WO2022269685A1 - Ventilation system - Google Patents

Ventilation system Download PDF

Info

Publication number
WO2022269685A1
WO2022269685A1 PCT/JP2021/023410 JP2021023410W WO2022269685A1 WO 2022269685 A1 WO2022269685 A1 WO 2022269685A1 JP 2021023410 W JP2021023410 W JP 2021023410W WO 2022269685 A1 WO2022269685 A1 WO 2022269685A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
room
dioxide concentration
ventilation
air supply
Prior art date
Application number
PCT/JP2021/023410
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 松村
宏治 内藤
辰旭 厳
隼人 森
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2021/023410 priority Critical patent/WO2022269685A1/en
Publication of WO2022269685A1 publication Critical patent/WO2022269685A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to ventilation systems.
  • Patent Document 1 describes that the control means changes the ventilation volume of the ventilation means according to the detection result of the volume detection means.
  • control means changes the ventilation rate according to the volume of the room detected by the volume detection means. there is room for
  • an object of the present invention is to provide a ventilation system that appropriately ventilates the target space.
  • the present invention provides a carbon dioxide concentration sensor that detects the carbon dioxide concentration in a target space, an air supply fan that supplies air to the target space, an exhaust fan that exhausts air from the target space, and a control unit that controls at least one of the air supply fan and the exhaust fan based on a change in the detected value of the carbon dioxide concentration sensor.
  • FIG. 3 is a schematic cross-sectional view of a ventilation unit included in the ventilation system according to the first embodiment
  • FIG. 4 is an explanatory diagram of a total heat exchanger of a ventilation unit included in the ventilation system according to the first embodiment
  • 1 is a functional block diagram of a ventilation system according to a first embodiment
  • FIG. 4 is an explanatory diagram of time-series data of carbon dioxide concentration when there is no active ventilation and time-series data of carbon dioxide concentration when active ventilation is performed in the ventilation system according to the first embodiment
  • FIG. 4 is an explanatory diagram relating to experimental results of changes in carbon dioxide concentrations in rooms and corridors in the ventilation system according to the first embodiment.
  • FIG. 4 is a flowchart of processing executed by a control device of a ventilation unit included in the ventilation system according to the first embodiment;
  • FIG. 4 is an explanatory diagram showing experimental results of changes in carbon dioxide concentrations in rooms and corridors in the ventilation system according to the first embodiment.
  • FIG. 10 is an explanatory diagram of experimental results showing the estimated number of people based on the carbon dioxide concentration and the actual number of people in the ventilation system according to the first embodiment;
  • 9 is a flowchart of processing executed by a control device of a ventilation unit included in the ventilation system according to the second embodiment;
  • FIG. 11 is a flow chart of processing executed by a control device of a ventilation unit included in a ventilation system according to a third embodiment;
  • FIG. 1 is an explanatory diagram of a ventilation system 100 according to the first embodiment.
  • a ventilation system 100 shown in FIG. 1 is a system for ventilating a room R1 (target space).
  • the ventilation system 100 includes a ventilation unit 10 and a plurality of carbon dioxide concentration sensors 21-24.
  • the ventilation unit 10 is a device that supplies fresh outdoor air to the room R1 and exhausts the air in the room R1 to the outside.
  • the ventilation unit 10 also has a function of exchanging heat between fresh outdoor air and the air in the room R1.
  • Such a ventilation unit 10 is installed, for example, in the ceiling space of the room R1.
  • the carbon dioxide concentration sensors 21 to 23 are sensors that detect the carbon dioxide concentration in the room R1 (target space).
  • a carbon dioxide concentration sensor 21 is installed on the indoor air suction side of the ventilation unit 10 .
  • another carbon dioxide concentration sensor 23 is also installed on the desk 41 of the room R1.
  • another carbon dioxide concentration sensor 24 is provided in a corridor R2 (adjacent space) adjacent to a room R1 (target space) with a wall 42 or a door 43 interposed therebetween.
  • This carbon dioxide concentration sensor 24 is a sensor that detects the carbon dioxide concentration in the corridor R2.
  • a detected value of the carbon dioxide concentration sensor 24 is output to the control device 18 (see FIG. 4) of the ventilation unit 10 .
  • FIG. 2 is a schematic cross-sectional view of a ventilation unit 10 provided in the ventilation system.
  • the outline arrow shown in FIG. 2 has shown the direction through which air flows. 2, illustration of the carbon dioxide concentration sensor 21 (see FIG. 1) provided in the ventilation unit 10 is omitted.
  • the ventilation unit 10 includes a housing 11, a total heat exchanger 12, an air supply fan 13, and an exhaust fan .
  • the housing 11 is a housing that accommodates the total heat exchanger 12, the air supply fan 13, the exhaust fan 14, and the like.
  • the housing 11 has an outdoor intake port 11a to which an outdoor air duct (not shown) is connected as an opening for introducing fresh air from the outdoors, and an indoor air inlet 11a to which an air supply duct 31 (see FIG. 1) is connected.
  • a blowout port 11b is provided.
  • the housing 11 also includes an indoor air intake port 11c connected to a return air duct 32 (see FIG. 1) as an opening for guiding air from the room R1 (see FIG. 1), and an exhaust duct (not shown). is provided with an outdoor outlet 11d to which is connected.
  • the total heat exchanger 12 is a heat exchanger that performs heat exchange (sensible heat/latent heat exchange) between fresh air from the outdoors and air from the room R1 (see FIG. 1).
  • the total heat exchanger 12 has a square prism shape and is installed so as to divide the internal space of the housing 11 into four regions. These four areas include an area 15a that guides fresh air from the outdoors to the total heat exchanger 12 via the outdoor intake port 11a, and an indoor outlet 11b that directs air heat-exchanged by the total heat exchanger 12. and a region 15b that leads to room R1 (see FIG. 1) through.
  • the remaining two regions include a region 15c that guides the air from the room R1 (see FIG. 1) to the total heat exchanger 12 through the indoor-side intake port 11c, and and a region 15d leading to the outside through the outlet 11d.
  • the air supply fan 13 shown in FIG. 2 is a fan that supplies air to the room R1 (target space), and is provided in the area 15b of the ventilation unit 10. By driving the air supply fan 13, fresh outdoor air is sucked and led to the total heat exchanger 12, and the air heat-exchanged in the total heat exchanger 12 is blown out to the room R1 (see FIG. 1). be done.
  • the air supply fan 13 is controlled by a controller 18 (see FIG. 4), which will be described later.
  • the exhaust fan 14 shown in FIG. 2 is a fan that exhausts air from the room R1 (target space), and is provided in the area 15d of the ventilation unit 10. As shown in FIG. By driving the exhaust fan 14, the air in the room R1 (see FIG. 1) is drawn in and led to the total heat exchanger 12, and the air heat-exchanged in the total heat exchanger 12 is blown out to the outdoors.
  • the exhaust fan 14 is controlled by a control device 18 (see FIG. 4), which will be described later.
  • the rotational speeds of the air supply fan 13 and the exhaust fan 14 are generally equal, but depending on the operation mode, the air supply fan 13 and the exhaust fan 14 may be driven at different rotational speeds. There is also
  • FIG. 3 is an explanatory diagram of the total heat exchanger 12 of the ventilation unit. 3 shows part of the heat exchange element 12m included in the total heat exchanger 12.
  • the heat exchange element 12m is formed with a flow path 121m that guides air flowing from the outdoors into the region 15a (see FIG. 2) of the ventilation unit 10 (see FIG. 2) to another region 15b (see FIG. 2).
  • the heat exchange element 12m is formed with a flow path 122m for guiding the air flowing from the room into the region 15c (see FIG. 2) of the ventilation unit 10 (see FIG. 2) to another region 15d (see FIG. 2).
  • These flow paths 121m and 122m are alternately provided in the stacking direction of the heat exchange elements 12m.
  • the flow paths 121m and 122m are formed such that the air flow directions are substantially perpendicular to each other. Note that FIG. 3 is an example, and the configuration of the total heat exchanger 12 is not limited to this.
  • FIG. 4 is a functional block diagram of the ventilation system 100.
  • the ventilation system 100 shown in FIG. 4 includes, in addition to the carbon dioxide concentration sensors 21 to 24 (see also FIG. 1), the air supply fan 13 (see also FIG. 2), and the exhaust fan 14 (see also FIG. 2), a remote controller 16, a remote control transmitting/receiving section 17, and a control device 18 (control section).
  • a remote controller 16 is a device operated by a user. By operating the remote control 16, selection of the operation mode of the ventilation unit 10 (see FIG. 2), setting change, and the like are performed.
  • the remote control transmitter/receiver 17 is a communication interface between the remote control 16 and the control device 18 .
  • the controller 18 controls the air supply fan 13 and the exhaust fan 14 based on changes in the detection values of the carbon dioxide concentration sensors 21-24.
  • the control device 18 includes electronic circuits such as a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and various interfaces (not shown) as a hardware configuration. Then, the program stored in the ROM is read out and developed in the RAM, and the CPU executes various processes. As shown in FIG. 4, the control device 18 includes a storage section 18a and a control section 18b.
  • the storage unit 18a stores in advance data such as a formula (formula (1) described below) used for estimating the number of people in the room R1 (see FIG. 1).
  • the storage unit 18a stores the momentary detection values of the carbon dioxide concentration sensors 21-24.
  • the control unit 18b executes predetermined processing based on the data stored in the storage unit 18a. As a specific example, the control unit 18b estimates the number of people n in the room R1 (see FIG. 1) based on the following formula (1).
  • Vr included in the formula (1) is the volume of the space (that is, the volume) of the room R1 (see FIG. 1). A method of calculating this volume Vr will be described later.
  • C included in the formula (1) is the carbon dioxide concentration in the room R1, which is detected by the carbon dioxide concentration sensors 21-23 (see FIG. 1). As such a carbon dioxide concentration C, for example, a value obtained by averaging detection values of the three carbon dioxide concentration sensors 21 to 23 is used.
  • n included in the formula (1) is the number of people in the room R1.
  • vh with a dot is the amount of carbon dioxide generated per person in the room. This dotted v h is, for example, 6.185 ⁇ 10 ⁇ 6 [m 3 /s], which is a known value.
  • the dotted Vv included in equation (1) is the amount of ventilation by the ventilation unit 10 (see FIG. 2), and is calculated based on the rotational speeds of the air supply fan 13 and the exhaust fan 14 .
  • the wind velocity when the air supply fan 13 and the exhaust fan 14 are driven at a predetermined rotational speed is measured in advance, and the measurement result is used as the ventilation volume. You may make it use for calculation.
  • C C included in equation (1) is the carbon dioxide concentration in the corridor R2 (see FIG. 1) and is detected by the carbon dioxide concentration sensor 24 provided in the corridor R2.
  • the dotted V C included in equation (1) is the flow rate of air leaking from room R1 (see FIG. 1) to corridor R2 (see FIG. 1).
  • the flow rate of the air leaking from the room R1 to the corridor R2 (dotted Vc) is specified as follows with respect to the formula (1). That is, the volume V r and the dotted V C described above fill the room R1 with high-concentration carbon dioxide at the construction stage (or the preliminary test stage) of the ventilation unit 10, and further, the carbon dioxide concentration in the room R1
  • the numerical value is specified by measuring the change over time.
  • the ventilation unit 10 (see FIG. 1) is installed, carbon dioxide concentration sensors 21 to 23 (see FIG. 1) are installed in the room R1, and another carbon dioxide concentration sensor 24 (see FIG. 1) is installed.
  • the following work is performed in a state of being installed in the corridor R2. That is, a worker uses a carbon dioxide cylinder (not shown) or dry ice (not shown) to fill the room R1 with high-concentration carbon dioxide. Then, the operator closes the door 43 (see FIG. 1) with the room R1 left unmanned, stops the ventilation unit 10 (that is, does not perform forced ventilation), and displays the time series of the carbon dioxide concentration in the room R1. Get data.
  • FIG. 5 is an explanatory diagram of time-series data of carbon dioxide concentration when there is no active ventilation and time-series data of carbon dioxide concentration when active ventilation is performed. Note that the horizontal axis of FIG. 5 is the elapsed time from the point at which the room R1 was filled with the high-concentration carbon dioxide concentration, and the vertical axis is the carbon dioxide concentration of the room R1. Even without forced ventilation, carbon dioxide leaks from the room R1 to the corridor R2 through the gap of the door 43 (see FIG. 1). Concentration gradually decreases. Such ventilation through the gap of the door 43 or the like is called natural ventilation.
  • the worker After acquiring the time-series data in natural ventilation (data of the thick line graph in FIG. 5), the worker uses a carbon dioxide cylinder (not shown) or dry ice (not shown) to move the room R1 (Fig. 1 ) is refilled with high-concentration carbon dioxide. Then, the worker closes the door 43 (see FIG. 1) while the room R1 is unmanned, and drives the air supply fan 13 and the exhaust fan 14 of the ventilation unit 10 (see FIG. 2) at a predetermined rotational speed. Time-series data of the carbon dioxide concentration in the room R1 is obtained while such forced ventilation is being performed.
  • FIG. 6 is an explanatory diagram relating to experimental results of changes in carbon dioxide concentrations in rooms and corridors.
  • the horizontal axis of FIG. 6 is the elapsed time from the time when the room R1 (see FIG. 1) was filled with high-concentration carbon dioxide, and the vertical axis is the concentration of carbon dioxide in the room R1.
  • the data in FIG. 6 are obtained when the room R1 (see FIG. 1) is filled with high-concentration carbon dioxide, the room R1 is unmanned, and forced ventilation is performed by the ventilation unit 10 (see FIG. 1). It is the time series data of the acquired carbon dioxide concentration.
  • the thick solid line graph in FIG. 6 is the carbon dioxide concentration actually measured in room R1 (see FIG. 1), and the thin solid line graph is the carbon dioxide concentration actually measured in corridor R2 (see FIG. 1). .
  • the dashed line graph in FIG. 6 shows the momentary change in room R1 when natural ventilation (dotted V C included in equation (1)) through a gap in door 43 (see FIG. 1) is taken into consideration. is the calculated value of the carbon dioxide concentration of
  • the dashed-dotted line graph in FIG. 6 is the hourly calculated value of the carbon dioxide concentration in the room R1 when natural ventilation through the gap of the door 43 (see FIG. 1) is not considered.
  • the calculated value of carbon dioxide concentration in room R1 (see FIG. 1) when natural ventilation is not taken into account has a certain degree of accuracy, but the actual carbon dioxide concentration in room R1 ( thick solid line).
  • the calculated carbon dioxide concentration in room R1 (dashed line) when natural ventilation is taken into account has a relatively small error from the actual carbon dioxide concentration (thick solid line) in room R1 (see FIG. 1). Therefore, even when using the formula (1) described above, the room can be The number of people in room R1 can be estimated with high accuracy.
  • the amount of ventilation (air volume) by the ventilation unit 10 (see FIG. 1) hardly changes the flow rate of natural ventilation from the room R1.
  • FIG. 7 is a flow chart of processing executed by the control device of the ventilation unit (see FIGS. 1 and 4 as appropriate). Note that at the time of "START" in FIG. 7, the volume of the space in the room R1 (V r in formula (1)) and the flow rate of air leaking from the room R1 to the corridor R2 (dotted V C in formula (1)) is already calculated and stored in the storage unit 18a of the control device 18 (see FIG. 4).
  • the control device 18 detects the carbon dioxide concentration of the room R1 and the like. Specifically, the control device 18 reads the detected values of the three carbon dioxide concentration sensors 21 to 23 in the room R1 and reads the detected value of the carbon dioxide concentration sensor 24 in the corridor R2. As the carbon dioxide concentration in the room R1, the controller 18 uses, for example, a value obtained by averaging the detection values of the three carbon dioxide concentration sensors 21-23.
  • FIG. 8 is an explanatory diagram showing experimental results of changes in carbon dioxide concentrations in rooms and corridors.
  • the horizontal axis of FIG. 8 is the time (from 7:00 in the morning to 21:00 at night), and the vertical axis is the concentration of carbon dioxide.
  • the thick solid line graph in FIG. 8 is the measured value of the carbon dioxide concentration in the room R1 (see FIG. 1).
  • the thin solid line graph in FIG. 8 is the measured value of the carbon dioxide concentration in the corridor R2 (see FIG. 1).
  • Each data in FIG. 8 was obtained in a state where the ventilation unit 10 was in operation after construction.
  • the concentration of carbon dioxide in the room R1 rises sharply from around 8:30 due to people coming to work, etc., and then the door 43 (see FIG. 1) opens.
