JP2008267177A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2008267177A
JP2008267177A JP2007107831A JP2007107831A JP2008267177A JP 2008267177 A JP2008267177 A JP 2008267177A JP 2007107831 A JP2007107831 A JP 2007107831A JP 2007107831 A JP2007107831 A JP 2007107831A JP 2008267177 A JP2008267177 A JP 2008267177A
Authority
JP
Japan
Prior art keywords
exhaust gas
active oxygen
air
fuel ratio
way catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007107831A
Other languages
Japanese (ja)
Other versions
JP4765991B2 (en
Inventor
Masaaki Akamine
真明 赤峰
Masahiko Shigetsu
雅彦 重津
Hisaya Kawabata
久也 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007107831A priority Critical patent/JP4765991B2/en
Publication of JP2008267177A publication Critical patent/JP2008267177A/en
Application granted granted Critical
Publication of JP4765991B2 publication Critical patent/JP4765991B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the cleaning efficiency of exhaust gas at the cold start of an engine. <P>SOLUTION: A three way catalyst 3 and an NOx adsorbing catalyst 4 are arranged in an exhaust passage 2 so that the three way catalyst is arranged in an upstream side and the NOx catalyst is arranged at a downstream side. When an air-fuel ratio of an exhaust gas is rich, active oxygen (ozone) is supplied to the three-way catalyst 3. When the air-fuel ratio of the exhaust gas is lean, the active oxygen is supplied from the downstream side of the three-way catalyst 3 to the NO<SB>x</SB>occlusion catalyst 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排気ガスの浄化を促進するための活性酸素供給手段を備えたエンジンの排気ガス浄化装置に関する。     The present invention relates to an exhaust gas purification apparatus for an engine provided with active oxygen supply means for promoting purification of exhaust gas.

エンジンの冷間始動時は排気ガス温度が低いことから、触媒の活性化に時間がかかり、排気ガス浄化率が低いことが問題になっている。具体的には、ライトオフと呼ばれる50%の浄化率が得られる温度まで触媒が昇温するには、一般にはエンジンの始動から数十秒かかる。     Since the exhaust gas temperature is low when the engine is cold started, it takes time to activate the catalyst, and the exhaust gas purification rate is low. Specifically, it generally takes several tens of seconds from the start of the engine for the temperature of the catalyst to rise to a temperature at which a 50% purification rate called light-off is obtained.

これに対して、特許文献1には、活性酸素であるオゾンを利用して排気ガス中のHC(炭化水素)の一部をCOに転化し、触媒による排気ガスの浄化効率を高めること、並びに空気中に無声放電してオゾンを生成することが記載されている。     On the other hand, in Patent Document 1, ozone, which is active oxygen, is used to convert a part of HC (hydrocarbon) in exhaust gas into CO, thereby improving the exhaust gas purification efficiency by the catalyst, and It is described that ozone is generated by silent discharge in the air.

また、特許文献2には、ディーゼルエンジンの排気ガス中にプラズマを発生させることにより、二酸化窒素及びオゾンを発生させ、これらによって、排気ガス中の粒子状物質を酸化させることが記載されている。
特開2005−207316号公報 特開2004−169643号公報
Further, Patent Document 2 describes that plasma is generated in exhaust gas of a diesel engine to generate nitrogen dioxide and ozone, which oxidize particulate matter in the exhaust gas.
JP-A-2005-207316 JP 2004-169643 A

しかし、無声放電による活性酸素生成装置の場合、空気中の酸素の一部しか活性酸素に転化しないから、その活性酸素と共に酸素の残部も排気通路に供給されることになる。従って、排気通路の三元触媒にその上流側から活性酸素を供給するようにした場合、三元触媒は残酸素の影響により酸素過剰の排気ガスに晒されることになり、NOx(窒素酸化物)の還元浄化には不利になる。     However, in the case of the active oxygen generator using silent discharge, only a part of oxygen in the air is converted into active oxygen, so the remaining oxygen is supplied to the exhaust passage together with the active oxygen. Therefore, when active oxygen is supplied from the upstream side to the three-way catalyst in the exhaust passage, the three-way catalyst is exposed to oxygen-excess exhaust gas due to the influence of residual oxygen, and NOx (nitrogen oxide) It is disadvantageous for the reduction and purification.

特に、三元触媒による排気ガス浄化効率を高めるべく、排気ガスの空燃比をリーンとリッチとに交互に変化させる空燃比変調制御を行なった場合、リーン時には活性酸素と共に供給される残酸素により過度のリーンになり、三元触媒によるNOxの浄化を期待することができなくなる。     In particular, when air-fuel ratio modulation control is performed in which the air-fuel ratio of the exhaust gas is changed alternately between lean and rich in order to increase the exhaust gas purification efficiency by the three-way catalyst, the residual oxygen supplied together with the active oxygen during the lean is excessive. It becomes impossible to expect NOx purification by a three-way catalyst.

これに対して、三元触媒にNOx吸蔵材を含ませることが考えられるが、そのようなNOx吸蔵材もNOx吸蔵可能な温度になるまでは十分に機能しない。     On the other hand, it is conceivable that the NOx storage material is included in the three-way catalyst, but such a NOx storage material does not function sufficiently until it reaches a temperature capable of storing NOx.

このように、単に活性酸素を三元触媒にその上流側から供給するだけでは、HC、CO及びNOxの全てを効率良く浄化することはできない。     Thus, it is not possible to efficiently purify all HC, CO, and NOx simply by supplying active oxygen to the three-way catalyst from the upstream side.

