JP2004346793A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2004346793A
JP2004346793A JP2003143206A JP2003143206A JP2004346793A JP 2004346793 A JP2004346793 A JP 2004346793A JP 2003143206 A JP2003143206 A JP 2003143206A JP 2003143206 A JP2003143206 A JP 2003143206A JP 2004346793 A JP2004346793 A JP 2004346793A
Authority
JP
Japan
Prior art keywords
nox
exhaust
gas state
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143206A
Other languages
Japanese (ja)
Inventor
嘉則 ▲高▼橋
Yoshinori Takahashi
Yoshihisa Takeda
好央 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2003143206A priority Critical patent/JP2004346793A/en
Publication of JP2004346793A publication Critical patent/JP2004346793A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of suppressing worsening of fuel economy while sufficiently attaining the recovery of NOx purifying performance by efficiently purging sulfur in a short time from a low temperature state. <P>SOLUTION: This exhaust emission control device for the internal combustion engine has an NOx storage catalyst 16 interposed in an exhaust pipe 7 to absorb NOx in exhaust gas in a lean gas state with high oxygen concentration while releasing/reducing the NOx in a rich gas state with low oxygen concentration and high reducing agent concentration. The exhaust emission control device is provided with an electronic control unit 30 for performing opening/closing control of a fuel injection valve 21 for injecting fuel to the exhaust pipe 7, to alternately change over to the rich gas state and the lean gas state from the start time to the end time of sulfur purge of desorbing SOx poisoning the NOx storage catalyst 16. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、排気通路にNOx吸蔵触媒を介装した内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
近年、内燃機関をリーン空燃比で運転して燃費等の向上を図るようにした希薄燃焼内燃機関が実用化されている。この希薄燃焼内燃機関では、リーン空燃比で運転すると、三元触媒がその浄化特性から排気ガス中の窒素酸化物(NOx)を充分に浄化できないという問題があり、最近では、リーン空燃比で運転中に排気ガス中のNOxを吸蔵し、ストイキ又はリッチ空燃比で運転中に吸蔵されたNOxを放出・還元するNOx吸蔵(型)触媒が採用されている。
【0003】
このNOx吸蔵触媒は、内燃機関の酸素の過剰状態(リーンガス状態)で排気ガス中のNOxを硝酸塩(X−NO)として吸蔵し、吸蔵したNOxを還元剤である一酸化炭素(CO)等の過剰状態(リッチガス状態)で放出して窒素(N)に還元させる特性(同時に炭酸塩X−COが生成される)を有した触媒である。ところで、燃料中には硫黄(S)成分が含まれており、このS成分は前記リーンガス状態で酸素と反応して硫黄酸化物(SOx)となり、このSOxが硫酸塩としてNOxと同様にNOx吸蔵触媒に吸蔵される。
【0004】
このようにNOx吸蔵触媒に硫黄成分が吸蔵されてしまうと、NOxを吸蔵しなくなるためNOx吸蔵触媒の性能が低下し、その硫黄成分比率が高くなるとNOx吸蔵触媒として機能しなくなる。依って、NOx吸蔵触媒の性能を維持させるためには、定期的に吸蔵(被毒)したSOx(硫黄成分)を脱離させる(Sパージ)必要がある。
【0005】
Sパージは、高温のリッチガス条件下で成立するといわれている。そこで、特許文献1では、Sパージ制御時には、先ずリッチガス条件下にした後リーンガス条件下に切り換えて、炭化水素(HC)やCO等の還元剤が浮遊、滞留している触媒ケーシング内に酸素を供給して触媒近傍でこれらを反応させることでNOx吸蔵触媒を効率よく昇温させた後、再びリッチガス条件下にしてNOx吸蔵触媒が被毒したSOxを脱離させるようにした技術が開示されている。
【0006】
【特許文献1】
特開2000−227022号公報
【0007】
【発明が解決しようとする課題】
ところが、Sパージに関し、本発明者等が種々の試験を行った結果、SOxを脱離させるには、高温のリッチガス条件が必要であることは事実であったが、定期的にリーンガス条件下にするなどして酸素を供給しないと、NOx吸蔵触媒が被毒したSOxを脱離させられないことが判明した。
【0008】
即ち、前述した特許文献1のものは、空燃比のリッチ−リーンの切替をNOx吸蔵触媒(排気ガス)の昇温手段として行っているに過ぎず、昇温後はリッチガス条件下のみでSパージを行うので、短時間で効率よくSパージを実施できず、NOxの浄化性能の回復が不十分であると共に燃費が悪化するという問題点があった。
【0009】
そこで、本発明の目的は、短時間でかつ低温状態から効率よくSパージを行えて、NOxの浄化性能の回復を十分に図ることができると共に燃費悪化を抑制することができる内燃機関の排気浄化装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するための、本発明の請求項1に係る内燃機関の排気浄化装置は、排気通路に、酸素濃度が高いリーンガス状態で排気ガス中のNOxを吸収する一方酸素濃度が低く還元剤濃度が高いリッチガス状態によりこのNOxを放出・還元するNOx吸蔵触媒を介装した内燃機関の排気浄化装置において、前記NOx吸蔵触媒が被毒したSOxを脱離するSパージの開始時期から終了時期に亙って前記リッチガス状態とリーンガス状態を交互に切り替えるSパージ制御手段を設けたことを特徴とする。
【0011】
これにより、短時間でかつ低温状態から効率よくSパージを行える。
【0012】
本発明の請求項2に係る内燃機関の排気浄化装置は、前記Sパージ制御手段は、少なくとも排気ガスが所定温度以上に昇温されてから前記リッチガス状態とリーンガス状態を交互に切り替えることを特徴とする。
【0013】
これにより、好条件下で効率よくSパージを行える。
【0014】
【発明の実施の形態】
以下、本発明に係る内燃機関の排気浄化装置を実施例により図面を用いて詳細に説明する。
【0015】
[実施例]
図1は本発明の内燃機関の排気浄化装置を圧縮着火式内燃機関(ディーゼルエンジン)に適用した概略構成図、図2は同じくSパージ制御のフローチャート、図3はSO−TPD試験における脱離ガスコンディションを示す表、図4はSO−TPD試験の結果を示すグラフ、図5はSO−TPD試験後の触媒中のS残留量を示すグラフである。
【0016】
図1に示すように、機関本体1の各気筒には、吸気管2及び吸気マニホールド3を介して図示しないエアクリーナからの吸入空気が供給されると共にコモンレール4及び燃料噴射弁5を介して図示しない燃料ポンプからの燃料が供給される。前記燃料噴射弁5はその噴射量及び噴射時期が後述する電子制御ユニット(ECU)30により制御される電子制御式のもので、図面上の配線は煩雑化を避けるため省略する。一方、機関本体1の各気筒から排出される排気ガスは、排気通路としての排気マニホールド6及び排気管7を介して大気に放出される。
【0017】
前記吸気管2と排気管7との間にはターボチャージャ8が設けられ、排気ガスで回転されるタービンと一体回転するコンプレッサにより吸入空気が加圧されて機関本体1の各気筒に供給されるようになっている。この際、吸気管2に介装したインタークーラ9で前記加圧空気が冷却されて機関本体1の各気筒への充填効率が高められるようにもなっている。
【0018】
前記吸気管2には、ターボチャージャ8の上流に位置して吸入空気量を検出するためのエアーフローセンサ10が設けられると共に、インタークーラ9の下流に位置して吸気絞り弁11が設けられる。エアーフローセンサ10の出力信号は前記ECU30に入力されると共に、吸気絞り弁11は図示しないアクチュエータを介して前記ECU30により開閉制御される。
【0019】
また、前記吸気マニホールド3と排気マニホールド6とはEGR(排気還流)通路12で結ばれ、前記ECU30によりアクチュエータ13を介して開閉制御されるEGR弁14により、機関運転状態に応じて所定時期に所定量のEGRを行いNOxの発生を可及的に抑制している。EGR通路12にはEGRガスを冷却するEGRクーラ15が介装されている。
【0020】
そして、前記排気管7にNOx吸蔵触媒16が介装される。このNOx吸蔵触媒16は、酸素濃度が高いリーンガス状態で排気ガス中のNOxを吸収する一方酸素濃度が低くHCやCO等の還元剤濃度が高いリッチガス状態によりこのNOxを放出・還元する特性を有する。
【0021】
前記NOx吸蔵触媒16の直前、直後の排気管7には排気ガスの温度を検出するための温度センサ(触媒前後温度センサ)17a,17bが設けられると共に、NOx吸蔵触媒16の直後の排気管7には排気ガス中の酸素濃度を検出するための酸素センサ(触媒出口酸素センサ)18が設けられ、これらセンサ17a,17b,18の出力信号はECU30に入力されている。
【0022】
また、排気管7には、ターボチャージャ8の下流に位置して排気絞り弁19と排気ガス中の酸素濃度を検出するための酸素センサ(機関出口酸素センサ)20が下流側に向かって順に設けられ、前記排気絞り弁19は図示しないアクチュエータを介してECU30により開閉制御されると共に前記酸素センサ20の出力信号はECU30に入力されている。
【0023】
また、前記NOx吸蔵触媒16の上流でかつ酸素センサ20の下流に位置した排気管7には、ECU30によりその噴射量及び噴射時期が制御される燃料噴射弁21が設けられる。
【0024】
前記ECU30は、マイクロコンピュータ(CPU)、メモリ及び入出力信号処理回路としてのインタフェイスとで構成される。ECU30の入力側には、上述のエアーフローセンサ10、温度センサ17a,17b、酸素センサ18,20が接続されると共に、図示しない機関回転数を検出するための回転センサや車両の速度を検出するための車速センサ並びにアクセルペダルの開度を検出するためのアクセル開度センサ等がそれぞれ接続されており、これら各センサ等からの機関運転情報が入力される。一方、ECU30の出力側には、上述の燃料噴射弁5,21、吸気絞り弁11、EGR弁14、排気絞り弁19等が接続されている。
【0025】
そして、ECU30は、上述した各センサ等からの機関運転情報に基づいて燃料噴射弁5の噴射量及び噴射時期を制御すると共に、EGR弁14を機関運転状態に応じて開閉制御してPMやNOxの発生を可及的に抑制している。
【0026】
また、ECU30は、筒内燃焼だけで排気ガスのリッチ化を行うと、特に高負荷域はスモークの発生やトルク変動などの多くの課題があるので、燃料噴射弁21を開閉制御して当該燃料噴射弁21より排気管7に燃料(軽油)を噴射(添加)することで、排気ガスのリッチ化を行いNOx吸蔵触媒16によるNOxの浄化を図っている。
【0027】
また、ECU30は、前記NOx吸蔵触媒16が被毒したSOxを脱離するために、その被毒量(以下、S蓄積量という)が所定の値に達したら、前記燃料噴射弁21の開閉制御により、リッチガス状態とリーンガス状態を交互に切り替えることでSパージ制御を行うようになっている(Sパージ制御手段)。
【0028】
前記Sパージ制御を図2のフローチャートにより詳細に説明する。
先ず、ステップP1で機関本体1の燃料消費量の積算値から算出したS蓄積量がSパージを開始する所定量に達したか否かを判断し、可であれば、ステップP2で前記S蓄積量に応じてSパージ目標量を設定する。一方、否であれば、ステップP3で燃料消費量の積算値からのS蓄積量の算出を続行する。
【0029】
前記ステップP2の後は、ステップP4で機関本体1の運転状態(トルク、回転、車速、アクセル開度、排気温度(触媒前後温度センサ17a,17bにより検出)、λ(空気過剰率で、機関出口酸素センサ20により検出)等)が排気温度(NOx吸蔵触媒16の温度)を上げられる高負荷域等のSパージ可能な運転状態か否かを判断し、可であれば、ステップP5で排気温度(NOx吸蔵触媒16の温度)とλとから決まる添加量マップに基づいて排気管7への目標燃料(軽油)添加量を算出する。一方、否であれば、Sパージ可能な運転状態になるまで待つ。
【0030】
前記ステップP5の後は、ステップP6で燃料噴射弁21より燃料噴射(軽油添加)を開始して酸素濃度が低く還元剤濃度が高いリッチガス状態に移行し、次いで、ステップP7で触媒出口酸素センサ18からの信号により排気ガスがリッチ状態(リッチガス状態)か否かを判断する。
【0031】
前記ステップP7で可であれば、ステップP8で、機関本体1の運転状態(トルク、回転、車速、アクセル開度)により、Sパージ運転の継続が可能か否かを判断する。前記ステップP7で否であれば、ステップP9で前記燃料噴射弁21からの燃料噴射量を補正(増量)する。
【0032】
前記ステップP8で可であれば、ステップP10でタイマーにより設定されたリッチガス状態の終了時間(例えば30秒)がきたか否かを判断する。前記ステップP8で否であれば、ステップP11で燃料噴射弁21からの燃料噴射を停止し、ステップP4に戻りSパージ可能な運転状態になるまで待つ。
【0033】
前記ステップP10で可であれば、ステップP12で燃料噴射弁21からの燃料噴射を停止して酸素濃度が高いリーンガス状態に移行する。前記ステップP10で否であれば、ステップP8に戻るが、その間のSパージ量が保存される。このSパージ量は、触媒前後温度センサ17a,17bで検出した排気温度から推定(算出)されるNOx吸蔵触媒16の温度により決定されるSOx脱離量マップに基づいて算出される。この保存されたSパージ量は、本Sパージ制御が前記ステップP8で中断された後再び実施された時に差し引かれるようになっている。
【0034】
前記ステップP12の後は、ステップP13でタイマーにより設定されたリーンガス状態の終了時間(例えば30秒)がきたか否かを判断し、可であれば、ステップP14で前記設定したSパージ目標量が達成されたか否かを判断する。ステップP14で可であれば、本Sパージ制御は終了し、否であれば、ステップP4に戻り、繰り返しSパージ制御を実行する。
【0035】
このようにして本実施例では、Sパージ制御の開始時期から終了時期に亙ってリッチガス状態とリーンガス状態を交互に切り替えて、定期的に酸素を供給するようにしたので、短時間でかつ低温状態から効率よくSパージを行え、NOxの浄化性能の回復を十分に図ることができると共に燃費悪化を抑制することができる。また、例えば500℃位からSパージが可能となり、NOx吸蔵触媒16を必要以上に昇温しなくて済むので、NOx吸蔵触媒16の熱劣化も防止することができる。
【0036】
このようなSパージ制御の効果は、後述するSO−TPD(Temperature Programmed Desorption)装置を用いて行なったSOの脱離特性の調査で判明している。
【0037】
即ち、試験は、TPD装置内で触媒をS被毒させた後、図3に示す5種のガス条件で、800℃まで昇温し、SO脱離特性を測定する手順で実施した。図4に結果を示す。図中に温度の上昇パターンを示すが、触媒の熱劣化を考慮し、600℃での脱離特性を重点的に調査する目的で、一定時間ホールドした。この結果から明らかなように、条件▲1▼のCOリッチのみで昇温しただけでは、SOの脱離はほとんど認められず、またSOの脱離に効果的といわれているHを共存させた▲2▼のリッチ条件のみでも、SOの脱離は認められない。これに対して、条件▲3▼,▲4▼,▲5▼のリッチ(リッチガス状態)とリーン(リーンガス状態)を切り替えながら(Oスパイクと称す)昇温すると、SOが脱離することがわかった。
また、条件▲3▼のCOのみと、条件▲4▼のHのみは、SO脱離に差はなく、条件▲5▼のCOとHの共存によりSOの脱離が低温から進行することも明らかになった。
【0038】
次に、SO−TPD試験後のS含有量を調査した。その結果を図5に示す。各触媒のS含有量と、図4のTPDの結果には良い相関が認められ、SOが多く脱離している触媒(▲3▼,▲4▼,▲5▼)ほど、残留S分が少なくなっている。
【0039】
尚、上記実施例では、S蓄積量が所定量に達したSパージ制御の開始時期から終了時期に亙ってリッチガス状態とリーンガス状態を交互に切り替えるようにしたが、少なくとも排気ガス(NOx吸蔵触媒16)が所定温度(例えば500℃)以上に昇温されてからリッチガス状態とリーンガス状態を交互に切り替えるようにしても良い。これによれば、好条件下で効率よくSパージを行え、燃費悪化をより一層抑制することができる。
【0040】
また、本発明は上記実施例に限定されず、本発明の要旨を逸脱しない範囲で、各種変更が可能であることはいうまでもない。例えば、上記実施例においては、排気通路への燃料噴射により排気ガスのリッチ化を行なったが、機関本体の燃焼制御によるリッチ化であっても良い。尚、本発明の内燃機関の排気浄化装置を火花点火式内燃機関(ガソリンエンジン)にも適用することができる。この場合、排気ガスのリッチ化は筒内燃焼で行うことが可能である。
【0041】
【発明の効果】
以上説明したように請求項1の発明によれば、排気通路にNOx吸蔵触媒を介装した内燃機関の排気浄化装置において、前記NOx吸蔵触媒が被毒したSOxを脱離するSパージの開始時期から終了時期に亙ってリッチガス状態とリーンガス状態を交互に切り替えるSパージ制御手段を設けたので、短時間でかつ低温状態から効率よくSパージを行え、NOxの浄化性能の回復を十分に図ることができると共に燃費悪化を抑制することができる。また、NOx吸蔵触媒の熱劣化も防止することができる。
【0042】
請求項2の発明によれば、前記Sパージ制御手段は、少なくとも排気ガスが所定温度以上に昇温されてからリッチガス状態とリーンガス状態を交互に切り替えるので、好条件下で効率よくSパージを行え、燃費悪化をより一層抑制することができる。
【図面の簡単な説明】
【図1】本発明の内燃機関の排気浄化装置を圧縮着火式内燃機関(ディーゼルエンジン)に適用した概略構成図である。
【図2】同じくSパージ制御のフローチャートである。
【図3】SO−TPD試験における脱離ガスコンディションを示す表である。
【図4】SO−TPD試験の結果を示すグラフである。
【図5】SO−TPD試験後の触媒中のS残留量を示すグラフである。
【符号の説明】
1 機関本体、2 吸気管、3 吸気マニホールド、4 コモンレール、5 燃料噴射弁、6 排気マニホールド、7 排気管、8 ターボチャージャ、9 インタークーラ、10 エアーフローセンサ、11 吸気絞り弁、12 EGR通路、13 アクチュエータ、14 EGR弁、15 EGRクーラ、16 NOx吸蔵触媒、17a,17b 温度センサ、18 酸素センサ(触媒出口酸素センサ)、19 排気絞り弁、20 酸素センサ(機関出口酸素センサ)、21燃料噴射弁、30 電子制御ユニット(ECU)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust purification device for an internal combustion engine in which a NOx storage catalyst is interposed in an exhaust passage.
[0002]
[Prior art]
2. Description of the Related Art In recent years, lean-burn internal combustion engines in which the internal combustion engine is operated at a lean air-fuel ratio to improve fuel efficiency and the like have been put to practical use. This lean-burn internal combustion engine has a problem in that when operated at a lean air-fuel ratio, the three-way catalyst cannot sufficiently purify nitrogen oxides (NOx) in exhaust gas due to its purification characteristics. A NOx storage (type) catalyst that stores NOx in exhaust gas therein and releases and reduces NOx stored during operation at a stoichiometric or rich air-fuel ratio is employed.
[0003]
The NOx storage catalyst, NOx in exhaust gas in an excess oxygen state of the internal combustion engine (lean state) occluded as nitrate (X-NO 3), occluded NOx with a reducing agent carbon monoxide (CO), etc. This is a catalyst having the property of releasing in an excess state (rich gas state) and reducing it to nitrogen (N 2 ) (carbonate X-CO 3 is generated at the same time). By the way, the fuel contains a sulfur (S) component, and the S component reacts with oxygen in the lean gas state to form a sulfur oxide (SOx), and this SOx is stored as a sulfate in the form of NOx as well as NOx. Occluded by the catalyst.
[0004]
When the sulfur component is occluded in the NOx storage catalyst in this manner, the NOx is not stored, so that the performance of the NOx storage catalyst is reduced. When the sulfur component ratio is increased, the NOx storage catalyst does not function as a NOx storage catalyst. Therefore, in order to maintain the performance of the NOx storage catalyst, it is necessary to periodically release (S purge) SOx (sulfur component) that has been stored (poisoned).
[0005]
It is said that the S purge is established under a high temperature rich gas condition. Therefore, in Patent Literature 1, at the time of the S purge control, the gas is first switched to the rich gas condition and then switched to the lean gas condition to reduce oxygen in the catalyst casing in which a reducing agent such as hydrocarbon (HC) or CO is suspended and stays. A technique has been disclosed in which the NOx storage catalyst is efficiently heated by supplying and reacting them in the vicinity of the catalyst, and then the NOx storage catalyst is desorbed by the NOx storage catalyst under rich gas conditions. I have.
[0006]
[Patent Document 1]
JP 2000-227022 A
[Problems to be solved by the invention]
However, as a result of various tests performed by the present inventors on the S purge, it was found that high-temperature rich gas conditions were necessary for desorbing SOx. It was found that the NOx storage catalyst could not desorb the poisoned SOx unless oxygen was supplied, for example.
[0008]
That is, in the above-mentioned Patent Document 1, the air-fuel ratio is switched from rich to lean only as a means for raising the temperature of the NOx storage catalyst (exhaust gas). After the temperature is raised, the S purge is performed only under the rich gas condition. Therefore, there is a problem that the S purge cannot be efficiently performed in a short time, the recovery of the NOx purification performance is insufficient, and the fuel efficiency deteriorates.
[0009]
Therefore, an object of the present invention is to purify the exhaust gas of an internal combustion engine in which the S purge can be efficiently performed from a low temperature state in a short time and the NOx purification performance can be sufficiently recovered and the fuel consumption can be prevented from deteriorating. It is to provide a device.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an exhaust gas purifying apparatus for an internal combustion engine according to claim 1 of the present invention absorbs NOx in exhaust gas in a lean gas state in which oxygen concentration is high in an exhaust passage while reducing oxygen concentration in the exhaust gas. In the exhaust gas purifying apparatus for an internal combustion engine provided with a NOx storage catalyst that releases and reduces NOx in a rich gas state having a high concentration, from the start time to the end time of S purge in which the NOx storage catalyst desorbs poisoned SOx. S purge control means for alternately switching between the rich gas state and the lean gas state is provided.
[0011]
Thereby, the S purge can be efficiently performed in a short time and from a low temperature state.
[0012]
The exhaust gas purifying apparatus for an internal combustion engine according to claim 2 of the present invention is characterized in that the S purge control means alternately switches between the rich gas state and the lean gas state after at least the exhaust gas has been heated to a predetermined temperature or higher. I do.
[0013]
Thus, the S purge can be efficiently performed under favorable conditions.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an exhaust gas purifying apparatus for an internal combustion engine according to the present invention will be described in detail with reference to the drawings by using embodiments.
[0015]
[Example]
Figure 1 is applied schematic diagram to a compression ignition type internal combustion engine the exhaust purification system of an internal combustion engine of the present invention (diesel engine), the flow chart of FIG. 2 also S purge control, FIG. 3 is desorbed in SO 2 -TPD test FIG. 4 is a table showing the gas condition, FIG. 4 is a graph showing the results of the SO 2 -TPD test, and FIG. 5 is a graph showing the residual amount of S in the catalyst after the SO 2 -TPD test.
[0016]
As shown in FIG. 1, each cylinder of the engine body 1 is supplied with intake air from an air cleaner (not shown) via an intake pipe 2 and an intake manifold 3, and is not shown via a common rail 4 and a fuel injection valve 5. Fuel is supplied from a fuel pump. The fuel injection valve 5 is of an electronic control type whose injection amount and injection timing are controlled by an electronic control unit (ECU) 30, which will be described later. Wiring in the drawing is omitted to avoid complication. On the other hand, the exhaust gas discharged from each cylinder of the engine body 1 is discharged to the atmosphere via an exhaust manifold 6 as an exhaust passage and an exhaust pipe 7.
[0017]
A turbocharger 8 is provided between the intake pipe 2 and the exhaust pipe 7, and the intake air is pressurized by a compressor that rotates integrally with a turbine rotated by the exhaust gas and supplied to each cylinder of the engine body 1. It has become. At this time, the pressurized air is cooled by the intercooler 9 interposed in the intake pipe 2, so that the efficiency of charging each cylinder of the engine body 1 is increased.
[0018]
The intake pipe 2 is provided with an air flow sensor 10 located upstream of the turbocharger 8 for detecting the amount of intake air, and an intake throttle valve 11 located downstream of the intercooler 9. The output signal of the airflow sensor 10 is input to the ECU 30, and the opening and closing of the intake throttle valve 11 is controlled by the ECU 30 via an actuator (not shown).
[0019]
The intake manifold 3 and the exhaust manifold 6 are connected by an EGR (exhaust gas recirculation) passage 12, and are controlled at predetermined times by an EGR valve 14 controlled to be opened and closed by an actuator 13 by the ECU 30 according to an engine operating state. A fixed amount of EGR is performed to suppress the generation of NOx as much as possible. The EGR passage 12 is provided with an EGR cooler 15 for cooling the EGR gas.
[0020]
Then, a NOx storage catalyst 16 is interposed in the exhaust pipe 7. The NOx storage catalyst 16 has a characteristic of absorbing NOx in exhaust gas in a lean gas state having a high oxygen concentration, and releasing and reducing this NOx in a rich gas state having a low oxygen concentration and a high concentration of a reducing agent such as HC or CO. .
[0021]
In the exhaust pipe 7 immediately before and immediately after the NOx storage catalyst 16, temperature sensors (catalyst front and rear temperature sensors) 17a and 17b for detecting the temperature of the exhaust gas are provided, and the exhaust pipe 7 immediately after the NOx storage catalyst 16 is provided. Is provided with an oxygen sensor (catalyst outlet oxygen sensor) 18 for detecting the oxygen concentration in the exhaust gas, and the output signals of these sensors 17a, 17b, 18 are input to the ECU 30.
[0022]
The exhaust pipe 7 is provided with an exhaust throttle valve 19 and an oxygen sensor (engine outlet oxygen sensor) 20 for detecting the oxygen concentration in the exhaust gas which are located downstream of the turbocharger 8 in order toward the downstream side. The exhaust throttle valve 19 is controlled to open and close by an ECU 30 via an actuator (not shown), and an output signal of the oxygen sensor 20 is input to the ECU 30.
[0023]
Further, a fuel injection valve 21 whose injection amount and injection timing are controlled by the ECU 30 is provided in the exhaust pipe 7 located upstream of the NOx storage catalyst 16 and downstream of the oxygen sensor 20.
[0024]
The ECU 30 includes a microcomputer (CPU), a memory, and an interface as an input / output signal processing circuit. The input side of the ECU 30 is connected to the air flow sensor 10, the temperature sensors 17a and 17b, and the oxygen sensors 18 and 20, and detects a rotation sensor (not shown) for detecting an engine speed and a vehicle speed. A vehicle speed sensor, an accelerator opening sensor for detecting an accelerator pedal opening, and the like are connected to each other, and engine operation information from these sensors and the like is input. On the other hand, the output side of the ECU 30 is connected to the fuel injection valves 5 and 21, the intake throttle valve 11, the EGR valve 14, the exhaust throttle valve 19, and the like.
[0025]
The ECU 30 controls the injection amount and the injection timing of the fuel injection valve 5 based on the engine operation information from the above-described sensors and the like, and controls the opening and closing of the EGR valve 14 according to the engine operation state to control the PM and NOx. Is suppressed as much as possible.
[0026]
Further, when the exhaust gas is enriched only by in-cylinder combustion, the ECU 30 controls the opening and closing of the fuel injection valve 21 by controlling the opening and closing of the fuel injection valve 21 because there are many problems such as generation of smoke and torque fluctuation particularly in a high load region. By injecting (adding) fuel (light oil) from the injection valve 21 to the exhaust pipe 7, the exhaust gas is enriched, and the NOx storage catalyst 16 purifies NOx.
[0027]
The ECU 30 controls the opening and closing of the fuel injection valve 21 when the poisoning amount (hereinafter referred to as S accumulation amount) reaches a predetermined value in order to desorb the SOx poisoned by the NOx storage catalyst 16. Thus, the S purge control is performed by alternately switching between the rich gas state and the lean gas state (S purge control means).
[0028]
The S purge control will be described in detail with reference to the flowchart of FIG.
First, in step P1, it is determined whether or not the S accumulation amount calculated from the integrated value of the fuel consumption amount of the engine body 1 has reached a predetermined amount for starting the S purge. The S purge target amount is set according to the amount. On the other hand, if NO, the calculation of the S accumulation amount from the integrated value of the fuel consumption amount is continued in Step P3.
[0029]
After step P2, at step P4, the operating state of the engine body 1 (torque, rotation, vehicle speed, accelerator opening, exhaust temperature (detected by the catalyst front-rear temperature sensors 17a, 17b), λ (excess air ratio, engine outlet It is determined whether or not the operating temperature is detected by the oxygen sensor 20) or the like, so that the exhaust gas temperature (the temperature of the NOx storage catalyst 16) can be increased in a high load region or the like where S purging is possible. The target fuel (light oil) addition amount to the exhaust pipe 7 is calculated based on the addition amount map determined by (the temperature of the NOx storage catalyst 16) and λ. On the other hand, if the answer is NO, the process waits until the operation state in which S purge can be performed.
[0030]
After step P5, fuel injection (light oil addition) is started from the fuel injection valve 21 in step P6 to shift to a rich gas state in which the oxygen concentration is low and the reducing agent concentration is high, and then in step P7, the catalyst outlet oxygen sensor 18 It is determined whether or not the exhaust gas is in a rich state (rich gas state) based on the signal from.
[0031]
If it is possible in step P7, it is determined in step P8 whether the S purge operation can be continued based on the operating state (torque, rotation, vehicle speed, accelerator opening) of the engine body 1. If NO in step P7, the amount of fuel injection from the fuel injection valve 21 is corrected (increased) in step P9.
[0032]
If the answer is yes in step P8, it is determined whether or not the end time (for example, 30 seconds) of the rich gas state set by the timer in step P10 has come. If NO in step P8, the fuel injection from the fuel injection valve 21 is stopped in step P11, and the process returns to step P4 and waits until the operating state in which the S purge can be performed.
[0033]
If the answer is yes in step P10, the fuel injection from the fuel injection valve 21 is stopped in step P12 to shift to a lean gas state in which the oxygen concentration is high. If NO in step P10, the process returns to step P8, but the S purge amount during that time is stored. This S purge amount is calculated based on a SOx desorption amount map determined by the temperature of the NOx storage catalyst 16 estimated (calculated) from the exhaust gas temperature detected by the before and after catalyst temperature sensors 17a and 17b. The stored S purge amount is deducted when the S purge control is executed again after the S purge control is interrupted in the step P8.
[0034]
After the step P12, it is determined whether or not the end time (for example, 30 seconds) of the lean gas state set by the timer has come in a step P13. If it is possible, the set S purge target amount is set in a step P14. Determine if it has been achieved. If the answer is YES in Step P14, the present S purge control ends. If the answer is NO, the process returns to Step P4 to repeatedly execute the S purge control.
[0035]
As described above, in the present embodiment, the oxygen is supplied periodically by alternately switching the rich gas state and the lean gas state from the start time to the end time of the S purge control. The S purge can be performed efficiently from the state, the NOx purification performance can be sufficiently recovered, and the deterioration of fuel efficiency can be suppressed. Further, for example, S purge can be performed from about 500 ° C., and the temperature of the NOx storage catalyst 16 does not need to be raised more than necessary, so that the thermal deterioration of the NOx storage catalyst 16 can be prevented.
[0036]
The effect of such S purge control has been clarified in a study of the desorption characteristics of SO 2 performed using a SO 2 -TPD (Temperature Programmed Desorption) apparatus described later.
[0037]
That is, the test was performed in such a manner that after poisoning the catalyst in the TPD device, the temperature was increased to 800 ° C. under the five kinds of gas conditions shown in FIG. 3 and the SO 2 desorption characteristics were measured. FIG. 4 shows the results. The temperature rise pattern is shown in the figure, and the temperature was held for a certain period of time in order to focus on the desorption characteristics at 600 ° C. in consideration of the thermal degradation of the catalyst. As is clear from these results, desorption of SO 2 is scarcely observed only by raising the temperature with only the CO-rich condition (1), and H 2 , which is said to be effective for desorption of SO 2 , is obtained. Desorption of SO 2 is not recognized only under the coexisting rich condition ( 2 ). On the other hand, if the temperature is raised while switching between rich (rich gas state) and lean (lean gas state) under conditions (3), (4), and (5) (referred to as O 2 spike), SO 2 is desorbed. I understood.
In addition, there is no difference in SO 2 desorption between only CO of the condition (3) and H 2 of the condition (4), and the desorption of SO 2 from low temperature due to the coexistence of CO and H 2 under the condition (5). It was also clear that it was going on.
[0038]
Next, the S content after the SO 2 -TPD test was investigated. The result is shown in FIG. And S content of each catalyst, a good correlation is observed in the results of the TPD in FIG. 4, the catalyst is SO 2 are most desorbed (▲ 3 ▼, ▲ 4 ▼ , ▲ 5 ▼) as the residual S content Is running low.
[0039]
In the above-described embodiment, the rich gas state and the lean gas state are alternately switched from the start time to the end time of the S purge control in which the S accumulation amount has reached the predetermined amount. 16) may be alternately switched between the rich gas state and the lean gas state after the temperature is raised to a predetermined temperature (for example, 500 ° C.) or higher. According to this, it is possible to efficiently perform the S purge under favorable conditions, and it is possible to further suppress the deterioration in fuel efficiency.
[0040]
Further, it is needless to say that the present invention is not limited to the above embodiments, and various changes can be made without departing from the spirit of the present invention. For example, in the above embodiment, the exhaust gas is enriched by fuel injection into the exhaust passage, but may be enriched by combustion control of the engine body. Note that the exhaust gas purification apparatus for an internal combustion engine of the present invention can also be applied to a spark ignition type internal combustion engine (gasoline engine). In this case, the exhaust gas can be enriched by in-cylinder combustion.
[0041]
【The invention's effect】
As described above, according to the first aspect of the present invention, in the exhaust gas purification apparatus for an internal combustion engine in which the NOx storage catalyst is interposed in the exhaust passage, the start timing of the S purge for releasing the SOx poisoned by the NOx storage catalyst S purge control means for alternately switching between the rich gas state and the lean gas state from the end to the end time is provided, so that the S purge can be efficiently performed from a low temperature state in a short time and the NOx purification performance can be sufficiently recovered. And deterioration of fuel economy can be suppressed. Further, thermal deterioration of the NOx storage catalyst can also be prevented.
[0042]
According to the second aspect of the present invention, since the S purge control unit alternately switches between the rich gas state and the lean gas state after at least the exhaust gas has been heated to a predetermined temperature or more, the S purge can be efficiently performed under favorable conditions. In addition, deterioration of fuel economy can be further suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram in which an exhaust gas purification device for an internal combustion engine of the present invention is applied to a compression ignition type internal combustion engine (diesel engine).
FIG. 2 is a flowchart of S purge control.
FIG. 3 is a table showing desorbed gas conditions in an SO 2 -TPD test.
FIG. 4 is a graph showing the results of an SO 2 -TPD test.
FIG. 5 is a graph showing the residual amount of S in the catalyst after the SO 2 -TPD test.
[Explanation of symbols]
1 engine body, 2 intake pipes, 3 intake manifolds, 4 common rails, 5 fuel injection valves, 6 exhaust manifolds, 7 exhaust pipes, 8 turbochargers, 9 intercoolers, 10 air flow sensors, 11 intake throttle valves, 12 EGR passages, Reference Signs List 13 actuator, 14 EGR valve, 15 EGR cooler, 16 NOx storage catalyst, 17a, 17b temperature sensor, 18 oxygen sensor (catalyst outlet oxygen sensor), 19 exhaust throttle valve, 20 oxygen sensor (engine outlet oxygen sensor), 21 fuel injection Valve, 30 Electronic control unit (ECU)

Claims (2)

排気通路に、酸素濃度が高いリーンガス状態で排気ガス中のNOxを吸収する一方酸素濃度が低く還元剤濃度が高いリッチガス状態によりこのNOxを放出・還元するNOx吸蔵触媒を介装した内燃機関の排気浄化装置において、前記NOx吸蔵触媒が被毒したSOxを脱離するSパージの開始時期から終了時期に亙って前記リッチガス状態とリーンガス状態を交互に切り替えるSパージ制御手段を設けたことを特徴とする内燃機関の排気浄化装置。The exhaust gas of the internal combustion engine is provided with a NOx storage catalyst in the exhaust passage, which absorbs NOx in the exhaust gas in a lean gas state having a high oxygen concentration while releasing and reducing this NOx in a rich gas state having a low oxygen concentration and a high reducing agent concentration. The purifying apparatus further comprises an S purge control unit that alternately switches the rich gas state and the lean gas state from a start time to an end time of the S purge for desorbing the SOx poisoned by the NOx storage catalyst. Exhaust purification device for an internal combustion engine. 前記Sパージ制御手段は、少なくとも排気ガスが所定温度以上に昇温されてから前記リッチガス状態とリーンガス状態を交互に切り替えることを特徴とする請求項1記載の内燃機関の排気浄化装置。2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the S purge control unit alternately switches between the rich gas state and the lean gas state after at least the temperature of the exhaust gas is raised to a predetermined temperature or higher.
JP2003143206A 2003-05-21 2003-05-21 Exhaust emission control device for internal combustion engine Pending JP2004346793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143206A JP2004346793A (en) 2003-05-21 2003-05-21 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143206A JP2004346793A (en) 2003-05-21 2003-05-21 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004346793A true JP2004346793A (en) 2004-12-09

Family

ID=33531056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143206A Pending JP2004346793A (en) 2003-05-21 2003-05-21 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004346793A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190461A (en) * 2007-02-06 2008-08-21 Mitsubishi Motors Corp Exhaust emission control device and desulfurization method of exhaust emission control device
JP2009139288A (en) * 2007-12-07 2009-06-25 Mitsubishi Motors Corp Exhaust gas detection system of exhaust air cleaning means
US20110120098A1 (en) * 2007-09-04 2011-05-26 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190461A (en) * 2007-02-06 2008-08-21 Mitsubishi Motors Corp Exhaust emission control device and desulfurization method of exhaust emission control device
US20110120098A1 (en) * 2007-09-04 2011-05-26 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
US8511070B2 (en) * 2007-09-04 2013-08-20 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
JP2009139288A (en) * 2007-12-07 2009-06-25 Mitsubishi Motors Corp Exhaust gas detection system of exhaust air cleaning means

Similar Documents

Publication Publication Date Title
EP3103993B1 (en) Control device for internal combustion engine
US6502391B1 (en) Exhaust emission control device of internal combustion engine
JP3277881B2 (en) Exhaust gas purification device for internal combustion engine
JP2008248878A (en) Internal combustion engine and control device for internal combustion engine
JP2004197695A (en) Exhaust emission control device for internal combustion engine
JPH10317946A (en) Exhaust emission control device
JP4309908B2 (en) Exhaust gas purification device for internal combustion engine
JP2007239493A (en) Internal combustion engine with supercharger
JP2004324454A (en) Exhaust emission control device of internal combustion engine
JP2002188430A (en) Exhaust gas purifying device of internal combustion engine
JP3649073B2 (en) Exhaust gas purification device for internal combustion engine
JP4526831B2 (en) Exhaust gas purification device for internal combustion engine
JP2004346793A (en) Exhaust emission control device for internal combustion engine
JP2010112313A (en) Exhaust emission control device of internal combustion engine
JP2004245046A (en) Exhaust emission control device of internal combustion engine
JP2010229916A (en) Exhaust emission control device of internal combustion engine
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP3807209B2 (en) Operation control device for internal combustion engine
JP3496557B2 (en) Exhaust gas purification device for internal combustion engine
JP2006274985A (en) Exhaust gas aftertreatment device
JP2004346795A (en) Exhaust emission control device for internal combustion engine
JP7488744B2 (en) Engine Control Unit
JP4154589B2 (en) Combustion control device for internal combustion engine
JP3633290B2 (en) Exhaust gas purification device for internal combustion engine
JP5379733B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512