JP2008267088A - Tunnel ventilation control apparatus - Google Patents

Tunnel ventilation control apparatus Download PDF

Info

Publication number
JP2008267088A
JP2008267088A JP2007114974A JP2007114974A JP2008267088A JP 2008267088 A JP2008267088 A JP 2008267088A JP 2007114974 A JP2007114974 A JP 2007114974A JP 2007114974 A JP2007114974 A JP 2007114974A JP 2008267088 A JP2008267088 A JP 2008267088A
Authority
JP
Japan
Prior art keywords
tunnel
amount
leakage
air volume
harmful substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007114974A
Other languages
Japanese (ja)
Other versions
JP4743153B2 (en
Inventor
Takeshi Yoshida
武史 吉田
Yasuhiro Nakamura
康浩 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007114974A priority Critical patent/JP4743153B2/en
Publication of JP2008267088A publication Critical patent/JP2008267088A/en
Application granted granted Critical
Publication of JP4743153B2 publication Critical patent/JP4743153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ventilation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of the leaking-out amount of a harmful substance being excessive in the pit mouth of a branching part though there is the pit mouth of the branching part in a recent tunnel. <P>SOLUTION: The tunnel ventilation control apparatus includes a means for setting the control target value of the leaking-out amount of the harmful substance to the pit mouth of a tunnel main line and at least one pit mouth of the branching part from the main line, an air volume setting means for setting the air volume of ventilation equipment, a wind velocity estimation calculation means for estimating wind velocity in the main line and the branching part of the tunnel based on the air volume, a harmful substance generation amount calculation means for calculating the generation amount of the harmful substance in the main line and the branching part of the tunnel based on a traffic amount in the tunnel, a harmful substance incoming-and-outgoing calculation means for calculating the incoming-and-outgoing of the harmful substance in the tunnel and the leaking-out amount of the harmful substance from the pit mouth in the main line and the branching part of the tunnel based on the wind velocity and the generation amount of the harmful substance, and a selection means for selecting the air volume of the air volume setting means based on the estimation of the degree of adaptability of the control target value and the leaking-out amount calculated by the harmful substance incoming-and-outgoing calculation means. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はトンネルの換気制御装置に関する。   The present invention relates to a tunnel ventilation control device.

道路トンネルでは立坑あるいはダクト内の送排風機やジェットファン等の換気設備を必要に応じて運転制御することにより、車両が排出する有害物質の濃度を許容値以下に抑えている。   In road tunnels, the concentration of harmful substances emitted by vehicles is kept below an acceptable level by controlling the operation of ventilation equipment such as air blowers and jet fans in shafts or ducts as necessary.

道路トンネルでは、トンネルが建造される地理的な状況によって制御目的が変化する。山間部ではトンネル内の有害物質濃度及び換気設備使用電力量が主な制御目的となる一方、都市部における道路トンネルは上記制御目的に加え、周辺環境への配慮に至るまでトンネル換気制御装置が制御する要素は多様化している。特に周辺環境への配慮は近年重要視されており、本線部坑口から排出される有害物質の漏れ出し量を制限している。   In road tunnels, control objectives vary depending on the geographical situation in which the tunnel is built. In mountainous areas, the concentration of harmful substances in tunnels and the amount of power used by ventilation equipment are the main control objectives. On road tunnels in urban areas, in addition to the above control objectives, the tunnel ventilation control system controls until consideration is given to the surrounding environment. The elements to do are diversifying. In particular, consideration for the surrounding environment has been regarded as important in recent years, and the amount of leakage of harmful substances discharged from the main entrance is limited.

特開平4−209300号公報JP-A-4-209300

従来の道路トンネルは坑口(入口)から坑口(出口)までの間に分岐部や合流部を含まないトンネルが一般的で、本発明で対象とする一方通行トンネルでは坑口(出口)に排気口を設け、集中的に排気する方式で上記有害物質の漏れ出し量を制限してきた。   Conventional road tunnels are generally tunnels that do not include branching or merging sections between the entrance (inlet) and the entrance (exit). In the one-way tunnel that is the subject of the present invention, an exhaust outlet is provided at the entrance (exit). The amount of leakage of the harmful substances has been limited by providing and exhausting intensively.

近年のトンネルは複数の分岐・合流部が設置されており複数の坑口が存在する。しかし、分岐・合流部では換気設備が設置されていないこともあり、有害物質の漏れ出し量の制限がないため、分岐・合流部の坑口において有害物質の漏れ出し量が過剰化するという問題がある。   Recent tunnels have multiple branches and junctions, and there are multiple wellheads. However, ventilation equipment is not installed at the branching / merging part, and there is no limit on the amount of harmful substances leaking out. is there.

そこで本発明の目的は、上記従来技術の問題を解消し、全坑口の有害物質の漏れ出し量を抑制することにより、トンネル外の周辺環境を保全する道路トンネル換気制御装置を提供することである。   Accordingly, an object of the present invention is to provide a road tunnel ventilation control device that preserves the surrounding environment outside the tunnel by solving the above-described problems of the prior art and suppressing the leakage amount of harmful substances at all wellheads. .

上記目的を達成するために、トンネルの空気を換気する換気設備を制御するトンネル換気制御装置において、トンネルの本線の抗口と少なくとも1個の本線からの分岐部の抗口に対し、有害物質の漏れ出し量の制御目標値を設定する手段と、換気設備の風量を設定する風量設定手段と、風量に基づいて前記トンネルの本線と分岐部での風速を予測する風速予測演算手段と、トンネル内の交通量に基づいて前記トンネルの本線と分岐部での有害物質の発生量を演算する有害物質発生量演算手段と、風速と前記有害物質の発生量に基づいて、トンネル内の有害物質の収支及びトンネルの本線の抗口と分岐部の抗口からの有害物質の漏れ出し量を算出する有害物質収支演算手段と、制御目標値と有害物質収支演算手段で算出した漏れ出し量との適合度の評価に基づいて風量設定手段の風量を選択する選択手段とを備えたトンネル換気制御装置を提供する。   In order to achieve the above object, in a tunnel ventilation control device for controlling a ventilation facility for ventilating tunnel air, a harmful substance is prevented against a main entrance of a tunnel and an entrance of a branch from at least one main line. Means for setting a control target value of the leakage amount, air volume setting means for setting the air volume of the ventilation facility, wind speed prediction calculating means for predicting the wind speed at the main line and branch of the tunnel based on the air volume, Based on the traffic volume of the tunnel, the harmful substance generation amount calculating means for calculating the generation amount of the harmful substance on the main line and the branch of the tunnel, and the balance of the harmful substance in the tunnel based on the wind speed and the generation amount of the harmful substance And toxic substance balance calculation means to calculate the leakage amount of harmful substances from the main entrance and tunnel entrance of the tunnel, and the control target value and the leakage amount calculated by the toxic substance balance calculation means Providing a tunnel ventilation control apparatus and selecting means for selecting the air volume of the air volume setting means based on the evaluation.

本発明によれば、トンネル内に分岐部を有するトンネルの有害物質漏れ出し量を制限し、トンネル周辺環境をより改善できる効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, there exists an effect which restrict | limits the leakage amount of the harmful substance of the tunnel which has a branch part in a tunnel, and can improve a tunnel surrounding environment more.

従来の道路トンネルは坑口(入口)から坑口(出口)までの間に分岐部や合流部を含まないトンネルが一般的で、一方通行トンネルでは坑口(出口)に排気口を設け、集中的に排気する方式で上記有害物質の漏れ出し量を制限してきた。しかし、近年、都市部の交通渋滞を緩和し、都市機能を生かすためにトンネル内に複数の坑口(出口)を設置するトンネルは増加傾向にある。トンネルの全ての坑口に対し、有害物質の漏れ出し量を制限するため、換気設備を設置することはコスト面や安全面を考慮すると難しい問題となる。従って、換気設備が設置されていない坑口では有害物質の漏れ出し量は算定していない。そこで、全坑口の有害物質の漏れ出し量を抑制することにより、トンネル外の周辺環境を保全する道路トンネル換気制御装置を提供する。   Conventional road tunnels are generally tunnels that do not include branching or merging sections from the entrance (exit) to the entrance (exit). In one-way tunnels, exhaust is provided at the entrance (exit) to concentrate exhaust. In this way, the amount of leakage of harmful substances has been limited. However, in recent years, there has been an increase in the number of tunnels in which a plurality of wellheads (exit points) are installed in a tunnel in order to alleviate traffic congestion in urban areas and utilize urban functions. In order to limit the amount of toxic substances leaked to all tunnel entrances, it is difficult to install ventilation equipment in consideration of cost and safety. Therefore, the amount of leakage of harmful substances is not calculated at the wellhead where no ventilation equipment is installed. In view of this, a road tunnel ventilation control device is provided that protects the surrounding environment outside the tunnel by suppressing the leakage of harmful substances from all wellheads.

道路トンネル換気制御装置はトンネル本線坑口と少なくとも1個のオフランプにより構成され、少なくとも1個のジェットファン又は少なくとも1個の排風機を有する道路トンネル換気制御装置において、トンネルの全ての坑口に対し、演算上必要となる有害物質の漏れ出し制御目標値を設定する手段と、有害物質の漏れ出し量を制御目標値以下にするための換気設備の風量設定手段と、トンネルの分岐・合流部での有害物質の収支を簡易的に把握するための有害物質収支演算手段を備える。   The road tunnel ventilation control device is composed of a main tunnel wellhead and at least one off-ramp, and in the road tunnel ventilation control device having at least one jet fan or at least one exhaust fan, Means for setting the leakage control target value for toxic substances necessary for calculation, air volume setting means for ventilation equipment to keep the leakage amount of toxic substances below the control target value, and at the branching / merging section of the tunnel Hazardous substance balance calculation means for easily grasping the balance of harmful substances is provided.

また、前記有害物質の漏れ出し制御目標値は制御周期毎に基づいて設定しても良い。   Further, the target control value for leakage of harmful substances may be set based on each control cycle.

また、前記有害物質の漏れ出し量の評価は制御周期毎の演算結果の総和であっても良い。   Further, the evaluation of the leakage amount of the harmful substance may be a total sum of calculation results for each control cycle.

また、前記有害物質の漏れ出し制御目標値は制御周期毎の総和から制御周期毎に微小修正する手段を備えても良い。   The harmful substance leakage control target value may be provided with a means for finely correcting the control period from the sum of the control periods.

また、換気設備の風量設定手段はトンネル坑口からの有害物質の漏れ出し量のみでなく、煤煙濃度分布や換気設備の使用電力等の多目的な要素を総合的に評価し、換気設備の風量を設定する手段を備えても良い。   In addition, airflow setting means for ventilation equipment sets the airflow of ventilation equipment by comprehensively evaluating not only the amount of harmful substances leaking from the tunnel well opening but also multi-purpose factors such as smoke concentration distribution and power consumption of ventilation equipment. Means to do this may be provided.

また、制御目的の優先順位はユーザー側で簡易に設定することが可能な手段を備えても良い。   In addition, a priority order for control purposes may be provided so that the user can easily set the priority order.

また、前記有害物質収支演算手段は分岐部または合流部の予測風速分布および予測風量の割合から有害物質の収支演算を行う手段を備えても良い。   The harmful substance balance calculating means may include means for calculating the balance of harmful substances from the predicted wind speed distribution and the ratio of the predicted air volume at the branching part or the merging part.

有害物質は窒素酸化物の他、煤煙,一酸化炭素等があげられる。   Hazardous substances include nitrogen oxides, smoke and carbon monoxide.