本発明は、このような課題に対して、三元触媒よりも下流側の排気通路にNOx吸蔵材を配置し、排気ガスの空燃比がリッチのときは三元触媒にその上流側から活性酸素を供給し、リーンになったときは活性酸素を三元触媒の下流側からNOx吸蔵材に供給するようにした。     In order to solve such a problem, the present invention provides a NOx occlusion material in the exhaust passage downstream of the three-way catalyst. When the air-fuel ratio of the exhaust gas is rich, the three-way catalyst has active oxygen from its upstream side. When lean, the active oxygen was supplied to the NOx occlusion material from the downstream side of the three-way catalyst.

すなわち、請求項1に係る発明は、エンジンの排気通路に三元触媒とNOx吸蔵材とが排気ガス流れの上流側から順に配設されている排気ガス浄化装置であって、
上記三元触媒に活性酸素を供給すべく該三元触媒よりも上流側の上記排気通路に配置された第1活性酸素供給部と、
上記NOx吸蔵材に活性酸素を供給すべく該NOx吸蔵材と上記三元触媒との間の上記排気通路に配置された第2活性酸素供給部とを備え、
上記第1活性酸素供給部による活性酸素の供給は上記エンジンから排出される排気ガスの空燃比がリッチであるときに実行され、上記第2活性酸素供給部による活性酸素の供給は上記排気ガスの空燃比がリーンであるときに実行されることを特徴とする。
That is, the invention according to claim 1 is an exhaust gas purification device in which a three-way catalyst and a NOx occlusion material are sequentially arranged in the exhaust passage of an engine from the upstream side of the exhaust gas flow,
A first active oxygen supply unit disposed in the exhaust passage upstream of the three-way catalyst to supply active oxygen to the three-way catalyst;
A second active oxygen supply unit disposed in the exhaust passage between the NOx storage material and the three-way catalyst to supply active oxygen to the NOx storage material;
The supply of active oxygen by the first active oxygen supply unit is executed when the air-fuel ratio of the exhaust gas discharged from the engine is rich, and the supply of active oxygen by the second active oxygen supply unit is performed by the exhaust gas of the exhaust gas. It is executed when the air-fuel ratio is lean.

従って、排気ガスの空燃比がリッチのときは三元触媒にその上流側から活性酸素が供給される。この活性酸素により排気ガス中のHC及びCOの酸化燃焼が進み、また、三元触媒でのHCやCOの酸化燃焼が促進される。この酸化燃焼によって発生する熱により、NOx吸蔵材に流れる排気ガス温度が高くなり、該NOx吸蔵材の昇温が図れる。     Therefore, when the air-fuel ratio of the exhaust gas is rich, active oxygen is supplied to the three-way catalyst from the upstream side. This active oxygen promotes oxidative combustion of HC and CO in the exhaust gas, and promotes oxidative combustion of HC and CO in the three-way catalyst. Due to the heat generated by this oxidative combustion, the temperature of the exhaust gas flowing through the NOx occlusion material increases, and the temperature of the NOx occlusion material can be raised.

一方、排気ガスの空燃比がリーンのときは、活性酸素が三元触媒の下流側からNOx吸蔵材に供給される。従って、三元触媒で浄化されずにNOx吸蔵材へ流れる排気ガス中のNOが当該活性酸素によってNOx吸蔵材に吸蔵され易いNOないしはNO に酸化される。このNOの酸化と、上述のNOx吸蔵材の昇温とによって、このNOx吸蔵材によるNOxの吸蔵効率が高まる。 On the other hand, when the air-fuel ratio of the exhaust gas is lean, active oxygen is supplied to the NOx storage material from the downstream side of the three-way catalyst. Therefore, NO in the exhaust gas flowing to the NOx storage material without being purified by the three-way catalyst is oxidized to NO 2 or NO 3 which is easily stored in the NOx storage material by the active oxygen. The NOx occlusion efficiency of the NOx occlusion material is increased by the oxidation of NO and the temperature increase of the NOx occlusion material.

しかも、排気ガスの空燃比がリーンのときには三元触媒には活性酸素が供給されないから、この三元触媒の雰囲気が過度のリーンになることがなく、該三元触媒によるNOxの浄化効率が大きく低下することは避けられる。     Moreover, since the active oxygen is not supplied to the three-way catalyst when the air-fuel ratio of the exhaust gas is lean, the atmosphere of the three-way catalyst does not become excessively lean, and the NOx purification efficiency by the three-way catalyst is large. Decreasing is avoided.

請求項2に係る発明は、請求項1において、
上記第1活性酸素供給部よりも上流側の上記排気通路において排気ガスの空燃比を検出する空燃比検出手段を備え、該空燃比検出手段によって検出される排気ガスの空燃比に基いて、上記第1及び第2の活性酸素供給部による活性酸素の供給が実行されることを特徴とする。
The invention according to claim 2 is the invention according to claim 1,
Air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas in the exhaust passage upstream from the first active oxygen supply section, and based on the air-fuel ratio of the exhaust gas detected by the air-fuel ratio detection means, The supply of active oxygen by the first and second active oxygen supply units is performed.

従って、エンジンから排出される排気ガスの空燃比の変動に応じて、リッチ時には三元触媒にその上流側から活性酸素が供給され、リーン時には三元触媒の下流側においてNOx吸蔵材に活性酸素が供給されるように、活性酸素の供給を上記第1活性酸素供給部側と第2活性酸素供給部側とで切り換えることができる。     Therefore, according to the change in the air-fuel ratio of the exhaust gas exhausted from the engine, active oxygen is supplied from the upstream side to the three-way catalyst when rich, and active oxygen is supplied to the NOx storage material downstream of the three-way catalyst when lean. The supply of active oxygen can be switched between the first active oxygen supply unit side and the second active oxygen supply unit side so as to be supplied.