  • the concentration of carbon dioxide fluctuates due to the comings and goings of people through the road, and the concentration of carbon dioxide gradually decreases from around 17:00 as people leave work.
  • the carbon dioxide concentration in the corridor R2 as shown in the thin solid line graph, after the carbon dioxide concentration rises from around 8:30, people pass through the door 43 (see FIG. 1).
  • the concentration of carbon dioxide fluctuates with entry and exit. Since the corridor R2 is not particularly ventilated, after 19:00, the concentration of carbon dioxide in the corridor R2 is higher than in the room R1 where forced ventilation is performed with few people in the room. .
  • the control device 18 After detecting the carbon dioxide concentration in the room R1 and the like in step S101, the control device 18 estimates the number of people in the room in step S102. That is, the control device 18 substitutes the detection result of the carbon dioxide concentration in step S101 into the equation (1) to calculate the number of people in the room R1 (target space). As described above, since the formula (1) also takes into consideration natural ventilation through the gap of the door 43 (see FIG. 1), etc., the number of people in the room can be increased based on the carbon dioxide concentration in the room R1. It can be estimated with accuracy.
  • FIG. 9 is an explanatory diagram of experimental results showing the estimated number of people based on the carbon dioxide concentration and the actual number of people.
  • the horizontal axis of FIG. 9 is the time (from 7:00 in the morning to 21:00 at night), and the vertical axis is the number of people in the room R1.
  • the solid line graph indicates that the control device 18 calculates the number of people in the room R1 during ventilation based on the change in the carbon dioxide concentration in the room R1 and the change in the carbon dioxide concentration in the corridor R2 in FIG. This is the estimated result.
  • the white circles in FIG. 9 indicate the actual number of people in the room R1. As shown in FIG. 9, even when the number of people in the room R1 changes (people come in and out through the door 43), the The number of people in the room is estimated with high accuracy.
  • control device 18 can detect changes in the detected values of the carbon dioxide concentration sensors 21 to 23 (see FIG. 1) provided in the room R1 (target space) and another carbon dioxide concentration provided in the corridor R2 (adjacent space). At least one of the air supply fan 13 and the exhaust fan 14 is controlled based on the change in the detected value of the carbon concentration sensor 24 (see FIG. 1).
  • the control device 18 calculates the amount of ventilation by the ventilation unit 10 in step S103. For example, the control device 18 multiplies the number of people in the room R1 (target space) estimated in step S102 by the required ventilation volume per person (for example, 30 [m 3 /h]). Based on this, the ventilation amount of the room R1 by the ventilation unit 10 is calculated. In this way, the controller 18 adjusts the amount of ventilation in response to changes in the number of people in the room R1.
  • a predetermined margin may be added to the value obtained by multiplying the number of people in the room by the required ventilation volume.
  • the controller 18 controls the air supply fan 13 and the exhaust fan 14 in step S104. That is, the control device 18 controls the motors of the air supply fan 13 and the exhaust fan 14 so that the amount of air calculated in step S103 is supplied/exhausted.
  • the control device 18 increases the rate of increase in the rotational speed of the air supply fan 13 and the rate of increase in the rotational speed of the exhaust fan 14 as the rate of change in carbon dioxide concentration in the room R1 (target space) increases. is preferred. As a result, it is possible to appropriately increase or decrease the ventilation rate of the room R1 based on the rate of change in the carbon dioxide concentration.
  • the control device 18 may control only one of the air supply fan 13 and the exhaust fan 14 in step S104. That is, the controller 18 (control section) may control at least one of the air supply fan 13 and the exhaust fan 14 based on changes in the detected values of the carbon dioxide concentration sensors 21-24.
  • control device 18 increases at least one of the rotation speed of air supply fan 13 and the rotation speed of exhaust fan 14. preferably. As a result, the amount of ventilation in the room R1 is increased, so that an increase in the carbon dioxide concentration can be suppressed, and the transmission of pathogens from person to person can be suppressed.
  • the control device 18 increases the rotation speed of the air supply fan 13 and the exhaust fan 14 as the number of people in the room R1 (target space) increases based on the change in the detected value of the carbon dioxide concentration. . As a result, as the number of people (estimated value) in the room R1 increases, the flow rate of fresh air supplied to the room R1 also increases, so that the room R1 can be properly ventilated.
  • the control device 18 controls the air supply fan 13 and the exhaust fan 14 based on the value obtained by multiplying the number of people in the room R1 (target space) by the required ventilation amount per person. do. Therefore, an appropriate amount of air is supplied to the room R1 according to the number of people in the room. As a result, the air volume of the ventilation unit 10 is prevented from becoming excessively large, so the power consumption of the ventilation unit 10 can be reduced. Also, whether the number of persons in the room is relatively large or small, an appropriate amount of air is supplied to the room R1. After performing the process of step S104 in FIG. 7, the process of the control device 18 returns to "START"("RETURN"). Thus, the control device 18 repeats the series of processes shown in FIG.
  • controller 18 changes the rotational speeds of the air supply fan 13 and the exhaust fan 14, these rotational speeds may be increased or decreased stepwise.
  • the control device 18 may drive each of the air supply fan 13 and the exhaust fan 14 at any one of three stages of high speed, medium speed, and low speed. This eliminates the need to continuously change the rotational speeds of the air supply fan 13 and the exhaust fan 14, thereby eliminating the need for an inverter (not shown). Therefore, the manufacturing cost of the ventilation unit 10 can be reduced.
  • control device 18 causes the remote control 16 (see FIG. 4) to display the value obtained by multiplying the number of people in the room R1 (see FIG. 1) by the required ventilation amount per person, and displays the actual ventilation.
  • the amount may be displayed on the remote controller 16 .
  • the ventilation volume when the necessary ventilation volume of fresh air is supplied to each person in the room (calculated ventilation volume) and the actual ventilation volume (for example, the ventilation volume when it is increased or decreased in 3 stages)
  • the user can grasp the magnitude of . Therefore, it is possible for the user to feel that the ventilation is properly performed, and it can be used as a reference when the administrator considers a system change or the like.
  • the above display may be performed not only on the remote controller 16 (see FIG. 4) but also on a mobile terminal (not shown) such as a mobile phone, a smart phone, or a tablet.
  • the control device 18 controls the carbon dioxide concentration of the room R1 (see FIG. 1), which is the target space, as well as the carbon dioxide concentration of the corridor R2 (see FIG. 1) adjacent to the room R1. Based on, the number of persons in the room R1 is estimated. As a result, the control device 18 can accurately estimate the number of people in the room R1, taking into account natural ventilation through the gap of the door 43 (see FIG. 1) and the like. Also, even if the number of people in the room changes due to the entrance and exit of people through the door 43, the control device 18 can estimate the number of people in the room at every moment with high accuracy. Moreover, since there is no particular need to install a camera (not shown) for detecting people in the room in the ventilation unit 10, the manufacturing cost of the ventilation unit 10 can be reduced.
  • control device 18 controls at least one of the air supply fan 13 and the exhaust fan 14 based on changes in the detection values of the carbon dioxide concentration sensors 21-24.
  • the control is performed such that the ventilation rate is increased.
  • the amount of ventilation does not increase until the concentration of carbon dioxide in room R1 reaches a predetermined threshold, so there is a problem in that the ventilation of room R1 is difficult to progress.
  • the ventilation rate is controlled based on changes in the carbon dioxide concentration in the room R1.
  • Device 18 is enabled to increase ventilation. Therefore, the room R1 can be properly ventilated.
  • control device 18 calculates the ventilation volume of the ventilation unit 10 by multiplying the number of people in the room based on the carbon dioxide concentration by the required ventilation volume per person. As a result, fresh air can be supplied to the room R1 (see FIG. 1) in just the right amount, so that insufficient ventilation of the room R1 can be suppressed, and an increase in power consumption associated with excessive ventilation can be suppressed. In addition, since the room R1 is properly ventilated, even if a person's exhalation contains a pathogen such as a virus, it is possible to suppress the infection of other persons.
  • the control device 18 notifies the user of the time. Others (such as the configuration of the ventilation system 100: see FIGS. 1 to 4) are the same as in the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 10 is a flowchart of processing executed by the control device of the ventilation unit provided in the ventilation system according to the second embodiment (see FIGS. 1 and 4 as appropriate). Note that steps S101 to S104 in FIG. 10 are the same as those in the first embodiment (see FIG. 7), so description thereof will be omitted.
  • the control device 18 determines whether the air supply fan 13 and the exhaust fan 14 are driven at the minimum air volume in step S205.
  • the "minimum air volume” is an air volume corresponding to the lower limit of rotation speed (value greater than zero) of the motor (not shown) of the air supply fan 13 and the motor (not shown) of the exhaust fan 14. Yes, it is preset.
  • step S205 if the air supply fan 13 and the exhaust fan 14 are driven at the minimum air volume (S205: Yes), the process of the control device 18 proceeds to step S206.
  • step S205 when the air supply fan 13 and the exhaust fan 14 are driven at an air volume larger than the minimum air volume (S205: No), the process of the control device 18 returns to "START" ("RETURN").
  • step S206 the control device 18 determines whether or not the total required ventilation volume is smaller than the actual ventilation volume. That is, the control device 18 determines whether or not the value obtained by multiplying the required ventilation volume per person by the estimated number of people in the room R1 (total required ventilation volume) is smaller than the current actual ventilation volume. determine whether In step S206, if the total required ventilation volume is smaller than the actual ventilation volume (S206: Yes), the process of the control device 18 proceeds to step S207. On the other hand, in step S206, if the total required ventilation volume is greater than or equal to the actual ventilation volume (S206: No), the process of the control device 18 returns to "START" ("RETURN").
  • step S207 the control device 18 notifies the user that there is room for energy saving. That is, when each of the air supply fan 13 and the exhaust fan 14 is driven at the minimum air volume (S205: Yes), the control device 18 determines the number of people in the room R1 (target space) and the number of people per person. When the value obtained by multiplying the required ventilation volume by is less than the minimum air volume (S206: Yes), the remote controller 16 (see FIG. 4) or portable terminal (not shown) displays that there is room for energy saving.
  • the control device 18 when the air supply fan 13 and the exhaust fan 14 are driven at the minimum air volume (S205 in FIG. 10: Yes), when the total required ventilation volume is smaller than the actual ventilation volume ( S206: Yes), the control device 18 notifies the user that there is room for energy saving (S207). As a result, even when the method of adjusting the air volume of the ventilation unit 10 is changed, it is possible to achieve further energy saving.
  • FIG. 11 is a flowchart of processing executed by the control device of the ventilation unit provided in the ventilation system according to the third embodiment (see FIGS. 1 and 4 as appropriate). Note that steps S101 to S104 in FIG. 11 are the same as those in the first embodiment (see FIG. 7), so description thereof will be omitted.
  • the control device 18 determines whether or not the concentration of carbon dioxide in the room R1 is equal to or higher than a predetermined value in step S305. For example, the control device 18 determines whether or not the average value of the detection values of the three carbon dioxide concentration sensors 21 to 23 provided in the room R1 is equal to or greater than a predetermined value.
  • predetermined value is a threshold value that serves as a criterion for determining whether or not to increase the rotation speed of the air supply fan 13 and the exhaust fan 14 regardless of the estimated number of people in the room R1, and is set in advance. ing.
  • the control device 18 may determine that the condition of step S305 is satisfied.
  • step S305 if the carbon dioxide concentration in room R1 is greater than or equal to the predetermined value (S305: Yes), the process of control device 18 proceeds to step S306. On the other hand, in step S305, if the carbon dioxide concentration in the room R1 is less than the predetermined value (S305: No), the process of the control device 18 returns to "START" ("RETURN").
  • step S306 the control device 18 increases the rotational speeds of the air supply fan 13 and the exhaust fan 14. In this way, even if the current ventilation volume is greater than the total required ventilation volume (value obtained by multiplying the number of people in the room R1 by the required ventilation volume per person), the control device 18 When the concentration of carbon dioxide in (the target space) is equal to or higher than the predetermined value (S305: Yes), the rotational speeds of the air supply fan 13 and the exhaust fan 14 are increased (S306). As a result, the amount of fresh air supplied to the room R1 increases, so the carbon dioxide concentration in the room R1 can be lowered to an appropriate range.
  • step S306 After performing the process of step S306, the process of the control device 18 returns to "START" ("RETURN"). Then, the control device 18 increases the rotation speeds of the air supply fan 13 and the exhaust fan 14 until the carbon dioxide concentration in the room R1 becomes less than the predetermined value (S306).
  • the control device 18 increases the rotational speeds of the air supply fan 13 and the exhaust fan 14 (S306). As a result, the amount of fresh air supplied to the room R1 increases, so the carbon dioxide concentration in the room R1 can be lowered to an appropriate range.
  • the present invention is not limited to this.
  • the remote controller 16 can confirm that the air supply fan 13 and the exhaust fan 14 are driven at the minimum air volume. (See FIG. 4) or may be displayed on a portable terminal (not shown). This can be used as a reference when the user stops ventilation by operating the remote control 16 or the like.
  • control device 18 causes the remote controller 16 (see FIG. 4) or a portable terminal (not shown) to display a value obtained by multiplying the estimated number of people in the room by the required ventilation volume per person, and displays the value in the room R1.
  • the natural ventilation amount (leakage amount per unit time) may be displayed on the remote control 16 or the portable terminal. If the above value is equal to or less than the natural ventilation amount, there is no problem even if the ventilation by the ventilation unit 10 is stopped.
  • the control device 18 may cause the remote controller 16 or a portable terminal (not shown) to display information including the total required ventilation volume, the natural ventilation volume, and the actual ventilation volume. Such a display can also be used as a reference when the user stops ventilation by operating the remote controller 16 or the like.
  • the control device 18 stops the ventilation by the ventilation unit 10. good too. Thereby, the power consumption of the ventilation unit 10 can be further reduced.
  • the present invention is not limited to this.
  • the number of carbon dioxide concentration sensors provided in room R1 may be one, two, or four or more.
  • a plurality of carbon dioxide concentration sensors may be provided in the corridor R2 (see FIG. 1).
  • each embodiment demonstrated the structure provided with the ventilation unit 10 (refer FIG. 2) with the total heat exchanger 12 (refer FIG. 2), it does not restrict to this.
  • each embodiment can be applied to various types of ventilation units such as a configuration in which the total heat exchanger 12 is omitted and air is simply supplied and exhausted.
  • an air conditioning unit (not shown) for cooling operation and heating operation may be provided.
  • the ventilation unit 10 and the air conditioning unit may be independent of each other, or may be connected to each other via a communication line.
  • each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace part of the configuration of each embodiment with another configuration. Further, the mechanisms and configurations described above show those considered necessary for explanation, and do not necessarily show all the mechanisms and configurations on the product.
  • ventilation system 10 ventilation unit 21, 22, 23 carbon dioxide concentration sensor 24 carbon dioxide concentration sensor (another carbon dioxide concentration sensor) 12 total heat exchanger 13 air supply fan 14 exhaust fan 16 remote control 18 control device (control unit) 42 Wall 43 Door R1 Room (target space) R2 corridor (adjacent space)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

Provided is a ventilation system for appropriately ventilating a given space. A ventilation system (100) is provided with carbon dioxide concentration sensors (21-23) for detecting the carbon dioxide concentration in a room, an air supply fan (13) for supplying air to the room, an exhaust fan (14) for exhausting air from the room, and a control device (18) for controlling the air supply fan (13) and/or the exhaust fan (14) on the basis of variations in detection values of the carbon dioxide concentration sensors (21-23).

Description

換気システムventilation system
 本発明は、換気システムに関する。 The present invention relates to ventilation systems.
 近年、新型コロナウイルス等の感染拡大に伴い、部屋の換気が特に推奨されている。このような換気に関して、例えば、特許文献1には、容積検出手段の検出結果に応じて、制御手段が換気手段の換気量を変更することが記載されている。 In recent years, due to the spread of infections such as the new coronavirus, it is particularly recommended to ventilate the room. Regarding such ventilation, for example, Patent Document 1 describes that the control means changes the ventilation volume of the ventilation means according to the detection result of the volume detection means.
特開2020-148374号公報JP 2020-148374 A
 特許文献1に記載の技術では、容積検出手段によって検出された部屋の容積に応じて、制御手段が換気量を変更するようにしているが、部屋(対象空間)の換気量をさらに適切に調節する余地がある。 In the technique described in Patent Document 1, the control means changes the ventilation rate according to the volume of the room detected by the volume detection means. there is room for
 そこで、本発明は、対象空間の換気を適切に行う換気システムを提供することを課題とする。 Therefore, an object of the present invention is to provide a ventilation system that appropriately ventilates the target space.
 前記した課題を解決するために、本発明は、対象空間の二酸化炭素濃度を検出する二酸化炭素濃度センサと、前記対象空間に給気する給気ファンと、前記対象空間から排気する排気ファンと、前記二酸化炭素濃度センサの検出値の変化に基づいて、前記給気ファン及び前記排気ファンのうち少なくとも一方を制御する制御部と、を備えることとした。 In order to solve the above-described problems, the present invention provides a carbon dioxide concentration sensor that detects the carbon dioxide concentration in a target space, an air supply fan that supplies air to the target space, an exhaust fan that exhausts air from the target space, and a control unit that controls at least one of the air supply fan and the exhaust fan based on a change in the detected value of the carbon dioxide concentration sensor.
 本発明によれば、対象空間の換気を適切に行う換気システムを提供できる。 According to the present invention, it is possible to provide a ventilation system that appropriately ventilates the target space.
第1実施形態に係る換気システムの説明図である。It is an explanatory view of a ventilation system concerning a 1st embodiment. 第1実施形態に係る換気システムが備える換気ユニットの模式的な断面図である。FIG. 3 is a schematic cross-sectional view of a ventilation unit included in the ventilation system according to the first embodiment; 第1実施形態に係る換気システムが備える換気ユニットの全熱交換器に関する説明図である。FIG. 4 is an explanatory diagram of a total heat exchanger of a ventilation unit included in the ventilation system according to the first embodiment; 第1実施形態に係る換気システムの機能ブロック図である。1 is a functional block diagram of a ventilation system according to a first embodiment; FIG. 第1実施形態に係る換気システムにおいて、強制換気がない場合の二酸化炭素濃度の時系列データ、及び、強制換気が行われた場合の二酸化炭素濃度の時系列データの説明図である。FIG. 4 is an explanatory diagram of time-series data of carbon dioxide concentration when there is no active ventilation and time-series data of carbon dioxide concentration when active ventilation is performed in the ventilation system according to the first embodiment; 第1実施形態に係る換気システムにおいて、部屋や廊下の二酸化炭素濃度の変化の実験結果に関する説明図である。FIG. 4 is an explanatory diagram relating to experimental results of changes in carbon dioxide concentrations in rooms and corridors in the ventilation system according to the first embodiment. 第1実施形態に係る換気システムが備える換気ユニットの制御装置が実行する処理のフローチャートである。4 is a flowchart of processing executed by a control device of a ventilation unit included in the ventilation system according to the first embodiment; 第1実施形態に係る換気システムにおいて、部屋や廊下の二酸化炭素濃度の変化の実験結果を示す説明図である。FIG. 4 is an explanatory diagram showing experimental results of changes in carbon dioxide concentrations in rooms and corridors in the ventilation system according to the first embodiment. 第1実施形態に係る換気システムにおいて、二酸化炭素濃度に基づく推定人数と、実際の人数と、を示す実験結果の説明図である。FIG. 10 is an explanatory diagram of experimental results showing the estimated number of people based on the carbon dioxide concentration and the actual number of people in the ventilation system according to the first embodiment; 第2実施形態に係る換気システムが備える換気ユニットの制御装置が実行する処理のフローチャートである。9 is a flowchart of processing executed by a control device of a ventilation unit included in the ventilation system according to the second embodiment; 第3実施形態に係る換気システムが備える換気ユニットの制御装置が実行する処理のフローチャートである。FIG. 11 is a flow chart of processing executed by a control device of a ventilation unit included in a ventilation system according to a third embodiment; FIG.
≪第1実施形態≫
 図1は、第1実施形態に係る換気システム100の説明図である。
 図1に示す換気システム100は、部屋R1(対象空間)の換気を行うシステムである。図1に示すように、換気システム100は、換気ユニット10と、複数の二酸化炭素濃度センサ21~24と、を備えている。
 換気ユニット10は、屋外の新鮮な空気を部屋R1に供給するとともに、部屋R1の空気を屋外に排出する装置である。また、換気ユニット10は、屋外の新鮮な空気と、部屋R1の空気と、の間で熱交換を行う機能も有している。このような換気ユニット10は、例えば、部屋R1の天井裏に設置されている。
<<First embodiment>>
FIG. 1 is an explanatory diagram of a ventilation system 100 according to the first embodiment.
A ventilation system 100 shown in FIG. 1 is a system for ventilating a room R1 (target space). As shown in FIG. 1, the ventilation system 100 includes a ventilation unit 10 and a plurality of carbon dioxide concentration sensors 21-24.
The ventilation unit 10 is a device that supplies fresh outdoor air to the room R1 and exhausts the air in the room R1 to the outside. The ventilation unit 10 also has a function of exchanging heat between fresh outdoor air and the air in the room R1. Such a ventilation unit 10 is installed, for example, in the ceiling space of the room R1.
 そして、屋外から外気ダクト(図示せず)を介して換気ユニット10に導かれた新鮮な空気が、後記する全熱交換器12(図2参照)で熱交換し、熱交換した空気が給気ダクト31を介して部屋R1に導かれるようになっている。また、部屋R1から還気ダクト32を介して換気ユニット10に導かれた空気が、全熱交換器12(図2参照)で熱交換し、熱交換した空気が排気ダクト(図示せず)を介して屋外に導かれるようになっている。 Then, fresh air introduced from the outdoors through an outside air duct (not shown) to the ventilation unit 10 is heat-exchanged in a total heat exchanger 12 (see FIG. 2) described later, and the heat-exchanged air is supplied. Through the duct 31, it is guided to the room R1. In addition, the air introduced from the room R1 to the ventilation unit 10 through the return air duct 32 exchanges heat in the total heat exchanger 12 (see FIG. 2), and the heat-exchanged air passes through the exhaust duct (not shown). It is designed to be led to the outdoors through.
 二酸化炭素濃度センサ21~23は、部屋R1(対象空間)の二酸化炭素濃度を検出するセンサである。図1の例では、換気ユニット10における室内空気の吸込側に二酸化炭素濃度センサ21が設置されている。また、部屋R1の壁42に二酸化炭素濃度センサ22が設置されている他、部屋R1の机41にも別の二酸化炭素濃度センサ23が設置されている。このように複数の二酸化炭素濃度センサ21~23を用いることで、部屋R1の二酸化炭素濃度の分布に偏りがある場合でも、部屋R1の平均的な二酸化炭素濃度を算出できる。それぞれの二酸化炭素濃度センサ21~23の検出値は、換気ユニット10の制御装置18(図4参照)に出力される。 The carbon dioxide concentration sensors 21 to 23 are sensors that detect the carbon dioxide concentration in the room R1 (target space). In the example of FIG. 1, a carbon dioxide concentration sensor 21 is installed on the indoor air suction side of the ventilation unit 10 . In addition to the carbon dioxide concentration sensor 22 installed on the wall 42 of the room R1, another carbon dioxide concentration sensor 23 is also installed on the desk 41 of the room R1. By using a plurality of carbon dioxide concentration sensors 21 to 23 in this way, even if the carbon dioxide concentration distribution in the room R1 is uneven, the average carbon dioxide concentration in the room R1 can be calculated. The detected values of the carbon dioxide concentration sensors 21 to 23 are output to the control device 18 (see FIG. 4) of the ventilation unit 10. FIG.
 図1に示すように、部屋R1(対象空間)に壁42又はドア43を介して隣り合っている廊下R2(隣接空間)には、別の二酸化炭素濃度センサ24が設けられている。この二酸化炭素濃度センサ24は、廊下R2の二酸化炭素濃度を検出するセンサである。二酸化炭素濃度センサ24の検出値は、換気ユニット10の制御装置18(図4参照)に出力される。 As shown in FIG. 1, another carbon dioxide concentration sensor 24 is provided in a corridor R2 (adjacent space) adjacent to a room R1 (target space) with a wall 42 or a door 43 interposed therebetween. This carbon dioxide concentration sensor 24 is a sensor that detects the carbon dioxide concentration in the corridor R2. A detected value of the carbon dioxide concentration sensor 24 is output to the control device 18 (see FIG. 4) of the ventilation unit 10 .
 図2は、換気システムが備える換気ユニット10の模式的な断面図である。
 なお、図2に示す白抜き矢印は、空気が流れる向きを示している。また、図2では、換気ユニット10に設けられる二酸化炭素濃度センサ21(図1参照)の図示を省略している。
 図2に示すように、換気ユニット10は、ハウジング11と、全熱交換器12と、給気ファン13と、排気ファン14と、を備えている。ハウジング11は、全熱交換器12や給気ファン13、排気ファン14等を収容する筐体である。ハウジング11には、屋外からの新鮮な空気を導く開口部として、外気ダクト(図示せず)が接続される室外側吸込口11aと、給気ダクト31(図1参照)が接続される室内側吹出口11bと、が設けられている。また、ハウジング11には、部屋R1(図1参照)からの空気を導く開口部として、還気ダクト32(図1参照)が接続される室内側吸込口11cと、排気ダクト(図示せず)が接続される室外側吹出口11dと、が設けられている。
FIG. 2 is a schematic cross-sectional view of a ventilation unit 10 provided in the ventilation system.
In addition, the outline arrow shown in FIG. 2 has shown the direction through which air flows. 2, illustration of the carbon dioxide concentration sensor 21 (see FIG. 1) provided in the ventilation unit 10 is omitted.
As shown in FIG. 2, the ventilation unit 10 includes a housing 11, a total heat exchanger 12, an air supply fan 13, and an exhaust fan . The housing 11 is a housing that accommodates the total heat exchanger 12, the air supply fan 13, the exhaust fan 14, and the like. The housing 11 has an outdoor intake port 11a to which an outdoor air duct (not shown) is connected as an opening for introducing fresh air from the outdoors, and an indoor air inlet 11a to which an air supply duct 31 (see FIG. 1) is connected. A blowout port 11b is provided. The housing 11 also includes an indoor air intake port 11c connected to a return air duct 32 (see FIG. 1) as an opening for guiding air from the room R1 (see FIG. 1), and an exhaust duct (not shown). is provided with an outdoor outlet 11d to which is connected.
 全熱交換器12は、屋外からの新鮮な空気と、部屋R1(図1参照)からの空気と、の間で熱交換(顕熱・潜熱の交換)が行われる熱交換器である。全熱交換器12は、四角柱状を呈し、ハウジング11の内部空間を4つの領域に分けるように設置されている。これら4つの領域には、屋外からの新鮮な空気を室外側吸込口11aを介して全熱交換器12に導く領域15aと、全熱交換器12で熱交換した空気を室内側吹出口11bを介して部屋R1(図1参照)に導く領域15bと、が含まれている。残り2つの領域には、部屋R1(図1参照)からの空気を室内側吸込口11cを介して全熱交換器12に導く領域15cと、全熱交換器12で熱交換した空気を室外側吹出口11dを介して屋外に導く領域15dと、が含まれている。 The total heat exchanger 12 is a heat exchanger that performs heat exchange (sensible heat/latent heat exchange) between fresh air from the outdoors and air from the room R1 (see FIG. 1). The total heat exchanger 12 has a square prism shape and is installed so as to divide the internal space of the housing 11 into four regions. These four areas include an area 15a that guides fresh air from the outdoors to the total heat exchanger 12 via the outdoor intake port 11a, and an indoor outlet 11b that directs air heat-exchanged by the total heat exchanger 12. and a region 15b that leads to room R1 (see FIG. 1) through. The remaining two regions include a region 15c that guides the air from the room R1 (see FIG. 1) to the total heat exchanger 12 through the indoor-side intake port 11c, and and a region 15d leading to the outside through the outlet 11d.
 図2に示す給気ファン13は、部屋R1(対象空間)に給気するファンであり、換気ユニット10の領域15bに設けられている。給気ファン13が駆動することで、屋外の新鮮な空気が吸い込まれて全熱交換器12に導かれ、さらに、全熱交換器12で熱交換した空気が部屋R1(図1参照)に吹き出される。なお、給気ファン13は、後記する制御装置18(図4参照)によって制御される。 The air supply fan 13 shown in FIG. 2 is a fan that supplies air to the room R1 (target space), and is provided in the area 15b of the ventilation unit 10. By driving the air supply fan 13, fresh outdoor air is sucked and led to the total heat exchanger 12, and the air heat-exchanged in the total heat exchanger 12 is blown out to the room R1 (see FIG. 1). be done. The air supply fan 13 is controlled by a controller 18 (see FIG. 4), which will be described later.
 図2に示す排気ファン14は、部屋R1(対象空間)から排気するファンであり、換気ユニット10の領域15dに設けられている。排気ファン14が駆動することで、部屋R1(図1参照)の空気が吸い込まれて全熱交換器12に導かれ、さらに、全熱交換器12で熱交換した空気が屋外に吹き出される。なお、排気ファン14は、後記する制御装置18(図4参照)によって制御される。
 また、換気ユニット10の駆動中は、通常、給気ファン13と排気ファン14の回転速度は略等しいが、運転モードによっては、給気ファン13と排気ファン14が異なる回転速度で駆動されることもある。
The exhaust fan 14 shown in FIG. 2 is a fan that exhausts air from the room R1 (target space), and is provided in the area 15d of the ventilation unit 10. As shown in FIG. By driving the exhaust fan 14, the air in the room R1 (see FIG. 1) is drawn in and led to the total heat exchanger 12, and the air heat-exchanged in the total heat exchanger 12 is blown out to the outdoors. The exhaust fan 14 is controlled by a control device 18 (see FIG. 4), which will be described later.
Further, while the ventilation unit 10 is being driven, the rotational speeds of the air supply fan 13 and the exhaust fan 14 are generally equal, but depending on the operation mode, the air supply fan 13 and the exhaust fan 14 may be driven at different rotational speeds. There is also
 図3は、換気ユニットの全熱交換器12に関する説明図である。
 なお、図3には、全熱交換器12が備える熱交換エレメント12mの一部を示している。熱交換エレメント12mには、屋外から換気ユニット10(図2参照)の領域15a(図2参照)に流入する空気を別の領域15b(図2参照)に導く流路121mが形成されている。また、熱交換エレメント12mには、室内から換気ユニット10(図2参照)の領域15c(図2参照)に流入する空気を別の領域15d(図2参照)に導く流路122mが形成されている。これらの流路121m,122mは、熱交換エレメント12mの積層方向において交互に設けられている。また、流路121m,122mのそれぞれは、空気の通流方向が互いに略垂直になるように形成されている。なお、図3は一例であり、全熱交換器12の構成はこれに限定されるものではない。
FIG. 3 is an explanatory diagram of the total heat exchanger 12 of the ventilation unit.
3 shows part of the heat exchange element 12m included in the total heat exchanger 12. As shown in FIG. The heat exchange element 12m is formed with a flow path 121m that guides air flowing from the outdoors into the region 15a (see FIG. 2) of the ventilation unit 10 (see FIG. 2) to another region 15b (see FIG. 2). Further, the heat exchange element 12m is formed with a flow path 122m for guiding the air flowing from the room into the region 15c (see FIG. 2) of the ventilation unit 10 (see FIG. 2) to another region 15d (see FIG. 2). there is These flow paths 121m and 122m are alternately provided in the stacking direction of the heat exchange elements 12m. Further, the flow paths 121m and 122m are formed such that the air flow directions are substantially perpendicular to each other. Note that FIG. 3 is an example, and the configuration of the total heat exchanger 12 is not limited to this.
 図4は、換気システム100の機能ブロック図である。
 図4に示す換気システム100は、前記した二酸化炭素濃度センサ21~24(図1も参照)や給気ファン13(図2も参照)、排気ファン14(図2も参照)の他に、リモコン16と、リモコン送受信部17と、制御装置18(制御部)と、を備えている。
 リモコン16は、ユーザによって操作される機器である。リモコン16の操作によって、換気ユニット10(図2参照)の運転モードの選択や設定変更等が行われる。リモコン送受信部17は、リモコン16と制御装置18との間の通信インタフェースである。
FIG. 4 is a functional block diagram of the ventilation system 100. As shown in FIG.
The ventilation system 100 shown in FIG. 4 includes, in addition to the carbon dioxide concentration sensors 21 to 24 (see also FIG. 1), the air supply fan 13 (see also FIG. 2), and the exhaust fan 14 (see also FIG. 2), a remote controller 16, a remote control transmitting/receiving section 17, and a control device 18 (control section).
A remote controller 16 is a device operated by a user. By operating the remote control 16, selection of the operation mode of the ventilation unit 10 (see FIG. 2), setting change, and the like are performed. The remote control transmitter/receiver 17 is a communication interface between the remote control 16 and the control device 18 .
 制御装置18は、二酸化炭素濃度センサ21~24の検出値の変化に基づいて、給気ファン13及び排気ファン14を制御する。制御装置18は、ハードウェア構成として、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。図4に示すように、制御装置18は、記憶部18aと、制御部18bと、を備えている。 The controller 18 controls the air supply fan 13 and the exhaust fan 14 based on changes in the detection values of the carbon dioxide concentration sensors 21-24. The control device 18 includes electronic circuits such as a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and various interfaces (not shown) as a hardware configuration. Then, the program stored in the ROM is read out and developed in the RAM, and the CPU executes various processes. As shown in FIG. 4, the control device 18 includes a storage section 18a and a control section 18b.
 記憶部18aには、所定のプログラムの他、部屋R1(図1参照)の在室者の人数推定に用いられる数式(次に説明する式(1))のデータ等が予め格納されている。その他にも、記憶部18aには、二酸化炭素濃度センサ21~24の時々刻々の検出値が格納される。制御部18bは、記憶部18aに格納されたデータに基づいて、所定の処理を実行する。具体例を挙げると、制御部18bは、以下の式(1)に基づいて、部屋R1(図1参照)の在室者の人数nを推定する。 In addition to a predetermined program, the storage unit 18a stores in advance data such as a formula (formula (1) described below) used for estimating the number of people in the room R1 (see FIG. 1). In addition, the storage unit 18a stores the momentary detection values of the carbon dioxide concentration sensors 21-24. The control unit 18b executes predetermined processing based on the data stored in the storage unit 18a. As a specific example, the control unit 18b estimates the number of people n in the room R1 (see FIG. 1) based on the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)に含まれるVは部屋R1(図1参照)の空間の体積(つまり、容積)である。この体積Vの算出方法については後記する。式(1)に含まれるCは、部屋R1の二酸化炭素濃度であり、二酸化炭素濃度センサ21~23(図1参照)によって検出される。このような二酸化炭素濃度Cとして、例えば、3つの二酸化炭素濃度センサ21~23の検出値を平均した値が用いられる。 Note that Vr included in the formula (1) is the volume of the space (that is, the volume) of the room R1 (see FIG. 1). A method of calculating this volume Vr will be described later. C included in the formula (1) is the carbon dioxide concentration in the room R1, which is detected by the carbon dioxide concentration sensors 21-23 (see FIG. 1). As such a carbon dioxide concentration C, for example, a value obtained by averaging detection values of the three carbon dioxide concentration sensors 21 to 23 is used.
 式(1)に含まれるnは、部屋R1の在室者の人数である。また、ドット付きのvは、在室者の一人当たりの二酸化炭素発生量である。このドット付きのvは、例えば、6.185×10-6[m/s]であり、既知の値である。式(1)に含まれるCは、屋外の二酸化炭素濃度である。この屋外の二酸化炭素濃度Cは、例えば、400[ppm](=0.0004[m/m])であり、既知の値である。 The n included in the formula (1) is the number of people in the room R1. Also, vh with a dot is the amount of carbon dioxide generated per person in the room. This dotted v h is, for example, 6.185×10 −6 [m 3 /s], which is a known value. C 0 included in equation (1) is the outdoor carbon dioxide concentration. This outdoor carbon dioxide concentration C 0 is, for example, 400 [ppm] (=0.0004 [m 3 /m 3 ]), which is a known value.
 式(1)に含まれるドット付きのVは、換気ユニット10(図2参照)による換気量であり、給気ファン13や排気ファン14の回転速度に基づいて算出される。なお、換気ユニット10に接続されている各ダクトの断面積の他、給気ファン13や排気ファン14を所定の回転速度で駆動させたときの風速を予め測定し、その測定結果を換気量の算出に用いるようにしてもよい。式(1)に含まれるCは、廊下R2(図1参照)の二酸化炭素濃度であり、廊下R2に設けられた二酸化炭素濃度センサ24によって検出される。 The dotted Vv included in equation (1) is the amount of ventilation by the ventilation unit 10 (see FIG. 2), and is calculated based on the rotational speeds of the air supply fan 13 and the exhaust fan 14 . In addition to the cross-sectional area of each duct connected to the ventilation unit 10, the wind velocity when the air supply fan 13 and the exhaust fan 14 are driven at a predetermined rotational speed is measured in advance, and the measurement result is used as the ventilation volume. You may make it use for calculation. C C included in equation (1) is the carbon dioxide concentration in the corridor R2 (see FIG. 1) and is detected by the carbon dioxide concentration sensor 24 provided in the corridor R2.
 式(1)に含まれるドット付きのVは部屋R1(図1参照)から廊下R2(図1参照)に漏れ出る空気の流量である。なお、式(1)に関して、部屋R1の空間の体積Vの他、部屋R1から廊下R2に漏れ出る空気の流量(ドット付きのV)は、次のようにして特定される。すなわち、前記した体積Vやドット付きのVは、換気ユニット10の施工段階(又は事前の試験段階)で部屋R1に高濃度の二酸化炭素を充填し、さらに、部屋R1の二酸化炭素濃度の時系列的な変化を測定することで、その数値が特定される。 The dotted V C included in equation (1) is the flow rate of air leaking from room R1 (see FIG. 1) to corridor R2 (see FIG. 1). In addition to the volume Vr of the space of the room R1, the flow rate of the air leaking from the room R1 to the corridor R2 (dotted Vc) is specified as follows with respect to the formula (1). That is, the volume V r and the dotted V C described above fill the room R1 with high-concentration carbon dioxide at the construction stage (or the preliminary test stage) of the ventilation unit 10, and further, the carbon dioxide concentration in the room R1 The numerical value is specified by measuring the change over time.
 例えば、換気ユニット10(図1参照)が設置され、さらに、二酸化炭素濃度センサ21~23(図1参照)が部屋R1に設置されるとともに、別の二酸化炭素濃度センサ24(図1参照)が廊下R2に設置された状態で、次の作業が行われる。すなわち、作業員が二酸化炭素ボンベ(図示せず)又はドライアイス(図示せず)を用いて、部屋R1に高濃度の二酸化炭素を充填する。そして、部屋R1を無人にした状態で作業員がドア43(図1参照)を閉め、換気ユニット10を停止状態(つまり、強制換気なしの状態)にして、部屋R1の二酸化炭素濃度の時系列データを取得する。 For example, the ventilation unit 10 (see FIG. 1) is installed, carbon dioxide concentration sensors 21 to 23 (see FIG. 1) are installed in the room R1, and another carbon dioxide concentration sensor 24 (see FIG. 1) is installed. The following work is performed in a state of being installed in the corridor R2. That is, a worker uses a carbon dioxide cylinder (not shown) or dry ice (not shown) to fill the room R1 with high-concentration carbon dioxide. Then, the operator closes the door 43 (see FIG. 1) with the room R1 left unmanned, stops the ventilation unit 10 (that is, does not perform forced ventilation), and displays the time series of the carbon dioxide concentration in the room R1. Get data.
 図5は、強制換気がない場合の二酸化炭素濃度の時系列データ、及び、強制換気が行われた場合の二酸化炭素濃度の時系列データの説明図である。
 なお、図5の横軸は、部屋R1に高濃度の二酸化炭素濃度が充填された時点からの経過時間であり、縦軸は、部屋R1の二酸化炭素濃度である。強制換気なしの場合でも、ドア43(図1参照)の隙間等を介して、部屋R1から廊下R2に二酸化炭素が漏れ出るため、図5の太線のグラフに示すように、部屋R1の二酸化炭素濃度は徐々に低下する。このようなドア43の隙間等を介した換気を自然換気という。
FIG. 5 is an explanatory diagram of time-series data of carbon dioxide concentration when there is no active ventilation and time-series data of carbon dioxide concentration when active ventilation is performed.
Note that the horizontal axis of FIG. 5 is the elapsed time from the point at which the room R1 was filled with the high-concentration carbon dioxide concentration, and the vertical axis is the carbon dioxide concentration of the room R1. Even without forced ventilation, carbon dioxide leaks from the room R1 to the corridor R2 through the gap of the door 43 (see FIG. 1). Concentration gradually decreases. Such ventilation through the gap of the door 43 or the like is called natural ventilation.
 自然換気での時系列データ(図5の太線のグラフのデータ)を取得した後、作業員が二酸化炭素ボンベ(図示せず)又はドライアイス(図示せず)を用いて、部屋R1(図1参照)に高濃度の二酸化炭素を再び充填する。そして、部屋R1を無人にした状態で作業員がドア43(図1参照)を閉め、換気ユニット10(図2参照)の給気ファン13及び排気ファン14を所定の回転速度で駆動させる。このような強制換気が行われている状態で、部屋R1の二酸化炭素濃度の時系列データが取得される。 After acquiring the time-series data in natural ventilation (data of the thick line graph in FIG. 5), the worker uses a carbon dioxide cylinder (not shown) or dry ice (not shown) to move the room R1 (Fig. 1 ) is refilled with high-concentration carbon dioxide. Then, the worker closes the door 43 (see FIG. 1) while the room R1 is unmanned, and drives the air supply fan 13 and the exhaust fan 14 of the ventilation unit 10 (see FIG. 2) at a predetermined rotational speed. Time-series data of the carbon dioxide concentration in the room R1 is obtained while such forced ventilation is being performed.
 この場合には、ドア43(図1参照)の隙間等を介した自然換気の他、換気ユニット10(図1参照)による強制換気が行われる。したがって、図5の細線のグラフに示すように、強制換気なし(つまり、自然換気のみ)の場合よりも、部屋R1(図1参照)の二酸化炭素濃度が急勾配で低下する。これら2つの時系列データに基づいて、式(1)における部屋R1の空間の体積Vの他、部屋R1から廊下R2に漏れ出る空気の流量であるドット付きのVが算出され、記憶部18a(図4参照)に格納される。このように、ドア43の隙間等を介した自然換気も考慮することで、二酸化炭素濃度の検出値に基づいて、部屋R1の在室者の人数を高精度に推定できる。 In this case, forced ventilation is performed by the ventilation unit 10 (see FIG. 1) in addition to natural ventilation through the gap of the door 43 (see FIG. 1). Therefore, as shown in the thin line graph in FIG. 5, the carbon dioxide concentration in room R1 (see FIG. 1) drops more steeply than in the case of no forced ventilation (that is, only natural ventilation). Based on these two pieces of time - series data, in addition to the volume Vr of the space of the room R1 in the equation (1), the dotted Vc, which is the flow rate of the air leaking from the room R1 to the corridor R2, is calculated, and the storage unit 18a (see FIG. 4). In this way, by considering natural ventilation through the gap of the door 43, etc., the number of people in the room R1 can be estimated with high accuracy based on the detected value of the carbon dioxide concentration.
 図6は、部屋や廊下の二酸化炭素濃度の変化の実験結果に関する説明図である。
 図6の横軸は、部屋R1(図1参照)に高濃度の二酸化炭素が充填された時点からの経過時間であり、縦軸は、部屋R1の二酸化炭素濃度である。なお、図6の各データは、部屋R1(図1参照)に高濃度の二酸化炭素を充填した後、部屋R1を無人にして、換気ユニット10(図1参照)で強制換気を行ったときに取得された二酸化炭素濃度の時系列データである。
FIG. 6 is an explanatory diagram relating to experimental results of changes in carbon dioxide concentrations in rooms and corridors.
The horizontal axis of FIG. 6 is the elapsed time from the time when the room R1 (see FIG. 1) was filled with high-concentration carbon dioxide, and the vertical axis is the concentration of carbon dioxide in the room R1. The data in FIG. 6 are obtained when the room R1 (see FIG. 1) is filled with high-concentration carbon dioxide, the room R1 is unmanned, and forced ventilation is performed by the ventilation unit 10 (see FIG. 1). It is the time series data of the acquired carbon dioxide concentration.
 また、図6の太い実線のグラフは、部屋R1(図1参照)で実測された二酸化炭素濃度であり、細い実線のグラフは、廊下R2(図1参照)で実測された二酸化炭素濃度である。また、図6の破線のグラフは、ドア43(図1参照)の隙間等を介した自然換気(式(1)に含まれるドット付きのV)を考慮した場合における、部屋R1の時々刻々の二酸化炭素濃度の計算値である。一方、図6の一点鎖線のグラフは、ドア43(図1参照)の隙間等を介した自然換気を考慮しない場合における、部屋R1の時々刻々の二酸化炭素濃度の計算値である。 The thick solid line graph in FIG. 6 is the carbon dioxide concentration actually measured in room R1 (see FIG. 1), and the thin solid line graph is the carbon dioxide concentration actually measured in corridor R2 (see FIG. 1). . Also, the dashed line graph in FIG. 6 shows the momentary change in room R1 when natural ventilation (dotted V C included in equation (1)) through a gap in door 43 (see FIG. 1) is taken into consideration. is the calculated value of the carbon dioxide concentration of On the other hand, the dashed-dotted line graph in FIG. 6 is the hourly calculated value of the carbon dioxide concentration in the room R1 when natural ventilation through the gap of the door 43 (see FIG. 1) is not considered.
 図6に示すように、自然換気を考慮しない場合の部屋R1(図1参照)の二酸化炭素濃度の計算値(一点鎖線)は、ある程度の精度を有するものの、部屋R1の実際の二酸化炭素濃度(太い実線)に対して乖離している。一方、自然換気を考慮した場合の部屋R1の二酸化炭素濃度の計算値(破線)は、部屋R1(図1参照)の実際の二酸化炭素濃度(太い実線)との誤差が比較的小さい。したがって、前記した式(1)を用いる際にも、ドア43(図1参照)の隙間等を介した自然換気(式(1)に含まれるドット付きのV)を考慮することで、部屋R1の在室者の人数を高精度に推定できる。なお、換気ユニット10(図1参照)による換気量(風量)の大小によって、部屋R1からの自然換気の流量が変化することはほとんどない。 As shown in FIG. 6, the calculated value of carbon dioxide concentration in room R1 (see FIG. 1) when natural ventilation is not taken into account (one-dot chain line) has a certain degree of accuracy, but the actual carbon dioxide concentration in room R1 ( thick solid line). On the other hand, the calculated carbon dioxide concentration in room R1 (dashed line) when natural ventilation is taken into account has a relatively small error from the actual carbon dioxide concentration (thick solid line) in room R1 (see FIG. 1). Therefore, even when using the formula (1) described above, the room can be The number of people in room R1 can be estimated with high accuracy. The amount of ventilation (air volume) by the ventilation unit 10 (see FIG. 1) hardly changes the flow rate of natural ventilation from the room R1.
 図7は、換気ユニットの制御装置が実行する処理のフローチャートである(適宜、図1、図4を参照)。
 なお、図7の「START」時には、部屋R1の空間の体積(式(1)のV)や、部屋R1から廊下R2に漏れ出る空気の流量(式(1)のドット付きのV)が既に計算されて、制御装置18(図4参照)の記憶部18aに格納されているものとする。
 図7のステップS101において制御装置18は、部屋R1等の二酸化炭素濃度を検出する。具体的に説明すると、制御装置18は、部屋R1の3つの二酸化炭素濃度センサ21~23の検出値を読み込むとともに、廊下R2の二酸化炭素濃度センサ24の検出値を読み込む。なお、部屋R1の二酸化炭素濃度として、制御装置18は、例えば、3つの二酸化炭素濃度センサ21~23の検出値を平均した値を用いる。
FIG. 7 is a flow chart of processing executed by the control device of the ventilation unit (see FIGS. 1 and 4 as appropriate).
Note that at the time of "START" in FIG. 7, the volume of the space in the room R1 (V r in formula (1)) and the flow rate of air leaking from the room R1 to the corridor R2 (dotted V C in formula (1)) is already calculated and stored in the storage unit 18a of the control device 18 (see FIG. 4).
In step S101 of FIG. 7, the control device 18 detects the carbon dioxide concentration of the room R1 and the like. Specifically, the control device 18 reads the detected values of the three carbon dioxide concentration sensors 21 to 23 in the room R1 and reads the detected value of the carbon dioxide concentration sensor 24 in the corridor R2. As the carbon dioxide concentration in the room R1, the controller 18 uses, for example, a value obtained by averaging the detection values of the three carbon dioxide concentration sensors 21-23.
 図8は、部屋や廊下の二酸化炭素濃度の変化の実験結果を示す説明図である。
 なお、図8の横軸は時刻(朝の7時~夜の21時)であり、縦軸は二酸化炭素濃度である。また、図8の太い実線のグラフは、部屋R1(図1参照)の二酸化炭素濃度の実測値である。一方、図8の細い実線のグラフは、廊下R2(図1参照)の二酸化炭素濃度の実測値である。なお、図8の各データは、施工後に換気ユニット10が駆動している状況で取得されたものである。
FIG. 8 is an explanatory diagram showing experimental results of changes in carbon dioxide concentrations in rooms and corridors.
Note that the horizontal axis of FIG. 8 is the time (from 7:00 in the morning to 21:00 at night), and the vertical axis is the concentration of carbon dioxide. Also, the thick solid line graph in FIG. 8 is the measured value of the carbon dioxide concentration in the room R1 (see FIG. 1). On the other hand, the thin solid line graph in FIG. 8 is the measured value of the carbon dioxide concentration in the corridor R2 (see FIG. 1). Each data in FIG. 8 was obtained in a state where the ventilation unit 10 was in operation after construction.
 図8の例では、太い実線のグラフに示すように、人の出勤等に伴って8時半頃から部屋R1(図1参照)の二酸化炭素濃度が急上昇した後、ドア43(図1参照)を介した人の出入りで二酸化炭素濃度が増減し、さらに、人の退勤等に伴って17時頃から二酸化炭素濃度が徐々に低下している。一方、廊下R2(図1参照)の二酸化炭素濃度については、細い実線のグラフに示すように、8時半頃から二酸化炭素濃度が上昇した後、ドア43(図1参照)を介した人の出入りで二酸化炭素濃度が増減している。なお、廊下R2の換気は特に行われないため、19時以後は、在室者が少ない状態で強制換気が行われている部屋R1よりも、廊下R2の方が二酸化炭素濃度が高くなっている。 In the example of FIG. 8, as shown in the thick solid line graph, the concentration of carbon dioxide in the room R1 (see FIG. 1) rises sharply from around 8:30 due to people coming to work, etc., and then the door 43 (see FIG. 1) opens. The concentration of carbon dioxide fluctuates due to the comings and goings of people through the road, and the concentration of carbon dioxide gradually decreases from around 17:00 as people leave work. On the other hand, as for the carbon dioxide concentration in the corridor R2 (see FIG. 1), as shown in the thin solid line graph, after the carbon dioxide concentration rises from around 8:30, people pass through the door 43 (see FIG. 1). The concentration of carbon dioxide fluctuates with entry and exit. Since the corridor R2 is not particularly ventilated, after 19:00, the concentration of carbon dioxide in the corridor R2 is higher than in the room R1 where forced ventilation is performed with few people in the room. .
 再び、図7に戻って説明を続ける。
 ステップS101において部屋R1等の二酸化炭素濃度を検出した後、ステップS102において制御装置18は、在室者の人数を推定する。すなわち、制御装置18は、ステップS101の二酸化炭素濃度の検出結果を式(1)に代入して、部屋R1(対象空間)の在室者の人数を算出する。前記したように、式(1)では、ドア43(図1参照)の隙間等を介した自然換気も考慮されているため、部屋R1の二酸化炭素濃度に基づいて、在室者の人数を高精度に推定できる。
Again, return to FIG. 7 and continue the description.
After detecting the carbon dioxide concentration in the room R1 and the like in step S101, the control device 18 estimates the number of people in the room in step S102. That is, the control device 18 substitutes the detection result of the carbon dioxide concentration in step S101 into the equation (1) to calculate the number of people in the room R1 (target space). As described above, since the formula (1) also takes into consideration natural ventilation through the gap of the door 43 (see FIG. 1), etc., the number of people in the room can be increased based on the carbon dioxide concentration in the room R1. It can be estimated with accuracy.
 図9は、二酸化炭素濃度に基づく推定人数と、実際の人数と、を示す実験結果の説明図である。
 なお、図9の横軸は時刻(朝の7時~夜の21時)であり、縦軸は部屋R1の在室者の人数である。また、実線のグラフは、前記した図8における部屋R1の二酸化炭素濃度の変化や、廊下R2の二酸化炭素濃度の変化に基づいて、換気中に制御装置18が部屋R1の在室者の人数を推定した結果である。一方、図9の白抜きの丸印は、部屋R1の在室者の実際の人数である。図9に示すように、部屋R1の在室者の人数が変化する(ドア43を介した人の出入りがある)場合でも、部屋R1や廊下R2の二酸化炭素濃度の検出値に基づいて、在室者の人数が高精度に推定されている。
FIG. 9 is an explanatory diagram of experimental results showing the estimated number of people based on the carbon dioxide concentration and the actual number of people.
Note that the horizontal axis of FIG. 9 is the time (from 7:00 in the morning to 21:00 at night), and the vertical axis is the number of people in the room R1. Further, the solid line graph indicates that the control device 18 calculates the number of people in the room R1 during ventilation based on the change in the carbon dioxide concentration in the room R1 and the change in the carbon dioxide concentration in the corridor R2 in FIG. This is the estimated result. On the other hand, the white circles in FIG. 9 indicate the actual number of people in the room R1. As shown in FIG. 9, even when the number of people in the room R1 changes (people come in and out through the door 43), the The number of people in the room is estimated with high accuracy.
 このように、制御装置18は、部屋R1(対象空間)に設けられる二酸化炭素濃度センサ21~23(図1参照)の検出値の変化、及び、廊下R2(隣接空間)に設けられる別の二酸化炭素濃度センサ24(図1参照)の検出値の変化に基づいて、給気ファン13及び排気ファン14のうち少なくとも一方を制御する。 In this way, the control device 18 can detect changes in the detected values of the carbon dioxide concentration sensors 21 to 23 (see FIG. 1) provided in the room R1 (target space) and another carbon dioxide concentration provided in the corridor R2 (adjacent space). At least one of the air supply fan 13 and the exhaust fan 14 is controlled based on the change in the detected value of the carbon concentration sensor 24 (see FIG. 1).
 再び、図7に戻って説明を続ける。
 ステップS102において部屋R1の在室者の人数を推定した後、ステップS103において制御装置18は、換気ユニット10による換気量を算出する。例えば、制御装置18は、ステップS102で推定した部屋R1(対象空間)の在室者の人数と、一人当たりの必要換気量(例えば、30[m/h])と、を乗算した値に基づいて、換気ユニット10による部屋R1の換気量を算出する。このように、部屋R1の人数の変化に対応して、制御装置18が換気量を調節するようにしている。
Again, return to FIG. 7 and continue the description.
After estimating the number of people in the room R1 in step S102, the control device 18 calculates the amount of ventilation by the ventilation unit 10 in step S103. For example, the control device 18 multiplies the number of people in the room R1 (target space) estimated in step S102 by the required ventilation volume per person (for example, 30 [m 3 /h]). Based on this, the ventilation amount of the room R1 by the ventilation unit 10 is calculated. In this way, the controller 18 adjusts the amount of ventilation in response to changes in the number of people in the room R1.
 なお、制御装置18が換気量を算出する際、在室者の人数と必要換気量とを乗算した値に、所定のマージン(余裕)を上乗せするようにしてもよい。これによって、在室者の実際の人数に対して、二酸化炭素濃度に基づく推定人数が若干少なかった場合でも、部屋R1の換気不足を抑制できる。 When the control device 18 calculates the ventilation volume, a predetermined margin may be added to the value obtained by multiplying the number of people in the room by the required ventilation volume. As a result, even if the estimated number of people based on the carbon dioxide concentration is slightly smaller than the actual number of people in the room, insufficient ventilation in the room R1 can be suppressed.
 次に、ステップS104において制御装置18は、給気ファン13及び排気ファン14を制御する。すなわち、制御装置18は、ステップS103で算出した換気量の空気が給気・排気されるように、給気ファン13及び排気ファン14の各モータを制御する。なお、制御装置18は、部屋R1(対象空間)の二酸化炭素濃度の変化速度が高いほど、給気ファン13の回転速度の上昇幅、及び、排気ファン14の回転速度の上昇幅をそれぞれ大きくすることが好ましい。これによって、二酸化炭素濃度の変化速度に基づいて、部屋R1の換気量を適切に増加又は減少させることができる。
 なお、ステップS104において制御装置18は、給気ファン13、排気ファン14の一方だけを制御してもよい。すなわち、制御装置18(制御部)が、二酸化炭素濃度センサ21~24の検出値の変化に基づいて、給気ファン13及び排気ファン14のうち少なくとも一方を制御するようにしてもよい。
Next, the controller 18 controls the air supply fan 13 and the exhaust fan 14 in step S104. That is, the control device 18 controls the motors of the air supply fan 13 and the exhaust fan 14 so that the amount of air calculated in step S103 is supplied/exhausted. The control device 18 increases the rate of increase in the rotational speed of the air supply fan 13 and the rate of increase in the rotational speed of the exhaust fan 14 as the rate of change in carbon dioxide concentration in the room R1 (target space) increases. is preferred. As a result, it is possible to appropriately increase or decrease the ventilation rate of the room R1 based on the rate of change in the carbon dioxide concentration.
Note that the control device 18 may control only one of the air supply fan 13 and the exhaust fan 14 in step S104. That is, the controller 18 (control section) may control at least one of the air supply fan 13 and the exhaust fan 14 based on changes in the detected values of the carbon dioxide concentration sensors 21-24.
 また、部屋R1(対象空間)の二酸化炭素濃度の上昇速度が所定値以上である場合、制御装置18は、給気ファン13の回転速度、及び、排気ファン14の回転速度のうち少なくとも一方を大きくすることが好ましい。これによって、部屋R1の換気量が増加するため、二酸化炭素濃度の増加を抑制できる他、人から人への病原体の感染等を抑制できる。
 また、制御装置18は、二酸化炭素濃度の検出値の変化に基づく部屋R1(対象空間)の在室者の人数が多いほど、給気ファン13及び排気ファン14の回転速度を高くすることが好ましい。これによって、部屋R1の在室者の人数(推定値)が多いほど、部屋R1に供給される新鮮な空気の流量も多くなるため、部屋R1の換気を適切に行うことができる。
Further, when the rate of increase in carbon dioxide concentration in room R1 (target space) is equal to or greater than a predetermined value, control device 18 increases at least one of the rotation speed of air supply fan 13 and the rotation speed of exhaust fan 14. preferably. As a result, the amount of ventilation in the room R1 is increased, so that an increase in the carbon dioxide concentration can be suppressed, and the transmission of pathogens from person to person can be suppressed.
In addition, it is preferable that the control device 18 increases the rotation speed of the air supply fan 13 and the exhaust fan 14 as the number of people in the room R1 (target space) increases based on the change in the detected value of the carbon dioxide concentration. . As a result, as the number of people (estimated value) in the room R1 increases, the flow rate of fresh air supplied to the room R1 also increases, so that the room R1 can be properly ventilated.
 制御装置18は、前記したように、部屋R1(対象空間)の在室者の人数と、一人当たりの必要換気量と、を乗算した値に基づいて、給気ファン13及び排気ファン14を制御する。したがって、在室者の人数に応じた過不足のない量の空気が部屋R1に供給される。これによって、換気ユニット10の風量が過度に大きくなることが抑制されるため、換気ユニット10の消費電力量を削減できる。また、在室者の人数が比較的多い場合でも、また、比較的少ない場合でも、いずれにおいても、適量の空気が部屋R1に供給される。
 図7のステップS104の処理を行った後、制御装置18の処理は「START」に戻る(「RETURN」)。このようにして、制御装置18は、図7に示す一連の処理を繰り返す。
As described above, the control device 18 controls the air supply fan 13 and the exhaust fan 14 based on the value obtained by multiplying the number of people in the room R1 (target space) by the required ventilation amount per person. do. Therefore, an appropriate amount of air is supplied to the room R1 according to the number of people in the room. As a result, the air volume of the ventilation unit 10 is prevented from becoming excessively large, so the power consumption of the ventilation unit 10 can be reduced. Also, whether the number of persons in the room is relatively large or small, an appropriate amount of air is supplied to the room R1.
After performing the process of step S104 in FIG. 7, the process of the control device 18 returns to "START"("RETURN"). Thus, the control device 18 repeats the series of processes shown in FIG.
 なお、制御装置18が、給気ファン13及び排気ファン14の回転速度を変化させる際、これらの回転速度を段階的に増加又は減少させるようにしてもよい。例えば、制御装置18が給気ファン13及び排気ファン14のそれぞれを、高速・中速・低速の3段階のいずれかで駆動させるようにしてもよい。これによって、給気ファン13及び排気ファン14の回転速度を連続的に変化させる必要がなくなるため、インバータ(図示せず)が不要になる。したがって、換気ユニット10の製造コストを削減できる。 It should be noted that when the controller 18 changes the rotational speeds of the air supply fan 13 and the exhaust fan 14, these rotational speeds may be increased or decreased stepwise. For example, the control device 18 may drive each of the air supply fan 13 and the exhaust fan 14 at any one of three stages of high speed, medium speed, and low speed. This eliminates the need to continuously change the rotational speeds of the air supply fan 13 and the exhaust fan 14, thereby eliminating the need for an inverter (not shown). Therefore, the manufacturing cost of the ventilation unit 10 can be reduced.
 また、制御装置18が、部屋R1(図1参照)の在室者の人数と、一人当たりの必要換気量と、を乗算した値をリモコン16(図4参照)に表示させるとともに、実際の換気量をリモコン16に表示させるようにしてもよい。これによって、各在室者に必要換気量の新鮮な空気が供給される場合の換気量(計算上の換気量)と、実際の換気量(例えば、3段階で増減される場合の換気量)と、の大小をユーザが把握できる。したがって、換気が過不足なく行われていることをユーザが実感できる他、管理者がシステム変更等を検討する際の参考にすることもできる。なお、リモコン16(図4参照)に限らず、携帯電話やスマートフォン、タブレット等の携帯端末(図示せず)に、前記した表示が行われるようにしてもよい。 In addition, the control device 18 causes the remote control 16 (see FIG. 4) to display the value obtained by multiplying the number of people in the room R1 (see FIG. 1) by the required ventilation amount per person, and displays the actual ventilation. The amount may be displayed on the remote controller 16 . As a result, the ventilation volume when the necessary ventilation volume of fresh air is supplied to each person in the room (calculated ventilation volume) and the actual ventilation volume (for example, the ventilation volume when it is increased or decreased in 3 stages) The user can grasp the magnitude of . Therefore, it is possible for the user to feel that the ventilation is properly performed, and it can be used as a reference when the administrator considers a system change or the like. Note that the above display may be performed not only on the remote controller 16 (see FIG. 4) but also on a mobile terminal (not shown) such as a mobile phone, a smart phone, or a tablet.
 第1実施形態によれば、制御装置18は、対象空間である部屋R1(図1参照)の二酸化炭素濃度の他、この部屋R1に隣接している廊下R2(図1参照)の二酸化炭素濃度に基づいて、部屋R1の在室者の人数を推定する。これによって、ドア43(図1参照)の隙間等を介した自然換気も考慮に入れた上で、制御装置18が部屋R1の在室者の人数を高精度に推定できる。また、ドア43を介した人の出入りで在室者の人数が変化するような場合でも、制御装置18は、時々刻々の在室者の人数を高精度に推定できる。また、在室者を検出するためのカメラ(図示せず)を換気ユニット10に設置する必要が特にないため、換気ユニット10の製造コストを削減できる。 According to the first embodiment, the control device 18 controls the carbon dioxide concentration of the room R1 (see FIG. 1), which is the target space, as well as the carbon dioxide concentration of the corridor R2 (see FIG. 1) adjacent to the room R1. Based on, the number of persons in the room R1 is estimated. As a result, the control device 18 can accurately estimate the number of people in the room R1, taking into account natural ventilation through the gap of the door 43 (see FIG. 1) and the like. Also, even if the number of people in the room changes due to the entrance and exit of people through the door 43, the control device 18 can estimate the number of people in the room at every moment with high accuracy. Moreover, since there is no particular need to install a camera (not shown) for detecting people in the room in the ventilation unit 10, the manufacturing cost of the ventilation unit 10 can be reduced.
 また、制御装置18は、二酸化炭素濃度センサ21~24の検出値の変化に基づいて、給気ファン13及び排気ファン14のうち少なくとも一方を制御する。なお、従来は、部屋R1の二酸化炭素濃度の値が所定閾値に達した場合に換気量を増加させるといった制御が行われていた。このような制御では、部屋R1の二酸化炭素濃度が所定閾値に達するまでは換気量が増加しないため、部屋R1の換気が進みにくいという点で問題があった。これに対して、第1実施形態では、前記したように、部屋R1の二酸化炭素濃度の変化に基づいて換気量が制御されるため、部屋R1の二酸化炭素濃度が比較的高くなる前に、制御装置18が換気量を増加させることが可能になる。したがって、部屋R1の換気を適切に行うことができる。
 また、制御装置18は、二酸化炭素濃度に基づく在室者の人数に、一人当たりの必要換気量を乗算することで、換気ユニット10による換気量を算出する。これによって、部屋R1(図1参照)に新鮮な空気を過不足なく供給できるため、部屋R1の換気不足を抑制できる他、過度な換気に伴う消費電力量の増加を抑制できる。また、部屋R1の換気が適切に行われるため、人の呼気にウイルス等の病原菌が含まれている場合でも、他の人への感染を抑制できる。
Further, the control device 18 controls at least one of the air supply fan 13 and the exhaust fan 14 based on changes in the detection values of the carbon dioxide concentration sensors 21-24. Incidentally, conventionally, when the value of the carbon dioxide concentration in the room R1 reaches a predetermined threshold value, the control is performed such that the ventilation rate is increased. With such control, the amount of ventilation does not increase until the concentration of carbon dioxide in room R1 reaches a predetermined threshold, so there is a problem in that the ventilation of room R1 is difficult to progress. In contrast, in the first embodiment, as described above, the ventilation rate is controlled based on changes in the carbon dioxide concentration in the room R1. Device 18 is enabled to increase ventilation. Therefore, the room R1 can be properly ventilated.
Further, the control device 18 calculates the ventilation volume of the ventilation unit 10 by multiplying the number of people in the room based on the carbon dioxide concentration by the required ventilation volume per person. As a result, fresh air can be supplied to the room R1 (see FIG. 1) in just the right amount, so that insufficient ventilation of the room R1 can be suppressed, and an increase in power consumption associated with excessive ventilation can be suppressed. In addition, since the room R1 is properly ventilated, even if a person's exhalation contains a pathogen such as a virus, it is possible to suppress the infection of other persons.
≪第2実施形態≫
 第2実施形態は、給気ファン13(図2参照)及び排気ファン14(図2参照)が最低風量で駆動している場合において、実際の換気量よりも必要換気量の合計の方が小さいとき、制御装置18がユーザに報知する点が、第1実施形態とは異なっている。なお、その他(換気システム100の構成等:図1~図4参照)については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Second embodiment>>
In the second embodiment, when the air supply fan 13 (see FIG. 2) and the exhaust fan 14 (see FIG. 2) are driven at the minimum air volume, the total required ventilation volume is smaller than the actual ventilation volume. The difference from the first embodiment is that the control device 18 notifies the user of the time. Others (such as the configuration of the ventilation system 100: see FIGS. 1 to 4) are the same as in the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
 図10は、第2実施形態に係る換気システムが備える換気ユニットの制御装置が実行する処理のフローチャートである(適宜、図1、図4を参照)。
 なお、図10のステップS101~S104については、第1実施形態(図7参照)と同様であるから、説明を省略する。ステップS104において給気ファン13及び排気ファン14を制御した後、ステップS205において制御装置18は、給気ファン13及び排気ファン14が最低風量で駆動しているか否かを判定する。なお、「最低風量」とは、給気ファン13のモータ(図示せず)、及び、排気ファン14のモータ(図示せず)の回転速度下限値(ゼロよりも大きい値)に対応する風量であり、予め設定されている。
FIG. 10 is a flowchart of processing executed by the control device of the ventilation unit provided in the ventilation system according to the second embodiment (see FIGS. 1 and 4 as appropriate).
Note that steps S101 to S104 in FIG. 10 are the same as those in the first embodiment (see FIG. 7), so description thereof will be omitted. After controlling the air supply fan 13 and the exhaust fan 14 in step S104, the control device 18 determines whether the air supply fan 13 and the exhaust fan 14 are driven at the minimum air volume in step S205. The "minimum air volume" is an air volume corresponding to the lower limit of rotation speed (value greater than zero) of the motor (not shown) of the air supply fan 13 and the motor (not shown) of the exhaust fan 14. Yes, it is preset.
 ステップS205において、給気ファン13及び排気ファン14が最低風量で駆動している場合(S205:Yes)、制御装置18の処理はステップS206に進む。一方、ステップS205において、給気ファン13及び排気ファン14が最低風量よりも大きい風量で駆動している場合(S205:No)、制御装置18の処理は「START」に戻る(「RETURN」)。 In step S205, if the air supply fan 13 and the exhaust fan 14 are driven at the minimum air volume (S205: Yes), the process of the control device 18 proceeds to step S206. On the other hand, in step S205, when the air supply fan 13 and the exhaust fan 14 are driven at an air volume larger than the minimum air volume (S205: No), the process of the control device 18 returns to "START" ("RETURN").
 ステップS206において制御装置18は、必要換気量の合計が実際の換気量よりも小さいか否かを判定する。つまり、制御装置18は、一人当たりの必要換気量と、部屋R1の在室者の推定人数と、を乗算した値(必要換気量の合計)が、現状の実際の換気量よりも小さいか否かを判定する。ステップS206において、必要換気量の合計が実際の換気量よりも小さい場合(S206:Yes)、制御装置18の処理はステップS207に進む。一方、ステップS206において、必要換気量の合計が実際の換気量以上である場合(S206:No)、制御装置18の処理は「START」に戻る(「RETURN」)。 In step S206, the control device 18 determines whether or not the total required ventilation volume is smaller than the actual ventilation volume. That is, the control device 18 determines whether or not the value obtained by multiplying the required ventilation volume per person by the estimated number of people in the room R1 (total required ventilation volume) is smaller than the current actual ventilation volume. determine whether In step S206, if the total required ventilation volume is smaller than the actual ventilation volume (S206: Yes), the process of the control device 18 proceeds to step S207. On the other hand, in step S206, if the total required ventilation volume is greater than or equal to the actual ventilation volume (S206: No), the process of the control device 18 returns to "START" ("RETURN").
