JP3228121B2 - Ventilation control device for road tunnel - Google Patents

Ventilation control device for road tunnel

Info

Publication number
JP3228121B2
JP3228121B2 JP07268996A JP7268996A JP3228121B2 JP 3228121 B2 JP3228121 B2 JP 3228121B2 JP 07268996 A JP07268996 A JP 07268996A JP 7268996 A JP7268996 A JP 7268996A JP 3228121 B2 JP3228121 B2 JP 3228121B2
Authority
JP
Japan
Prior art keywords
generation amount
ventilation
ventilator
amount
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07268996A
Other languages
Japanese (ja)
Other versions
JPH09268899A (en
Inventor
実 福原
敦 森
徹 西山
瑞穂 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP07268996A priority Critical patent/JP3228121B2/en
Priority to TW86103050A priority patent/TW381197B/en
Publication of JPH09268899A publication Critical patent/JPH09268899A/en
Application granted granted Critical
Publication of JP3228121B2 publication Critical patent/JP3228121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、換気機の省エネを
図りながら道路トンネルの煤煙濃度およびCO濃度を許
容値以下にする道路トンネル用換気制御装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ventilation control device for a road tunnel for reducing the soot concentration and the CO concentration of a road tunnel to an allowable value while saving energy of a ventilator.

【0002】[0002]

【従来の技術】図11は従来の道路トンネル用換気制御
装置の制御ブロック図である。交通量計測装置で平常時
の換気制御は交通量および車速を入力する。30で、こ
の交通量データを蓄積し、作成した1日の交通量パター
ンから次の制御周期の交通量を予測する。31及び32
で、予測した交通量から各換気区間ごとの必要換気量を
求める。33で、必要換気量より各種換気機の運転組合
せを決定し出力する。
2. Description of the Related Art FIG. 11 is a control block diagram of a conventional ventilation control device for a road tunnel. In normal traffic ventilation control, the traffic volume and vehicle speed are input. In step 30, the traffic data is accumulated, and the traffic in the next control cycle is predicted from the created daily traffic pattern. 31 and 32
Then, the required ventilation volume for each ventilation section is obtained from the predicted traffic volume. At 33, the operation combinations of various ventilators are determined and output from the required ventilation volume.

【0003】上記換気計算に用いるパラメータ(係数)
は固定または設定値である。また集じん機設備の集じん
効率および空気密度(ρ)もパラメータとして設定値を
用いるのが常であった。そして換気機の組合せも人が予
め換気量によって設定を行う。
[0003] Parameters (coefficients) used in the above ventilation calculation
Is a fixed or set value. In addition, the dust collection efficiency and the air density (ρ) of the dust collector equipment usually use set values as parameters. The combination of the ventilators is also set in advance by the person according to the ventilation volume.

【0004】上記平常時換気制御をファジイ制御で行う
場合もある。割り込み制御としては35で、デマンド警
報信号入力時、換気機の電力量を下げるため当該の換気
機の運転風量を減らす。34で、VI悪化、CO悪化発
生時は即全換気機100%運転を行う。また36で、火
災時に立坑排風機を用い、道路トンネル内の風速零化運
転を行う。
In some cases, the normal ventilation control is performed by fuzzy control. In the interruption control 35, when a demand alarm signal is input, the operating air volume of the ventilator is reduced in order to reduce the power amount of the ventilator. In step 34, when the VI or CO deterioration occurs, the entire ventilator is immediately operated at 100%. In addition, at 36, when a fire occurs, the wind speed in the road tunnel is reduced to zero by using the shaft exhaust fan.

【0005】[0005]

【発明が解決しようとする課題】従来の道路トンネル用
換気制御装置は以上のように構成されているので、 (1)パラメータの調整を定期的に人が設定し直さない
と適切な制御が行えない。特に季節的にまた経年的に変
化するパラメータ(煤煙発生量係数やCO発生量係数な
ど)の調整は時間を要し、熟練者でないとできなかっ
た。
The conventional road tunnel ventilation control apparatus is configured as described above. (1) Appropriate control can be performed unless the parameters are adjusted periodically by a person. Absent. In particular, adjustment of parameters that change seasonally and over time (such as a soot generation coefficient and a CO generation coefficient) requires time and can only be performed by a skilled person.

【0006】[0006]

【0007】[0007]

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】(2)従来の換気制御の目的は、VI値の
目標VI値との差(偏差)のみであった。つまりVI値
をできるだけ目標VI値へ近付けようとするレギュレー
タ制御であったため、操作量の過大やハンティングが発
生し、電力量のムダが発生していた。
(2) The purpose of the conventional ventilation control is only the difference (deviation) between the VI value and the target VI value. That is, since the regulator control is performed so as to bring the VI value closer to the target VI value as much as possible, an excessive operation amount or hunting occurs, and a waste of power amount occurs.

【0012】[0012]

【0013】[0013]

【0014】(3)VI悪化、CO悪化の割り込みが発
生すると、即100%運転を行うため、大きな換気電力
量を要した。
(3) When an interrupt of VI deterioration or CO deterioration occurs, 100% operation is performed immediately, so that a large amount of ventilation power is required.

【0015】本発明は、上記従来の問題を解決する道路
トンネル用換気制御盤を提供することを目的としてなさ
れたものである。
An object of the present invention is to provide a ventilation control panel for a road tunnel which solves the above-mentioned conventional problems.

【0016】[0016]

【課題を解決するための手段】(1)第1手段として、
トンネル内の煤煙発生量を予測する煤煙発生量予測手段
と、トンネル内のCO発生量を予測するCO発生量予測
手段と、前記煤煙発生量と前記CO発生量とからトンネ
ル内の換気量を算出する必要換気量算出手段と、前記換
気量から運転させる換気機の組合せを算出する換気機組
合せ算出手段とを具備した道路トンネル用換気制御装置
において、前記煤煙発生量予測手段は、過去のVI(煤
煙濃度)値および過去の風速値より実測煤煙発生量を算
出する実測煤煙発生量算出手段と、実測された交通量か
ら予測煤煙発生量を算出する予測煤煙発生量算出手段
と、前記実測煤煙発生量と前記予測煤煙発生量とから相
関関数を算出して予測煤煙発生量(μ)の調整を行う予
測煤煙発生量調整手段とを具備し、前記CO発生量予測
手段は、過去のCO値および過去の風速値より実測CO
発生量を算出する実測CO発生量算出手段と、実測交通
量から予測CO発生量を算出する予測CO発生量算出手
段と、前記実測CO発生量と前記予測CO発生量とから
相関関数を算出して予測CO発生量(μc)の調整を行
う予測CO発生量調整手段とを具備し、前記換気機組合
せ算出手段は、過去のVI値により求めた煤煙濃度(K
i )と目標煤煙濃度(K 0 )との煤煙濃度差(D i )と、
換気電力量により求めた今回の制御周期における換気機
の運転容量(P i )と前回の制御周期における換気機の
運転容量(P i-1 )との差を全換気機のトータル容量
(P 0 )で除した運転容量割合(C i )とからファジィ推
論によって前記煤煙濃度差(D i )と前記運転容量割合
(C i )の制御の優先度合いを決めるウェイト(a)の
調整を行うことにより算出するものである。
Means for Solving the Problems (1) As a first means,
Smoke emission amount prediction means for estimating the amount of smoke emission in a tunnel
And CO generation amount prediction to predict CO generation amount in tunnel
A tunnel from the soot generation amount and the CO generation amount.
A required ventilation rate calculating means for calculating the ventilation rate in the
Ventilator set that calculates the combination of ventilators to be operated from the air volume
Ventilation control device for road tunnel provided with alignment calculation means
In the above, the soot generation amount predicting means uses the past VI (soot
Calculate measured soot generation from smoke density) value and past wind speed value
Means to calculate the amount of smoke emission measured and the traffic
Means for calculating predicted soot generation amount from the estimated soot generation amount
From the measured smoke generation amount and the predicted smoke generation amount.
Function to calculate the expected soot generation (μ)
And a means for adjusting the amount of generated soot smoke.
The means is based on the actual measured CO value from the past CO value and the past wind speed value.
Measured CO emissions calculation means for calculating emissions, and measured traffic
For calculating the predicted amount of CO generated from the amount
From the measured CO generation amount and the predicted CO generation amount
Calculate the correlation function and adjust the predicted CO generation amount (μc)
A predictive CO generation amount adjusting means;
Means for calculating the smoke concentration (K) obtained from the past VI value.
i ) and a smoke concentration difference (D i ) between the target smoke concentration (K 0 ) and
Ventilator in the current control cycle obtained from the ventilation energy
Operating capacity (P i ) of the ventilator in the previous control cycle
The difference between the operating capacity (P i-1 ) and the total capacity of all ventilators
Fuzzy estimation from the operating capacity ratio (C i ) divided by (P 0 )
According to the theory, the soot concentration difference (D i ) and the operating capacity ratio
The weight (a) for determining the priority of the control of (C i )
This is calculated by performing the adjustment .

【0017】[0017]

【0018】[0018]

【0019】[0019]

【0020】[0020]

【0021】[0021]

【0022】(2)第2手段として、トンネル内の煤煙
発生量を予測する煤煙発生量予測手段と、トンネル内の
CO発生量を予測するCO発生量予測手段と、前記煤煙
発生量と前記CO発生量とからトンネル内の換気量を算
出する必要換気量算出手段と、前記換気量から運転させ
る換気機の組合せを算出する換気機組合せ算出手段とを
具備した道路トンネル用換気制御装置において、前記換
気機組合せ算出手段は、所定の換気区間の煤煙発生量か
ら前記換気区間の換気量を算出する基本換気量算出手段
と、前記換気量を換気機の運転風量としこの風量値を中
心に所定間隔で風量を選択する風量選択手段と、前記風
量選択手段の出力である風量によって換気機の運転組合
せを選出する運転選出手段と、前記運転選出手段におい
て選出された運転組合せの中から最適組合せを選択する
最適運転組合せ選択手段と、過去のV(煤煙濃度)I値
により求めた煤煙濃度(Ki)と目標煤煙濃度(K0)と
の煤煙濃度差(Di)ならびに換気電力量により求めた
今回の制御周期における換気機の運転容量(Pi)と前
回の制御周期における換気機の運転容量(Pi-1)との
差を全換気機のトータル容量(P0)で除した運転容量
割合(Ci)とからファジィ推論によって前記煤煙濃度
差(Di)と前記運転容量割合(Ci)の制御の優先度合
いを決めるウェイト(a)の調整を行う目的関数とを有
し、前記最適運転組合せ選択手段は前記目的関数を計算
して最も小さい値となった運転パターンを最適運転組合
せとするものである
(2) As a second means , a smoke generation amount prediction means for predicting a smoke generation amount in the tunnel, a CO generation amount prediction means for predicting a CO generation amount in the tunnel, the smoke generation amount and the CO In a ventilation control device for a road tunnel, comprising a required ventilation amount calculating means for calculating a ventilation amount in a tunnel from the generated amount and a ventilator combination calculating means for calculating a combination of a ventilator to be operated from the ventilation amount, The ventilator combination calculating means includes: a basic ventilation amount calculating means for calculating a ventilation amount of the ventilation section from a soot generation amount of a predetermined ventilation section; and a predetermined interval around the ventilation amount, with the ventilation amount as an operating air volume of the ventilator. An air flow selecting means for selecting an air flow in the operation, an operation selecting means for selecting an operation combination of the ventilator according to an air flow output from the air flow selecting means, and an operation selected by the operation selecting means. An optimal operation combination selecting means for selecting an optimal combination from the combinations; and a smoke concentration difference (D i ) between the smoke concentration (K i ) obtained from the past V (smoke concentration) I value and the target smoke concentration (K 0 ). ) And the difference between the operating capacity (P i ) of the ventilator in the current control cycle and the operating capacity (P i-1 ) of the ventilator in the previous control cycle, obtained from the amount of ventilation power, is calculated as the total capacity ( The weight (a) for determining the priority of the control of the soot concentration difference (D i ) and the operating capacity ratio (C i ) is adjusted by fuzzy inference from the operating capacity ratio (C i ) divided by P 0 ). and a objective function, the optimal operating combination selection means is for the optimal operation combining operation pattern became smallest value to calculate the objective function.

【0023】[0023]

【0024】[0024]

【0025】(3)第3手段として、トンネル内のVI
値によって換気機の運転をさせるかどうか判定するVI
悪化判定手段と、前記VI値によって運転する換気機を
選択するVI悪化運転ターン設定選択手段と、トンネル
内のCO値によって換気機を運転させるかどうか判定す
るCO悪化判定手段と、前記CO値によって運転する換
気機を選択するCO悪化運転パターン設定選択手段と、
前記VI悪化運転パターン設定選択手段および前記CO
悪化運転パターン設定選択手段の出力によって換気機を
運転させる出力制御手段とを備え、前記VI悪化判定手
段はVI値によって悪化レベル2設定値以下を設定時限
継続すると悪化レベル2と判断し、また悪化レベル1設
定以下を設定時限継続すると悪化レベル1と判断し、前
記悪化レベルにより所定の換気機を運転させるものであ
る。
(3) As a third means , VI in the tunnel
VI to determine whether to operate the ventilator according to the value
Deterioration judgment means, VI deterioration operation turn setting selection means for selecting a ventilator to be operated based on the VI value, CO deterioration judgment means for judging whether to operate the ventilator based on the CO value in the tunnel, and CO deterioration judgment means CO deterioration operation pattern setting selecting means for selecting a ventilator to be operated,
The VI deterioration operation pattern setting selecting means and the CO
Output control means for operating the ventilator in accordance with the output of the deterioration operation pattern setting selection means, wherein the VI deterioration judgment means judges deterioration level 2 if the deterioration level 2 set value or less is continued for a set time period based on the VI value. If the level 1 or less is continued for the set time period, it is determined that the level is worsened, and a predetermined ventilator is operated based on the worsened level.

【0026】[0026]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)図1は煤煙発生量調整ブロック図であ
る。図1はトンネル内の煤煙発生量を算出するときに使
用する車1台当たりの煤煙発生量(μ)(煤煙排出量と
煤煙濃度の積)を自動調整する方法を示している。1で
は過去のVI値、風速値より制御周期ごとの実測煤煙発
生量の算出を行う。2では予測交通量ではなく実測交通
量を使用して制御周期ごとの予測煤煙発生量の算出を行
う。3では上記1、2で求めた実測、予測煤煙発生量の
設定期間の相関係数を求める。4では3で求めた予測と
実測との傾きおよび相関係数を用いて、設定期間ごとに
予測煤煙発生量算出式で用いる煤煙発生量(μ)の調整
を行う。
(Embodiment 1) FIG. 1 is a block diagram for adjusting the amount of generated smoke. FIG. 1 shows a method for automatically adjusting the amount of smoke generated per vehicle (μ) (the product of the amount of smoke discharged and the concentration of smoke) used for calculating the amount of smoke generated in the tunnel. In step 1, the measured smoke generation amount for each control cycle is calculated from the past VI value and wind speed value. In step 2, the predicted soot generation amount is calculated for each control cycle using the actually measured traffic amount instead of the predicted traffic amount. In step 3, the correlation coefficient for the set period of the measured and predicted soot generation amounts obtained in steps 1 and 2 is obtained. In step 4, the soot generation amount (μ) used in the predicted soot generation amount calculation formula is adjusted for each set period using the slope and correlation coefficient between the prediction and the actual measurement obtained in step 3.

【0027】図2はCO発生量調整ブロック図である。
図2はトンネル内のCO発生量を算出するときに用いる
CO発生量(μc)(CO排出量とCO濃度との積)を
自動調整する方法を示している。5では過度のCO値・
風速値により制御周期ごとの実測煤煙発生量の算出を行
う。6では予測交通量ではなく実測交通量を使用して制
御周期ごとの予測CO発生量の算出を行う。7では上記
5、6で求めた実測・予測CO発生量の設定期間の相関
を求める。8では7で求めた予測と実測との傾きおよび
相関係数を用いて、設定期間ごとに予測CO発生量算出
式で用いる。CO発生量(μc)の調整を行う。
FIG. 2 is a block diagram of adjusting the amount of generated CO.
FIG. 2 shows a method of automatically adjusting the CO generation amount (μc) (the product of the CO emission amount and the CO concentration) used when calculating the CO generation amount in the tunnel. 5 is an excessive CO value.
The measured soot generation amount is calculated for each control cycle based on the wind speed value. In step 6, the predicted CO generation amount for each control cycle is calculated using the actually measured traffic volume instead of the predicted traffic volume. In step 7, the correlation between the set periods of the measured and predicted CO generation amounts obtained in steps 5 and 6 is obtained. In step 8, using the slope and correlation coefficient between the prediction and the actual measurement obtained in step 7 and using the calculated CO generation amount for each set period. The amount of generated CO (μc) is adjusted.

【0028】図3は目的関数ウェイト(a)調整ブロッ
ク図である。図3は目的関数のウェイト(a)をファジ
イ推論によって自動調整する方法を示している。9では
制御周期ごとに過去のVI値により煤煙濃度(Ki )を
求め、目標煤煙濃度(Ko )との差(Di )を算出す
る。10では制御周期ごとに今回の制御周期の換気機の
運転容量(Pi )と前回の制御周期の運転容量(P
i-1 )との差を全換気機のトータル容量(Po )との割
合に算出する。11では上記9、10で求めたDi とC
i からファジイ推論によってウェイト(a)の変更幅
(Δa)を求める。12では設定期間内の制御周期ごと
に求めたΔaの頻度分布を求め、平均値(μ)や偏差
(σ)を求める。13では12で求めたΔaの平均値
(μ)や偏差(σ)によってaの調整を行う。
FIG. 3 is a block diagram for adjusting the objective function weight (a). FIG. 3 shows a method of automatically adjusting the weight (a) of the objective function by fuzzy inference. In step 9, the smoke concentration (K i ) is obtained from the past VI value for each control cycle, and the difference (D i ) from the target smoke concentration (K o ) is calculated. In 10, for each control cycle, the operating capacity (P i ) of the ventilator in the current control cycle and the operating capacity (P in the previous control cycle)
i-1 ) is calculated as a ratio to the total capacity (P o ) of all the ventilators. 11 D i and C, obtained above 9,10
The change width (Δa) of the weight (a) is obtained from i by fuzzy inference. In step 12, the frequency distribution of Δa obtained for each control cycle within the set period is obtained, and the average value (μ) and deviation (σ) are obtained. In step 13, a is adjusted based on the average value (μ) and deviation (σ) of Δa obtained in step 12.

【0029】(実施の形態2)図4は集じん効率算出ブ
ロック図である。次の制御周期で運転しようとする集じ
ん機の処理風量によって集じん効率(η)を求める方法
を示している。14では次の制御周期の集じん機処理風
量(Qc)より次の制御周期の集じん効率(η)を下記
式により求める。
(Embodiment 2) FIG. 4 is a block diagram of a dust collection efficiency calculation. A method for obtaining the dust collection efficiency (η) based on the processing air volume of the dust collector to be operated in the next control cycle is shown. In 14, the dust collection efficiency (η) of the next control cycle is obtained from the following formula based on the dust collector processing air volume (Qc) of the next control cycle.

【0030】[0030]

【数1】 (Equation 1)

【0031】(実施の形態3)トンネル内の空気密度は
大気圧と坑内温度によって変化するため、下記の計算式
により補正を行う。
(Embodiment 3) Since the air density in the tunnel changes depending on the atmospheric pressure and the downhole temperature, correction is made by the following formula.

【0032】[0032]

【数2】 (Equation 2)

【0033】(実施の形態4)図5(a)(b)はショ
ートサーキット防止条件図である。図5(a)(b)に
示すようにショートサーキットを防止するため、集じん
送風機、立坑送排風量は本坑風量よりも小さいことが必
要である。よって運転パターンの制約条件としてこの条
件を入れている。この条件を満足しない運転パターンは
除くものとする。
(Embodiment 4) FIGS. 5A and 5B are diagrams showing conditions for preventing short circuits. As shown in FIGS. 5 (a) and 5 (b), in order to prevent a short circuit, it is necessary that the amount of air blown from the dust collector and the air discharged from the shaft should be smaller than the amount of air blown from the main shaft. Therefore, this condition is included as a constraint condition of the operation pattern. Operation patterns that do not satisfy this condition are excluded.

【0034】(実施の形態5)図6は自然換気力算出の
ための関係図である。両坑口の大気圧値の補正を下記式
のように行い、両坑口の自然換気力(ΔPMT)を算出す
る。
(Embodiment 5) FIG. 6 is a relationship diagram for calculating natural ventilation power. Correction of the atmospheric pressure values of both wellheads is performed as in the following equation, and the natural ventilation power (ΔP MT ) of both wellheads is calculated.

【0035】[0035]

【数3】 (Equation 3)

【0036】(実施の形態6)図7は換気運転組合せ算
出ブロック図である。図7は各換気区間の煤煙発生量よ
り基本換気量を求め、換気機の運転組合せを求める方法
を示している。15では各換気区間ごとの煤煙発生量か
ら各換気区間の基本換気量を算出する。16では求めた
基本換気量を当該の換気機の運転風量とし、それを中心
に設定%きざみにn通りの運転パターンを選ぶ。17で
は換気区間mも上記16と同様に運転パターンを選ぶと
全てnm 通りの運転パターンを選出する。
(Embodiment 6) FIG. 7 is a block diagram of a ventilation operation combination calculation. FIG. 7 shows a method of obtaining the basic ventilation amount from the amount of smoke generated in each ventilation section and obtaining the operation combination of the ventilator. In step 15, the basic ventilation amount of each ventilation section is calculated from the amount of smoke generated in each ventilation section. In 16, the obtained basic ventilation volume is used as the operating air volume of the ventilator, and n operating patterns are selected centered on the basic ventilation volume in increments of%. In 17, when the operation pattern is selected for the ventilation section m in the same manner as in the above 16, all n m operation patterns are selected.

【0037】(実施の形態7) 本発明の他の実施の形態について説明する。複数の換気
運転パターンを求める手段として、目的関数を計算して
最も小さい値となった運転パターンを最適なものとして
選択する。目的関数として下記式を用いる。
Embodiment 7 Another embodiment of the present invention will be described. As means for obtaining a plurality of ventilation operation patterns, an operation function having the smallest value after calculating an objective function is selected as an optimum one. The following equation is used as the objective function.

【0038】[0038]

【数4】 (Equation 4)

【0039】またはOr

【0040】[0040]

【数5】 (Equation 5)

【0041】(実施の形態8) 図8は道路トンネル内風速0m/s維持制御ブロック図
である。図8はトンネル内火災発生よりトンネル内風速
化する方法を示している。18では火災発生信号入
力とともに全換気機の停止を行う。19では一定時間経
過後ジェットファンで坑内風を逆方向へ順次運転を行
い、速やかに零化へもっていく。20では坑内風が0m
/s付近になると、自然換気力と交通換気力を打ち消す
ジェットファンのみ残して他のジェットファンを停止
し、0m/sをそのまま維持する。21では設定時間経
過後風速フィードバック制御にはいる。これは約10〜
20秒間隔で坑内風速を読み込み、PID制御にて目標
風速0m/sにしたときの制御を約10〜20秒間隔で
行う。
(Eighth Embodiment) FIG. 8 is a block diagram showing a control for maintaining the wind speed in a road tunnel at 0 m / s. Figure 8 shows how to zero the tunnel wind speed from tunnel fire. At 18, all the ventilators are stopped together with the input of the fire occurrence signal. In 19, the mine wind is sequentially operated in the reverse direction by a jet fan after a lapse of a predetermined time, and the air is quickly brought to zero. In 20 mine wind is 0m
/ S, the other jet fans are stopped except for the jet fan that cancels the natural ventilation power and the traffic ventilation power, and 0 m / s is maintained. At 21, the wind speed feedback control is started after the set time has elapsed. This is about 10
The underground wind speed is read at intervals of 20 seconds, and control when the target wind speed is set to 0 m / s by PID control is performed at intervals of about 10 to 20 seconds.

【0042】(実施の形態9)図9はデマンド制御ブロ
ック図である。図9はデマンド警報発生時の割り込み制
御を示している。22ではデマンド警報が発生すると発
生した受電系統の換気機風量を減らして電力量を削減
し、デマンド契約内に電力量が入るようにする。23で
は不足する換気風量を他の受電系統の換気機で風量補充
を行う。24では上記22、23で換気演算を行った結
果の各換気機の運転風量を決定し出力を行う。
(Embodiment 9) FIG. 9 is a demand control block diagram. FIG. 9 shows interrupt control when a demand alarm occurs. In step 22, when the demand alarm is generated, the amount of electric power is reduced by reducing the amount of air flow of the ventilator of the power receiving system, so that the electric power is included in the demand contract. In 23, the insufficient ventilation air volume is supplemented by the ventilation device of another power receiving system. At 24, the operating air volume of each ventilator as a result of performing the ventilation calculation at 22 and 23 is determined and output.

【0043】(実施の形態10)図10はVI悪化及び
CO悪化制御ブロック図である。図10はVI悪化及び
CO悪化発生時の割り込み制御を示す。25ではVI値
によって悪化レベル2設定値(例40%)以下を設定時
限(例30秒)継続すると悪化レベル2と判断する。ま
た悪化レベル1設定(例30%)以下を設定時限(例3
0秒)継続すると悪化レベル1と判断する。26では上
記判断したVI悪化レベル2、VI悪化レベル1発生時
の各換気機の運転風量設定ができる。例えば、悪化レベ
ル1発生時は全換気機が100%運転を行う。悪化レベ
ル2発生時は、設定した該当換気機の運転を行う。27
では上記1と同様CO値によって悪化レベル2設定値
(例80ppm)以上を設定時限(例30秒)継続する
と悪化レベル2と判断する。また悪化レベル1設定値
(例100ppm)以上を設定時限(例30秒)継続す
ると悪化レベル1と判断する。28では上記2と同様に
上記3で判断したCO悪化レベル2、CO悪化レベル1
発生時の各換気機の運転風量設定ができる。例えば、悪
化レベル1発生時は全換気機が100%運転を行う。悪
化レベル2発生時は設定した該当換気機の運転を行う。
29では悪化発生後の運転パターン出力を行う。
(Embodiment 10) FIG. 10 is a control block diagram of VI deterioration and CO deterioration. FIG. 10 shows interrupt control when VI and CO deteriorate. In 25, if the VI is lower than the deterioration level 2 set value (example 40%) or less for a set time period (example 30 seconds), it is determined that the deterioration level is 2. In addition, the time limit for setting the deterioration level 1 or less (example 30%) or less (example 3)
(0 seconds), if it continues, it is judged to be the deterioration level 1. In 26, the operating air volume of each ventilator can be set when the above-mentioned determined VI deterioration level 2 and VI deterioration level 1 occur. For example, when the deterioration level 1 occurs, all the ventilators operate 100%. When the deterioration level 2 occurs, the set ventilator is operated. 27
In the same manner as in the above 1, when the CO value is equal to or higher than the deterioration level 2 set value (for example, 80 ppm) for a set time period (for example, 30 seconds), the deterioration level is determined to be 2. Further, if the set time (example 30 seconds) or more continues for the deterioration level 1 set value (example 100 ppm), it is determined to be the deterioration level 1. At 28, the CO deterioration level 2 and the CO deterioration level 1 determined at 3 above as in 2 above
The operating air volume of each ventilator at the time of occurrence can be set. For example, when the deterioration level 1 occurs, all the ventilators operate 100%. When the deterioration level 2 occurs, the set ventilator is operated.
At 29, the operation pattern after the occurrence of deterioration is output.

【0044】[0044]

【発明の効果】【The invention's effect】

(1)請求項1の発明によれば、自動的に煤煙発生量、
CO発生量および目的関数ウェイトのパラメータが調整
されているため、従来定期的にまたは制御が異常なとき
に人が調整していたが難しく調整に時間を要していた調
整作業が不要となる。
(1) According to the first aspect of the invention, the amount of smoke generated is automatically
Since the parameters of the amount of CO generation and the weight of the objective function are adjusted, the adjustment work that has conventionally been performed manually or when the control is abnormal but difficult and time-consuming to adjust is not required.

【0045】[0045]

【0046】[0046]

【0047】[0047]

【0048】[0048]

【0049】[0049]

【0050】(2)請求項2の発明によれば、目的関数
を最小とする運転パターンを選定することが換気制御の
目的である。VI値の目標VI値との偏差が小さくしか
も換気電力量を小さくする最適な運転パターンを選定し
たことになる。
(2) According to the second aspect of the invention, the purpose of ventilation control is to select an operation pattern that minimizes the objective function. This means that an optimal operation pattern in which the deviation of the VI value from the target VI value is small and the amount of ventilation power is small is selected.