請求項3に係る発明は、請求項1又は請求項2において、
上記三元触媒と上記第2活性酸素供給部との間の上記排気通路において排気ガスの空燃比を検出する空燃比検出手段を備え、該空燃比検出手段によって検出される排気ガスの空燃比のリーン度合いに応じて、上記第2活性酸素供給部による活性酸素の供給量が補正されることを特徴とする。
The invention according to claim 3 is the invention according to claim 1 or claim 2,
An air-fuel ratio detecting means for detecting an air-fuel ratio of the exhaust gas in the exhaust passage between the three-way catalyst and the second active oxygen supply unit, the air-fuel ratio of the exhaust gas detected by the air-fuel ratio detecting means; The supply amount of active oxygen by the second active oxygen supply unit is corrected according to the degree of lean.

すなわち、上記活性酸素の供給切換えは、エンジンの運転状態(燃料供給制御)に基いて排気ガスの空燃比を検出(推定)して実行することができ、或いはエンジンがリッチ・リーンを周期的に繰り返すように制御されているときは、タイマーによって当該供給切換えを行なうことができ、或いは請求項2のように第1活性酸素供給部よりも上流側の排気ガスの空燃比を空燃比検出手段で検出して当該供給切換えを行なうことができる。     That is, the active oxygen supply switching can be executed by detecting (estimating) the air-fuel ratio of the exhaust gas based on the engine operating state (fuel supply control), or the engine periodically performs rich / lean. When the control is repeated, the supply can be switched by a timer, or the air-fuel ratio of the exhaust gas upstream of the first active oxygen supply unit can be determined by the air-fuel ratio detection means as in claim 2. The supply switching can be performed upon detection.

しかし、第2活性酸素供給部からの活性酸素の供給は、排気ガス中のNOを酸化してNOx吸蔵材に吸蔵され易くするためであるから、効率の良いNOx吸蔵の実現には三元触媒を通過した排気ガスの空燃比が問題になる。     However, the supply of active oxygen from the second active oxygen supply unit is to oxidize NO in the exhaust gas so that it is easily stored in the NOx storage material. Therefore, a three-way catalyst is required to realize efficient NOx storage. The air-fuel ratio of the exhaust gas that has passed through becomes a problem.

これに対して、排気ガスの流れは常に一定であるわけではなく、エンジンの運転状態によって流量ないしは流速が変化する。このため、排気ガスは、三元触媒を通過することにより、エンジンの運転状態によって、或いは第1活性酸素供給部よりも上流側の空燃比検出手段等によって把握されるリーン状態とは異なるリーン状態になることがある。     On the other hand, the flow of exhaust gas is not always constant, and the flow rate or flow velocity changes depending on the operating state of the engine. For this reason, the exhaust gas passes through the three-way catalyst, so that the lean state is different from the lean state that is grasped by the operating state of the engine or by the air-fuel ratio detection means etc. upstream from the first active oxygen supply unit. May be.

そこで、本発明では、リーン時に実行する活性酸素の供給については、三元触媒を通過した排気ガスの空燃比を検出し、そのリーン度合いに応じて、NOx吸蔵に有利になるように、その供給量を補正するようにした。     Therefore, in the present invention, the supply of active oxygen to be executed during lean is detected by detecting the air-fuel ratio of the exhaust gas that has passed through the three-way catalyst so as to be advantageous for NOx occlusion according to the lean degree. The amount was corrected.

請求項4に係る発明は、請求項1乃至請求項3のいずれか一において、
排気ガスの温度を検出する排気ガス温度検出手段と、
上記排気ガス温度検出によって検出される排気ガス温度が所定値以上のときに、上記三元触媒よりも下流側から上記NOx吸蔵材をバイパスして排気ガスを排出するバイパス通路とを備えていることを特徴とする。
According to a fourth aspect of the present invention, in any one of the first to third aspects,
Exhaust gas temperature detecting means for detecting the temperature of the exhaust gas;
A bypass passage that bypasses the NOx occlusion material from the downstream side of the three-way catalyst and discharges the exhaust gas when the exhaust gas temperature detected by the exhaust gas temperature detection is equal to or higher than a predetermined value. It is characterized by.

すなわち、NOx吸蔵材は、三元触媒の活性が低いときにNOxを吸蔵するためのものであるが、排気ガス温度が高くなると、三元触媒の活性が高くなってNOxが還元浄化されるから、NOx吸蔵材の必要性は小さくなる。かえって、このNOx吸蔵材の存在によってエンジンの背圧が高くなる不具合がある。     That is, the NOx storage material is for storing NOx when the activity of the three-way catalyst is low, but when the exhaust gas temperature becomes high, the activity of the three-way catalyst becomes high and NOx is reduced and purified. The need for NOx storage materials is reduced. On the contrary, there is a problem that the back pressure of the engine becomes high due to the presence of the NOx occlusion material.

そこで、本発明では、排気ガス温度が所定値以上になったときは、バイパス通路により、NOx吸蔵材をバイパスして排気ガスを排出するようにして、上記背圧の上昇を抑え、燃費の悪化を避けるようにした。     Therefore, in the present invention, when the exhaust gas temperature exceeds a predetermined value, the exhaust gas is discharged by bypassing the NOx occlusion material by the bypass passage, thereby suppressing the increase in the back pressure and deteriorating the fuel consumption. To avoid.

以上のように、請求項1に係る発明によれば、排気ガスの空燃比がリッチであるときは三元触媒にその上流側から活性酸素が供給され、該空燃比がリーンであるときは三元触媒の下流側からNOx吸蔵材に活性酸素が供給されるように排気ガス浄化装置を構成したから、エンジンの冷間始動時に排気ガスの空燃比が変動するケースにおいて、活性酸素を利用してHC及びCOの浄化効率を高めることができるとともに、三元触媒でのNOx浄化効率が大きく低下することを避けながら、NOx吸蔵材でNOxの吸蔵効率を高めることができ、HC、CO及びNOxの排出を防止する上で有利になる。     As described above, according to the first aspect of the present invention, when the air-fuel ratio of the exhaust gas is rich, active oxygen is supplied from the upstream side to the three-way catalyst, and when the air-fuel ratio is lean, Since the exhaust gas purification device is configured so that the active oxygen is supplied from the downstream side of the original catalyst to the NOx storage material, the active oxygen is used in the case where the air-fuel ratio of the exhaust gas fluctuates during cold start of the engine. While the HC and CO purification efficiency can be increased, the NOx storage efficiency can be increased with the NOx storage material while avoiding a significant decrease in the NOx purification efficiency with the three-way catalyst. This is advantageous in preventing discharge.

請求項2に係る発明によれば、三元触媒に活性酸素を供給するための第1活性酸素供給部よりも上流側において排気ガスの空燃比を検出し、これに基いて三元触媒への活性酸素の供給とNOx吸蔵材への活性酸素の供給とが実行されるように排気ガス浄化装置を構成したから、エンジンから排出される排気ガスの空燃比の変動に応じて、リッチ時には三元触媒に活性酸素が供給され、リーン時にはNOx吸蔵材に活性酸素が供給されるように、活性酸素の供給を切り換えることができる。     According to the second aspect of the invention, the air-fuel ratio of the exhaust gas is detected on the upstream side of the first active oxygen supply unit for supplying active oxygen to the three-way catalyst, and based on this, the three-way catalyst is supplied to the three-way catalyst. Since the exhaust gas purification device is configured so that the supply of active oxygen and the supply of active oxygen to the NOx storage material are executed, the three-way operation is performed in the rich state in accordance with the change in the air-fuel ratio of the exhaust gas discharged from the engine. The supply of active oxygen can be switched so that active oxygen is supplied to the catalyst and active oxygen is supplied to the NOx storage material during lean.

請求項3に係る発明によれば、は、請求項1又は請求項2において、
NOx吸蔵材に活性酸素を供給するための第2活性酸素供給部と三元触媒との間で排気ガスの空燃比を検出し、そのリーン度合いに応じて、NOx吸蔵材への活性酸素の供給量が補正されるように排気ガス浄化装置を構成したから、排気ガスの流量ないしは流速等の変化に拘わらず、NOx吸蔵材への活性酸素の供給を適切に制御して、該NOx吸蔵材によるNOx吸蔵効率に高めることができる。
According to the invention of claim 3, in claim 1 or claim 2,
The air-fuel ratio of the exhaust gas is detected between the second active oxygen supply unit for supplying active oxygen to the NOx storage material and the three-way catalyst, and the supply of active oxygen to the NOx storage material according to the lean degree Since the exhaust gas purification device is configured so that the amount is corrected, the supply of active oxygen to the NOx occlusion material is appropriately controlled regardless of changes in the flow rate or flow rate of the exhaust gas, and the NOx occlusion material is used. The NOx occlusion efficiency can be increased.

請求項4に係る発明によれば、排気ガス温度が所定値以上になったときは、バイパス通路により、NOx吸蔵材をバイパスして排気ガスを排出するように排気ガス浄化装置を構成したから、エンジンの背圧の上昇を抑え、燃費の悪化を避けることができる。     According to the invention of claim 4, when the exhaust gas temperature is equal to or higher than a predetermined value, the exhaust gas purification device is configured to discharge the exhaust gas by bypassing the NOx storage material by the bypass passage. Increase in engine back pressure can be suppressed and fuel consumption can be avoided.

以下、本発明の実施形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。     Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

図1に示すエンジンの排気ガス浄化装置において、1はエンジン、2はその排気通路である。この排気通路2には、三元触媒3とNOx吸蔵触媒4とが、前者が排気ガス流れの上流側に、後者が下流側になるように、排気ガス流れ方向に並べて配設されている。三元触媒3よりも上流側の排気通路2には第1活性酸素供給部5が設けられ、三元触媒3とNOx吸蔵触媒4との間の排気通路2には第2活性酸素供給部6が設けられている。     In the engine exhaust gas purification apparatus shown in FIG. 1, reference numeral 1 denotes an engine, and 2 denotes an exhaust passage thereof. In the exhaust passage 2, a three-way catalyst 3 and a NOx storage catalyst 4 are arranged side by side in the exhaust gas flow direction so that the former is on the upstream side of the exhaust gas flow and the latter is on the downstream side. A first active oxygen supply unit 5 is provided in the exhaust passage 2 upstream of the three-way catalyst 3, and a second active oxygen supply unit 6 is provided in the exhaust passage 2 between the three-way catalyst 3 and the NOx storage catalyst 4. Is provided.

三元触媒3は、コージェライト等によるハニカム担体に触媒層が形成されたものであり、その触媒層はCeZr系複酸化物等のOSC(酸素吸蔵材)と、Pt等の触媒金属とを含有する。NOx吸蔵触媒4は、コージェライト等によるハニカム担体に触媒層が形成されたものであり、その触媒層はNOx吸着材として働くアルカリ土類金属と、Pt等の触媒金属とを含有する。     The three-way catalyst 3 is formed by forming a catalyst layer on a honeycomb carrier made of cordierite or the like, and the catalyst layer contains an OSC (oxygen storage material) such as a CeZr-based double oxide and a catalyst metal such as Pt. To do. The NOx storage catalyst 4 is formed by forming a catalyst layer on a honeycomb carrier made of cordierite or the like, and the catalyst layer contains an alkaline earth metal that functions as a NOx adsorbent and a catalyst metal such as Pt.