 ステップS207において制御装置18は、省エネ化の余地があることをユーザに報知する。すなわち、制御装置18は、給気ファン13及び排気ファン14のそれぞれを最低風量で駆動させている場合において(S205:Yes)、部屋R1(対象空間)の在室者の人数と、一人当たりの必要換気量と、を乗算した値が最低風量未満であるとき(S206:Yes)、省エネ化の余地があることをリモコン16(図4参照)又は携帯端末(図示せず)に表示させる。 In step S207, the control device 18 notifies the user that there is room for energy saving. That is, when each of the air supply fan 13 and the exhaust fan 14 is driven at the minimum air volume (S205: Yes), the control device 18 determines the number of people in the room R1 (target space) and the number of people per person. When the value obtained by multiplying the required ventilation volume by is less than the minimum air volume (S206: Yes), the remote controller 16 (see FIG. 4) or portable terminal (not shown) displays that there is room for energy saving.
 例えば、高速・中速・低速の3段階のいずれかで給気ファン13及び排気ファン14が駆動される場合において、給気ファン13及び排気ファン14が低速(最低風量)で駆動されていたとする(S205:Yes)。このような場合において、必要換気量の合計が実際の換気量よりも小さいときには(S206:Yes)、換気システム100の風量調整の段階数を増やしたり、風量を連続的に変化させたりするといったことを管理者側で検討し、省エネ化が図られることがある。ステップS207の処理を行った後、制御装置18の処理は「START」に戻る(「RETURN」)。 For example, when the air supply fan 13 and the exhaust fan 14 are driven at one of three stages of high speed, medium speed, and low speed, suppose that the air supply fan 13 and the exhaust fan 14 are driven at low speed (minimum air volume). (S205: Yes). In such a case, when the total required ventilation volume is smaller than the actual ventilation volume (S206: Yes), the number of stages of air volume adjustment of the ventilation system 100 is increased, or the air volume is continuously changed. may be considered by the administrator to save energy. After performing the process of step S207, the process of the control device 18 returns to "START" ("RETURN").
 第2実施形態によれば、給気ファン13及び排気ファン14が最低風量で駆動している場合において(図10のS205:Yes)、必要換気量の合計が実際の換気量よりも小さいとき(S206:Yes)、制御装置18は、省エネ化の余地があることをユーザに報知する(S207)。これによって、換気ユニット10の風量調整の仕方の変更等を行った場合、さらに省エネ化を図ることが可能になる。 According to the second embodiment, when the air supply fan 13 and the exhaust fan 14 are driven at the minimum air volume (S205 in FIG. 10: Yes), when the total required ventilation volume is smaller than the actual ventilation volume ( S206: Yes), the control device 18 notifies the user that there is room for energy saving (S207). As a result, even when the method of adjusting the air volume of the ventilation unit 10 is changed, it is possible to achieve further energy saving.
≪第3実施形態≫
 第3実施形態は、部屋R1(図1参照)の二酸化炭素濃度が所定値以上である場合、給気ファン13(図2参照)及び排気ファン14(図2参照)の回転速度を上昇させる点が、第1実施形態とは異なっている。なお、その他(換気システム100の構成等:図1~図4参照)については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Third Embodiment>>
In the third embodiment, when the carbon dioxide concentration in the room R1 (see FIG. 1) is equal to or higher than a predetermined value, the rotational speeds of the air supply fan 13 (see FIG. 2) and the exhaust fan 14 (see FIG. 2) are increased. is different from the first embodiment. Others (such as the configuration of the ventilation system 100: see FIGS. 1 to 4) are the same as in the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
 図11は、第3実施形態に係る換気システムが備える換気ユニットの制御装置が実行する処理のフローチャートである(適宜、図1、図4を参照)。
 なお、図11のステップS101~S104については、第1実施形態(図7参照)と同様であるから、説明を省略する。ステップS104において給気ファン13及び排気ファン14を制御した後、ステップS305において制御装置18は、部屋R1の二酸化炭素濃度が所定値以上であるか否かを判定する。例えば、制御装置18は、部屋R1に設けられた3つの二酸化炭素濃度センサ21~23の検出値を平均した値が所定値以上であるか否かを判定する。
FIG. 11 is a flowchart of processing executed by the control device of the ventilation unit provided in the ventilation system according to the third embodiment (see FIGS. 1 and 4 as appropriate).
Note that steps S101 to S104 in FIG. 11 are the same as those in the first embodiment (see FIG. 7), so description thereof will be omitted. After controlling the air supply fan 13 and the exhaust fan 14 in step S104, the control device 18 determines whether or not the concentration of carbon dioxide in the room R1 is equal to or higher than a predetermined value in step S305. For example, the control device 18 determines whether or not the average value of the detection values of the three carbon dioxide concentration sensors 21 to 23 provided in the room R1 is equal to or greater than a predetermined value.
 前記した「所定値」は、部屋R1の在室者の推定人数に関わらず、給気ファン13及び排気ファン14の回転速度を上昇させるか否かの判定基準となる閾値であり、予め設定されている。具体例を挙げると、ビル衛星管理法に基づく空気環境測定の規定に基づいて、部屋R1の二酸化炭素濃度が1000[ppm](=0.001[m/m])に達した場合、制御装置18は、ステップS305の条件が満たされていると判定するようにしてもよい。 The above-mentioned "predetermined value" is a threshold value that serves as a criterion for determining whether or not to increase the rotation speed of the air supply fan 13 and the exhaust fan 14 regardless of the estimated number of people in the room R1, and is set in advance. ing. As a specific example, when the carbon dioxide concentration in room R1 reaches 1000 [ppm] (=0.001 [m 3 /m 3 ]) based on the air environment measurement regulations based on the Building Satellite Management Act, The control device 18 may determine that the condition of step S305 is satisfied.
 ステップS305において、部屋R1の二酸化炭素濃度が所定値以上である場合(S305:Yes)、制御装置18の処理はステップS306に進む。一方、ステップS305において、部屋R1の二酸化炭素濃度が所定値未満である場合(S305:No)、制御装置18の処理は「START」に戻る(「RETURN」)。 In step S305, if the carbon dioxide concentration in room R1 is greater than or equal to the predetermined value (S305: Yes), the process of control device 18 proceeds to step S306. On the other hand, in step S305, if the carbon dioxide concentration in the room R1 is less than the predetermined value (S305: No), the process of the control device 18 returns to "START" ("RETURN").
 ステップS306において制御装置18は、給気ファン13及び排気ファン14の回転速度を上昇させる。このように制御装置18は、現状の換気量が必要換気量の合計(部屋R1の在室者の人数と、一人当たりの必要換気量と、を乗算した値)よりも大きい場合でも、部屋R1(対象空間)の二酸化炭素濃度が所定値以上であるときには(S305:Yes)、給気ファン13及び排気ファン14の回転速度を上昇させる(S306)。これによって、部屋R1に供給される新鮮な空気の風量が多くなるため、部屋R1の二酸化炭素濃度を適正範囲まで下げることができる。 In step S306, the control device 18 increases the rotational speeds of the air supply fan 13 and the exhaust fan 14. In this way, even if the current ventilation volume is greater than the total required ventilation volume (value obtained by multiplying the number of people in the room R1 by the required ventilation volume per person), the control device 18 When the concentration of carbon dioxide in (the target space) is equal to or higher than the predetermined value (S305: Yes), the rotational speeds of the air supply fan 13 and the exhaust fan 14 are increased (S306). As a result, the amount of fresh air supplied to the room R1 increases, so the carbon dioxide concentration in the room R1 can be lowered to an appropriate range.
 ステップS306の処理を行った後、制御装置18の処理は「START」に戻る(「RETURN」)。そして、制御装置18は、部屋R1の二酸化炭素濃度が所定値未満になるまで、給気ファン13及び排気ファン14の回転速度を上昇させる(S306)。 After performing the process of step S306, the process of the control device 18 returns to "START" ("RETURN"). Then, the control device 18 increases the rotation speeds of the air supply fan 13 and the exhaust fan 14 until the carbon dioxide concentration in the room R1 becomes less than the predetermined value (S306).
 第3実施形態によれば、部屋R1の二酸化炭素濃度が所定値以上である場合(S305:Yes)、制御装置18は、給気ファン13及び排気ファン14の回転速度を上昇させる(S306)。これによって、部屋R1に給気される新鮮な空気の量が増加するため、部屋R1の二酸化炭素濃度を適正範囲まで下げることができる。 According to the third embodiment, when the carbon dioxide concentration in the room R1 is equal to or higher than the predetermined value (S305: Yes), the control device 18 increases the rotational speeds of the air supply fan 13 and the exhaust fan 14 (S306). As a result, the amount of fresh air supplied to the room R1 increases, so the carbon dioxide concentration in the room R1 can be lowered to an appropriate range.
≪変形例≫
 以上、本発明に係る換気システム100について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、各実施形態では、部屋R1(図1参照)に3つの二酸化炭素濃度センサ21~23が設けられ、また、廊下R2(図1参照)に別の二酸化炭素濃度センサ24が設けられる場合について説明したが、これに限らない。すなわち、部屋R1から廊下R2への空気の漏れがほとんどない場合には、廊下R2に二酸化炭素濃度センサ24を設ける必要は特にない。このような場合、制御装置18は、部屋R1の二酸化炭素濃度センサ21~23の検出値の変化に基づいて、給気ファン13及び排気ファン14を制御する。
 また、部屋R1からの自然換気先が廊下R2ではなく屋外である場合も、部屋R1の外に二酸化炭素濃度センサ(図示せず)を設ける必要は特にない。屋外の二酸化炭素濃度は、既知だからである。
<<Modification>>
Although the ventilation system 100 according to the present invention has been described above in each embodiment, the present invention is not limited to these descriptions, and various modifications can be made.
For example, in each embodiment, three carbon dioxide concentration sensors 21 to 23 are provided in room R1 (see FIG. 1), and another carbon dioxide concentration sensor 24 is provided in corridor R2 (see FIG. 1). Illustrated, but not limited to. That is, if there is almost no air leakage from the room R1 to the corridor R2, there is no particular need to provide the carbon dioxide concentration sensor 24 in the corridor R2. In such a case, the control device 18 controls the air supply fan 13 and the exhaust fan 14 based on changes in the detection values of the carbon dioxide concentration sensors 21 to 23 in the room R1.
Further, even if the natural ventilation destination from the room R1 is not the corridor R2 but the outdoors, there is no particular need to provide a carbon dioxide concentration sensor (not shown) outside the room R1. This is because the outdoor carbon dioxide concentration is known.
 また、第2実施形態では、給気ファン13及び排気ファン14が最低風量で駆動している場合において(図10のS205:Yes)、必要換気量の合計が実際の換気量よりも小さいとき(S206:Yes)、省エネ化の余地があることをユーザに報知する(S207)という処理について説明したが、これに限らない。例えば、図10のステップS206の判定処理を省略し、制御装置18が、給気ファン13及び排気ファン14のそれぞれを最低風量で駆動させている場合、最低風量での駆動であることをリモコン16(図4参照)又は携帯端末(図示せず)に表示させるようにしてもよい。これによって、ユーザが、リモコン16等の操作で換気を停止させる際の判断材料にすることができる。 Further, in the second embodiment, when the air supply fan 13 and the exhaust fan 14 are driven at the minimum air volume (S205 in FIG. 10: Yes), when the total required ventilation volume is smaller than the actual ventilation volume ( Although S206: Yes) and the process of informing the user that there is room for energy saving (S207), the present invention is not limited to this. For example, if the determination process in step S206 of FIG. 10 is omitted and the control device 18 drives each of the supply fan 13 and the exhaust fan 14 at the minimum air volume, the remote controller 16 can confirm that the air supply fan 13 and the exhaust fan 14 are driven at the minimum air volume. (See FIG. 4) or may be displayed on a portable terminal (not shown). This can be used as a reference when the user stops ventilation by operating the remote control 16 or the like.
 また、制御装置18が、在室者の推定人数と、一人当たりの必要換気量と、を乗算した値をリモコン16(図4参照)又は携帯端末(図示せず)に表示させるとともに、部屋R1の自然換気量(単位時間当たりの漏れ量)をリモコン16又は携帯端末に表示させるようにしてもよい。前記した値が自然換気量以下である場合、換気ユニット10による換気を止めても特に支障はないため、ユーザがリモコン16等の操作で換気を停止させる際の判断材料にすることができる。
 また、制御装置18が、必要換気量の合計と、自然換気量と、実際の換気量と、を含む情報をリモコン16又は携帯端末(図示せず)に表示させるようにしてもよい。このような表示でも、ユーザがリモコン16等の操作で換気を停止させる際の判断材料にすることができる。
In addition, the control device 18 causes the remote controller 16 (see FIG. 4) or a portable terminal (not shown) to display a value obtained by multiplying the estimated number of people in the room by the required ventilation volume per person, and displays the value in the room R1. The natural ventilation amount (leakage amount per unit time) may be displayed on the remote control 16 or the portable terminal. If the above value is equal to or less than the natural ventilation amount, there is no problem even if the ventilation by the ventilation unit 10 is stopped.
Also, the control device 18 may cause the remote controller 16 or a portable terminal (not shown) to display information including the total required ventilation volume, the natural ventilation volume, and the actual ventilation volume. Such a display can also be used as a reference when the user stops ventilation by operating the remote controller 16 or the like.
 また、在室者の推定人数と、一人当たりの必要換気量と、を乗算した値が部屋R1の自然換気量以下である場合、制御装置18が、換気ユニット10による換気を停止させるようにしてもよい。これによって、換気ユニット10の消費電力量をさらに削減できる。 Further, when the value obtained by multiplying the estimated number of people in the room by the required ventilation amount per person is equal to or less than the natural ventilation amount of the room R1, the control device 18 stops the ventilation by the ventilation unit 10. good too. Thereby, the power consumption of the ventilation unit 10 can be further reduced.
 また、各実施形態では、施工段階で部屋R1(図1参照)に高濃度の二酸化炭素を充填する際、二酸化炭素ボンベ(図示せず)やドライアイス(図示せず)が用いられる場合について説明したが、これに限らない。例えば、複数の人を部屋R1に収容することで、部屋R1の二酸化炭素濃度を高くし、その次に部屋R1を無人・無換気にして、二酸化炭素濃度の時系列データを取得するようにしてもよい。なお、部屋R1を無人・強制換気にする場合についても同様のことがいえる。 Further, in each embodiment, a case where a carbon dioxide cylinder (not shown) or dry ice (not shown) is used when filling the room R1 (see FIG. 1) with high-concentration carbon dioxide in the construction stage will be described. However, it is not limited to this. For example, by accommodating a plurality of people in the room R1, the carbon dioxide concentration in the room R1 is increased, and then the room R1 is unmanned and unventilated to acquire time-series data of the carbon dioxide concentration. good too. The same applies to the case where the room R1 is unmanned and forcedly ventilated.
 また、各実施形態では、部屋R1に3つの二酸化炭素濃度センサ21~23(図1参照)が設けられる場合について説明したが、これに限らない。例えば、部屋R1に設けられる二酸化濃度炭素センサの個数は1個や2個であってもよいし、また、4個以上であってもよい。また、廊下R2(図1参照)に複数の二酸化炭素濃度センサが設けられるようにしてもよい。 Also, in each embodiment, the case where the three carbon dioxide concentration sensors 21 to 23 (see FIG. 1) are provided in the room R1 has been described, but the present invention is not limited to this. For example, the number of carbon dioxide concentration sensors provided in room R1 may be one, two, or four or more. Also, a plurality of carbon dioxide concentration sensors may be provided in the corridor R2 (see FIG. 1).
 また、各実施形態では、換気ユニット10(図2参照)が全熱交換器12(図2参照)を備える構成について説明したが、これに限らない。例えば、全熱交換器12を省略し、単に給気及び排気を行う構成等、さまざまな種類の換気ユニットにも各実施形態を適用できる。
 また、換気ユニット10(図2参照)に加えて、冷房運転や暖房運転を行う空調ユニット(図示せず)が設けられていてもよい。このような構成において、換気ユニット10と空調ユニットとがそれぞれ独立していてもよいし、また、通信線を介して互いに接続されていてもよい。
Moreover, although each embodiment demonstrated the structure provided with the ventilation unit 10 (refer FIG. 2) with the total heat exchanger 12 (refer FIG. 2), it does not restrict to this. For example, each embodiment can be applied to various types of ventilation units such as a configuration in which the total heat exchanger 12 is omitted and air is simply supplied and exhausted.
Also, in addition to the ventilation unit 10 (see FIG. 2), an air conditioning unit (not shown) for cooling operation and heating operation may be provided. In such a configuration, the ventilation unit 10 and the air conditioning unit may be independent of each other, or may be connected to each other via a communication line.
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
Moreover, each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace part of the configuration of each embodiment with another configuration.
Further, the mechanisms and configurations described above show those considered necessary for explanation, and do not necessarily show all the mechanisms and configurations on the product.
 100 換気システム
 10 換気ユニット
 21,22,23 二酸化炭素濃度センサ
 24 二酸化炭素濃度センサ(別の二酸化炭素濃度センサ)
 12 全熱交換器
 13 給気ファン
 14 排気ファン
 16 リモコン
 18 制御装置(制御部)
 42 壁
 43 ドア
 R1 部屋(対象空間)
 R2 廊下(隣接空間)
100 ventilation system 10 ventilation unit 21, 22, 23 carbon dioxide concentration sensor 24 carbon dioxide concentration sensor (another carbon dioxide concentration sensor)
12 total heat exchanger 13 air supply fan 14 exhaust fan 16 remote control 18 control device (control unit)
42 Wall 43 Door R1 Room (target space)
R2 corridor (adjacent space)