トンネル本線部の坑口のみ有害物質の漏れ出し制御目標値を設定するのではなく、トンネルの全坑口に対し、漏れ出し制御目標設定手段を用いて漏れ出し制御目標値を設定する。そして、トンネル内に配された風向風速計およびトラフィックカウンタから一定周期後のトンネル全体の予測風速分布を算出する。また、1台の車両が排出する有害物質定数を用いてトンネル全体の有害物質総発生量を算出する。   Rather than setting the leak control target value for harmful substances only at the tunnel headline, the leak control target value is set for all tunnel tunnels using the leak control target setting means. Then, a predicted wind speed distribution of the entire tunnel after a certain period is calculated from an anemometer and a traffic counter arranged in the tunnel. In addition, the total amount of harmful substances generated in the entire tunnel is calculated using the harmful substance constant discharged by one vehicle.

予測風速結果と有害物質総発生量を用いて本線部・分岐部・合流部の有害物質総発生量の収支を演算する。得られた有害物質総発生量と各坑口での漏れ出し率から予測漏れ出し量を算出する。   Using the predicted wind speed results and the total amount of toxic substances generated, the balance of the total amount of toxic substances generated in the main line, bifurcation, and junction is calculated. The predicted amount of leakage is calculated from the total amount of harmful substances generated and the leakage rate at each wellhead.

予測漏れ出し量と制御目標値の一致具合から最も評価の高い換気設備の風量で運転を実施する。   Operate at the highest rated ventilation volume based on the degree of agreement between the predicted leakage and the control target value.

予測漏れ出し量は誤差を含んでいる可能性があるため、坑口付近に風向風速計が設置されている場合、前記の換気設備運転実施後、次回制御周期において実際の風速値を用いて漏れ出し量を算定し、予測値との誤差を次回以降の有害物質の漏れ出し制御目標値に反映する。   Since the predicted leak amount may include an error, if an anemometer is installed near the wellhead, the actual wind speed value will be leaked in the next control cycle after the ventilation facility is operated. Calculate the amount and reflect the error from the predicted value in the target value for the leakage control of hazardous substances from the next time.

上述の一連処理を24時間、全坑口に適用することで各坑口での漏れ出し量を最小限に抑制することが可能となる。   By applying the above-described series of processes to all wellheads for 24 hours, the amount of leakage at each wellhead can be minimized.

本発明によれば、トンネル内に分岐部を有するトンネルの有害物質漏れ出し量を制限し、トンネル周辺環境をより改善できる効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, there exists an effect which restrict | limits the leakage amount of the harmful substance of the tunnel which has a branch part in a tunnel, and can improve a tunnel surrounding environment more.

以下に図面を参照して、実施例について説明する。   Embodiments will be described below with reference to the drawings.

実施例のシステム構成図を図1に示す。対象となる道路トンネルは2箇所の分岐部と本線部から構成され、トンネル全体に風向風速計1、及びトラフィックカウンタ2が配されている。また換気設備には1つのジェットファン3及び1つの排風機4を備えている。トンネル換気制御装置5は、コンピュータであり、漏れ出し制御目標値設定手段6,換気設備風量設定手段7,有害物質収支演算手段8を備えている。   A system configuration diagram of the embodiment is shown in FIG. The target road tunnel is composed of two branch parts and a main line part, and an anemometer 1 and a traffic counter 2 are arranged throughout the tunnel. The ventilation facility includes one jet fan 3 and one exhaust fan 4. The tunnel ventilation control device 5 is a computer and includes a leakage control target value setting means 6, a ventilation facility air volume setting means 7, and a harmful substance balance calculation means 8.

道路トンネルの全ての坑口から有害物質漏れ出し量9を算出するには、1制御周期後のトンネル内予測風速分布及び交通データ(大型車台数・小型車台数・平均車速)を用いて有害物質総発生量と各坑口の漏れ出し率を算出する。図2に各坑口の漏れ出し量算出までのトンネル換気制御装置内部処理の構成図を示す。トンネル換気制御装置は、トンネルの本線の抗口と少なくとも1個の本線からの分岐部の抗口に対し、有害物質の漏れ出し量の制御目標値を設定する手段と、換気設備の風量を設定する風量設定手段と、風量に基づいて前記トンネルの本線と分岐部での風速を予測する風速予測演算手段と、トンネル内の交通量に基づいて前記トンネルの本線と分岐部での有害物質の発生量を演算する有害物質発生量演算手段と、風速と前記有害物質の発生量に基づいて、トンネル内の有害物質の収支及びトンネルの本線の抗口と分岐部の抗口からの有害物質の漏れ出し量を算出する有害物質収支演算手段と、制御目標値と有害物質収支演算手段で算出した漏れ出し量との適合度の評価に基づいて風量設定手段の風量を選択する選択手段とを備える。   To calculate the amount of toxic substance leakage 9 from all wellheads of road tunnels, the total toxic substances are generated using the predicted wind speed distribution and traffic data (number of large vehicles, number of small vehicles, average vehicle speed) in one tunnel after one control cycle. Calculate the volume and leak rate of each wellhead. FIG. 2 shows a configuration diagram of the internal processing of the tunnel ventilation control device up to the calculation of the leakage amount at each wellhead. The tunnel ventilation control device sets the control target value of the amount of leakage of harmful substances and the air volume of the ventilation equipment for the main entrance of the tunnel and the entrance of the branch from at least one main line. An air volume setting means for generating, a wind speed prediction calculating means for predicting a wind speed on the main line and the branch part of the tunnel based on the air volume, and generation of harmful substances on the main line and the branch part of the tunnel based on the traffic volume in the tunnel Hazardous substance generation amount calculation means to calculate the amount, leakage of harmful substances from the tunnel main line outlet and branch outlets based on the wind speed and the generation amount of the harmful substances A harmful substance balance calculating means for calculating the discharge amount; and a selecting means for selecting the air volume of the air volume setting means based on the evaluation of the degree of conformity between the control target value and the leakage amount calculated by the harmful substance balance calculating means.

トンネル坑口の漏れ出し制御目標値設定手段6はトンネル坑口からの有害物質の漏れ出し量を設定する手段である。図1に示すトンネルではトンネル本線坑口A,分岐部B,分岐部Cを設定する。これらの設定値は特開平4−209300号公報に記載されるような風速値を設定するのではなく、1日当りの有害物質の総漏れだし量を直接設定する。1日当りの有害物質の総漏れだし量は交通量や道路勾配等の諸条件を勘案し適切な値を設定する。そして、トンネル換気制御装置の制御周期に合わせ、制御周期当りの漏れ出し量を演算し、漏れ出し制御目標値を得る。この漏れ出し制御目標値を以下の文字で表す。   The tunnel well leakage control target value setting means 6 is a means for setting the amount of leakage of harmful substances from the tunnel well. In the tunnel shown in FIG. 1, a tunnel main pit A, a branch B, and a branch C are set. These set values do not set the wind speed value as described in JP-A-4-209300, but directly set the total leakage amount of harmful substances per day. The total amount of harmful substances leaked per day should be set to an appropriate value in consideration of various conditions such as traffic volume and road gradient. Then, the leak amount per control cycle is calculated in accordance with the control cycle of the tunnel ventilation control device, and a leak control target value is obtained. This leakage control target value is represented by the following characters.

Mo:有害物質の漏れ出し制御目標値
Ms:1日当りの有害物質の総漏れだし量(制限量)
T:トンネル換気制御装置の制御周期
S:トンネル換気制御装置の1日当りの制御回数
この際、漏れ出し制御目標値は次式で演算することができる。
Mo: Hazardous substance leakage control target value Ms: Total leakage of harmful substances per day (limit)
T: Control period of tunnel ventilation control device
S: Number of times the tunnel ventilation control device is controlled per day At this time, the leakage control target value can be calculated by the following equation.

Figure 2008267088
Figure 2008267088

Figure 2008267088
Figure 2008267088

上記の様に、有害物質の漏れ出し量の制御目標値は、トンネル換気制御装置の制御周期単位Tに基づいて設定することができる。   As described above, the control target value of the leakage amount of harmful substances can be set based on the control cycle unit T of the tunnel ventilation control device.

換気設備の風量設定手段7は坑口からの有害物質の漏れ出し量を抑制するように換気設備の風量を設定する手段である。有害物質の漏れ出し量はトンネル内の風速が密接に関連するため、換気設備の風量設定にはトンネル内の予測風速が必要となる。よってトンネル換気制御装置は予測のためのフィードフォワード機能を有する。   The air volume setting means 7 of the ventilation facility is a means for setting the air volume of the ventilation facility so as to suppress the leakage amount of harmful substances from the wellhead. Since the amount of leakage of harmful substances is closely related to the wind speed in the tunnel, the predicted wind speed in the tunnel is required to set the air volume of the ventilation equipment. Therefore, the tunnel ventilation control device has a feedforward function for prediction.

また坑口からの有害物質の漏れ出し量以外でも、煤煙濃度を許容値以下に抑えることや換気設備の使用電力量を最小限に抑えることなど複数の目的を適度に満足する必要がある。よってトンネル換気制御装置は換気設備の風量を設定するためのファジィ制御機能を有する。更に漏れ出し量のメンバシップ関数は坑口数分設定し、各坑口からの有害物質の漏れ出し量と漏れ出し制御目標値とのマッチング度合いを演算する。   In addition to the amount of harmful substances leaking from the wellhead, it is necessary to adequately satisfy multiple purposes such as keeping the smoke concentration below the allowable value and minimizing the power consumption of the ventilation equipment. Therefore, the tunnel ventilation control device has a fuzzy control function for setting the air volume of the ventilation facility. Further, the membership function of the leakage amount is set for the number of wellheads, and the degree of matching between the leakage amount of harmful substances from each wellhead and the leakage control target value is calculated.

演算結果からトンネル換気制御装置は各項目のマッチングの度合いを総合的に評価し、最良の風量で運転を実施する。   From the calculation results, the tunnel ventilation controller comprehensively evaluates the degree of matching of each item, and performs the operation with the best air volume.

換気設備風量設定手段7を実現するための演算手段について説明する。現状の換気設備風量からランダムに設定された換気風量が出力されたと仮定し、まずトンネル内の風速予測を行う。風速予測にはトンネル内に配されたトラフィックカウンタによりトンネル内全域の車両台数を算定する。車両のピストン効果や機械換気力による昇圧力とトンネル内の壁面摩擦等の抵抗から運動方程式を解き、トンネル内の予測風速分布を得ることができる。トラフィックカウンタを用いて風速予測する例は一例であり、風向風速計の風速データを用いることもでき、風量設定手段で設定した換気設備の風量に基づいてトンネルの本線と分岐部での風速を予測することもできる。   A calculation means for realizing the ventilation facility air volume setting means 7 will be described. Assuming that a randomly set ventilation air volume is output from the current ventilation equipment air volume, the wind speed in the tunnel is first predicted. For the wind speed prediction, the number of vehicles in the whole tunnel is calculated by the traffic counter arranged in the tunnel. The equation of motion can be solved from the boosting force due to the piston effect of the vehicle or mechanical ventilation force and the resistance such as wall friction in the tunnel to obtain the predicted wind speed distribution in the tunnel. An example of wind speed prediction using a traffic counter is an example. Wind speed data from an anemometer can also be used, and wind speed at the main line and branch of the tunnel is predicted based on the air volume of ventilation equipment set by the air volume setting means. You can also

前記、予測風速演算から図1のトンネルにおいて図3に示すトンネル内予測風速分布を得たとする。11から16はそれぞれ区間1から6のトンネル内予測風速である。有害物質の漏れ出し量を算定するため、まずトンネル全体から発生する有害物質発生量を計算する。本実施例のトンネルは本線部と2つの分岐部から構成されているため、まず本線部について説明する。   It is assumed that the predicted wind speed distribution in the tunnel shown in FIG. 3 is obtained in the tunnel of FIG. 1 from the predicted wind speed calculation. 11 to 16 are predicted wind speeds in the tunnels of sections 1 to 6, respectively. To calculate the amount of toxic substance leakage, first calculate the amount of toxic substance generated from the entire tunnel. Since the tunnel of this embodiment is composed of a main line part and two branch parts, the main line part will be described first.

図4に示すように分岐部Bの風速は本線部Aへ吹くため、この位置ではオフランプ部の有害物質は本線部Aに流入する。また分岐部Cの風速は坑口方向へ吹出しているため、本線部Aで発生した有害物質が分岐部Cに流出する。この際、分岐後の本線部Aと分岐部Cへの流出量の割合は風量割合にて算出する。このような有害物質収支演算手段8を用いて本線部Aの有害物質発生量は以下の文字で表される。   As shown in FIG. 4, since the wind speed of the branch part B blows to the main line part A, harmful substances in the off-ramp part flow into the main line part A at this position. Moreover, since the wind speed of the branch part C is blowing toward the wellhead, harmful substances generated in the main line part A flow out to the branch part C. At this time, the ratio of the outflow amount to the main line part A and the branch part C after branching is calculated by the air volume ratio. Using such a toxic substance balance calculating means 8, the amount of toxic substances generated in the main line A is expressed by the following characters.

(1)C2の算出(分岐部Cの風速が順風)
C1:区間1(分岐前)の有害物質発生量
C2:区間2(分岐後)の有害物質発生量
V1:区間1(分岐前)予測風速
V2:区間2(分岐後)予測風速
Ar1:本線部(分岐前)断面積
Ar2:本線部(分岐後)断面積
(1) Calculation of C2 (the wind speed of the branch part C is normal)
C1: Hazardous substance generation in section 1 (before branching)
C2: Hazardous substance generation in section 2 (after branching)
V1: Section 1 (before branch) predicted wind speed
V2: Section 2 (after branch) predicted wind speed
Ar1: Main line (before branching) cross-sectional area
Ar2: Main line (after branching) cross-sectional area

Figure 2008267088
Figure 2008267088

(2)C3の算出(分岐部Bの風速が逆風)
C2:区間2(分岐前)の有害物質発生量
C3:区間3(分岐後)の有害物質発生量
C5:区間5(分岐部B)の有害物質発生量
(2) Calculation of C3 (the wind speed at branch B is a reverse wind)
C2: Amount of hazardous substances generated in section 2 (before branching)
C3: Hazardous substance generation in section 3 (after branching)
C5: Hazardous substance generation in section 5 (branch B)

Figure 2008267088
Figure 2008267088

17から22は区間1から6の有害物質発生量である。   17 to 22 are the amount of harmful substances generated in sections 1 to 6.

坑口からの有害物質漏れ出し率は以下の式で表される公知の式等を用いてもよい。有害物質漏れ出し率は以下の文字で表される。   A known expression or the like represented by the following expression may be used as the harmful substance leakage rate from the wellhead. Hazardous material leakage rate is expressed by the following letters.

Eo:坑口漏れ出し率
Urf:坑口の風速
Lr:実トンネル延長
L:区間全長
Lo:トンネル付加長さ
ln;排気口の取付位置
D:軸方向拡散係数
Eo: Wellhead leakage rate
Urf: Wellhead wind speed
Lr: Actual tunnel extension L: Total section length
Lo: Tunnel additional length
ln: Exhaust port mounting position
D: Axial diffusion coefficient

Figure 2008267088
Figure 2008267088

上述のように有害物質総発生量と漏れ出し率を算出した後、両者を乗じて本線部坑口での漏れ出し量を得ることができる。   After calculating the total amount of harmful substances generated and the leakage rate as described above, the amount of leakage can be obtained by multiplying both.

また、漏れ出し率は上述した式を用いる他、経験則に基づく漏れ出し率を坑口毎に予め設定しておいて、予め設定した漏れ出し率と有害物質発生量を乗じて坑口での漏れ出し量を算出しても良い。   In addition to using the above formula for the leak rate, a leak rate based on empirical rules is preset for each wellhead, and the leak rate at the wellhead is multiplied by the preset leak rate and the amount of harmful substances generated. The amount may be calculated.

次に分岐部での有害物質の漏れ出し量は本線部と切り離して考え、分岐部の有害物質発生量を算出する。分岐部の風速が順風の場合、前記漏れ出し率を使用する。一方、逆流時は漏れ出し率を0と換算し、有害物質の漏れ出し量はないものとする。   Next, the amount of leakage of harmful substances at the branch is considered separately from the main line, and the amount of harmful substances generated at the branch is calculated. When the wind speed at the branch is normal, the leakage rate is used. On the other hand, at the time of backflow, the leakage rate is converted to 0, and there is no leakage of harmful substances.

有害物質収支演算手段により全坑口での漏れ出し量を算出可能となる。これらの予測手法は数理モデルによる擬似的なものであり、特に有害物質の漏れ出し量予測はトンネル内の風速分布の予測精度が重要となる。   The amount of leakage at all wellheads can be calculated by the toxic substance balance calculation means. These prediction methods are pseudo-models based on mathematical models. In particular, the prediction accuracy of the wind speed distribution in the tunnel is important for predicting the leakage of harmful substances.

そこで、次回制御周期においてトンネル内に配された風向風速計の風速値から再度、有害物質の漏れ出し量を計算する。モデル風速を用いて算出した漏れ出し量と実測風速を用いて算出した漏れ出し量の比較を行い、その誤差を次回以降の制御目標値に加算する。誤差補正後の有害物質漏れ出し制御目標値は以下の文字で表される。   Therefore, the amount of leakage of harmful substances is calculated again from the wind speed value of the anemometer arranged in the tunnel in the next control cycle. The leak amount calculated using the model wind speed is compared with the leak amount calculated using the measured wind speed, and the error is added to the control target value from the next time. The target value for hazardous substance leakage control after error correction is represented by the following characters.

S:トンネル換気制御装置の1日当りの制御回数
S′:トンネル換気制御装置の現在までの制御回数
Sn:トンネル換気制御装置の現在から1日終了までの残り制御回数
Ms:1日当りの有害物質の総漏れだし量(制限量)
Ms′:現在までの有害物質の総漏れだし量(制限量)
Msn:現在から1日終了までに許容される有害物質の総漏れだし量
Mo′:補正後の有害物質の漏れ出し制御目標値
S: Number of times the tunnel ventilation control device is controlled per day
S ': Number of times the tunnel ventilation control device has been controlled to date
Sn: Number of remaining controls from the present to the end of the day of the tunnel ventilation control device
Ms: Total leakage of harmful substances per day (limit)
Ms': Total leakage of harmful substances to date (limit)
Msn: Total leakage of harmful substances allowed from the present to the end of the day
Mo ′: Target value for leakage control of toxic substances after correction

Figure 2008267088
Figure 2008267088

Figure 2008267088
Figure 2008267088

Figure 2008267088
Figure 2008267088

上述の様に、漏れ出し量の制御目標値と有害物質収支演算手段で算出した漏れ出し量との適合度の評価を演算する際に、制御周期毎に算出した漏れ出し量の総和である現在までの有害物質の総漏れだし量Ms′に基づいて評価し、風量を選択することができる。   As described above, when calculating the degree of conformity between the control target value of the leakage amount and the leakage amount calculated by the toxic substance balance calculation means, it is the sum of the leakage amounts calculated for each control cycle. The air volume can be selected by evaluating based on the total leakage amount Ms ′ of the harmful substances up to the above.

また、上述の様に、有害物質の漏れ出し量の制御目標値Mo′は、1日終了までに許容される有害物質の総漏れ出し量Msから制御周期毎に算出した漏れ出し量の総和Ms′を差し引いて算出された値Msnに基づいて算出することができる。   Further, as described above, the control target value Mo ′ of the hazardous substance leakage amount is the sum Ms of the leakage amounts calculated for each control cycle from the total harmful substance leakage amount Ms allowed until the end of the day. It can be calculated based on the value Msn calculated by subtracting '.

本実施例では車両が排出する有害物質の種類を窒素酸化物としているが、この他にも有害物質は煤煙濃度、一酸化炭素でもよいものとする。   In this embodiment, the type of harmful substance emitted by the vehicle is nitrogen oxide, but the harmful substance may be smoke concentration or carbon monoxide.

上述したように、トンネルの空気を換気する換気設備を制御するトンネル換気制御装置において、トンネルの本線の抗口と少なくとも1個の前記本線からの分岐部の抗口に対し、有害物質の漏れ出し量の制御目標値を設定する手段と、換気設備の風量を設定する風量設定手段と、風量に基づいて前記トンネルの本線と分岐部での風速を予測する風速予測演算手段と、トンネル内の交通量に基づいて前記トンネルの本線と分岐部での有害物質の発生量を演算する有害物質発生量演算手段と、風速と前記有害物質の発生量に基づいて、トンネル内の有害物質の収支及びトンネルの本線の抗口と分岐部の抗口からの有害物質の漏れ出し量を算出する有害物質収支演算手段と、制御目標値と有害物質収支演算手段で算出した漏れ出し量との適合度の評価に基づいて風量設定手段の風量を選択する選択手段とを備えたトンネル換気制御装置により、トンネル内に分岐部を有するトンネルの有害物質漏れ出し量を制限し、トンネル周辺環境をより改善できる。   As described above, in the tunnel ventilation control device for controlling the ventilation equipment for ventilating the tunnel air, leakage of harmful substances to the main entrance of the tunnel and at least one entrance of the branch from the main line Means for setting a control target value of the air volume, air volume setting means for setting the air volume of the ventilation facility, wind speed prediction calculating means for predicting the wind speed at the main line and the branch of the tunnel based on the air volume, and traffic in the tunnel A harmful substance generation amount calculating means for calculating the generation amount of harmful substances in the main line and the branch part of the tunnel based on the amount, and the balance of the harmful substances in the tunnel and the tunnel based on the wind speed and the generation amount of the harmful substances Evaluation of the degree of conformity between the hazardous substance balance calculation means for calculating the leakage amount of harmful substances from the main line outlet and the branch outlet of the main line, and the control target value and the leakage amount calculated by the hazardous substance balance calculation means The air volume of the air volume setting means by the tunnel ventilation control device provided with a selection means for selecting, limiting the harmful substances leaking out of the tunnel with a bifurcation in the tunnel can be further improved tunnel surrounding environment based on.

また、全ての坑口付近に風向風速測定装置を設置し、坑口付近での風速が逆風になるよう換気設備の制御を行っても良い。具体的にはフィードフォワード機能による風速予測、トンネル内の車両台数から有害物質の総発生量をそれぞれ計算した後、予測漏れ出し量によって換気設備の風量を選定する。また、予測結果の誤差を補正するため、漏れ出し制御目標値の補正を適宜行う。複数の分岐・合流部を含む都市型トンネルにおいて、全ての坑口からの有害物質の漏れ出し量を抑制することができ、周辺環境の保全を図ることができる。   Moreover, the wind direction wind speed measuring device may be installed near all the wellheads, and the ventilation equipment may be controlled so that the wind speed near the wellheads is reversed. Specifically, after calculating the total amount of harmful substances generated from the wind speed prediction using the feed-forward function and the number of vehicles in the tunnel, the air volume of the ventilation facility is selected based on the predicted leakage amount. Further, in order to correct the error in the prediction result, the leakage control target value is corrected as appropriate. In an urban tunnel including a plurality of branching / merging sections, it is possible to suppress the leakage of harmful substances from all wellheads and to protect the surrounding environment.

また、全ての抗口付近に風向風速測定装置を設置した例を挙げたが、風速予測のモデルの演算結果が測定装置の測定値と許容範囲内で一致すれば、測定装置の一部を省略しても良い。   In addition, an example was given where wind direction and wind speed measurement devices were installed in the vicinity of all anti-fall ports, but if the calculation results of the wind speed prediction model agree with the measured values of the measurement device within the allowable range, a part of the measurement device is omitted. You may do it.

また、風量を選択する選択手段は、制御目的としてトンネル坑口からの有害物質の漏れ出し量のみでなく、煤煙濃度分布又は換気設備の使用電力を評価し、風量を選択することもできる。   Moreover, the selection means for selecting the air volume can select not only the amount of harmful substances leaking from the tunnel well opening but also the smoke concentration distribution or the power used by the ventilation facility for the purpose of control, and can select the air volume.

また、制御目的の優先順位を設定する優先順位設定手段を備え、トンネル坑口からの有害物質の漏れ出し量,煤煙濃度分布,換気設備の使用電力等の制御目的に優先順位を設定し、風量選択手段で風量を設定する際の評価に用いることもできる。例えば、優先順位の高い制御目的の評価は他の制御目的の評価より高く評価することができる。   It also has priority setting means for setting the priority for control purposes, and sets the priority for control purposes such as leakage of harmful substances from tunnel wellheads, smoke concentration distribution, power consumption of ventilation equipment, etc. It can also be used for evaluation when setting the air volume by means. For example, the evaluation of a control object with a high priority can be evaluated higher than the evaluation of other control objects.

以上、上述した手法を用いることで全坑口からの有害物質の漏れ出し量を抑制することが可能になる。   As described above, by using the above-described method, it is possible to suppress the leakage amount of harmful substances from all wellheads.

道路トンネルとトンネル換気制御装置の構成図。The block diagram of a road tunnel and a tunnel ventilation control apparatus. 換気制御装置内部の構成図。The block diagram inside a ventilation control apparatus. トンネル内風速分布図。Wind velocity distribution map in the tunnel. 本線部の有害物質演算手段を示す構成図。The block diagram which shows the hazardous | toxic substance calculating means of a main line part.

符号の説明Explanation of symbols

1 風向風速計
2 トラフィックカウンタ
3 ジェットファン
4 排風機
5 トンネル換気制御装置
6 漏れ出し制御目標値設定手段
7 換気設備風量設定手段
8 有害物質収支演算手段
9 有害物質漏れ出し量
10 有害物質漏れ出し制御目標値
11 区間1のトンネル内予測風速
12 区間2のトンネル内予測風速
13 区間3のトンネル内予測風速
14 区間4のトンネル内予測風速
15 区間5のトンネル内予測風速
16 区間6のトンネル内予測風速
17 区間1の有害物質発生量
18 区間2の有害物質発生量
19 区間3の有害物質発生量
20 区間4の有害物質発生量
21 区間5の有害物質発生量
22 区間6の有害物質発生量
1 Anemometer
2 Traffic counter
3 Jet fan
4 Ventilator
5 Tunnel ventilation control device
6 Leakage control target value setting means
7 Ventilation equipment air volume setting means
8 Hazardous substance balance calculation means
9 Hazardous substance leakage
10 Target value for hazardous substance leakage control
11 Predicted wind speed in section 1 tunnel
12 Predicted wind speed in tunnel of section 2
13 Predicted wind speed in the tunnel of section 3
14 Predicted wind speed in tunnel of section 4
15 Predicted wind speed in tunnel of section 5
16 Predicted wind speed in section 6 tunnel
17 Hazardous substances generated in section 1
18 Amount of hazardous substances generated in section 2
19 Amount of hazardous substances generated in section 3
20 Amount of hazardous substances generated in section 4
21 Hazardous substance generation in section 5
22 Amount of hazardous substances generated in section 6

Claims (7)

トンネルの空気を換気する換気設備を制御するトンネル換気制御装置において、
前記トンネルの本線の抗口と少なくとも1個の前記本線からの分岐部の抗口に対し、有害物質の漏れ出し量の制御目標値を設定する手段と、
前記換気設備の風量を設定する風量設定手段と、
前記風量に基づいて前記トンネルの本線と分岐部での風速を予測する風速予測演算手段と、
前記トンネル内の交通量に基づいて前記トンネルの本線と分岐部での有害物質の発生量を演算する有害物質発生量演算手段と、
前記風速と前記有害物質の発生量に基づいて、前記トンネル内の有害物質の収支及び前記トンネルの本線の抗口と分岐部の抗口からの有害物質の漏れ出し量を算出する有害物質収支演算手段と、
前記制御目標値と前記有害物質収支演算手段で算出した漏れ出し量との適合度の評価に基づいて前記風量設定手段の風量を選択する選択手段とを備えたことを特徴とするトンネル換気制御装置。
In the tunnel ventilation control device that controls the ventilation equipment that ventilates the air in the tunnel,
Means for setting a control target value of the amount of leakage of harmful substances for the main line of the tunnel and at least one branch of the main line;
An air volume setting means for setting an air volume of the ventilation facility;
Wind speed prediction calculating means for predicting the wind speed at the main line and the branch portion of the tunnel based on the air volume;
A hazardous substance generation amount calculating means for calculating the generation amount of harmful substances in the main line and the branch part of the tunnel based on the traffic volume in the tunnel;
Hazardous substance balance calculation for calculating the balance of harmful substances in the tunnel and the amount of leakage of harmful substances from the main entrance and branch entrance of the tunnel based on the wind speed and the amount of harmful substances generated Means,
A tunnel ventilation control device comprising: a selection unit that selects an air volume of the air volume setting unit based on an evaluation of a degree of conformity between the control target value and a leakage amount calculated by the harmful substance balance calculation unit .
請求項1に記載のトンネル換気制御装置において、前記有害物質の漏れ出し量の制御目標値は、トンネル換気制御装置の制御周期単位に基づいて設定されるものであることを特徴とするトンネル換気制御装置。   2. The tunnel ventilation control device according to claim 1, wherein the control target value of the leakage amount of the harmful substance is set based on a control cycle unit of the tunnel ventilation control device. apparatus. 請求項1または請求項2に記載のトンネル換気制御装置において、前記有害物質の漏れ出し量の評価は、制御周期毎に算出した漏れ出し量の総和に基づくことを特徴とするトンネル換気制御装置。   The tunnel ventilation control device according to claim 1, wherein the evaluation of the leakage amount of the harmful substance is based on a total sum of the leakage amounts calculated for each control cycle. 請求項3に記載のトンネル換気制御装置において、前記有害物質の漏れ出し量の制御目標値は、1日終了までに許容される有害物質の総漏れ出し量から制御周期毎に算出した漏れ出し量の総和を差し引いて算出された値に基づくことを特徴とするトンネル換気制御装置。   The tunnel ventilation control device according to claim 3, wherein the control target value of the leakage amount of the harmful substance is a leakage amount calculated for each control cycle from the total leakage amount of the harmful substance allowed until the end of the day. A tunnel ventilation control device, which is based on a value calculated by subtracting the sum of the above. 請求項1に記載のトンネル換気制御装置において、前記風量を選択する選択手段は、制御目的としてトンネル坑口からの有害物質の漏れ出し量のみでなく、煤煙濃度分布又は換気設備の使用電力を評価し、風量を選択することを特徴とするトンネル換気制御装置。   The tunnel ventilation control device according to claim 1, wherein the selection means for selecting the air volume evaluates not only the leakage amount of harmful substances from the tunnel well opening but also the smoke concentration distribution or the power used by the ventilation equipment for the purpose of control. Tunnel ventilation control device, characterized by selecting the air volume. 請求項5に記載のトンネル換気制御装置において、前記制御目的の優先順位を設定する優先順位設定手段を備えるトンネル換気制御装置。   6. The tunnel ventilation control apparatus according to claim 5, further comprising priority order setting means for setting a priority order for the control purpose. 請求項1に記載のトンネル換気制御装置において、前記有害物質収支演算手段は前記本線と前記分岐部の風量の割合から有害物質の収支演算を行うトンネル換気制御装置。   The tunnel ventilation control device according to claim 1, wherein the harmful substance balance calculation means performs a balance calculation of harmful substances from a ratio of air volume between the main line and the branch portion.
JP2007114974A 2007-04-25 2007-04-25 Tunnel ventilation control device Active JP4743153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007114974A JP4743153B2 (en) 2007-04-25 2007-04-25 Tunnel ventilation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007114974A JP4743153B2 (en) 2007-04-25 2007-04-25 Tunnel ventilation control device

Publications (2)

Publication Number Publication Date
JP2008267088A true JP2008267088A (en) 2008-11-06
JP4743153B2 JP4743153B2 (en) 2011-08-10

Family

ID=40046934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007114974A Active JP4743153B2 (en) 2007-04-25 2007-04-25 Tunnel ventilation control device

Country Status (1)

Country Link
JP (1) JP4743153B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102996179A (en) * 2012-11-26 2013-03-27 安徽理工大学 Detection method of air leakage of roof of coal seam
JP2013185396A (en) * 2012-03-09 2013-09-19 Toshiba Corp Tunnel ventilation controller and tunnel ventilation control method
JP2013189752A (en) * 2012-03-12 2013-09-26 Toshiba Corp Tunnel ventilation control device
JP2014055414A (en) * 2012-09-11 2014-03-27 Toshiba Corp Tunnel ventilation control device
JP2015001093A (en) * 2013-06-14 2015-01-05 株式会社東芝 Pollution substance amount calculator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146898A (en) * 1999-11-19 2001-05-29 Ebara Corp Road tunnel ventilating system
JP2003113700A (en) * 2001-10-03 2003-04-18 Mitsubishi Electric Corp Tunnel ventilation simulation equipment and tunnel ventilation control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146898A (en) * 1999-11-19 2001-05-29 Ebara Corp Road tunnel ventilating system
JP2003113700A (en) * 2001-10-03 2003-04-18 Mitsubishi Electric Corp Tunnel ventilation simulation equipment and tunnel ventilation control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185396A (en) * 2012-03-09 2013-09-19 Toshiba Corp Tunnel ventilation controller and tunnel ventilation control method
JP2013189752A (en) * 2012-03-12 2013-09-26 Toshiba Corp Tunnel ventilation control device
JP2014055414A (en) * 2012-09-11 2014-03-27 Toshiba Corp Tunnel ventilation control device
CN102996179A (en) * 2012-11-26 2013-03-27 安徽理工大学 Detection method of air leakage of roof of coal seam
JP2015001093A (en) * 2013-06-14 2015-01-05 株式会社東芝 Pollution substance amount calculator

Also Published As

Publication number Publication date
JP4743153B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4743153B2 (en) Tunnel ventilation control device
JP4456007B2 (en) Air conditioning system for underground space
JP5784530B2 (en) Tunnel ventilation control apparatus and method
JP2007315143A (en) Ventilation control method of road tunnel of vertical shaft intensive exhaust ventilation system
JP4187688B2 (en) Air conditioning control system using natural ventilation by train wind
JP4729079B2 (en) Tunnel ventilation control device
JP2013087465A (en) Tunnel ventilation control apparatus
JPH1038336A (en) Controller for ventilation of tunnel
CN109190221A (en) The design method of dumper air cooling system parallel air duct
JP2019044507A (en) Road tunnel ventilation control device
JP5972723B2 (en) Tunnel ventilation control device
JP2013185396A (en) Tunnel ventilation controller and tunnel ventilation control method
JP2010248768A (en) Road tunnel ventilation controller, and road tunnel ventilation control method
JP5581683B2 (en) Evaluation method for ventilation and gas generation in space
JP2004027665A (en) Tunnel ventilation control device
Vidmar et al. Upgrade of a transverse ventilation system in a bi-directional tunnel
JP2001146898A (en) Road tunnel ventilating system
JP4199138B2 (en) Tunnel ventilation control device
JP3789076B2 (en) Road tunnel ventilation control device
RU2491424C1 (en) Method to ventilate systems of mines
JPH10131698A (en) Road tunnel ventilation control device
JP4476537B2 (en) Tunnel ventilation equipment
JPH10212900A (en) Road-tunnel ventilation controller
JP3228121B2 (en) Ventilation control device for road tunnel
JPH0613840B2 (en) Ventilation control method for central exhaust type automobile tunnel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4743153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3