【0051】[0051]

【0052】[0052]

【0053】(3)請求項3の発明によれば、VI悪化
・CO悪化によって全換気機100%運転を行う前に悪
化レベル2を設け、このとき該当換気区間の換気機の設
定運転を行うことによって、VI悪化・CO悪化による
全換気機100%運転が入らないようにする。
(3) According to the third aspect of the present invention, the deterioration level 2 is provided before the 100% operation of the total ventilator due to the deterioration of VI and CO, and the set operation of the ventilator in the corresponding ventilation section is performed at this time. By doing so, 100% operation of all the ventilators due to VI deterioration and CO deterioration is prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1を示す煤煙発生量調整ブ
ロック図
FIG. 1 is a block diagram of a smoke generation amount adjustment showing a first embodiment of the present invention.

【図2】本発明の実施の形態1を示すCO発生量調整ブ
ロック図
FIG. 2 is a CO generation amount adjustment block diagram showing the first embodiment of the present invention;

【図3】本発明の実施の形態1を示す目的関数ウェイト
(a)調整ブロック図
FIG. 3 is a block diagram illustrating an adjustment of an objective function weight (a) according to the first embodiment of the present invention;

【図4】本発明の実施の形態2を示す集じん効率算出ブ
ロック図
FIG. 4 is a block diagram of a dust collection efficiency calculation according to a second embodiment of the present invention.

【図5】(a)本発明の実施の形態4を示すショートサ
ーキット防止条件の一例図 (b)本発明の実施の形態4を示すショートサーキット
防止条件の他の一例図
FIG. 5A is a diagram illustrating an example of a short circuit prevention condition according to the fourth embodiment of the present invention. FIG. 5B is a diagram illustrating another example of a short circuit prevention condition according to the fourth embodiment of the present invention.

【図6】本発明の実施の形態5を示す自然換気力算出の
ための関係図
FIG. 6 is a relationship diagram for calculating natural ventilation power according to the fifth embodiment of the present invention.

【図7】本発明の実施の形態6を示す換気運転組合せ算
出ブロック図
FIG. 7 is a block diagram showing a ventilation operation combination calculation according to a sixth embodiment of the present invention.

【図8】本発明の実施の形態8を示す道路トンネル内風
速0m/s維持制御ブロック図
FIG. 8 is a block diagram showing a control for maintaining a wind speed in a road tunnel of 0 m / s according to an eighth embodiment of the present invention.

【図9】本発明の実施の形態9を示すデマンド制御ブロ
ック図
FIG. 9 is a demand control block diagram showing a ninth embodiment of the present invention;

【図10】本発明の実施の形態10を示すVI悪化及び
CO悪化制御ブロック図
FIG. 10 is a block diagram showing VI deterioration and CO deterioration control according to the tenth embodiment of the present invention.

【図11】従来の道路トンネル用換気制御装置の制御ブ
ロック図
FIG. 11 is a control block diagram of a conventional ventilation control device for a road tunnel.

【符号の説明】[Explanation of symbols]

1 実測煤煙発生量算出手段 2 予測煤煙発生量算出手段 3 実測・予測煤煙発生量相関算出手段 4 予測煤煙発生量調整手段 5 実測CO発生量算出手段 6 予測CO発生量算出手段 7 実測・予測CO発生量相関算出手段 8 予測CO発生量調整手段 9 Di算出手段 10 Ci算出手段 11 Δa算出手段 12 Δa頻度分布算出手段 13 a調整手段 14 集じん効率算出手段 15 基本換気量算出手段 16 風量算出手段 17 運転算出手段 18 停止手段 19 逆転運転手段 20 0m/s維持手段 21 風速フィードバック制御手段 22 換気量減量算出手段 23 換気量補充算出手段 24 出力制御手段 25 VI悪化判定手段 26 VI悪化運転パターン選択手段 27 CO悪化判定手段 28 CO悪化運転パターン選択手段 29 出力制御手段 30 交通量予測手段 31 煤煙発生量予測手段 32 必要換気量算出手段 33 換気機組合せ算出手段 34 VI・CO悪化運転パターン選択手段 35 デマンド制御運転算出手段 36 風速零化制御算出手段 37 出力制御手段 1 Measured smoke generation amount calculation means 2 Predicted smoke generation amount calculation means 3 Measured / predicted smoke generation amount correlation calculation means 4 Predicted smoke generation amount adjustment means 5 Measured CO generation amount calculation means 6 Predicted CO generation amount calculation means 7 Actual measurement / predicted CO Generation amount correlation calculating means 8 Predicted CO generation amount adjusting means 9 Di calculating means 10 Ci calculating means 11 Δa calculating means 12 Δa frequency distribution calculating means 13 a adjusting means 14 Dust collection efficiency calculating means 15 Basic ventilation amount calculating means 16 Air flow calculating means 17 operation calculation means 18 stop means 19 reverse operation means 200 0 m / s maintaining means 21 wind speed feedback control means 22 ventilation volume reduction calculation means 23 ventilation ventilation supplement calculation means 24 output control means 25 VI deterioration determination means 26 VI deterioration operation pattern selection means 27 CO deterioration determination means 28 CO deterioration operation pattern selection means 29 Output control means 30 Traffic Volume Prediction Means 31 Smoke Emission Prediction Means 32 Necessary Ventilation Volume Calculation Means 33 Ventilator Combination Calculation Means 34 VI / CO Deterioration Operation Pattern Selection Means 35 Demand Control Operation Calculation Means 36 Wind Speed Zero Control Calculation Means 37 Output Control Means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 瑞穂 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−185300(JP,A) 特開 平5−296000(JP,A) 特開 平6−33700(JP,A) 特開 平8−82199(JP,A) 特開 昭61−196099(JP,A) (58)調査した分野(Int.Cl.7,DB名) E21F 1/00 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mizuho Ishida 1006 Kazuma Kadoma, Kadoma City, Osaka Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-6-185300 (JP, A) JP-A-5-185 296000 (JP, A) JP-A-6-33700 (JP, A) JP-A-8-82199 (JP, A) JP-A-61-196099 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) E21F 1/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 トンネル内の煤煙発生量を予測する煤煙
発生量予測手段と、トンネル内のCO発生量を予測する
CO発生量予測手段と、前記煤煙発生量と前記CO発生
量とからトンネル内の換気量を算出する必要換気量算出
手段と、前記換気量から運転させる換気機の組合せを算
出する換気機組合せ算出手段とを具備した道路トンネル
用換気制御装置において、 前記煤煙発生量予測手段は、過去のVI(煤煙濃度)値
および過去の風速値より実測煤煙発生量を算出する実測
煤煙発生量算出手段と、実測された交通量から予測煤煙
発生量を算出する予測煤煙発生量算出手段と、前記実測
煤煙発生量と前記予測煤煙発生量とから相関関数を算出
して予測煤煙発生量(μ)の調整を行う予測煤煙発生量
調整手段とを具備し、 前記CO発生量予測手段は、過去のCO値および過去の
風速値より実測CO発生量を算出する実測CO発生量算
出手段と、実測交通量から予測CO発生量を算出する予
測CO発生量算出手段と、前記実測CO発生量と前記予
測CO発生量とから相関関数を算出して予測CO発生量
(μc)の調整を行う予測CO発生量調整手段とを具備
し、 前記換気機組合せ算出手段は、過去のVI値により求め
た煤煙濃度(Ki)と目標煤煙濃度(K0)との煤煙濃度
差(Di)と、換気電力量により求めた今回の制御周期
における換気機の運転容量(Pi)と前回の制御周期に
おける換気機の運転容量(Pi-1)との差を全換気機の
トータル容量(P0)で除した運転容量割合(Ci)とか
らファジィ推論によって前記煤煙濃度差(Di)と前記
運転容量割合(Ci)の制御の優先度合いを決めるウェ
イト(a)の調整を行うことにより算出する道路トンネ
ル用換気制御装置。
1. A smoke generation amount prediction means for predicting a smoke generation amount in a tunnel, a CO generation amount prediction means for predicting a CO generation amount in a tunnel, and a smoke generation amount in the tunnel based on the smoke generation amount and the CO generation amount. The ventilation control device for a road tunnel, comprising: a required ventilation amount calculating unit that calculates a ventilation amount of the vehicle; and a ventilator combination calculating unit that calculates a combination of a ventilator to be operated from the ventilation amount. A measured soot generation amount calculating means for calculating a measured soot generation amount from a past VI (smoke density) value and a past wind speed value, and a predicted soot generation amount calculating means for calculating a predicted soot generation amount from an actually measured traffic amount. Predictive smoke generation amount adjusting means for calculating a correlation function from the actually measured smoke generation amount and the predicted smoke generation amount to adjust the predicted smoke generation amount (μ). A measured CO generation amount calculating means for calculating a measured CO generation amount from a past CO value and a past wind speed value; a predicted CO generation amount calculating means for calculating a predicted CO generation amount from a measured traffic amount; And a predicted CO generation amount adjusting means for calculating a correlation function from the predicted CO generation amount and adjusting the predicted CO generation amount (μc), wherein the ventilator combination calculating means obtains a past VI value. Density difference (D i ) between the obtained soot concentration (K i ) and the target soot concentration (K 0 ), the operating capacity (P i ) of the ventilator in the current control cycle obtained from the ventilation power amount, and the previous control The soot concentration difference (D i ) by fuzzy inference from the operation capacity ratio (C i ) obtained by dividing the difference between the operation capacity (P i-1 ) of the ventilator in the cycle by the total capacity (P 0 ) of all the ventilators. priority and of the control of the operation capacity ratio (C i) Fits road tunnel ventilation control device calculated by adjusting the weight (a) determining the.
【請求項2】 トンネル内の煤煙発生量を予測する煤煙
発生量予測手段と、トンネル内のCO発生量を予測する
CO発生量予測手段と、前記煤煙発生量と前記CO発生
量とからトンネル内の換気量を算出する必要換気量算出
手段と、前記換気量から運転させる換気機の組合せを算
出する換気機組合せ算出手段とを具備した道路トンネル
用換気制御装置において、 前記換気機組合せ算出手段は、所定の換気区間の煤煙発
生量から前記換気区間の 換気量を算出する基本換気量算
出手段と、前記換気量を換気機の運転風量としこの風量
値を中心に所定間隔で風量を選択する風量選択手段と、
前記風量選択手段の出力である風量によって換気機の運
転組合せを選出する運転選出手段と、前記運転選出手段
において選出された運転組合せの中から最適組合せを選
択する最適運転組合せ選択手段と、過去のVI(煤煙濃
度)値により求めた煤煙濃度(K i )と目標煤煙濃度
(K 0 )との煤煙濃度差(D i )ならびに換気電力量によ
り求めた今回の制御周期における換気機の運転容量(P
i )と前回の制御周期における換気機の運転容量
(P i-1 )との差を全換気機のトータル容量(P 0 )で除
した運転容量割合(C i )とからファジィ推論によって
前記煤煙濃度差(D i )と前記運転容量割合(C i )の制
御の優先度合いを決めるウェイト(a)の調整を行う目
的関数とを有し、前記最適運転組合せ選択手段は前記目
的関数を計算して最も小さい値となった運転パターンを
最適運転組合せとする 道路トンネル用換気制御装置。
2. A soot for predicting an amount of soot generated in a tunnel.
Estimated amount of CO generated in tunnel
CO generation amount prediction means, the soot generation amount and the CO generation
Calculate the required ventilation volume to calculate the ventilation volume in the tunnel from the volume
The combination of the means and the ventilator to be operated is calculated from the ventilation volume.
Road tunnel provided with ventilator combination calculating means
In the ventilation control device for ventilation, the ventilator combination calculating means is configured to emit soot in a predetermined ventilation section.
Basic ventilation calculation to calculate the ventilation volume of the ventilation section from the raw volume
Outlet means, and the ventilation volume is the operating air volume of the ventilator.
Air volume selection means for selecting the air volume at predetermined intervals around the value,
The operation of the ventilator depends on the air volume output from the air volume selection means.
Driving selection means for selecting a rolling combination, and the driving selection means
Select the optimal combination from the driving combinations selected in
Means for selecting an optimal operation combination to be selected and a past VI (soot concentration)
Soot concentration (K i ) and target soot concentration obtained by
(K 0 ) and the difference in soot concentration (D i )
Operating capacity of the ventilator in this control cycle (P
i ) and the operating capacity of the ventilator in the previous control cycle
(P i-1 ) divided by the total capacity of all ventilators (P 0 )
Fuzzy inference from the calculated operating capacity ratio (C i )
Control of the soot concentration difference (D i ) and the operating capacity ratio (C i )
Adjustment of weight (a) to determine priority
And the optimal operation combination selecting means has an objective function.
Operation pattern that has the smallest value
Ventilation control device for road tunnel with optimal driving combination .
【請求項3】 トンネル内のVI(煤煙濃度)値によっ
て換気機の運転をさせるかどうか判定するVI悪化判定
手段と、前記VI値によって運転する換気機を選択する
VI悪化運転ターン設定選択手段と、トンネル内のCO
値によって換気機を運転させるかどうか判定するCO悪
化判定手段と、前記CO値によって運転する換気機を選
択するCO悪化運転パターン設定選択手段と、前記VI
悪化運転パターン設定選択手段および前記CO悪化運転
パターン設定選択手段の出力によって換気機を運転させ
る出力制御手段とを備え、前記VI悪化判定手段はVI
値によって悪化レベル2設定値以下を設定時限継続する
と悪化レベル2と判断し、また悪化レベル1設定以下を
設定時限継続すると悪化レベル1と判断し、前記悪化レ
ベルにより所定の換気機を運転させる道路トンネル用換
気制御装置。
3. A method according to VI (smoke density) in a tunnel.
VI deterioration judgment to determine whether to operate the ventilator
Means and selecting a ventilator to operate according to said VI value
VI worsening operation turn setting selecting means and CO in tunnel
CO bad to determine whether to operate the ventilator according to the value
And a ventilator to be operated based on the CO value.
Means for selecting and setting the CO worsening operation pattern,
Deterioration operation pattern setting selecting means and said CO deterioration operation
Operate the ventilator by the output of the pattern setting selection means.
Output control means, and the VI deterioration determination means
Deterioration level 2 or less is continued for the set time depending on the value
And worsening level 2 and worsening level 1 setting or less
If the set time period continues, it is determined that the level
A ventilation control device for a road tunnel that operates a predetermined ventilator by a bell .
JP07268996A 1996-03-27 1996-03-27 Ventilation control device for road tunnel Expired - Fee Related JP3228121B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07268996A JP3228121B2 (en) 1996-03-27 1996-03-27 Ventilation control device for road tunnel
TW86103050A TW381197B (en) 1996-03-27 1997-03-12 Ventilation control apparatus for a tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07268996A JP3228121B2 (en) 1996-03-27 1996-03-27 Ventilation control device for road tunnel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001039853A Division JP2001262997A (en) 2001-02-16 2001-02-16 Ventilation control unit for road tunnel