第1活性酸素供給部5は、活性酸素生成装置7によって生成された活性酸素を三元触媒3にその上流側から供給するためのものであり、第2活性酸素供給部6は、上記活性酸素を三元触媒3の下流側からNOx吸蔵触媒4に供給するためのものである。この両活性酸素供給部5,6は、活性酸素生成装置7より延びる活性酸素供給路8を途中で分岐させて排気通路2に接続することによって構成されている。     The first active oxygen supply unit 5 is for supplying the active oxygen generated by the active oxygen generator 7 to the three-way catalyst 3 from the upstream side, and the second active oxygen supply unit 6 Is supplied to the NOx storage catalyst 4 from the downstream side of the three-way catalyst 3. Both the active oxygen supply sections 5 and 6 are configured by branching an active oxygen supply path 8 extending from the active oxygen generating device 7 in the middle and connecting to the exhaust path 2.

活性酸素生成装置7は、空気に無声放電をすることによって活性酸素としてのオゾンを生成するものであり、該装置7に空気を供給するポンプ9が接続されている。活性酸素供給路8の分岐部には活性酸素の供給方向を第1活性酸素供給部5側と第2活性酸素供給部6側とで切り換える通路切換えバルブ11が設けられている。活性酸素生成装置7では、ポンプ9で送られる空気中の酸素の一部しか活性酸素に転化しないから、その活性酸素と共に酸素の残部及び窒素(以下、「残空気」という。)も活性酸素供給路8により排気通路2に供給される。     The active oxygen generator 7 generates ozone as active oxygen by silently discharging air, and is connected to a pump 9 for supplying air to the apparatus 7. The branch portion of the active oxygen supply path 8 is provided with a passage switching valve 11 that switches the supply direction of active oxygen between the first active oxygen supply unit 5 side and the second active oxygen supply unit 6 side. In the active oxygen generator 7, only a part of the oxygen in the air sent by the pump 9 is converted into active oxygen, so the remaining oxygen and nitrogen (hereinafter referred to as “residual air”) are also supplied with the active oxygen. The exhaust gas is supplied to the exhaust passage 2 through the passage 8.

排気通路2には、NOx吸蔵触媒4をバイパスして排気ガスを排出するためのバイパス通路12が設けられている。このバイパス通路12の上流端は、NOx吸蔵触媒4と第2活性酸素供給部6との間の排気通路2に接続され、下流端はNOx吸蔵触媒4よりも下流側の排気通路2に接続されている。バイパス通路12の上流端には排気ガスのバイパス量を調節する流量制御バルブ13が設けられている。     The exhaust passage 2 is provided with a bypass passage 12 for bypassing the NOx storage catalyst 4 and discharging exhaust gas. The upstream end of the bypass passage 12 is connected to the exhaust passage 2 between the NOx storage catalyst 4 and the second active oxygen supply unit 6, and the downstream end is connected to the exhaust passage 2 downstream of the NOx storage catalyst 4. ing. A flow rate control valve 13 for adjusting the exhaust gas bypass amount is provided at the upstream end of the bypass passage 12.

活性酸素生成装置7、ポンプ9、通路切換えバルブ11及び流量制御バルブ13は、マイクロコンピュータを利用したコントローラ(エンジンコントロールユニット)15によって作動が制御される。その制御のために、第1活性酸素供給部5よりも上流側において排気ガスの空燃比を検出する第1空燃比検出手段16と、三元触媒3と第2活性酸素供給部6との間において排気ガスの空燃比を検出する第2空燃比検出手段17と、三元触媒3よりも上流側(三元触媒3と第1活性酸素供給部5との間)において排気ガスの温度を検出する温度検出手段18とが設けられている。     The operations of the active oxygen generator 7, the pump 9, the passage switching valve 11 and the flow rate control valve 13 are controlled by a controller (engine control unit) 15 using a microcomputer. For this control, between the first air-fuel ratio detection means 16 for detecting the air-fuel ratio of the exhaust gas upstream of the first active oxygen supply unit 5, the three-way catalyst 3 and the second active oxygen supply unit 6. The second air-fuel ratio detection means 17 for detecting the air-fuel ratio of the exhaust gas at the exhaust gas and the temperature of the exhaust gas is detected upstream of the three-way catalyst 3 (between the three-way catalyst 3 and the first active oxygen supply unit 5). Temperature detecting means 18 is provided.

図2はコントローラ15による制御の態様を示すフロー図である。スタート後のステップS1において温度検出手段18によって検出される排気ガス温度T、第1空燃比検出手段16によって検出される上流側空燃比及び第2空燃比検出手段17によって検出される下流側空燃比を読み込む。     FIG. 2 is a flowchart showing a mode of control by the controller 15. The exhaust gas temperature T detected by the temperature detection means 18 in step S1 after the start, the upstream air-fuel ratio detected by the first air-fuel ratio detection means 16, and the downstream air-fuel ratio detected by the second air-fuel ratio detection means 17 Is read.

続くステップS2で排気ガス温度Tが所定値To以下であるか否かが判定され、所定値T以下であるときにステップS3に進み、流量制御バルブ13によってバイパス通路12が閉じられる。すなわち、エンジン始動時のように排気ガス温度が低いときは三元触媒3だけでなくNOx吸蔵触媒4を排気ガス浄化に利用するものである。 Exhaust gas temperature T in step S2 is equal to or less than a predetermined value To is determined, the process proceeds to step S3 when it is less than the predetermined value T O, the bypass passage 12 is closed by the flow control valve 13. That is, when the exhaust gas temperature is low, such as when the engine is started, not only the three-way catalyst 3 but also the NOx storage catalyst 4 is used for exhaust gas purification.

続くステップS4で第1空燃比検出手段16によって検出される上流側の排気ガス空燃比がリッチであるか否かが判定され、リッチであるときはステップS5に進み、通路切換えバルブ11は第1活性酸素供給部5側へ、すなわち三元触媒3側へ活性酸素を供給するように制御される。この活性酸素の供給により、排気ガス中のHC及びCOの酸化燃焼が進み、また、三元触媒でのHCやCOの酸化燃焼が促進される。このHC及びCOの酸化燃焼によって発生する熱により、NOx吸蔵触媒4に流れる排気ガス温度が高くなり、該NOx吸蔵触媒4の昇温が図れる。     In subsequent step S4, it is determined whether or not the upstream exhaust gas air-fuel ratio detected by the first air-fuel ratio detection means 16 is rich. If it is rich, the process proceeds to step S5, and the passage switching valve 11 is set to the first. Control is performed to supply active oxygen to the active oxygen supply unit 5 side, that is, to the three-way catalyst 3 side. By supplying this active oxygen, oxidative combustion of HC and CO in the exhaust gas proceeds, and oxidative combustion of HC and CO in the three-way catalyst is promoted. Due to the heat generated by the oxidative combustion of HC and CO, the temperature of the exhaust gas flowing through the NOx storage catalyst 4 becomes high, and the temperature of the NOx storage catalyst 4 can be increased.

続くステップS6で排気ガス温度Tが所定値T以上であるか否かが判定され、所定値T以上であるときはステップS7に進み、流量制御バルブ13によってバイパス通路12が開とされる。ここに、T>Tである。すなわち、排気ガス温度Tが所定値T以上になったときは、三元触媒3がそのライトオフ温度を超えて活性状態になったことを意味し、その場合はバイパス通路12が開(NOx吸蔵触媒4側の通路は閉)とされ、NOx吸蔵触媒4によってエンジンの背圧が高くなることを避け、エンジンの燃費の向上を図るものである。 Exhaust gas temperature T in the subsequent step S6 it is determined whether a predetermined value above T 1, when a predetermined value above T 1 goes to step S7, is a bypass passage 12 is opened by the flow control valve 13 . Here, T 1 > T O. That is, when the exhaust gas temperature T reaches a predetermined value above T 1 means that the three-way catalyst 3 has become active beyond its light-off temperature, in which case the bypass passage 12 is opened (NOx The passage on the side of the storage catalyst 4 is closed), and the NOx storage catalyst 4 avoids an increase in the engine back pressure, thereby improving the fuel efficiency of the engine.

ステップS4において、上流側の排気ガス空燃比がリッチではないと判定されたときはステップS8に進み、該空燃比がリーンであるか否かが判定される。リーンであるときはステップS9に進み、通路切換えバルブ11は第2活性酸素供給部6側へ、すなわちNOx吸蔵触媒4側へ活性酸素を供給するように制御される。さらにステップS10に進み、第2空燃比検出手段17によって検出される下流側空燃比の検出値(リーン度合い)に応じて活性酸素(オゾン)の供給量が補正される。すなわち、リーン度合いが低いときは、活性酸素生成装置7の出力電圧を高めて活性酸素生成量を増大させることにより、NOx吸蔵触媒4に供給される活性酸素量を増やし、或いは該出力電圧を高めるとともに、ポンプ9による空気供給量を多くして、NOx吸蔵触媒4に供給される活性酸素量及び空気量を増やす。これにより、NOx吸蔵触媒4に流入する排気ガス中のNOがNOないしはNO に酸化され易くなり、該NOx吸蔵触媒4に効率良く吸蔵される。 When it is determined in step S4 that the upstream exhaust gas air-fuel ratio is not rich, the process proceeds to step S8, and it is determined whether or not the air-fuel ratio is lean. When it is lean, the routine proceeds to step S9, and the passage switching valve 11 is controlled to supply active oxygen to the second active oxygen supply unit 6 side, that is, to the NOx storage catalyst 4 side. In step S10, the supply amount of active oxygen (ozone) is corrected according to the detected value (lean degree) of the downstream air-fuel ratio detected by the second air-fuel ratio detection means 17. That is, when the degree of leanness is low, the amount of active oxygen supplied to the NOx storage catalyst 4 is increased or the output voltage is increased by increasing the output voltage of the active oxygen generator 7 to increase the amount of active oxygen generated. At the same time, the amount of air supplied by the pump 9 is increased to increase the amount of active oxygen and the amount of air supplied to the NOx storage catalyst 4. As a result, NO in the exhaust gas flowing into the NOx storage catalyst 4 is easily oxidized to NO 2 or NO 3 , and is efficiently stored in the NOx storage catalyst 4.

続くステップS11で排気ガス温度Tが所定値T以上であるか否かが判定され、所定値T以上であるときはステップS7に進み、流量制御バルブ13によってバイパス通路12が開とされる。 Exhaust gas temperature T in the subsequent step S11 it is determined whether a predetermined value above T 1, when a predetermined value above T 1 goes to step S7, is a bypass passage 12 is opened by the flow control valve 13 .

ステップS8において、上流側空燃比がリーンではないと判定されたときはステップS12に進み、排気ガス温度Tが所定値T以上であるか否かが判定され、所定値T以上であるときはステップS7に進み、流量制御バルブ13によってバイパス通路12が開とされる。 In step S8, the process proceeds to step S12 when the upstream air-fuel ratio is determined not to be lean when the exhaust gas temperature T is determined whether a predetermined value above T 1, a predetermined value above T 1 Advances to step S7, and the bypass passage 12 is opened by the flow control valve 13.

NOx吸蔵触媒4のNOx吸蔵量が多くなってくると、排気ガスの空燃比がストイキないしはリッチになったときに放出されるが、そのNOxは活性が高くなっているNOx吸蔵触媒4の触媒金属によって還元浄化される。     When the NOx occlusion amount of the NOx occlusion catalyst 4 increases, the NOx is released when the air-fuel ratio of the exhaust gas becomes stoichiometric or rich, but the NOx is a catalytic metal of the NOx occlusion catalyst 4 with increased activity. Is reduced and purified.

図3は上記制御による第2活性酸素供給部6よりも下流側での排気ガスの空燃比の経時変化を実線で示している。2点鎖線は空燃比変調制御によってエンジン1から排出される排気ガスの空燃比変化である。     FIG. 3 shows the change with time of the air-fuel ratio of the exhaust gas on the downstream side of the second active oxygen supply unit 6 by the above control by a solid line. A two-dot chain line is an air-fuel ratio change of the exhaust gas discharged from the engine 1 by the air-fuel ratio modulation control.

すなわち、2点鎖線で示すように、エンジン排気ガスの空燃比が一定周期(例えば1Hz)でリッチ・リーンに交互に変化するとき、リーン時には三元触媒3の下流側においてNOx吸蔵触媒4に活性酸素及び残空気が供給されることにより、排気ガス空燃比のリーン度合いが高くなる。このとき、三元触媒3の下流側において排気ガス中のNOが活性酸素によって酸化されることにより、NOx吸蔵触媒4によるNOx吸蔵効率が高まるものである。     That is, as indicated by the two-dot chain line, when the air-fuel ratio of the engine exhaust gas alternately changes to rich and lean at a constant period (for example, 1 Hz), the NOx storage catalyst 4 is activated downstream of the three-way catalyst 3 during lean. By supplying oxygen and residual air, the degree of leanness of the exhaust gas air-fuel ratio increases. At this time, NOx in the exhaust gas is oxidized by the active oxygen on the downstream side of the three-way catalyst 3, so that the NOx storage efficiency by the NOx storage catalyst 4 is increased.

一方、リッチ時には三元触媒3に活性酸素及び残空気が供給されることにより、排気ガス空燃比はストイキレベルまで上昇する。このとき、三元触媒3に供給される排気ガス中のHC及びCOが活性酸素によって酸化され、それによって排気ガス温度が高まるため、三元触媒でもHCやCOの酸化燃焼、NOxの還元が進む。さらに、NOx吸蔵触媒4に流れる排気ガス温度が高くなるため、NOx吸蔵触媒4の昇温が図れ、NOxの吸蔵に有利になるものである。     On the other hand, when rich, active oxygen and residual air are supplied to the three-way catalyst 3, whereby the exhaust gas air-fuel ratio rises to the stoichiometric level. At this time, HC and CO in the exhaust gas supplied to the three-way catalyst 3 are oxidized by active oxygen, thereby increasing the exhaust gas temperature. Therefore, even in the three-way catalyst, oxidation combustion of HC and CO and reduction of NOx proceed. . Furthermore, since the temperature of the exhaust gas flowing through the NOx storage catalyst 4 becomes high, the temperature of the NOx storage catalyst 4 can be increased, which is advantageous for storing NOx.

なお、排気ガス温度Tが所定値T以上になったときは、NOx吸蔵触媒4を通過する排気が流量が少なくなるように、排気ガスの一部をバイパス通路12に流すようにしてもよい。 Incidentally, when the exhaust gas temperature T reaches a predetermined value above T 1, as in the exhaust gas passing through the NOx storage catalyst 4 is the flow rate is reduced, it may flow a portion of the exhaust gas into the bypass passage 12 .

本発明に係る排気ガス浄化装置の構成を示す図である。It is a figure which shows the structure of the exhaust-gas purification apparatus which concerns on this invention. 同装置の制御フロー図である。It is a control flow figure of the same device. 同制御による排気ガス空燃比の経時変化を示す図である。It is a figure which shows the time-dependent change of the exhaust gas air fuel ratio by the same control.

符号の説明Explanation of symbols

1 エンジン
2 排気通路
3 三元触媒
4 NOx吸蔵触媒
5 第1活性酸素供給部
6 第2活性酸素供給部
7 活性酸素生成装置
11 通路切換えバルブ
12 バイパス通路
13 流量制御バルブ
15 コントローラ
16 第1空燃比検出手段
17 第2空燃比検出手段
18 排気ガス温度検出手段
DESCRIPTION OF SYMBOLS 1 Engine 2 Exhaust passage 3 Three-way catalyst 4 NOx storage catalyst 5 1st active oxygen supply part 6 2nd active oxygen supply part 7 Active oxygen production | generation apparatus 11 Passage switching valve 12 Bypass passage 13 Flow control valve 15 Controller 16 1st air fuel ratio Detection means 17 Second air-fuel ratio detection means 18 Exhaust gas temperature detection means

Claims (4)

エンジンの排気通路に三元触媒とNOx吸蔵材とが排気ガス流れの上流側から順に配設されている排気ガス浄化装置であって、
上記三元触媒に活性酸素を供給すべく該三元触媒よりも上流側の上記排気通路に配置された第1活性酸素供給部と、
上記NOx吸蔵材に活性酸素を供給すべく該NOx吸蔵材と上記三元触媒との間の上記排気通路に配置された第2活性酸素供給部とを備え、
上記第1活性酸素供給部による活性酸素の供給は上記エンジンから排出される排気ガスの空燃比がリッチであるときに実行され、上記第2活性酸素供給部による活性酸素の供給は上記排気ガスの空燃比がリーンであるときに実行されることを特徴とする排気ガス浄化装置。
An exhaust gas purification device in which a three-way catalyst and a NOx occlusion material are arranged in order from the upstream side of the exhaust gas flow in the exhaust passage of the engine,
A first active oxygen supply unit disposed in the exhaust passage upstream of the three-way catalyst to supply active oxygen to the three-way catalyst;
A second active oxygen supply unit disposed in the exhaust passage between the NOx storage material and the three-way catalyst to supply active oxygen to the NOx storage material;
The supply of active oxygen by the first active oxygen supply unit is executed when the air-fuel ratio of the exhaust gas discharged from the engine is rich, and the supply of active oxygen by the second active oxygen supply unit is performed by the exhaust gas of the exhaust gas. An exhaust gas purification device that is executed when the air-fuel ratio is lean.
請求項1において、
上記第1活性酸素供給部よりも上流側の上記排気通路において排気ガスの空燃比を検出する空燃比検出手段を備え、該空燃比検出手段によって検出される排気ガスの空燃比に基いて、上記第1及び第2の活性酸素供給部による活性酸素の供給が実行されることを特徴とする排気ガス浄化装置。
In claim 1,
Air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas in the exhaust passage upstream from the first active oxygen supply section, and based on the air-fuel ratio of the exhaust gas detected by the air-fuel ratio detection means, An exhaust gas purifying apparatus characterized in that the supply of active oxygen by the first and second active oxygen supply units is executed.
請求項1又は請求項2において、
上記三元触媒と上記第2活性酸素供給部との間の上記排気通路において排気ガスの空燃比を検出する空燃比検出手段を備え、該空燃比検出手段によって検出される排気ガスの空燃比のリーン度合いに応じて、上記第2活性酸素供給部による活性酸素の供給量が補正されることを特徴とする排気ガス浄化装置。
In claim 1 or claim 2,
An air-fuel ratio detecting means for detecting an air-fuel ratio of the exhaust gas in the exhaust passage between the three-way catalyst and the second active oxygen supply unit, the air-fuel ratio of the exhaust gas detected by the air-fuel ratio detecting means; An exhaust gas purifying apparatus, wherein the amount of active oxygen supplied by the second active oxygen supply unit is corrected in accordance with the degree of lean.
請求項1乃至請求項3のいずれか一において、
排気ガスの温度を検出する排気ガス温度検出手段と、
上記排気ガス温度検出によって検出される排気ガス温度が所定値以上のときに、上記三元触媒よりも下流側から上記NOx吸蔵材をバイパスして排気ガスを排出するバイパス通路とを備えていることを特徴とする排気ガス浄化装置。
In any one of Claim 1 thru | or 3,
Exhaust gas temperature detecting means for detecting the temperature of the exhaust gas;
A bypass passage that bypasses the NOx occlusion material from the downstream side of the three-way catalyst and discharges the exhaust gas when the exhaust gas temperature detected by the exhaust gas temperature detection is equal to or higher than a predetermined value. An exhaust gas purification device characterized by the above.
JP2007107831A 2007-04-17 2007-04-17 Exhaust gas purification device Expired - Fee Related JP4765991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107831A JP4765991B2 (en) 2007-04-17 2007-04-17 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107831A JP4765991B2 (en) 2007-04-17 2007-04-17 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2008267177A true JP2008267177A (en) 2008-11-06
JP4765991B2 JP4765991B2 (en) 2011-09-07

Family

ID=40047012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107831A Expired - Fee Related JP4765991B2 (en) 2007-04-17 2007-04-17 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP4765991B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104334845A (en) * 2012-05-24 2015-02-04 丰田自动车株式会社 Exhaust emission purification device for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704270B1 (en) * 2015-10-13 2017-02-07 현대자동차주식회사 The control method for the purification performance of exhaust gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092591A (en) * 2002-09-03 2004-03-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004124799A (en) * 2002-10-02 2004-04-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2006291872A (en) * 2005-04-12 2006-10-26 Toyota Motor Corp Device and method for exhaust emission control
JP2007077971A (en) * 2005-09-16 2007-03-29 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092591A (en) * 2002-09-03 2004-03-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004124799A (en) * 2002-10-02 2004-04-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2006291872A (en) * 2005-04-12 2006-10-26 Toyota Motor Corp Device and method for exhaust emission control
JP2007077971A (en) * 2005-09-16 2007-03-29 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104334845A (en) * 2012-05-24 2015-02-04 丰田自动车株式会社 Exhaust emission purification device for internal combustion engine

Also Published As

Publication number Publication date
JP4765991B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP5087836B2 (en) Exhaust gas purification system control method and exhaust gas purification system
WO2006027903A1 (en) Method of exhaust gas purification and exhaust gas purification system
JP2007177672A (en) Exhaust emission control device
US9599002B2 (en) Engine control method for maintaining performance of oxidation catalyst
US20100037597A1 (en) Exhaust emission control system for lean engines and method for operating the system
WO2013118252A1 (en) Exhaust emission control device for internal combustion engine
JP5285296B2 (en) Exhaust gas purification device
JP2009264282A (en) Exhaust emission control device for internal combustion engine
JP4765991B2 (en) Exhaust gas purification device
JP2008175136A (en) Exhaust emission control system
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
JP4946725B2 (en) Exhaust gas purification method and exhaust gas purification device
JP2013245606A (en) Exhaust gas purification system
JP5369862B2 (en) Exhaust gas purification device for internal combustion engine
JP2008019820A (en) Exhaust emission control system and exhaust emission control method
JP5070964B2 (en) NOx purification system and control method of NOx purification system
JP2010031730A (en) Exhaust emission control device for internal combustion engine
JP6866755B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP2008144645A (en) Exhaust emission control device
JP4877134B2 (en) Exhaust gas purification device
JP2008274763A (en) Exhaust emission control device for internal combustion engine
KR20200044414A (en) Exhaust gas purification system for vehicle
JP2006161668A (en) Exhaust emission control system and desulfurization control method for exhaust emission control system
JP5746008B2 (en) Exhaust gas purification device for internal combustion engine
JP2012255348A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Ref document number: 4765991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees