JP2004092591A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2004092591A
JP2004092591A JP2002257763A JP2002257763A JP2004092591A JP 2004092591 A JP2004092591 A JP 2004092591A JP 2002257763 A JP2002257763 A JP 2002257763A JP 2002257763 A JP2002257763 A JP 2002257763A JP 2004092591 A JP2004092591 A JP 2004092591A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust gas
exhaust
bypass passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002257763A
Other languages
Japanese (ja)
Inventor
Hideo Yahagi
矢作 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002257763A priority Critical patent/JP2004092591A/en
Publication of JP2004092591A publication Critical patent/JP2004092591A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent thermal degradation of an NOx storage/reducing catalyst, to prevent lowering of engine performance, and to prevent thermal breakage, in an exhaust emission control device equipped with the NOx storage/reducing catalyst and a bypass passage. <P>SOLUTION: In the exhaust emission control device for an internal combustion engine provided with the NOx storage/reducing catalyst in an exhaust passage, the exhaust bypass passage bypassing the NOx storage/reducing catalyst is provided, and an opening/closing valve opening/closing the exhaust bypass passage is provided. In an operation state of the internal combustion engine wherein many NOx components exist in exhaust gas, the opening/closing valve is closed, and in an operation state of the internal combustion engine wherein few NOx components exist in the exhaust gas, the opening/closing valve is opened. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気ガス浄化装置に関し、特に、排気ガスのNOx成分を浄化するNOx吸蔵還元触媒を備えた内燃機関の排気ガス浄化装置の改良に関するものである。
【0002】
【従来の技術】
従来、内燃機関の排気ガス浄化装置として、内燃機関の排気通路に三元触媒を設けることが一般的に行われている。この三元触媒は、内燃機関が理論空燃比で運転されている状態で、排気ガス中に含まれるHC、CO、及びNOx成分を効率良く浄化することができることが知られている。
【0003】
一方、内燃機関の燃費を向上させる方法の1つとして、近年、内燃機関を理論空燃比よりも空気量が過剰なリーン空燃比で運転することが行われるようになって来ている。すると、このリーン空燃比で運転された内燃機関から排出される排気ガスでも空気量が過剰となり、三元触媒におけるNOxの低減量が小さくなってしまう。
【0004】
そこで、リーン空燃比で運転する内燃機関においては、排気通路に三元触媒とは別にNOx吸蔵還元触媒を設けることにより、リーン空燃比で運転された内燃機関から排出される排気ガス中のNOxを低減することが行われている。
【0005】
ところが、NOx吸蔵還元触媒は浄化温度ウインドウを持ち、硫黄被毒により劣化を起こすことが知られている。また、高温状態では、硫黄被毒成分が結晶化を起こし、硫黄成分が永久被毒となる場合がある。
【0006】
そこで、NOx吸収材の下流にNOx分解触媒を直列配置し、これをバイパスするバイパス通路を設け、このバイパス通路内にはバイパスバルブを設けて、排気ガスの温度が所定温度を越えた高温になった時に、このバイパスバルブを開いて排気ガスをバイパス通路に流し、高温排気ガスによるNOx分解触媒の硫黄被毒を防止するようにした排気浄化装置が提案されている(例えば、特許文献1参照)。
【0007】
【特許文献1】
特開平5−98954号公報(特許請求の範囲、図1)
【0008】
【発明が解決しようとする課題】
ところで、排気通路を形成する排気管の圧損は、触媒、マフラー、パイプ等の各排気通路構成要素の絞り量の加算により決められており、排気通路上に排気通路構成要素が追加されると、その分圧損が増大する。この圧損は、排気通路を流れる排気ガス流量が大きくなる程、その影響が大きくなり、圧損が増大すると、吸気弁と排気弁のバルブオーバラップ時の圧力上昇により、吸入空気量が低下して内燃機関の性能が低下するという問題がある。
【0009】
また、排気管の温度は数百度のオーダーで変化しており、長さの異なる排気管を並列に連結した排気通路の場合、その一方のみに排気ガスを流した場合には、2つの排気管の伸びの差から2つの排気管の間に歪みが生じて排気管が破壊するという問題がある。即ち、特許文献1に開示のように、NOx分解触媒を直列配置し、これをバイパスするバイパス通路を設けた場合には、バイパス通路でのバルブ開閉により排気ガスの流量が両通路(触媒側、バイパス通路側)で大きく変わり、2つの通路の温度差が大きくなって2つの排気通路間に歪みが生じて排気管が破壊するのである。
【0010】
更に、燃料のガソリンを直接内燃機関のシリンダ内に噴射するガソリン直噴機関では、成層燃焼(リーン燃焼)が内燃機関の低回転、低流量域で実施されており、内燃機関の高回転、高流量時には理論空燃比で内燃機関が運転されている。
従って、内燃機関の高回転、高流量時には三元触媒によって排気ガスの浄化が十分に行われるので、NOx吸蔵還元触媒は不要となる。
【0011】
そこで、本発明は、排気通路にNOx吸蔵還元触媒とこれをバイパスするバイパス通路を備えた内燃機関において、内燃機関の高回転、高流量時におけるNOx吸蔵還元触媒の熱劣化によるNOx浄化率の低下の防止、内燃機関の高回転、高流量時における圧損上昇による内燃機関の性能低下の防止、及び、並列に配置された排気通路の一方の熱伸長による排気通路の破壊の防止を図ることができる内燃機関の排気ガス浄化装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
前記目的を達成する本発明の内燃機関の排気ガス浄化装置は、以下に示す第1から第8の形態をとることができる。
【0013】
第1の形態は、内燃機関の排気通路にNOx吸蔵還元触媒を設けた内燃機関の排気ガス浄化装置において、NOx吸蔵還元触媒をバイパスする排気バイパス通路を設けると共に、この排気バイパス通路を開閉する開閉弁を設け、排気ガス中にNOx成分が多い内燃機関の運転状態では前記開閉弁を閉じ、排気ガス中にNOx成分が少ない内燃機関の運転状態では開閉弁を開くように構成したことを特徴とするものである。
【0014】
第2の形態は、第1の形態において、バイパス通路の軸線が、NOx吸蔵還元触媒の前後の排気通路の軸線と同軸になるように、バイパス通路を設けたことを特徴とするものである。
【0015】
第3の形態は、第1又は2の形態において、開閉弁を、バイパス通路の途中に設けたことを特徴とするものである。
【0016】
第4の形態は、第1又は2の形態において、開閉弁を、バイパス通路の排気通路との分岐部分に設けたことを特徴とするものである。
【0017】
第5の形態は、第1から第4の何れかの形態において、開閉弁は、内燃機関の運転状態を検出して内燃機関を制御する電子制御回路によって制御されるようにし、内燃機関の機関回転数が所定回転数を越えた機関の高回転時に開弁するように構成したことを特徴とするものである。
【0018】
第6の形態は、第1から5の何れかの形態において、バイパス通路の途中に、このバイパス通路に並列な排気ガス通路部分の熱伸縮を吸収可能なフレキシブル管を設けたことを特徴とするものである。
【0019】
第7の形態は、第1から6の何れかの形態において、NOx吸蔵還元触媒を、第1のNOx吸蔵還元触媒と、第2のNOx吸蔵還元触媒とから構成したことを特徴とするものである。
【0020】
第8の形態は、第1から第7の何れかの形態において、バイパス通路の前記排気通路との接続部との上流側、及び下流側にそれぞれ三元触媒を設けたことを特徴とするものである。
【0021】
第1の形態の内燃機関の排気ガス浄化装置によれば、排気ガス中にNOx成分が多い内燃機関の運転状態では排気ガスがNOx吸蔵還元触媒を通り、排気ガス中にNOx成分が少ない内燃機関の運転状態では排気ガスがNOx吸蔵還元触媒をバイパスするので、NOxの浄化性能を低下させることなく、内燃機関の性能を向上させることができる。
【0022】
第2の形態の内燃機関の排気ガス浄化装置によれば、排気ガスがNOx吸蔵還元触媒をバイパスする際の圧損を低く抑えることができる。
【0023】
第3と第4の形態の内燃機関の排気ガス浄化装置によれば、排気ガスがNOx吸蔵還元触媒を流れている時に開閉弁が排気抵抗とならない。
【0024】
第5の形態の内燃機関の排気ガス浄化装置によれば、内燃機関の高回転時に排気ガスがバイパス通路を通るので、不要な温度上昇の防止とNOx吸蔵還元触媒の硫黄被毒量の低減が可能になると共に、圧損が低くなって内燃機関の性能が向上する。
【0025】
第6の形態の形態の内燃機関の排気ガス浄化装置によれば、NOx吸蔵還元触媒を備えた排気通路がバイパス通路との温度差によって伸び縮みしても、バイパス通路が破損しない。
【0026】
第7の形態の内燃機関の排気ガス浄化装置によれば、NOx吸蔵還元触媒の容量を増大させることができる。
【0027】
第8の形態の内燃機関の排気ガス浄化装置によれば、排気ガスの浄化性能が向上する。
【0028】
【発明の実施の形態】
以下添付図面を用いて本発明の実施形態を具体的な実施例に基づいて詳細に説明する。
【0029】
図1は本発明の内燃機関(以後エンジンという)の排気ガス浄化装置の一実施例の構成を示すものであり、エンジンの排気経路の全体を示す構成図である。
【0030】
図1に示すエンジン1には、図示しない吸気経路を通じて吸気が導入される。
吸気経路には吸気量を調節するスロットル弁が設けられており、スロットル弁を通過した吸気はサージタンク2を経て、吸気ポート3からエンジン1内に入る。
この実施例のエンジン1は6気筒であり、各気筒には吸気ポート3または筒内に燃料を噴射する燃料噴射弁(図示せず)が設けられている。この燃料噴射弁には、図示しない燃料タンクからの燃料が導かれており、エンジン1を制御するための電子制御ユニット(以後ECUという)10からの信号によって開弁することによって、燃料が噴射される。
【0031】
燃焼後にエンジン1の各気筒から排出される排気ガスは、この実施例では2組の排気マニホルド4によって3気筒分ずつまとめられ、各排気マニホルド4の下流側に設けられた三元触媒(スタート触媒)5,6によって浄化される。三元触媒5,6を通過した排気ガスは、集合管7によって1つにまとめられる。この集合管7は、三元触媒5に接続する第1の枝管7A、三元触媒6に接続する第2の枝管7B、及び主管7Cとから構成されている。主管7Cには排気ガス中の酸素濃度から、エンジン1に吸入される混合気の空燃比を検出するA/Fセンサ(酸素センサ)9が設けられており、このA/Fセンサ9による空燃比の検出信号はECU10に入力される。
【0032】
集合管7の主管7Cの下流側の排気管8には、この実施例では、排気ガス中のNOx成分を浄化するための第1のNOx吸蔵還元触媒11と第2のNOx吸蔵還元触媒12が、直列に配置されて設けられている。第2のNOx吸蔵還元触媒12の下流側の排気管8には、別の三元触媒(スイーパ)13、サブマフラー14、及びメインマフラー15が設けられており、排気ガスはこれらを通過した後に大気中に放出される。なお、この実施例では、排気管8に第1と第2の2つのNOx吸蔵還元触媒11,12が設けられているが、NOx吸蔵還元触媒の数は1つでも良い。
【0033】
一方、この実施例では、第1のNOx吸蔵還元触媒11と第2のNOx吸蔵還元触媒12が設けられた排気管8に、並列に配置されてバイパス通路20が設けられている。このバイパス通路20は、一端が集合管7の主管7Cと排気管8の接続部に接続する第1のバイパス管21、この第1のバイパス管21の他端に接続するフレキシブル管22、フレキシブル管22の他端に接続する開閉弁23、及び開閉弁23の下流側を三元触媒13の上流側の排気管8に接続する第2のバイパス管23とから構成されている。
【0034】
この開閉弁23はECU10によって開閉制御される。ECU10には前述のA/Fセンサ9からの空燃比信号の他に、エンジン回転数信号、スロットル開度信号、排気温度信号、吸気圧信号、吸入空気量信号、車速信号、及び負圧センサ出力信号等のエンジン1の運転状態を示す信号が入力されており、ECU10はエンジン1の運転状態に応じてこの開閉弁23を開閉制御する。このECU10による開閉弁23の開閉制御については後述する。
【0035】
図2(a)は、図1に示した第1と第2のNOx吸蔵還元触媒11,12を備えた排気管8と、第1のバイパス管21、フレキシブル管22、開閉弁23、及び第2のバイパス管23から構成されるバイパス通路20が並列に配置された部位の拡大図であり、開閉弁23が閉弁している状態を示すものである。この状態では、排気ガスはバイパス通路20を流れることなく排気管8に流れるので、排気ガスは、図1に示したように、三元触媒及び第1と第2のNOx吸蔵還元触媒11,12で浄化される。
【0036】
バイパス通路20を構成するフレキシブル管22には、ベローズ管等のように前後方向の長さが可変できるものを使用する。また、開閉弁23としては負圧によって開閉動作する動圧弁や、電気信号によって開閉動作を行える電磁弁を使用することができ、開閉弁23の弁体にはバタフライ弁が使用できる。なお、開閉弁23は、ECU10によって開閉が制御できるものであれば、開閉弁の種類に制限はない。
【0037】
更に、この実施例におけるバイパス通路20はストレート状であり、第1のバイパス管21、フレキシブル管22、開閉弁23、及び第2のバイパス管23は同軸上にある。また、バイパス通路20の軸線BXは、バイパス通路20に上流側で接続する集合管7の主管7Cの軸線AXと同軸であると共に、バイパス通路20に下流側で接続する排気管8の軸線CXとも同軸になっている。
【0038】
よって、図2(b)に示すように、開閉弁23が開弁している状態では、集合管7を流れて来た排気ガスは、主管7Cと同軸の第1のバイパス管21にスムーズに流れ込み、第1と第2のNOx吸蔵還元触媒11,12による流路抵抗のある排気管8には殆ど流れない。そこで、エンジン1が高回転、理論空燃比で運転され、三元触媒のみで排気ガスの浄化を行い得るエンジン1の運転状態で開閉弁23を開弁させれば、高流量で高温の排気ガスが第1と第2のNOx吸蔵還元触媒11,12に流れなくなり、第1と第2のNOx吸蔵還元触媒11,12の不要な温度上昇を避けることができて熱劣化を防止することができる。また、排気ガスの高流量時の圧損上昇によるエンジン性能の低下を防止することができる。
【0039】
また、図2(a)の状態では、排気ガスが流れる排気管8の長さが熱によって増大するので排気管8の長さがバイパス通路20に比べて長くなり、逆に、図2(b)の状態では、排気ガスが流れるバイパス通路20の長さが熱によって増大するので、バイパス通路20の長さが排気管8に比べて長くなる。しかしながら、この排気管8とバイパス通路20の長さの差は、バイパス通路20に設けたフレキシブル管22の伸縮によって吸収されるので、排気ガスの流れる経路の違いによって排気管8とバイパス通路20に歪みによる破損は生じない。
【0040】
以上説明した実施例では、排気ガスの流れを切り換える開閉弁23はバイパス通路20の中央部に設けられていた。しかしながら、開閉弁23の位置は、バイパス通路20の中央部に限定されるものではない。図3(a),(b)は、開閉弁23を、バイパス通路20と排気管8の分岐部に設けた実施例を示すものであり、図2(a),(b)と同じ部位の構成を示している。図3(a),(b)に示す実施例では、開閉弁23の設置位置以外の他の部材の構成は同じである。よって、図2(a),(b)と同じ構成部材には同じ符号を付してその説明を省略する。
【0041】
図3(a)に示す実施例では、開閉弁23がバイパス通路20を構成する第1のバイパス管21の排気ガスの入口部に設けられている。このため、開閉弁23がバイパス通路20を閉弁している状態では、排気ガスは開閉弁23の弁体に沿ってスムーズに排気管8に流れ込み、第1と第2のNOx吸蔵還元触媒11,12で浄化される。このとき、排気ガスはバイパス通路20に全く入り込むことなく排気管8に流れるので、排気ガスの流路抵抗が減り、エンジン1の運転がスムーズになる。
【0042】
一方、図3(b)に示すように、開閉弁20によりバイパス通路20が開かれ、排気管8の入口部が閉じられた状態では、排気ガスは、主管7Cと同軸の第1のバイパス管21にスムーズに流れ込み、第1と第2のNOx吸蔵還元触媒11,12による流路抵抗のある排気管8には全く流れない。この実施例でも、エンジン1が高回転、理論空燃比で運転される状態で開閉弁23によって排気ガスをバイパス通路20に流すようにすれば、第1と第2のNOx吸蔵還元触媒11,12の熱劣化の防止、及び排気ガスの高流量時の圧損上昇によるエンジン性能の低下を防止することができる。
【0043】
また、図3(a),(b)に示した実施例でも、排気ガスが排気管8を流れるかバイパス通路20を流れるかの違いによる、排気管8又はバイパス通路20の熱伸長による両者の長さの差は、バイパス通路20に設けたフレキシブル管22の伸縮によって吸収されるので、排気管8とバイパス通路20に、熱歪みによる破損は生じない。
【0044】
図4は、図2と図3で説明した本発明の開閉弁23の開閉制御の手順の一例を説明するフローチャートである。この手順は所定時間毎に実行される。
【0045】
ステップ401ではまず、エンジン1の運転状態パラメータの読み込みが行われる。エンジン1の運転状態パラメータは、例えば、A/Fセンサ9からの空燃比、エンジン回転数、スロットル開度、排気温度、吸気圧、吸入空気量、車速、及び負圧センサ出力等である。このようにしてステップ401でエンジン1の運転状態パラメータを読み込んだ後は、エンジン1の運転状態が、高回転か否かをステップ402で判定し、エンジン1の運転状態が高回転の場合はステップ403に進んで、エンジン1が理論空燃比で運転されているか否かを判定する。
【0046】
そして、ステップ402でエンジン1が高回転でない場合、或いは、ステップ403でエンジン1が理論空燃比で運転されていない場合はステップ404に進み、開閉弁23バイパス通路20を閉じる側に回転させてバイパス通路を閉鎖する。一方、ステップ402からステップ403に進み、エンジン1が高回転かつ理論空燃比で運転されていると判定した場合はステップ405に進み、開閉弁23バイパス通路20を開く側に回転させてバイパス通路を開通させる。
【0047】
この結果、エンジン1が高回転かつ理論空燃比で運転されている場合は、図2(b)及び図3(b)に示したように、排気ガスがバイパス通路20を通過し、NOx吸蔵還元触媒11,12には流れない。
【0048】
このように、本発明では、エンジン1の高回転時に排気ガスがバイパス通路20を流れるので、NOx吸蔵還元触媒の硫黄被毒量を低減できる。また、バイパス通路20の長さによるサイドブランチ効果から、排気騒音の低減を図ることができる。
【0049】
なお、以上説明した実施例では、エンジン1の高回転、理論空燃比運転状態の時に、開閉弁を開いてNOx吸蔵還元触媒を有する排気管に並列に設けたバイパス通路に排気ガスを流すようにしたが、NOx吸蔵還元触媒を有する排気管の上流側にNOxセンサを設けておき、NOx濃度が低くなった時に開閉弁を開いてバイパス通路に排気ガスを流すようにしても良いものである。
【0050】
【発明の効果】
以上説明したように、本発明の内燃機関の排気ガス浄化装置によれば、排気通路にNOx吸蔵還元触媒とこれをバイパスするバイパス通路を備えた内燃機関において、排気ガス中にNOx成分が少ない内燃機関の運転状態では開閉弁により排気ガスをバイパス通路に流すようにしたので、内燃機関の高回転、高流量時におけるNOx吸蔵還元触媒の熱劣化によるNOx浄化率の低下の防止、内燃機関の高回転、高流量時における圧損上昇による内燃機関の性能低下の防止、及び並列に配置された排気通路の一方の熱伸長による排気管の破壊の防止を図ることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の内燃機関の排気ガス浄化装置の一実施例の構成を示すものであり、内燃機関の排気系統の全体を示す構成図である。
【図2】図1に示した内燃機関の排気系統におけるNOx吸蔵還元触媒とそのバイパス通路の部位の拡大図であり、(a)は開閉弁の閉弁状態における排気ガスの流れを説明する図、(b)は開閉弁の開弁状態における排気ガスの流れを説明する図である。
【図3】図1に示したNOx吸蔵還元触媒とそのバイパス通路の部位の構成の別の実施例の構成を示す拡大図であり、(a)は開閉弁の閉弁状態における排気ガスの流れを説明する図、(b)は開閉弁の開弁状態における排気ガスの流れを説明する図である。
【図4】本発明の開閉弁の開閉制御の一例を説明するフローチャートである。
【符号の説明】
1…エンジン
4…排気マニホルド
5,6,13…三元触媒
8…排気管
9…A/Fセンサ
10…ECU(電子制御ユニット)
11…第1のNOx吸蔵還元触媒
12…第2のNOx吸蔵還元触媒
20…バイパス通路
21…第1のバイパス管
22…フレキシブル管
23…開閉弁
24…第2のバイパス管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly to an improvement in an exhaust gas purifying apparatus for an internal combustion engine provided with a NOx storage reduction catalyst for purifying NOx components of exhaust gas.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a three-way catalyst is generally provided in an exhaust passage of an internal combustion engine as an exhaust gas purification device for an internal combustion engine. It is known that this three-way catalyst can efficiently purify HC, CO, and NOx components contained in exhaust gas while the internal combustion engine is operated at a stoichiometric air-fuel ratio.
[0003]
On the other hand, as one of the methods for improving the fuel efficiency of the internal combustion engine, in recent years, the internal combustion engine has been operated at a lean air-fuel ratio in which the amount of air is excessive than the stoichiometric air-fuel ratio. Then, even in the exhaust gas discharged from the internal combustion engine operated at the lean air-fuel ratio, the air amount becomes excessive, and the reduction amount of NOx in the three-way catalyst becomes small.
[0004]
Therefore, in an internal combustion engine operating at a lean air-fuel ratio, NOx in exhaust gas discharged from the internal combustion engine operated at a lean air-fuel ratio is provided by providing a NOx storage reduction catalyst separately from the three-way catalyst in the exhaust passage. Reductions have been made.
[0005]
However, it is known that the NOx storage reduction catalyst has a purification temperature window and is deteriorated by sulfur poisoning. Further, in a high temperature state, the sulfur poisoning component may be crystallized, and the sulfur component may be permanently poisoned.
[0006]
Therefore, a NOx decomposition catalyst is arranged in series downstream of the NOx absorbent, a bypass passage for bypassing the NOx decomposition catalyst is provided, and a bypass valve is provided in the bypass passage so that the temperature of the exhaust gas becomes higher than a predetermined temperature. An exhaust gas purifying device has been proposed in which the bypass valve is opened when the exhaust gas flows through the bypass passage to prevent the high-temperature exhaust gas from poisoning the NOx decomposition catalyst with sulfur (see, for example, Patent Document 1). .
[0007]
[Patent Document 1]
JP-A-5-98954 (Claims, FIG. 1)
[0008]
[Problems to be solved by the invention]
By the way, the pressure loss of the exhaust pipe forming the exhaust passage is determined by adding the throttle amount of each exhaust passage component such as a catalyst, a muffler, and a pipe, and when the exhaust passage component is added on the exhaust passage, The partial pressure loss increases. The effect of the pressure loss increases as the flow rate of the exhaust gas flowing through the exhaust passage increases, and when the pressure loss increases, the intake air amount decreases due to a rise in the pressure when the intake valve and the exhaust valve overlap, and the internal combustion is reduced. There is a problem that the performance of the engine is reduced.
[0009]
In addition, the temperature of the exhaust pipe changes in the order of several hundred degrees, and in the case of an exhaust passage in which exhaust pipes having different lengths are connected in parallel, when exhaust gas flows through only one of the exhaust pipes, two exhaust pipes are used. There is a problem that a strain is generated between the two exhaust pipes due to a difference in elongation of the exhaust pipes and the exhaust pipes are broken. That is, as disclosed in Patent Document 1, when a NOx decomposition catalyst is arranged in series and a bypass passage for bypassing the NOx decomposition catalyst is provided, the flow rate of the exhaust gas is reduced by opening and closing the valve in the bypass passage. The temperature changes greatly on the bypass passage side), the temperature difference between the two passages increases, and distortion occurs between the two exhaust passages, and the exhaust pipe is broken.
[0010]
Further, in a gasoline direct injection engine in which fuel gasoline is directly injected into a cylinder of the internal combustion engine, stratified combustion (lean combustion) is performed in a low rotation and low flow rate region of the internal combustion engine, and the high rotation and high rotation of the internal combustion engine are performed. At the time of flow, the internal combustion engine is operated at the stoichiometric air-fuel ratio.
Therefore, when the internal combustion engine is rotating at a high speed and at a high flow rate, the exhaust gas is sufficiently purified by the three-way catalyst, so that the NOx storage reduction catalyst becomes unnecessary.
[0011]
In view of the above, the present invention provides an internal combustion engine having an NOx storage reduction catalyst in an exhaust passage and a bypass passage that bypasses the NOx storage reduction catalyst. Prevention of deterioration of the internal combustion engine due to an increase in pressure loss at the time of high rotation and high flow rate of the internal combustion engine, and prevention of destruction of the exhaust passage due to thermal expansion of one of the exhaust passages arranged in parallel. An object of the present invention is to provide an exhaust gas purification device for an internal combustion engine.
[0012]
[Means for Solving the Problems]
The exhaust gas purifying apparatus for an internal combustion engine of the present invention that achieves the above object can take the following first to eighth modes.
[0013]
According to a first aspect, in an exhaust gas purifying apparatus for an internal combustion engine in which an NOx storage reduction catalyst is provided in an exhaust passage of the internal combustion engine, an exhaust bypass passage that bypasses the NOx storage reduction catalyst is provided, and an opening and closing that opens and closes the exhaust bypass passage is provided. A valve is provided, wherein the on-off valve is closed in an operating state of the internal combustion engine having a high NOx component in the exhaust gas, and the on-off valve is opened in an operating state of the internal combustion engine having a low NOx component in the exhaust gas. Is what you do.
[0014]
The second embodiment is characterized in that, in the first embodiment, a bypass passage is provided so that the axis of the bypass passage is coaxial with the axis of the exhaust passage before and after the NOx storage reduction catalyst.
[0015]
The third embodiment is characterized in that, in the first or second embodiment, the on-off valve is provided in the middle of the bypass passage.
[0016]
The fourth embodiment is characterized in that, in the first or second embodiment, an on-off valve is provided at a branch portion of the bypass passage from the exhaust passage.
[0017]
According to a fifth aspect, in any one of the first to fourth aspects, the on-off valve is controlled by an electronic control circuit that detects an operating state of the internal combustion engine and controls the internal combustion engine. The valve is configured to be opened at the time of high rotation of the engine whose rotation speed exceeds a predetermined rotation speed.
[0018]
The sixth mode is characterized in that, in any one of the first to fifth modes, a flexible pipe capable of absorbing thermal expansion and contraction of an exhaust gas passage portion parallel to the bypass passage is provided in the middle of the bypass passage. Things.
[0019]
The seventh mode is characterized in that in any one of the first to sixth modes, the NOx storage reduction catalyst is constituted by a first NOx storage reduction catalyst and a second NOx storage reduction catalyst. is there.
[0020]
An eighth aspect is characterized in that in any one of the first to seventh aspects, a three-way catalyst is provided on each of an upstream side and a downstream side of a bypass passage connected to the exhaust passage. It is.
[0021]
According to the exhaust gas purifying apparatus for an internal combustion engine of the first embodiment, in an operating state of the internal combustion engine in which the exhaust gas contains a large amount of NOx, the exhaust gas passes through the NOx storage reduction catalyst and the exhaust gas contains a small amount of the NOx component. In the operation state, the exhaust gas bypasses the NOx storage reduction catalyst, so that the performance of the internal combustion engine can be improved without lowering the NOx purification performance.
[0022]
According to the exhaust gas purifying apparatus for an internal combustion engine of the second embodiment, it is possible to suppress the pressure loss when the exhaust gas bypasses the NOx storage reduction catalyst.
[0023]
According to the third and fourth embodiments of the exhaust gas purifying apparatus for an internal combustion engine, the on-off valve does not have exhaust resistance when the exhaust gas flows through the NOx storage reduction catalyst.
[0024]
According to the exhaust gas purifying apparatus for an internal combustion engine according to the fifth aspect, the exhaust gas passes through the bypass passage when the internal combustion engine is rotating at a high speed, so that unnecessary temperature rise is prevented and the sulfur poisoning amount of the NOx storage reduction catalyst is reduced. At the same time, the pressure loss is reduced and the performance of the internal combustion engine is improved.
[0025]
According to the exhaust gas purifying apparatus for an internal combustion engine of the sixth aspect, even if the exhaust passage provided with the NOx storage reduction catalyst expands and contracts due to a temperature difference from the bypass passage, the bypass passage is not damaged.
[0026]
According to the exhaust gas purifying apparatus for an internal combustion engine of the seventh aspect, the capacity of the NOx storage reduction catalyst can be increased.
[0027]
According to the exhaust gas purifying apparatus for an internal combustion engine of the eighth aspect, the purification performance of the exhaust gas is improved.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings based on specific examples.
[0029]
FIG. 1 shows a configuration of an embodiment of an exhaust gas purifying apparatus for an internal combustion engine (hereinafter referred to as an engine) of the present invention, and is a configuration diagram showing an entire exhaust path of the engine.
[0030]
The intake air is introduced into the engine 1 shown in FIG. 1 through an intake passage (not shown).
A throttle valve for adjusting the amount of intake air is provided in the intake path. The intake air passing through the throttle valve passes through the surge tank 2 and enters the engine 1 from the intake port 3.
The engine 1 of this embodiment has six cylinders, and each cylinder is provided with an intake port 3 or a fuel injection valve (not shown) for injecting fuel into the cylinder. Fuel from a fuel tank (not shown) is guided to the fuel injection valve, and the fuel is injected by being opened by a signal from an electronic control unit (hereinafter referred to as ECU) 10 for controlling the engine 1. You.
[0031]
In this embodiment, the exhaust gas discharged from each cylinder of the engine 1 after the combustion is combined into three cylinders by two sets of exhaust manifolds 4, and a three-way catalyst (start catalyst) provided downstream of each exhaust manifold 4 is provided. ) Purified by 5 and 6. Exhaust gas that has passed through the three-way catalysts 5 and 6 is collected into one by a collecting pipe 7. The collecting pipe 7 includes a first branch pipe 7A connected to the three-way catalyst 5, a second branch pipe 7B connected to the three-way catalyst 6, and a main pipe 7C. The main pipe 7C is provided with an A / F sensor (oxygen sensor) 9 for detecting the air-fuel ratio of the air-fuel mixture sucked into the engine 1 from the oxygen concentration in the exhaust gas. Is input to the ECU 10.
[0032]
In this embodiment, a first NOx occlusion / reduction catalyst 11 and a second NOx occlusion / reduction catalyst 12 for purifying NOx components in exhaust gas are provided on the exhaust pipe 8 on the downstream side of the main pipe 7C of the collecting pipe 7. , Arranged in series. The exhaust pipe 8 on the downstream side of the second NOx storage reduction catalyst 12 is provided with another three-way catalyst (sweeper) 13, a sub-muffler 14, and a main muffler 15, and the exhaust gas passes therethrough. Released into the atmosphere. In this embodiment, the first and second two NOx storage reduction catalysts 11 and 12 are provided in the exhaust pipe 8, but the number of NOx storage reduction catalysts may be one.
[0033]
On the other hand, in this embodiment, a bypass passage 20 is provided in parallel with the exhaust pipe 8 in which the first NOx storage reduction catalyst 11 and the second NOx storage reduction catalyst 12 are provided. The bypass passage 20 has a first bypass pipe 21 having one end connected to a connection portion between the main pipe 7C of the collecting pipe 7 and the exhaust pipe 8, a flexible pipe 22 connected to the other end of the first bypass pipe 21, and a flexible pipe. An on-off valve 23 connected to the other end of the valve 22 and a second bypass pipe 23 connecting the downstream side of the on-off valve 23 to the exhaust pipe 8 on the upstream side of the three-way catalyst 13.
[0034]
The on / off valve 23 is controlled by the ECU 10 to open and close. In addition to the air-fuel ratio signal from the A / F sensor 9, the ECU 10 outputs an engine speed signal, a throttle opening signal, an exhaust temperature signal, an intake pressure signal, an intake air amount signal, a vehicle speed signal, and a negative pressure sensor output. A signal such as a signal indicating the operating state of the engine 1 is input, and the ECU 10 controls the opening and closing of the on-off valve 23 according to the operating state of the engine 1. The on / off control of the on-off valve 23 by the ECU 10 will be described later.
[0035]
FIG. 2A shows an exhaust pipe 8 having the first and second NOx storage reduction catalysts 11 and 12 shown in FIG. 1, a first bypass pipe 21, a flexible pipe 22, an on-off valve 23, and a FIG. 3 is an enlarged view of a portion where the bypass passages 20 each including two bypass pipes 23 are arranged in parallel, and shows a state where the on-off valve 23 is closed. In this state, the exhaust gas flows through the exhaust pipe 8 without flowing through the bypass passage 20, and therefore, as shown in FIG. 1, the exhaust gas flows through the three-way catalyst and the first and second NOx storage reduction catalysts 11, 12 as shown in FIG. Purified by.
[0036]
As the flexible pipe 22 constituting the bypass passage 20, a flexible pipe 22 having a variable length in the front-rear direction, such as a bellows pipe, is used. Further, as the on-off valve 23, a dynamic pressure valve that opens and closes by a negative pressure, and an electromagnetic valve that can open and close by an electric signal can be used, and a butterfly valve can be used for the valve body of the on-off valve 23. The type of the on-off valve 23 is not limited as long as the on-off valve can be controlled by the ECU 10.
[0037]
Further, the bypass passage 20 in this embodiment is straight, and the first bypass pipe 21, the flexible pipe 22, the on-off valve 23, and the second bypass pipe 23 are coaxial. Further, the axis BX of the bypass passage 20 is coaxial with the axis AX of the main pipe 7C of the collecting pipe 7 connected to the bypass passage 20 on the upstream side, and also the axis CX of the exhaust pipe 8 connected to the bypass passage 20 on the downstream side. It is coaxial.
[0038]
Therefore, as shown in FIG. 2B, when the on-off valve 23 is open, the exhaust gas flowing through the collecting pipe 7 smoothly flows to the first bypass pipe 21 coaxial with the main pipe 7C. It flows and hardly flows into the exhaust pipe 8 having flow path resistance due to the first and second NOx storage reduction catalysts 11 and 12. Therefore, if the on-off valve 23 is opened in an operating state of the engine 1 in which the engine 1 is operated at a high rotation speed and a stoichiometric air-fuel ratio and the exhaust gas can be purified only by the three-way catalyst, the high- Does not flow to the first and second NOx storage reduction catalysts 11 and 12, unnecessary temperature rises of the first and second NOx storage reduction catalysts 11 and 12 can be avoided, and thermal deterioration can be prevented. . Further, it is possible to prevent a decrease in engine performance due to an increase in pressure loss at a high flow rate of the exhaust gas.
[0039]
In the state of FIG. 2A, the length of the exhaust pipe 8 through which the exhaust gas flows increases due to heat, so that the length of the exhaust pipe 8 is longer than that of the bypass passage 20, and conversely, the state of FIG. In the state of ()), the length of the bypass passage 20 through which the exhaust gas flows increases due to heat, so that the length of the bypass passage 20 is longer than that of the exhaust pipe 8. However, the difference between the length of the exhaust pipe 8 and the length of the bypass passage 20 is absorbed by the expansion and contraction of the flexible pipe 22 provided in the bypass passage 20. No damage due to distortion occurs.
[0040]
In the embodiment described above, the on-off valve 23 for switching the flow of the exhaust gas is provided at the center of the bypass passage 20. However, the position of the on-off valve 23 is not limited to the center of the bypass passage 20. FIGS. 3A and 3B show an embodiment in which the on-off valve 23 is provided at a branch portion between the bypass passage 20 and the exhaust pipe 8, and the same portion as in FIGS. 2A and 2B is shown. 1 shows the configuration. In the embodiment shown in FIGS. 3A and 3B, the configuration of other members other than the installation position of the on-off valve 23 is the same. Therefore, the same components as those in FIGS. 2A and 2B are denoted by the same reference numerals, and description thereof will be omitted.
[0041]
In the embodiment shown in FIG. 3A, the on-off valve 23 is provided at the exhaust gas inlet of the first bypass pipe 21 forming the bypass passage 20. Therefore, when the on-off valve 23 closes the bypass passage 20, the exhaust gas smoothly flows into the exhaust pipe 8 along the valve body of the on-off valve 23, and the first and second NOx storage reduction catalysts 11 , 12. At this time, the exhaust gas flows into the exhaust pipe 8 without entering the bypass passage 20 at all, so that the flow resistance of the exhaust gas is reduced, and the operation of the engine 1 becomes smooth.
[0042]
On the other hand, as shown in FIG. 3B, in a state in which the bypass passage 20 is opened by the on-off valve 20 and the inlet of the exhaust pipe 8 is closed, the exhaust gas flows through the first bypass pipe coaxial with the main pipe 7C. The gas smoothly flows into the exhaust pipe 21 and does not flow at all into the exhaust pipe 8 having the flow path resistance due to the first and second NOx storage reduction catalysts 11 and 12. Also in this embodiment, if the exhaust gas is caused to flow through the bypass passage 20 by the on-off valve 23 in a state where the engine 1 is operated at a high rotation speed and a stoichiometric air-fuel ratio, the first and second NOx storage reduction catalysts 11 and 12 are provided. Can be prevented from deteriorating due to heat, and a decrease in engine performance due to an increase in pressure loss at a high flow rate of exhaust gas can be prevented.
[0043]
Also, in the embodiment shown in FIGS. 3A and 3B, the difference between whether the exhaust gas flows through the exhaust pipe 8 or the bypass passage 20 depends on whether the exhaust gas flows through the exhaust pipe 8 or the bypass passage 20. Since the difference in length is absorbed by the expansion and contraction of the flexible pipe 22 provided in the bypass passage 20, the exhaust pipe 8 and the bypass passage 20 are not damaged by thermal distortion.
[0044]
FIG. 4 is a flowchart illustrating an example of the procedure of the opening / closing control of the on-off valve 23 of the present invention described with reference to FIGS. 2 and 3. This procedure is executed every predetermined time.
[0045]
In step 401, first, the operation state parameters of the engine 1 are read. The operating state parameters of the engine 1 include, for example, an air-fuel ratio from the A / F sensor 9, an engine speed, a throttle opening, an exhaust temperature, an intake pressure, an intake air amount, a vehicle speed, and a negative pressure sensor output. After the operation state parameters of the engine 1 are read in step 401 in this manner, it is determined in step 402 whether the operation state of the engine 1 is at high rotation. If the operation state of the engine 1 is at high rotation, step Proceeding to 403, it is determined whether the engine 1 is operating at the stoichiometric air-fuel ratio.
[0046]
If the engine 1 is not rotating at high speed in step 402, or if the engine 1 is not operating at the stoichiometric air-fuel ratio in step 403, the process proceeds to step 404, in which the on-off valve 23 is rotated to the closing side to bypass. Close the passage. On the other hand, proceeding from step 402 to step 403, if it is determined that the engine 1 is operating at a high speed and at a stoichiometric air-fuel ratio, proceed to step 405 to rotate the on-off valve 23 bypass passage 20 to open the bypass passage. Let it open.
[0047]
As a result, when the engine 1 is operating at a high speed and a stoichiometric air-fuel ratio, the exhaust gas passes through the bypass passage 20 as shown in FIGS. It does not flow to the catalysts 11 and 12.
[0048]
As described above, in the present invention, the exhaust gas flows through the bypass passage 20 when the engine 1 is rotating at a high speed, so that the sulfur poisoning amount of the NOx storage reduction catalyst can be reduced. Further, it is possible to reduce the exhaust noise from the side branch effect due to the length of the bypass passage 20.
[0049]
In the embodiment described above, when the engine 1 is operating at a high speed and a stoichiometric air-fuel ratio, the on-off valve is opened so that the exhaust gas flows through the bypass passage provided in parallel with the exhaust pipe having the NOx storage reduction catalyst. However, a NOx sensor may be provided upstream of the exhaust pipe having the NOx storage reduction catalyst, and when the NOx concentration becomes low, the on-off valve may be opened to allow the exhaust gas to flow through the bypass passage.
[0050]
【The invention's effect】
As described above, according to the exhaust gas purifying apparatus for an internal combustion engine of the present invention, in an internal combustion engine having an NOx storage reduction catalyst and a bypass passage that bypasses the NOx storage catalyst in the exhaust passage, the internal combustion engine has a small NOx component in the exhaust gas. In the operating state of the engine, the exhaust gas is caused to flow through the bypass passage by the on-off valve. Therefore, it is possible to prevent a decrease in the NOx purification rate due to thermal deterioration of the NOx storage reduction catalyst at the time of high rotation and high flow rate of the internal combustion engine, and There is an effect that it is possible to prevent the performance of the internal combustion engine from deteriorating due to an increase in pressure loss at the time of rotation and high flow rate, and to prevent the exhaust pipe from being broken due to thermal expansion of one of the exhaust passages arranged in parallel.
[Brief description of the drawings]
FIG. 1 shows a configuration of an embodiment of an exhaust gas purifying apparatus for an internal combustion engine of the present invention, and is a configuration diagram showing an entire exhaust system of the internal combustion engine.
2 is an enlarged view of a portion of a NOx storage reduction catalyst and a bypass passage thereof in an exhaust system of the internal combustion engine shown in FIG. 1, and FIG. 2 (a) is a view for explaining a flow of exhaust gas when an on-off valve is closed. (B) is a diagram for explaining the flow of exhaust gas when the on-off valve is open.
FIG. 3 is an enlarged view showing the configuration of another embodiment of the configuration of the NOx storage reduction catalyst and its bypass passage shown in FIG. 1, and FIG. 3 (a) is a flow of exhaust gas when the on-off valve is closed. FIG. 4B is a diagram illustrating the flow of exhaust gas when the on-off valve is open.
FIG. 4 is a flowchart illustrating an example of the on-off control of the on-off valve according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Engine 4 ... Exhaust manifolds 5, 6, 13 ... Three-way catalyst 8 ... Exhaust pipe 9 ... A / F sensor 10 ... ECU (Electronic control unit)
11 First NOx storage reduction catalyst 12 Second NOx storage reduction catalyst 20 Bypass passage 21 First bypass pipe 22 Flexible pipe 23 On-off valve 24 Second bypass pipe

Claims (8)

内燃機関の排気通路にNOx吸蔵還元触媒を設けた内燃機関の排気ガス浄化装置において、
前記NOx吸蔵還元触媒をバイパスする排気バイパス通路を設けると共に、この排気バイパス通路を開閉する開閉弁を設け、
排気ガス中にNOx成分が多い内燃機関の運転状態では前記開閉弁を閉じ、
排気ガス中にNOx成分が少ない内燃機関の運転状態では前記開閉弁を開くように構成したことを特徴とする内燃機関の排気ガス浄化装置。
In an exhaust gas purifying apparatus for an internal combustion engine provided with a NOx storage reduction catalyst in an exhaust passage of the internal combustion engine,
An exhaust bypass passage for bypassing the NOx storage reduction catalyst, and an on-off valve for opening and closing the exhaust bypass passage;
In the operating state of the internal combustion engine having a large amount of NOx component in the exhaust gas, the on-off valve is closed,
An exhaust gas purifying apparatus for an internal combustion engine, wherein the on-off valve is opened when the internal combustion engine has a low NOx component in the exhaust gas.
前記バイパス通路の軸線が、前記NOx吸蔵還元触媒の前後の排気通路の軸線と同軸になるように、前記バイパス通路を設けたことを特徴とする請求項1に記載の内燃機関の排気ガス浄化装置。The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the bypass passage is provided so that an axis of the bypass passage is coaxial with an axis of an exhaust passage before and after the NOx storage reduction catalyst. . 前記開閉弁を、前記バイパス通路の途中に設けたことを特徴とする請求項1又は2に記載の内燃機関の排気ガス浄化装置。3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the on-off valve is provided in the middle of the bypass passage. 前記開閉弁を、前記バイパス通路の前記排気通路との分岐部分に設けたことを特徴とする請求項1又は2に記載の内燃機関の排気ガス浄化装置。The exhaust gas purifying apparatus for an internal combustion engine according to claim 1 or 2, wherein the on-off valve is provided at a branch portion of the bypass passage with the exhaust passage. 前記開閉弁は、前記内燃機関の運転状態を検出して内燃機関を制御する電子制御回路によって制御されるようにし、前記内燃機関の機関回転数が所定回転数を越えた機関の高回転時に開弁するように構成したことを特徴とする請求項1から4の何れか1項に記載の内燃機関の排気ガス浄化装置。The on-off valve is controlled by an electronic control circuit that detects an operating state of the internal combustion engine and controls the internal combustion engine, and opens when the engine speed of the internal combustion engine exceeds a predetermined rotation speed at a high speed. The exhaust gas purifying device for an internal combustion engine according to any one of claims 1 to 4, wherein the exhaust gas purifying device is configured to be a valve. 前記バイパス通路の途中に、このバイパス通路に並列な排気ガス通路部分の熱伸縮を吸収可能なフレキシブル管を設けたことを特徴とする請求項1から5の何れか1項に記載の内燃機関の排気ガス浄化装置。The internal combustion engine according to any one of claims 1 to 5, wherein a flexible pipe capable of absorbing thermal expansion and contraction of an exhaust gas passage portion parallel to the bypass passage is provided in the middle of the bypass passage. Exhaust gas purification device. 前記NOx吸蔵還元触媒を、第1のNOx吸蔵還元触媒と、第2のNOx吸蔵還元触媒とから構成したことを特徴とする請求項1から6の何れか1項に記載の内燃機関の排気ガス浄化装置。The exhaust gas of an internal combustion engine according to any one of claims 1 to 6, wherein the NOx storage reduction catalyst comprises a first NOx storage reduction catalyst and a second NOx storage reduction catalyst. Purification device. 前記バイパス通路の前記排気通路との接続部との上流側、及び下流側にそれぞれ三元触媒を設けたことを特徴とする請求項1から7の何れか1項に記載の内燃機関の排気ガス浄化装置。The exhaust gas for an internal combustion engine according to any one of claims 1 to 7, wherein a three-way catalyst is provided on each of an upstream side and a downstream side of the connection portion of the bypass passage with the exhaust passage. Purification device.
JP2002257763A 2002-09-03 2002-09-03 Exhaust emission control device for internal combustion engine Pending JP2004092591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257763A JP2004092591A (en) 2002-09-03 2002-09-03 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257763A JP2004092591A (en) 2002-09-03 2002-09-03 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004092591A true JP2004092591A (en) 2004-03-25

Family

ID=32062591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257763A Pending JP2004092591A (en) 2002-09-03 2002-09-03 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004092591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297967A (en) * 2006-04-28 2007-11-15 Osaka Gas Co Ltd Engine
JP2008267177A (en) * 2007-04-17 2008-11-06 Mazda Motor Corp Exhaust emission control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297967A (en) * 2006-04-28 2007-11-15 Osaka Gas Co Ltd Engine
JP2008267177A (en) * 2007-04-17 2008-11-06 Mazda Motor Corp Exhaust emission control device

Similar Documents

Publication Publication Date Title
US7971427B2 (en) Exhaust gas purifying apparatus for internal combustion engine
WO2008059362A2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP2007239493A (en) Internal combustion engine with supercharger
US10508578B2 (en) Engine system
JP6375808B2 (en) Intake / exhaust device for internal combustion engine
JP2004324454A (en) Exhaust emission control device of internal combustion engine
JP2001012234A (en) Exhaust system of engine with supercharger
JP4779926B2 (en) Exhaust system for internal combustion engine
JPH1068315A (en) Emission control device for internal combustion engine
US20180266344A1 (en) Internal combustion engine
JP2004092591A (en) Exhaust emission control device for internal combustion engine
JPH0417710A (en) Purifying device of engine exhaust gas
JP4552763B2 (en) Control device for internal combustion engine
JP3743232B2 (en) White smoke emission suppression device for internal combustion engine
JP2004124744A (en) Turbocharged engine
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
JP2010133327A (en) Exhaust emission control device for internal combustion engine
JP2008038825A (en) Internal combustion engine control device
US20080034735A1 (en) Internal combustion engine and method of controlling the same
JP4233144B2 (en) Exhaust gas purification device for turbocharged engine and control method thereof
JP3248290B2 (en) Exhaust gas purification device for internal combustion engine
JPH11141331A (en) Emission control device of engine with turbo charger
JP2009209840A (en) Exhaust emission control device for engine
JPH0979043A (en) Exhaust emission control device for internal combustion engine with supercharger
JP2004346793A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113