Publications (2)

Publication Number Publication Date
JPH09268899A JPH09268899A (en) 1997-10-14
JP3228121B2 true JP3228121B2 (en) 2001-11-12

Family

ID=13496597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07268996A Expired - Fee Related JP3228121B2 (en) 1996-03-27 1996-03-27 Ventilation control device for road tunnel

Country Status (2)

Country Link
JP (1) JP3228121B2 (en)
TW (1) TW381197B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248768A (en) * 2009-04-14 2010-11-04 Hitachi Ltd Road tunnel ventilation controller, and road tunnel ventilation control method

Also Published As

Publication number Publication date
JPH09268899A (en) 1997-10-14
TW381197B (en) 2000-02-01

Similar Documents

Publication Publication Date Title
KR101801631B1 (en) Building Facilities Energy Management Control System and Control Method thereof
JP3228121B2 (en) Ventilation control device for road tunnel
JP2003240286A (en) Ventilating system
JP2006016951A (en) Air conditioning system for underground space
JP2008267088A (en) Tunnel ventilation control apparatus
JP2001262997A (en) Ventilation control unit for road tunnel
JPH11229798A (en) Ventilation control system for road tunnel
JP3904506B2 (en) Tunnel ventilation control method and apparatus
JP4762086B2 (en) Tunnel ventilation control device
JPH09145109A (en) Ventilation automatic control device of road tunnel
JPH10131698A (en) Road tunnel ventilation control device
JP2007100503A (en) Method and apparatus for controlling tunnel ventilation
JP3098723B2 (en) Tunnel ventilation control device
JPH0613840B2 (en) Ventilation control method for central exhaust type automobile tunnel
JP2004285709A (en) Road tunnel ventilation control apparatus and computer program
JPH01235799A (en) Ventilation controller for road tunnel
JPH0925799A (en) Ventilation control device
JP4183963B2 (en) Dam water level control method, dam water level control system, and dam water level control program
WO2022269685A1 (en) Ventilation system
JP3204004B2 (en) Automatic tunnel ventilation control device and method
JP2541146B2 (en) Tunnel ventilation control method
JP2003232199A (en) Ventilation control method for tunnel
JPH08210686A (en) Air-conditioning system
JP2550178B2 (en) Tunnel ventilation control
JP2001182665A (en) Pump operation method, pump control device and recording medium therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees