾値以下でLow閾値以上の範囲で取りうる固定値を用いてもよい。この固定値は、例えば、High閾値とLow閾値との中間値に設定される。
In the distance measuring apparatus according to the second embodiment, in addition to the first embodiment described above, the High threshold value is lower than the minimum amplitude value of the desired wave of the measurement target object located at a position closer than the closest distance of the clutter. May be set. The closest distance of the clutter is a distance stored in advance as a measurement result closest to the host vehicle among the occurrence positions of the clutter measured for each clutter intensity. With this set High threshold, the first comparator 402 can detect a pulse exceeding the High threshold as a desired wave when there is a desired wave at a shorter distance than the clutter. The desired wave of the measurement target object at a shorter distance than the clutter is detected when the high threshold value is exceeded. On the other hand, all the desired waves with low amplitude that do not exceed the High threshold are located at a distance farther than the clutter. Here, since the reflectance of the clutter is sufficiently smaller than the reflectance of the desired wave of the measurement target object, the desired wave at a shorter distance than the clutter generally has an amplitude sufficiently higher than that of the clutter. For this reason, the High threshold value is set to a value higher than the clutter amplitude value in a bad environment and lower than the minimum amplitude value of the desired wave at the closest distance of the clutter. The minimum amplitude value of the desired wave is determined by setting the object to be measured at the closest distance of the above-mentioned clutter for each reflectance and the range and incident angle where the spot light of the laser beam hits the object to be measured. The lowest of the measurement results of the desired wave when placed is stored in advance.
(Third embodiment)
In addition to the above-described embodiment, the distance measurement apparatus of the third embodiment estimates the peak amplitude value of a desired signal having a low amplitude that does not exceed the High threshold. At this time, as a peak amplitude value of a desired wave having a low amplitude that does not reach the High threshold value, a fixed value that can be taken in a range where the desired wave and one pulse of the clutter are not more than the High threshold value and not less than the Low threshold value may be used. This fixed value is set to an intermediate value between the High threshold and the Low threshold, for example.

信号処理部100は、High閾値に到達しない低振幅の所望波のピーク振幅値とLow閾値とに基づいて、所望波とクラッタが合成されたパルスから所望波またはクラッタの少なくとも1波のパルス幅を推定する。信号処理部100は、投光部200や受光部300の回路特性などで決定される受光パルス形状を基準として、このパルス幅の推定を行う。例えば、信号処理部100は、受光パルス形状のパルス幅が振幅の関数となる近似式を予め記憶しておき、この近似式と、ピーク振幅値に対するLow閾値の比率を用いてLow閾値におけるパルス幅を推定する。計測対象物体の所望波のパルス幅を第1の推定パルス幅W1、クラッタのパルス幅を第2の推定パルス幅W2と設定すると、この近似式は以下の数式で例示される。   The signal processing unit 100 calculates a pulse width of at least one desired wave or clutter from a pulse in which the desired wave and the clutter are synthesized based on the peak amplitude value of the desired wave having a low amplitude that does not reach the high threshold and the low threshold. presume. The signal processing unit 100 estimates the pulse width with reference to the received light pulse shape determined by the circuit characteristics of the light projecting unit 200 and the light receiving unit 300. For example, the signal processing unit 100 stores in advance an approximate expression in which the pulse width of the received light pulse shape is a function of the amplitude, and uses this approximate expression and the ratio of the low threshold value to the peak amplitude value to thereby calculate the pulse width at the low threshold value. Is estimated. When the pulse width of the desired wave of the measurement target object is set as the first estimated pulse width W1, and the pulse width of the clutter is set as the second estimated pulse width W2, this approximate expression is exemplified by the following expression.

(数2) W1=A1×f(Vlow/Vamplitude) …式(2) (Expression 2) W1 = A1 × f 1 (Vlow / Vamplitude) (2)

(数3) W2=A2×f(Vlow/Vamplitude) …式(3)
ただし、VlowはLow閾値[V]、Vamplitudeはピーク振幅値[V]、A1は所望波のパルス形状によって定まる定数A2はクラッタのパルス形状によって定まる定数である。なお、本実施形態ではパルス幅の推定に近似式を用いたが、近似式以外に
も受光パルス形状のマッピングによってパルス幅の推定が行われてもよい。
(Expression 3) W2 = A2 × f 2 (Vlow / Vamplitue) Equation (3)
However, Vlow is a low threshold value [V], Vamplit is a peak amplitude value [V], A1 is a constant determined by the pulse shape of the desired wave, and A2 is a constant determined by the pulse shape of the clutter. In the present embodiment, the approximate expression is used for the estimation of the pulse width. However, the pulse width may be estimated by mapping the received light pulse shape other than the approximate expression.

ここで、本実施の形態の距離測定装置の具体的な動作について説明する。図5は、本発明の第3の実施形態に係る距離測定装置による所望波とクラッタが合成された受光パルスから所望波を分解する第3の方法のフローチャート図である。図6は、本発明の第3の実施形態に係る距離測定装置による所望波とクラッタが合成された受光パルスから所望波を分解する第3の方法をイメージで説明する図である。まず、ステップS501に示すように、High閾値時間計測部501、Low閾値時間計測部502の計測結果から、信号処理部100は、Lowエコーに紐付くHighエコーがあるか否かを判定する。具体的には、Low閾値を超えたタイミングから所定時間内にHigh閾値を超えたタイミングがある場合にLowエコーに紐づくHighエコーがあると判定する。ステップS501でYESの場合、受光パルスは所望波とクラッタが合成されていると判定でき、信号処理部100は、ステップS502に示すようにHighエコーを所望波として選択し、ステップS503に示すようにHigh閾値の計測時間で測距処理を行う。これによって、クラッタに隠れた所望波を特定することができる。一方、ステップS501でNOの場合、ステップS504に示すように、信号処理部100は、算出した受光パルス幅が上記数式(3)で表される第2の推定パルス幅W2よりも大きいか否か判定する。ステップS504でNOの場合、信号処理部100は、所望波のみの1波と判定することができ、ステップS505に示すようにLowエコーを所望波として選択し、ステップS503に示すようにLow閾値の計測時間で測距処理を行う。一方、ステップS504でYESの場合、受光パルスは所望波とクラッタが合成されていると判定でき、信号処理部100は、受光パルスの立下りから第1の推定パルス幅W1を減算した値を所望波の計測時間と推定し、ステップS503に示すように推定した計測時間で測距処理を行う。これによって、クラッタに隠れた所望波の距離を推定することができる。このように、本実施の形態によれば、簡易なシステムによって、所望波とクラッタの合成の有無を判定でき、所望波とクラッタが合成されている場合にクラッタに隠れた所望波を特定することができる。
(第4の実施形態)
上述の実施形態に加え、さらに第4の実施形態の距離測定装置では、High閾値を超えない低振幅の所望波に対して、そのピーク振幅値を計測する。具体的には、第4の実施形態の距離測定装置では、図7に示すように、High閾値に到達しない低振幅の所望波のピーク振幅値を取得するピーク振幅取得部700と、検出部400内に設けられ、増幅部401が増幅した増幅波のゲインを調整する感度時間調整回路であるSTC(Sensitive Time Control)404とをさらに有する。
Here, a specific operation of the distance measuring apparatus according to the present embodiment will be described. FIG. 5 is a flowchart of a third method for decomposing a desired wave from a light-receiving pulse in which the desired wave and clutter are combined by the distance measuring apparatus according to the third embodiment of the present invention. FIG. 6 is a diagram for explaining in image form a third method for decomposing a desired wave from a light reception pulse in which the desired wave and clutter are combined by the distance measuring apparatus according to the third embodiment of the present invention. First, as shown in step S501, the signal processing unit 100 determines whether there is a high echo associated with the low echo from the measurement results of the high threshold time measurement unit 501 and the low threshold time measurement unit 502. Specifically, when there is a timing that exceeds the High threshold within a predetermined time from a timing that exceeds the Low threshold, it is determined that there is a High echo associated with the Low echo. If YES in step S501, it can be determined that the received light pulse is a combination of the desired wave and the clutter, and the signal processing unit 100 selects the high echo as the desired wave as shown in step S502, as shown in step S503. Ranging processing is performed with the measurement time of the high threshold. As a result, the desired wave hidden in the clutter can be identified. On the other hand, in the case of NO in step S501, as shown in step S504, the signal processing unit 100 determines whether or not the calculated received light pulse width is larger than the second estimated pulse width W2 represented by the above equation (3). judge. In the case of NO in step S504, the signal processing unit 100 can determine that only one desired wave is selected, selects the low echo as the desired wave as shown in step S505, and sets the low threshold value as shown in step S503. Ranging is performed at the measurement time. On the other hand, if YES in step S504, it can be determined that the desired pulse and clutter are combined in the received light pulse, and the signal processing unit 100 desires a value obtained by subtracting the first estimated pulse width W1 from the falling edge of the received light pulse. It is estimated as the wave measurement time, and the distance measurement process is performed with the estimated measurement time as shown in step S503. Thereby, the distance of the desired wave hidden behind the clutter can be estimated. As described above, according to the present embodiment, it is possible to determine whether or not the desired wave and the clutter are combined by a simple system, and to specify the desired wave hidden in the clutter when the desired wave and the clutter are combined. Can do.
(Fourth embodiment)
In addition to the above-described embodiment, the distance measurement device of the fourth embodiment measures the peak amplitude value of a desired signal having a low amplitude that does not exceed the High threshold. Specifically, in the distance measuring apparatus according to the fourth embodiment, as shown in FIG. 7, a peak amplitude acquisition unit 700 that acquires a peak amplitude value of a low-amplitude desired wave that does not reach the high threshold, and a detection unit 400 And an STC (Sensitive Time Control) 404 that is a sensitivity time adjustment circuit that adjusts the gain of the amplified wave amplified by the amplification unit 401.

ピーク振幅取得部700は、ピークホールド回路701とADC702とを有する。ピークホールド回路701はSTC404で調整された調整波をピークホールドする。ADC702は、このピークホールドされた波形からピーク値を取得して信号処理部100に取得したピーク値を出力する。ピーク振幅取得部700の動作周波数は受光パルス波形の周波数に対して低く設定される。STC404は、第1のコンパレータ402と第2のコンパレータ403より前段に設けられ、信号処理部100から入力された投光パルスのタイミング信号と増幅部401から入力された増幅波の時間差が大きくなるほど(計測対象物体との距離が大きくなるほど)相対的にゲインを上げる。ゲインの変位量は、図7に示すように、クラッタの存在が想定される自車両近傍の所定の距離範囲(近距離)のゲインを、所望波の存在が想定される自車両遠方の所定の距離範囲(中距離)のゲインに比べて相対的に下げるように偏りを持たせるようにしてもよい。この場合、ゲインの変位量の比率は、例えばHigh閾値とLow閾値の比率に設定される。なお、他の手法で変位させてもよく、例えば線形に変位させてもよい。ピークホールド回路701とADC702の動作周波数が受光パルス波形の周波数に対して低いため、所望波よりもクラッタの方が振幅が高い場合、ピーク振幅取得部700は所望波のピーク振幅値を得られないおそれがある。しかしながら、本実施の形態の距離測定装置によれば、STC404が中距離の所望
波のゲインをクラッタに対して相対的に上げるため、所望波のピーク振幅値をクラッタのピーク振幅値よりも大きくすることができる。この結果、ピーク振幅取得部700は、所望波のピーク振幅値を取得することができる。
The peak amplitude acquisition unit 700 includes a peak hold circuit 701 and an ADC 702. The peak hold circuit 701 peaks and holds the adjustment wave adjusted by the STC 404. The ADC 702 acquires a peak value from the peak-held waveform and outputs the acquired peak value to the signal processing unit 100. The operating frequency of the peak amplitude acquisition unit 700 is set lower than the frequency of the received light pulse waveform. The STC 404 is provided before the first comparator 402 and the second comparator 403, and as the time difference between the timing signal of the projection pulse input from the signal processing unit 100 and the amplified wave input from the amplification unit 401 becomes larger ( Relatively increase the gain (as the distance to the object to be measured increases). As shown in FIG. 7, the gain displacement amount is a predetermined distance range (short distance) in the vicinity of the host vehicle where the presence of the clutter is assumed, or a predetermined distance far from the host vehicle where the presence of the desired wave is assumed. The bias may be given so as to be relatively lower than the gain in the distance range (medium distance). In this case, the ratio of the gain displacement amount is set to, for example, the ratio between the High threshold and the Low threshold. In addition, you may displace by another method, for example, you may displace linearly. Since the operating frequencies of the peak hold circuit 701 and the ADC 702 are lower than the frequency of the received light pulse waveform, when the amplitude of the clutter is higher than that of the desired wave, the peak amplitude acquisition unit 700 cannot obtain the peak amplitude value of the desired wave. There is a fear. However, according to the distance measuring apparatus of the present embodiment, the STC 404 increases the gain of the desired wave at medium distance relative to the clutter, so that the peak amplitude value of the desired wave is made larger than the peak amplitude value of the clutter. be able to. As a result, the peak amplitude acquisition unit 700 can acquire the peak amplitude value of the desired wave.

ここで、本実施の形態の距離測定装置の具体的な動作について説明する。図8は、本発明の第4の実施形態に係る距離測定装置による所望波とクラッタが合成された受光パルスから所望波を分解する第4の方法のフローチャート図である。本実施形態では、ピーク振幅取得部700が取得するピーク振幅値が所望波のピーク振幅値となるように設定されているため、第3の実施形態のようにクラッタのパルス幅を想定する必要はない。まず、ステップS801に示すように、High閾値時間計測部501、Low閾値時間計測部502の計測結果から、信号処理部100は、Lowエコーに紐付くHighエコーがあるか否かを判定する。具体的には、Low閾値を超えたタイミングから所定期間内にHigh閾値を超えたタイミングがある場合にLowエコーに紐づくHighエコーがあると判定する。ステップS801でYESの場合、受光パルスは所望波とクラッタが合成されていると判定でき、信号処理部100は、ステップS802に示すようにHighエコーを所望波として選択し、ステップS803に示すようにHigh閾値の計測時間で測距処理を行う。これによって、クラッタに隠れた所望波を特定することができる。一方、ステップS801でNOの場合、ステップS804に示すように、信号処理部100は、算出した受光パルス幅が上記数式(2)で表される第1の推定パルス幅W1よりも大きいか否か判定する。ステップS804でNOの場合、信号処理部100は、所望波のみの1波と判定することができ、ステップS805に示すようにLowエコーを所望波として選択し、ステップS803に示すようにLow閾値の計測時間で測距処理を行う。一方、ステップS804でYESの場合、受光パルスは所望波とクラッタが合成されていると判定でき、信号処理部100は、受光パルスの立下りから第1の推定パルス幅W1を減算した値を所望波の計測時間と推定し、ステップS803に示すように推定した計測時間で測距処理を行う。これによって、クラッタのに隠れた所望波の距離を推定することができる。このように、本実施の形態によれば、簡易なシステムによって、所望波とクラッタの合成の有無を判定でき、所望波とクラッタが合成されている場合にクラッタに隠れた所望波を特定することができる。特に、測距精度を高めるために動作周波数が高い高速なADCを用いる必要が無く、設計の自由度を向上することができる。   Here, a specific operation of the distance measuring apparatus according to the present embodiment will be described. FIG. 8 is a flowchart of a fourth method for decomposing a desired wave from a light receiving pulse in which the desired wave and clutter are combined by the distance measuring apparatus according to the fourth embodiment of the present invention. In the present embodiment, since the peak amplitude value acquired by the peak amplitude acquisition unit 700 is set to be the peak amplitude value of the desired wave, it is necessary to assume the pulse width of the clutter as in the third embodiment. Absent. First, as shown in step S801, the signal processing unit 100 determines whether there is a high echo associated with the low echo from the measurement results of the high threshold time measurement unit 501 and the low threshold time measurement unit 502. Specifically, when there is a timing exceeding the High threshold within a predetermined period from a timing exceeding the Low threshold, it is determined that there is a High echo associated with the Low echo. If YES in step S801, it can be determined that the received light pulse is a combination of the desired wave and the clutter, and the signal processing unit 100 selects the high echo as the desired wave as shown in step S802, as shown in step S803. Ranging processing is performed with the measurement time of the high threshold. As a result, the desired wave hidden in the clutter can be identified. On the other hand, in the case of NO in step S801, as shown in step S804, the signal processing unit 100 determines whether or not the calculated received light pulse width is larger than the first estimated pulse width W1 represented by the above equation (2). judge. In the case of NO in step S804, the signal processing unit 100 can determine that only one desired wave is selected, selects the low echo as the desired wave as shown in step S805, and sets the low threshold value as shown in step S803. Ranging is performed at the measurement time. On the other hand, if YES in step S804, it can be determined that the received light pulse is composed of the desired wave and the clutter, and the signal processing unit 100 desires a value obtained by subtracting the first estimated pulse width W1 from the falling edge of the received light pulse. It is estimated as the wave measurement time, and the distance measurement process is performed with the estimated measurement time as shown in step S803. As a result, the distance of the desired wave hidden behind the clutter can be estimated. As described above, according to the present embodiment, it is possible to determine whether or not the desired wave and the clutter are combined by a simple system, and to specify the desired wave hidden in the clutter when the desired wave and the clutter are combined. Can do. In particular, it is not necessary to use a high-speed ADC having a high operating frequency in order to improve distance measurement accuracy, and the degree of freedom in design can be improved.

このように、本実施形態では、動作周波数が受光パルス波形の周波数よりも遅いピーク振幅取得部700が確実に所望波を検出できるようにゲインの変位が設定される。これは、図9に示すようなワーストケースにも対応可能にするためである。図9では、クラッタのピーク振幅値PcがHigh閾値と略同一であり、所望波のピーク振幅値PdがLow閾値と略同一であり、かつ、2波合成されているような状況である。この場合、図10に示すように、STC404のゲイン変位をクラッタのピーク振幅値Pcの計測時間から所望波のピーク振幅値Pdの計測時間の間PWcfにおいて、ゲインGに対してHigh/Low以上に設定されればよい。
(第5の実施形態)
上述の実施形態に加え、さらに第5の実施形態の距離測定装置では、図11に示すように、受光パルスがLow閾値よりも低い第3の閾値を超えたか否かを検出する第3のコンパレータ405と、第3の閾値時間計測部503とをさらに有する。第3の閾値時間計測部503は、この第3のコンパレータ405から入力された各パルスの立ち上がり(受光タイミング)と信号処理部100から入力された投光パルスの立ち上がり(投光タイミング)との時間差を信号処理部100にデジタル出力する。信号処理部100は、第2のコンパレータ403とLow閾値時間計測部502から取得したLow閾値の立下りの測距結果と、第3のコンパレータ405と第3の閾値時間計測部503から取得した第3の閾値の立下りの測距結果とに基づいて、図12に示すように、所望波とクラッタが合成された受光パルスの立下りの傾き(所望波の立下りの傾き)を算出し、High閾値に到達し
ない所望波のピーク振幅値を所望波の傾きから推定する。そして、信号処理部100は、受光パルスの立下りから第1の推定パルス幅W1を減算した値を所望波の計測時間と推定する。具体的な処理は、第4の実施形態の図8で説明した処理と同様であるため、詳細な説明は省略する。
Thus, in this embodiment, the gain displacement is set so that the peak amplitude acquisition unit 700 whose operating frequency is slower than the frequency of the received light pulse waveform can reliably detect the desired wave. This is to make it possible to cope with the worst case as shown in FIG. In FIG. 9, the clutter peak amplitude value Pc is substantially the same as the high threshold value, the desired wave peak amplitude value Pd is substantially the same as the low threshold value, and two waves are combined. In this case, as shown in FIG. 10, the gain displacement of the STC 404 is set to High / Low or higher with respect to the gain G in the PWcf from the measurement time of the peak amplitude value Pc of the clutter to the measurement time of the peak amplitude value Pd of the desired wave. It only has to be set.
(Fifth embodiment)
In addition to the above-described embodiment, in the distance measuring device according to the fifth embodiment, as shown in FIG. 11, a third comparator that detects whether or not the received light pulse has exceeded a third threshold value lower than the Low threshold value. 405 and a third threshold time measuring unit 503. The third threshold time measurement unit 503 is a time difference between the rise of each pulse (light reception timing) input from the third comparator 405 and the rise of the light projection pulse (light projection timing) input from the signal processing unit 100. Is digitally output to the signal processing unit 100. The signal processing unit 100 includes the distance measurement result of the falling of the Low threshold acquired from the second comparator 403 and the Low threshold time measuring unit 502, and the first distance acquired from the third comparator 405 and the third threshold time measuring unit 503. Based on the distance measurement result of the falling of the threshold value of 3, as shown in FIG. 12, the slope of the fall of the received pulse in which the desired wave and the clutter are combined (the slope of the fall of the desired wave) is calculated. The peak amplitude value of the desired wave that does not reach the high threshold is estimated from the slope of the desired wave. Then, the signal processing unit 100 estimates a value obtained by subtracting the first estimated pulse width W1 from the fall of the received light pulse as the measurement time of the desired wave. The specific process is the same as the process described with reference to FIG. 8 of the fourth embodiment, and thus detailed description thereof is omitted.

このように、本実施形態によれば、簡易なシステムによって、所望波とクラッタの合成の有無を判定でき、所望波とクラッタが合成されている場合にクラッタに隠れた所望波を特定することができる。また、測距精度を高めるために動作周波数が高い高速なADCを用いる必要が無く、設計の自由度を向上することができる。   As described above, according to the present embodiment, it is possible to determine whether or not the desired wave and the clutter are combined by a simple system, and when the desired wave and the clutter are combined, the desired wave hidden in the clutter can be specified. it can. In addition, it is not necessary to use a high-speed ADC having a high operating frequency in order to increase the distance measurement accuracy, and the degree of freedom in design can be improved.

なお、本発明は、上述の構成に限定されることなく、発明の要旨を逸脱しない範囲で種々の変形が可能である。また、上記実施形態は、一例として提示したものであり、発明の範囲を限定することは意図していない。   In addition, this invention is not limited to the above-mentioned structure, A various deformation | transformation is possible in the range which does not deviate from the summary of invention. Moreover, the said embodiment is shown as an example and is not intending limiting the range of invention.

例えば、第3の実施形態では、High閾値を超えない低振幅の所望波に対して、そのピーク振幅値を計測、推定するために、High閾値に到達しない低振幅の所望波のピーク振幅値として、所望波およびクラッタのパルス1波がHigh閾値以下でLow閾値以上の範囲で取りうる固定値を用いたが、他の手法を用いてもよい。例えば、第4の実施形態のSTC404を用いて、所望波を増幅してHigh閾値を超えるように補正することによって所望波を特定してもよい。これによれば、第4の実施形態で用いたピーク振幅取得部700を用いなくてもよく、装置を簡略化、小型化することができる。   For example, in the third embodiment, in order to measure and estimate the peak amplitude value of a low-amplitude desired wave that does not exceed the High threshold, the peak amplitude value of the low-amplitude desired wave that does not reach the High threshold is used. Although a fixed value that can be taken in a range where the desired wave and one pulse of clutter are not more than the high threshold and not less than the low threshold is used, other methods may be used. For example, the desired wave may be specified by using the STC 404 of the fourth embodiment and amplifying the desired wave and correcting it so as to exceed the High threshold. According to this, it is not necessary to use the peak amplitude acquisition unit 700 used in the fourth embodiment, and the apparatus can be simplified and miniaturized.

また、第4の実施形態では、STC404を用いて、図10に示すように計測時間に応じて所望波のゲインを調整したが、STC404を用いずに他の方法を用いてもよい。例えば、High閾値を計測時間に応じて下げてもよい。具体的には、図10のクラッタのピーク振幅値Pcの計測時間までHigh閾値に維持して、その後、所望波のピーク振幅値Pdの計測時間まで漸減させてもよい。具体的には、図10のPc〜Pd間のゲインの漸増のグラフ形状をゲインGの直線を中心として反転する上に凸となるような曲線形状となるのが、クラッタと所望波の誤判定を抑制するのに望ましい。ただし、必ずしも漸減の仕方はこの方法に限られない。例えば、Pdの計測時間以降も漸減させてもよいし、High閾値の漸減の下限がLow閾値に設定されてもよい。この場合、信号処理部100は、第1のコンパレータ402に印加されるHigh閾値の電圧値を制御する。このようなHigh閾値の調整によれば、STC404を用いなくてもよく、装置を簡略化、小型化することができる。   In the fourth embodiment, the STC 404 is used to adjust the gain of the desired wave according to the measurement time as shown in FIG. 10, but other methods may be used without using the STC 404. For example, the high threshold value may be lowered according to the measurement time. Specifically, the high threshold value may be maintained until the measurement time of the peak amplitude value Pc of the clutter of FIG. 10 and then gradually decreased until the measurement time of the peak amplitude value Pd of the desired wave. Specifically, the graph shape of the gradually increasing gain between Pc to Pd in FIG. 10 is inverted with the gain G as the center, and the curve shape becomes convex. It is desirable to suppress this. However, the method of gradual reduction is not necessarily limited to this method. For example, it may be gradually decreased after the measurement time of Pd, or the lower limit of the gradual decrease of the High threshold may be set as the Low threshold. In this case, the signal processing unit 100 controls the voltage value of the high threshold applied to the first comparator 402. According to such adjustment of the high threshold value, the STC 404 need not be used, and the apparatus can be simplified and downsized.

本開示の距離測定装置は、自車両周囲に送信波を出力する投光手段と、前記投光手段が出力した送信波の反射波を受信する受光手段と、前記受光手段が受信した反射波の振幅が所定の第1の閾値を超えた時間、および、前記第1の閾値より大きい第2の閾値を超えた時間を計測する計測手段と、前記計測手段の計測結果に基づいて、反射物体までの距離を推定する推定手段とを備え、前記第2の閾値は、悪環境下におけるクラッタ振幅値より高く設定され、前記推定手段は、前記第1の閾値と前記第2の閾値に基づいて計測対象物体までの距離を推定する。   The distance measuring device according to the present disclosure includes a light projecting unit that outputs a transmission wave around the vehicle, a light receiving unit that receives a reflected wave of the transmission wave output from the light projecting unit, and a reflected wave received by the light receiving unit. Based on the measurement result of the measurement means and the measurement result of the measurement means for measuring the time when the amplitude exceeds the predetermined first threshold and the time when the amplitude exceeds the second threshold greater than the first threshold, And the second threshold value is set to be higher than the clutter amplitude value in a bad environment, and the estimation means measures based on the first threshold value and the second threshold value. Estimate the distance to the target object.

また、上記距離測定装置において、前記受光手段が受信した反射波の振幅が、前記第1の閾値を超えるか否か、および、前記第2の閾値を超えるか否かを検出する検出手段をさらに備え、前記計測手段は、前記検出手段が前記反射波の振幅が前記第1の閾値または前記第2の閾値を超えたと検出したとき、前記投光手段が出力したときから前記第1の閾値または前記第2の閾値を超えたときまでの時間を計測してもよい。   In the distance measuring apparatus, the detection unit further detects whether the amplitude of the reflected wave received by the light receiving unit exceeds the first threshold and whether the amplitude exceeds the second threshold. The measuring means includes the first threshold or the output from the light projecting means when the detecting means detects that the amplitude of the reflected wave exceeds the first threshold or the second threshold. You may measure the time until it exceeds the said 2nd threshold value.

また、上記距離測定装置において、前記推定手段は、前記第2の閾値を超えた時間に対
応する距離を計測対象物体までの距離と推定してもよい。
In the distance measuring apparatus, the estimating unit may estimate a distance corresponding to a time exceeding the second threshold as a distance to the measurement target object.

また、上記距離測定装置において、前記推定手段は、前記受光手段が受信した反射波の振幅が、前記第1の閾値を超え、かつ、前記第2の閾値を超えないことを前記検出手段が検出したとき、前記第1の閾値と第2の閾値の中間値である所定の振幅値と、前記第1の閾値とに基づいて前記計測対象物体の反射波のパルス幅または前記クラッタのパルス幅を推定し、この推定したパルス幅と前記計測手段が計測した前記第1の閾値を超えた期間のパルス幅とに基づいて、前記計測対象物体の反射波とクラッタとが合成されているか否かを判定してもよい。   Further, in the distance measuring apparatus, the estimation unit detects that the amplitude of the reflected wave received by the light receiving unit exceeds the first threshold and does not exceed the second threshold. Then, based on a predetermined amplitude value that is an intermediate value between the first threshold value and the second threshold value, and the first threshold value, the pulse width of the reflected wave of the measurement target object or the pulse width of the clutter is calculated. Based on the estimated pulse width and the pulse width of the period exceeding the first threshold measured by the measuring means, whether or not the reflected wave and the clutter of the measurement target object are combined. You may judge.

また、上記距離測定装置において、前記推定手段は、前記計測対象物体の反射波とクラッタとが合成されていると判定したとき、前記推定したパルス幅と前記計測手段が計測した前記第1の閾値を超えた期間のパルス幅とに基づいて前記計測対象物体の距離を推定してもよい。   In the distance measurement device, when the estimation unit determines that the reflected wave and the clutter of the measurement target object are combined, the estimated pulse width and the first threshold value measured by the measurement unit are determined. The distance of the object to be measured may be estimated based on the pulse width in a period exceeding.

また、上記距離測定装置において、前記第2の閾値は、前記クラッタの最近接距離よりも近い位置にある計測対象物体の反射波の最低振幅値よりも低い値に設定してもよい。   In the distance measuring apparatus, the second threshold value may be set to a value lower than a minimum amplitude value of a reflected wave of a measurement target object located at a position closer than a closest distance of the clutter.

また、上記距離測定装置において、前記受光手段が受信した反射波のピーク振幅値を取得するピーク振幅取得部をさらに備え、前記推定手段は、前記ピーク振幅取得部が取得したピーク値と、前記第1の閾値とに基づいて前記計測対象物体の反射波とクラッタとが合成されているか否かを判定してもよい。   The distance measurement apparatus further includes a peak amplitude acquisition unit that acquires a peak amplitude value of a reflected wave received by the light receiving unit, and the estimation unit includes the peak value acquired by the peak amplitude acquisition unit, Based on the threshold value of 1, it may be determined whether the reflected wave of the measurement target object and the clutter are combined.

また、上記距離測定装置において、前記検出部は、前記受光手段が受信した反射波を増幅する増幅部と、前記増幅部が増幅した増幅波のゲインを調整する感度時間調整回路と、前記感度時間調整回路で調整された調整波と前記第1・第2の閾値とをそれぞれ比較する第1・第2のコンパレータとを有し、前記ピーク振幅取得部は、前記感度時間調整回路で調整された調整波をピークホールドするピークホールド回路と、このピークホールドされた波形からピーク値を取得するADCとを有してもよい。   In the distance measuring apparatus, the detection unit includes an amplification unit that amplifies the reflected wave received by the light receiving unit, a sensitivity time adjustment circuit that adjusts the gain of the amplified wave amplified by the amplification unit, and the sensitivity time. The first and second comparators for comparing the adjustment wave adjusted by the adjustment circuit and the first and second thresholds, respectively, and the peak amplitude acquisition unit is adjusted by the sensitivity time adjustment circuit You may have a peak hold circuit which carries out peak hold of the adjustment wave, and ADC which acquires a peak value from this peak hold waveform.

また、上記距離測定装置において、前記感度時間調整回路は、前記投光手段が送信波を送信したタイミングから前記受光手段が反射波を受信したタイミングまでの時間に応じてゲインを上げ、前記ピーク振幅取得部の動作周波数は、前記受光手段が受信した反射波の周波数より低くしてもよい。   In the distance measuring apparatus, the sensitivity time adjustment circuit increases the gain according to the time from the timing at which the light projecting means transmits the transmission wave to the timing at which the light receiving means receives the reflected wave, and the peak amplitude is increased. The operating frequency of the acquisition unit may be lower than the frequency of the reflected wave received by the light receiving means.

また、上記距離測定装置において、前記推定手段は、前記ピーク振幅取得部が取得したピーク値と前記第1の閾値とに基づいて前記計測対象物体の反射波のパルス幅を推定し、この推定したパルス幅と前記計測手段が計測した前記第1の閾値を超えた期間のパルス幅とに基づいて、前記計測対象物体の反射波とクラッタとが合成されているか否かを判定してもよい。   Further, in the distance measuring apparatus, the estimation unit estimates the pulse width of the reflected wave of the measurement target object based on the peak value acquired by the peak amplitude acquisition unit and the first threshold, and the estimation is performed. Based on the pulse width and the pulse width of the period exceeding the first threshold measured by the measuring means, it may be determined whether or not the reflected wave of the measurement target object and the clutter are combined.

また、上記距離測定装置において、前記推定手段は、前記計測対象物体の反射波とクラッタとが合成されていると判定したとき、前記推定したパルス幅と前記計測手段が計測した前記第1の閾値を超えた期間のパルス幅とに基づいて前記計測対象物体の距離を推定してもよい。   In the distance measurement device, when the estimation unit determines that the reflected wave and the clutter of the measurement target object are combined, the estimated pulse width and the first threshold value measured by the measurement unit are determined. The distance of the object to be measured may be estimated based on the pulse width in a period exceeding.

また、上記距離測定装置において、前記計測手段は、前記受光手段が受信した反射波の振幅が前記第1の閾値以下になった第1の時間と、前記第1の閾値より小さい第3の閾値以下になった第2の時間とを計測し、前記推定手段は、前記第1の時間と前記第2の時間に基づいて前記計測対象物体の距離を推定してもよい。   Further, in the distance measuring apparatus, the measuring means includes a first time when the amplitude of the reflected wave received by the light receiving means is equal to or lower than the first threshold, and a third threshold smaller than the first threshold. The following second time may be measured, and the estimation means may estimate the distance of the measurement target object based on the first time and the second time.

また、上記距離測定装置において、前記推定手段は、前記第1の時間と前記第2の時間に基づいて前記計測対象物体のパルス幅を推定し、この推定したパルス幅と前記計測手段が計測した前記第1の閾値を超えた期間のパルス幅とに基づいて、前記計測対象物体の反射波とクラッタとが合成されているか否かを判定してもよい。   In the distance measuring apparatus, the estimation unit estimates a pulse width of the measurement target object based on the first time and the second time, and the estimated pulse width and the measurement unit measure the pulse width. It may be determined whether or not the reflected wave and the clutter of the measurement target object are combined based on the pulse width of the period exceeding the first threshold.

また、上記距離測定装置において、前記推定手段は、前記計測対象物体の反射波とクラッタとが合成されていると判定したとき、前記推定したパルス幅と前記計測手段が計測した前記第1の閾値を超えた期間のパルス幅とに基づいて前記計測対象物体の距離を推定してもよい。   In the distance measurement device, when the estimation unit determines that the reflected wave and the clutter of the measurement target object are combined, the estimated pulse width and the first threshold value measured by the measurement unit are determined. The distance of the object to be measured may be estimated based on the pulse width in a period exceeding.

また、上記距離測定装置において、自車両が悪環境下にあるか否かを検出する悪環境検出手段をさらに備え、前記推定手段は、前記悪環境検出手段が自車両が悪環境下にないことを検出した場合に前記反射物体までの距離の推定を行い、前記悪環境検出手段が自車両が悪環境下にあることを検出した場合に前記反射物体までの距離の推定を行わないようにしてもよい。   The distance measuring apparatus further includes a bad environment detection means for detecting whether or not the host vehicle is in a bad environment, and the estimation means is such that the bad environment detection means is not in a bad environment. Is detected, and when the bad environment detection means detects that the host vehicle is in a bad environment, the distance to the reflective object is not estimated. Also good.

また、上記距離測定装置において、前記悪環境検出手段が自車両が悪環境下にあることを検出した場合に自車両が悪環境下にあることを通知する通知手段をさらに備えてもよい。   The distance measurement apparatus may further include a notification unit that notifies that the host vehicle is in a bad environment when the hostile environment detection unit detects that the host vehicle is in a hostile environment.

本発明の距離測定装置は、TDC(Time to Digital Converter)など時間計測器により実現するTOF(Time Of Flight)方式のレーザレーダのうち、マルチエコーを測距する距離測定装置として有用である。   The distance measuring device of the present invention is useful as a distance measuring device that measures multi-echo among laser radars of TOF (Time Of Flight) system realized by a time measuring device such as TDC (Time to Digital Converter).

100 信号処理部
200 投光部
201 LD駆動回路
202 LD
300 受光部
301 受光素子
302 電流・電圧変換部
400 検出部
401 増幅部
402 第1のコンパレータ
403 第2のコンパレータ
404 STC
405 第3のコンパレータ
500 時間計測部
501 High閾値時間計測部
502 Low閾値時間計測部
503 第3の閾値時間計測部
700 ピーク振幅取得部
701 ピークホールド回路
702 ADC
DESCRIPTION OF SYMBOLS 100 Signal processing part 200 Light projection part 201 LD drive circuit 202 LD
300 light receiving unit 301 light receiving element 302 current / voltage converting unit 400 detecting unit 401 amplifying unit 402 first comparator 403 second comparator 404 STC
405 Third comparator 500 Time measurement unit 501 High threshold time measurement unit 502 Low threshold time measurement unit 503 Third threshold time measurement unit 700 Peak amplitude acquisition unit 701 Peak hold circuit 702 ADC

Claims (16)

自車両周囲に送信波を出力する投光手段と、
前記投光手段が出力した送信波の反射波を受信する受光手段と、
前記受光手段が受信した反射波の振幅が所定の第1の閾値を超えた時間、および、前記第1の閾値より大きい第2の閾値を超えた時間を計測する計測手段と、
前記計測手段の計測結果に基づいて、反射物体までの距離を推定する推定手段とを備え、
前記第2の閾値は、悪環境下におけるクラッタ振幅値より高く設定され、
前記推定手段は、前記第1の閾値と前記第2の閾値に基づいて計測対象物体までの距離を推定することを特徴とする距離測定装置。
A light projecting means for outputting a transmission wave around the vehicle;
A light receiving means for receiving a reflected wave of the transmission wave output by the light projecting means;
Measuring means for measuring the time when the amplitude of the reflected wave received by the light receiving means exceeds a predetermined first threshold and the time when the amplitude exceeds a second threshold greater than the first threshold;
An estimation unit that estimates a distance to a reflecting object based on a measurement result of the measurement unit;
The second threshold is set to be higher than the clutter amplitude value in a bad environment,
The estimation means estimates a distance to a measurement target object based on the first threshold value and the second threshold value.
前記受光手段が受信した反射波の振幅が、前記第1の閾値を超えるか否か、および、前記第2の閾値を超えるか否かを検出する検出手段をさらに備え、
前記計測手段は、前記検出手段が前記反射波の振幅が前記第1の閾値または前記第2の閾値を超えたと検出したとき、前記投光手段が出力したときから前記第1の閾値または前記第2の閾値を超えたときまでの時間を計測することを特徴とする請求項1に記載の距離測定装置。
Detecting means for detecting whether the amplitude of the reflected wave received by the light receiving means exceeds the first threshold and whether the amplitude exceeds the second threshold;
The measuring means detects the first threshold value or the first threshold value from the time when the light projecting means outputs when the detecting means detects that the amplitude of the reflected wave exceeds the first threshold value or the second threshold value. The distance measuring device according to claim 1, wherein a time until a threshold value of 2 is exceeded is measured.
前記推定手段は、前記第2の閾値を超えた時間に対応する距離を計測対象物体までの距離と推定することを特徴とする請求項1または2に記載の距離測定装置。   The distance measuring apparatus according to claim 1, wherein the estimating unit estimates a distance corresponding to a time exceeding the second threshold as a distance to a measurement target object. 前記推定手段は、前記受光手段が受信した反射波の振幅が、前記第1の閾値を超え、かつ、前記第2の閾値を超えないことを前記検出手段が検出したとき、前記第1の閾値と第2の閾値の中間値である所定の振幅値と、前記第1の閾値とに基づいて前記計測対象物体の反射波のパルス幅または前記クラッタのパルス幅を推定し、この推定したパルス幅と前記計測手段が計測した前記第1の閾値を超えた期間のパルス幅とに基づいて、前記計測対象物体の反射波とクラッタとが合成されているか否かを判定することを特徴とする請求項1または2に記載の距離測定装置。   The estimating means detects the first threshold when the detecting means detects that the amplitude of the reflected wave received by the light receiving means exceeds the first threshold and does not exceed the second threshold. The pulse width of the reflected wave of the measurement target object or the pulse width of the clutter is estimated based on a predetermined amplitude value that is an intermediate value between the second threshold and the first threshold, and the estimated pulse width And determining whether or not the reflected wave and the clutter of the measurement target object are combined based on the pulse width of the period exceeding the first threshold measured by the measuring unit. Item 3. The distance measuring device according to item 1 or 2. 前記推定手段は、前記計測対象物体の反射波とクラッタとが合成されていると判定したとき、前記推定したパルス幅と前記計測手段が計測した前記第1の閾値を超えた期間のパルス幅とに基づいて前記計測対象物体の距離を推定することを特徴とする請求項4に記載の距離測定装置。   When the estimation unit determines that the reflected wave and the clutter of the measurement target object are combined, the estimated pulse width and a pulse width in a period exceeding the first threshold measured by the measurement unit The distance measuring device according to claim 4, wherein the distance of the measurement target object is estimated based on the distance. 前記第2の閾値は、前記クラッタの最近接距離よりも近い位置にある計測対象物体の反射波の最低振幅値よりも低い値に設定されることを特徴とする請求項1または2に記載の距離測定装置。   The said 2nd threshold value is set to the value lower than the minimum amplitude value of the reflected wave of the measurement target object in a position nearer than the closest distance of the said clutter. Distance measuring device. 前記受光手段が受信した反射波のピーク振幅値を取得するピーク振幅取得部をさらに備え、前記推定手段は、前記ピーク振幅取得部が取得したピーク値と、前記第1の閾値とに基づいて前記計測対象物体の反射波とクラッタとが合成されているか否かを判定することを特徴とする請求項6に記載の距離測定装置。   Further comprising a peak amplitude acquisition unit for acquiring a peak amplitude value of the reflected wave received by the light receiving means, the estimation means based on the peak value acquired by the peak amplitude acquisition unit and the first threshold value The distance measuring device according to claim 6, wherein it is determined whether or not the reflected wave of the measurement target object and the clutter are combined. 前記検出部は、前記受光手段が受信した反射波を増幅する増幅部と、前記増幅部が増幅した増幅波のゲインを調整する感度時間調整回路と、前記感度時間調整回路で調整された調整波と前記第1・第2の閾値とをそれぞれ比較する第1・第2のコンパレータとを有し、
前記ピーク振幅取得部は、前記感度時間調整回路で調整された調整波をピークホールドするピークホールド回路と、このピークホールドされた波形からピーク値を取得するAD
Cとを有することを特徴とする請求項7に記載の距離測定装置。
The detection unit includes an amplification unit that amplifies the reflected wave received by the light receiving unit, a sensitivity time adjustment circuit that adjusts the gain of the amplified wave amplified by the amplification unit, and an adjustment wave that is adjusted by the sensitivity time adjustment circuit. And first and second comparators respectively comparing the first and second threshold values,
The peak amplitude acquisition unit includes a peak hold circuit for peak-holding the adjustment wave adjusted by the sensitivity time adjustment circuit, and an AD for acquiring a peak value from the peak-held waveform.
The distance measuring device according to claim 7, further comprising:
前記感度時間調整回路は、前記投光手段が送信波を送信したタイミングから前記受光手段が反射波を受信したタイミングまでの時間に応じてゲインを上げ、前記ピーク振幅取得部の動作周波数は、前記受光手段が受信した反射波の周波数より低いことを特徴とする請求項8に記載の距離測定装置。   The sensitivity time adjustment circuit increases the gain according to the time from the timing at which the light projecting means transmits the transmission wave to the timing at which the light receiving means receives the reflected wave, and the operating frequency of the peak amplitude acquisition unit is 9. The distance measuring device according to claim 8, wherein the distance is lower than the frequency of the reflected wave received by the light receiving means. 前記推定手段は、前記ピーク振幅取得部が取得したピーク値と前記第1の閾値とに基づいて前記計測対象物体の反射波のパルス幅を推定し、この推定したパルス幅と前記計測手段が計測した前記第1の閾値を超えた期間のパルス幅とに基づいて、前記計測対象物体の反射波とクラッタとが合成されているか否かを判定する請求項7ないし9のいずれかに記載の距離測定装置。   The estimation unit estimates a pulse width of a reflected wave of the measurement target object based on the peak value acquired by the peak amplitude acquisition unit and the first threshold value, and the estimated pulse width and the measurement unit measure The distance according to any one of claims 7 to 9, wherein it is determined whether or not the reflected wave and the clutter of the measurement target object are synthesized based on the pulse width of the period exceeding the first threshold. measuring device. 前記推定手段は、前記計測対象物体の反射波とクラッタとが合成されていると判定したとき、前記推定したパルス幅と前記計測手段が計測した前記第1の閾値を超えた期間のパルス幅とに基づいて前記計測対象物体の距離を推定することを特徴とする請求項10に記載の距離測定装置。   When the estimation unit determines that the reflected wave and the clutter of the measurement target object are combined, the estimated pulse width and a pulse width in a period exceeding the first threshold measured by the measurement unit The distance measurement apparatus according to claim 10, wherein the distance of the measurement target object is estimated based on the distance. 前記計測手段は、前記受光手段が受信した反射波の振幅が前記第1の閾値以下になった第1の時間と、前記第1の閾値より小さい第3の閾値以下になった第2の時間とを計測し、
前記推定手段は、前記第1の時間と前記第2の時間に基づいて前記計測対象物体の距離を推定することを特徴とする請求項6に記載の距離測定装置。
The measuring means includes a first time when the amplitude of the reflected wave received by the light receiving means is less than or equal to the first threshold value, and a second time when the amplitude is less than or equal to a third threshold value that is less than the first threshold value. And measure
The distance measuring apparatus according to claim 6, wherein the estimating unit estimates a distance of the measurement target object based on the first time and the second time.
前記推定手段は、前記第1の時間と前記第2の時間に基づいて前記計測対象物体のパルス幅を推定し、この推定したパルス幅と前記計測手段が計測した前記第1の閾値を超えた期間のパルス幅とに基づいて、前記計測対象物体の反射波とクラッタとが合成されているか否かを判定する請求項12に記載の距離測定装置。   The estimation means estimates a pulse width of the measurement target object based on the first time and the second time, and exceeds the estimated pulse width and the first threshold measured by the measurement means. The distance measuring device according to claim 12, wherein it is determined whether or not a reflected wave and a clutter of the measurement target object are combined based on a pulse width of a period. 前記推定手段は、前記計測対象物体の反射波とクラッタとが合成されていると判定したとき、前記推定したパルス幅と前記計測手段が計測した前記第1の閾値を超えた期間のパルス幅とに基づいて前記計測対象物体の距離を推定することを特徴とする請求項13に記載の距離測定装置。   When the estimation unit determines that the reflected wave and the clutter of the measurement target object are combined, the estimated pulse width and a pulse width in a period exceeding the first threshold measured by the measurement unit The distance measuring device according to claim 13, wherein the distance of the measurement target object is estimated based on the distance. 自車両が悪環境下にあるか否かを検出する悪環境検出手段をさらに備え、
前記推定手段は、前記悪環境検出手段が自車両が悪環境下にないことを検出した場合に前記反射物体までの距離の推定を行い、前記悪環境検出手段が自車両が悪環境下にあることを検出した場合に前記反射物体までの距離の推定を行わないことを特徴とする請求項1ないし請求項14のいずれかに記載の距離測定装置。
It further includes a bad environment detection means for detecting whether or not the host vehicle is in a bad environment,
The estimation means estimates the distance to the reflecting object when the bad environment detection means detects that the host vehicle is not in a bad environment, and the bad environment detection means has the host vehicle in a bad environment. The distance measuring device according to any one of claims 1 to 14, wherein the distance to the reflecting object is not estimated when this is detected.
前記悪環境検出手段が自車両が悪環境下にあることを検出した場合に自車両が悪環境下にあることを通知する通知手段をさらに備えたことを特徴とする請求項15に記載の距離測定装置。   16. The distance according to claim 15, further comprising notification means for notifying that the host vehicle is in a bad environment when the bad environment detection unit detects that the host vehicle is in a bad environment. measuring device.
JP2014071478A 2014-03-31 2014-03-31 Distance measurement device Pending JP2015194356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071478A JP2015194356A (en) 2014-03-31 2014-03-31 Distance measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071478A JP2015194356A (en) 2014-03-31 2014-03-31 Distance measurement device

Publications (1)

Publication Number Publication Date
JP2015194356A true JP2015194356A (en) 2015-11-05

Family

ID=54433528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071478A Pending JP2015194356A (en) 2014-03-31 2014-03-31 Distance measurement device

Country Status (1)

Country Link
JP (1) JP2015194356A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115960A (en) * 2017-01-18 2018-07-26 日本無線株式会社 Radar target detection device and radar target detection method
JPWO2019116641A1 (en) * 2017-12-15 2020-12-03 コニカミノルタ株式会社 Distance measuring device, control method of distance measuring device, and control program of distance measuring device
CN112711010A (en) * 2021-01-26 2021-04-27 上海思岚科技有限公司 Laser ranging signal processing device, laser ranging equipment and corresponding method thereof
WO2023083198A1 (en) * 2021-11-10 2023-05-19 北京一径科技有限公司 Echo signal processing method and apparatus, device, and storage medium
WO2024062825A1 (en) * 2022-09-22 2024-03-28 株式会社デンソーウェーブ Distance measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115960A (en) * 2017-01-18 2018-07-26 日本無線株式会社 Radar target detection device and radar target detection method
JPWO2019116641A1 (en) * 2017-12-15 2020-12-03 コニカミノルタ株式会社 Distance measuring device, control method of distance measuring device, and control program of distance measuring device
JP7294139B2 (en) 2017-12-15 2023-06-20 コニカミノルタ株式会社 Distance measuring device, distance measuring device control method, and distance measuring device control program
US11719824B2 (en) 2017-12-15 2023-08-08 Konica Minolta, Inc. Distance measuring device, control method of distance measuring device, and control program of distance measuring device
CN112711010A (en) * 2021-01-26 2021-04-27 上海思岚科技有限公司 Laser ranging signal processing device, laser ranging equipment and corresponding method thereof
WO2023083198A1 (en) * 2021-11-10 2023-05-19 北京一径科技有限公司 Echo signal processing method and apparatus, device, and storage medium
WO2024062825A1 (en) * 2022-09-22 2024-03-28 株式会社デンソーウェーブ Distance measuring device

Similar Documents

Publication Publication Date Title
US20210325515A1 (en) Transmit signal design for an optical distance measurement system
JP2015200555A (en) Distance metrology device
EP3457177B1 (en) Distance measurement apparatus
JP2015219120A (en) Distance measuring apparatus
US10473769B2 (en) Distance measuring apparatus and distance image photographing apparatus
JP2015194356A (en) Distance measurement device
JP6244862B2 (en) Laser radar equipment
JP5741508B2 (en) Distance and speed measuring device
JP4984671B2 (en) Radar equipment
CN112596062B (en) Method and device for detecting echo signal of laser radar and storage medium
KR102202354B1 (en) Fmcw radar system for detecting target using representative value and method thereof
CN109564288B (en) Time dependent filtering of LIDAR signals
US10514447B2 (en) Method for propagation time calibration of a LIDAR sensor
US20200041651A1 (en) System and method for improving range resolution in a lidar system
WO2020013139A1 (en) Signal processing device
US20130033964A1 (en) Method and device for actively detecting objects in view of previous detection results
US8477291B2 (en) System and method for ranging of targets
KR100310791B1 (en) Apparatus for measuring distance by using laser
JP7193413B2 (en) Electronic device and distance measurement method
US8639462B2 (en) Method and system for determining the time-of-flight of a signal
JPWO2020263735A5 (en)
JP2014228304A (en) Radar device
JP4001611B2 (en) Ranging radar equipment
US20200256955A1 (en) System and method for adaptive illumination in a lidar system
EP4016123A1 (en) Lidar reference waveform with increased sample rate

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519