Claims (11)

  1.  対象空間の二酸化炭素濃度を検出する二酸化炭素濃度センサと、
     前記対象空間に給気する給気ファンと、
     前記対象空間から排気する排気ファンと、
     前記二酸化炭素濃度センサの検出値の変化に基づいて、前記給気ファン及び前記排気ファンのうち少なくとも一方を制御する制御部と、を備える換気システム。
    a carbon dioxide concentration sensor that detects the carbon dioxide concentration in the target space;
    an air supply fan for supplying air to the target space;
    an exhaust fan for exhausting air from the target space;
    and a control unit that controls at least one of the air supply fan and the exhaust fan based on a change in the detected value of the carbon dioxide concentration sensor.
  2.  前記制御部は、前記対象空間の二酸化炭素濃度の上昇速度が所定値以上である場合、前記給気ファンの回転速度、及び、前記排気ファンの回転速度のうち少なくとも一方を大きくすること
     を特徴とする請求項1に記載の換気システム。
    The control unit increases at least one of the rotation speed of the air supply fan and the rotation speed of the exhaust fan when the rate of increase in carbon dioxide concentration in the target space is equal to or greater than a predetermined value. 2. The ventilation system of claim 1.
  3.  前記制御部は、前記対象空間の二酸化炭素濃度の変化速度が高いほど、前記給気ファンの回転速度の上昇幅、及び、前記排気ファンの回転速度の上昇幅をそれぞれ大きくすること
     を特徴とする請求項1に記載の換気システム。
    The control unit increases the range of increase in the rotation speed of the air supply fan and the range of increase in the rotation speed of the exhaust fan as the rate of change of the carbon dioxide concentration in the target space increases. A ventilation system according to claim 1 .
  4.  前記制御部は、二酸化炭素濃度の検出値に基づく前記対象空間の在室者の人数が多いほど、前記給気ファン及び前記排気ファンの回転速度を高くすること
     を特徴とする請求項1に記載の換気システム。
    2. The control unit according to claim 1, wherein the greater the number of people in the target space based on the detected value of carbon dioxide concentration, the higher the rotation speed of the air supply fan and the exhaust fan. ventilation system.
  5.  前記制御部は、前記対象空間の在室者の人数と、一人当たりの必要換気量と、を乗算した値に基づいて、前記給気ファン及び前記排気ファンを制御すること
     を特徴とする請求項4に記載の換気システム。
    The control unit controls the air supply fan and the exhaust fan based on a value obtained by multiplying the number of people in the target space by the required ventilation amount per person. 5. Ventilation system according to 4.
  6.  前記制御部は、前記値及び実際の換気量をリモコン又は携帯端末に表示させること
     を特徴とする請求項5に記載の換気システム。
    6. The ventilation system according to claim 5, wherein the control unit causes a remote controller or a mobile terminal to display the value and the actual ventilation volume.
  7.  前記制御部は、前記給気ファン及び前記排気ファンのそれぞれを最低風量で駆動させている場合、前記最低風量での駆動であることをリモコン又は携帯端末に表示させること
     を特徴とする請求項1に記載の換気システム。
    2. When each of the air supply fan and the exhaust fan is driven at a minimum air volume, the control unit causes a remote controller or a portable terminal to display that the air supply fan and the exhaust fan are driven at the minimum air volume. The ventilation system described in .
  8.  前記制御部は、前記給気ファン及び前記排気ファンのそれぞれを最低風量で駆動させている場合において、前記値が前記最低風量未満であるとき、省エネ化の余地があることをリモコン又は携帯端末に表示させること
     を特徴とする請求項5に記載の換気システム。
    When the air supply fan and the exhaust fan are each driven at the minimum air volume and the value is less than the minimum air volume, the control unit notifies the remote controller or the mobile terminal that there is room for energy saving. 6. Ventilation system according to claim 5, characterized in that it displays.
  9.  前記制御部は、現状の換気量が前記値よりも大きい場合でも、前記対象空間の二酸化炭素濃度が所定値以上であるときには、前記給気ファン及び前記排気ファンの回転速度を上昇させること
     を特徴とする請求項5に記載の換気システム。
    The control unit increases the rotational speeds of the air supply fan and the exhaust fan when the carbon dioxide concentration in the target space is equal to or higher than a predetermined value even when the current ventilation volume is greater than the value. 6. The ventilation system according to claim 5, wherein
  10.  前記対象空間に壁又はドアを介して隣り合っている隣接空間に設けられる別の二酸化炭素濃度センサをさらに備え、
     前記制御部は、前記対象空間に設けられる前記二酸化炭素濃度センサの検出値の変化、及び、前記隣接空間に設けられる前記別の二酸化炭素濃度センサの検出値の変化に基づいて、前記給気ファン及び前記排気ファンのうち少なくとも一方を制御すること
     を特徴とする請求項1に記載の換気システム。
    Further comprising another carbon dioxide concentration sensor provided in an adjacent space adjacent to the target space via a wall or door,
    The control unit controls the air supply fan based on a change in the detected value of the carbon dioxide concentration sensor provided in the target space and a change in the detected value of the another carbon dioxide concentration sensor provided in the adjacent space. and controlling at least one of the exhaust fan.
  11.  前記制御部は、前記給気ファン及び前記排気ファンの回転速度を変化させる際、前記回転速度を段階的に増加又は減少させること
     を特徴とする請求項1に記載の換気システム。
    The ventilation system according to claim 1, wherein the controller increases or decreases the rotational speeds of the air supply fan and the exhaust fan in stages when changing the rotational speeds of the air supply fan and the exhaust fan.
PCT/JP2021/023410 2021-06-21 2021-06-21 Ventilation system WO2022269685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023410 WO2022269685A1 (en) 2021-06-21 2021-06-21 Ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023410 WO2022269685A1 (en) 2021-06-21 2021-06-21 Ventilation system

Publications (1)

Publication Number Publication Date
WO2022269685A1 true WO2022269685A1 (en) 2022-12-29

Family

ID=84544305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023410 WO2022269685A1 (en) 2021-06-21 2021-06-21 Ventilation system

Country Status (1)

Country Link
WO (1) WO2022269685A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141281A (en) * 1999-11-12 2001-05-25 Matsushita Refrig Co Ltd Air-conditioning system for shop
JP2010019484A (en) * 2008-07-10 2010-01-28 Tokyo Gas Co Ltd Ventilation amount estimating device and ventilation amount estimating method
JP2011137595A (en) * 2009-12-28 2011-07-14 Mitsubishi Electric Corp Air conditioning system
JP2013047579A (en) * 2011-08-29 2013-03-07 Toshiba Corp Air-conditioning control system and air-conditioning control method
KR101433736B1 (en) * 2013-03-22 2014-08-27 한국철도기술연구원 air quality control system in cabin
JP2016138705A (en) * 2015-01-28 2016-08-04 パナソニックIpマネジメント株式会社 Ventilation system including air quality detection means
JP2019168187A (en) * 2018-03-26 2019-10-03 パナソニックIpマネジメント株式会社 Ventilation control device and ventilation system
WO2020136774A1 (en) * 2018-12-26 2020-07-02 三菱電機株式会社 Ventilation control system and carbon dioxide concentration estimation method
JP2020148374A (en) * 2019-03-12 2020-09-17 三菱電機株式会社 Ventilation device
JP2020200998A (en) * 2019-06-11 2020-12-17 三菱電機株式会社 Ventilator and ventilation system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141281A (en) * 1999-11-12 2001-05-25 Matsushita Refrig Co Ltd Air-conditioning system for shop
JP2010019484A (en) * 2008-07-10 2010-01-28 Tokyo Gas Co Ltd Ventilation amount estimating device and ventilation amount estimating method
JP2011137595A (en) * 2009-12-28 2011-07-14 Mitsubishi Electric Corp Air conditioning system
JP2013047579A (en) * 2011-08-29 2013-03-07 Toshiba Corp Air-conditioning control system and air-conditioning control method
KR101433736B1 (en) * 2013-03-22 2014-08-27 한국철도기술연구원 air quality control system in cabin
JP2016138705A (en) * 2015-01-28 2016-08-04 パナソニックIpマネジメント株式会社 Ventilation system including air quality detection means
JP2019168187A (en) * 2018-03-26 2019-10-03 パナソニックIpマネジメント株式会社 Ventilation control device and ventilation system
WO2020136774A1 (en) * 2018-12-26 2020-07-02 三菱電機株式会社 Ventilation control system and carbon dioxide concentration estimation method
JP2020148374A (en) * 2019-03-12 2020-09-17 三菱電機株式会社 Ventilation device
JP2020200998A (en) * 2019-06-11 2020-12-17 三菱電機株式会社 Ventilator and ventilation system

Similar Documents

Publication Publication Date Title
JP6415720B2 (en) Air conditioning system control device and air conditioning system
JP3744409B2 (en) Heat exchanger unit
CN113227662B (en) Ventilation control system and carbon dioxide concentration estimation method
JP4173880B2 (en) Dehumidification control method for air conditioning system
EP4040059B1 (en) Ventilation apparatus and ventilation control method
KR101070186B1 (en) Direct expansion air handling unit having apparatus for automatic controlling air volum of blower by change of refrigerant flow
EP2863137B1 (en) Systems and methods for ventilating a building
JP6987264B2 (en) Ventilation device and ventilation control method
CN105765311A (en) Supply and exhaust ventilation device
JP2945832B2 (en) Duct type simultaneous supply and discharge equipment
US20220214071A1 (en) Air supply system
KR20070063722A (en) Air-conditioning apparatus with ventilation operation and thereof method
US11466885B2 (en) Air-conditioning control device, air-conditioning system, and air-conditioning control method
JP2007271128A (en) Air conditioning equipment
WO2022269685A1 (en) Ventilation system
KR101708838B1 (en) A Airconditioner for Communication Device Rack in Computer Room and A Cooling System
EP3531035A1 (en) Air conditioner system, air conditioner control device, air conditioner method, and program
JP2003254589A (en) Air conditioner
JP2014059096A (en) Supply/exhaust type ventilator
EP4160101A1 (en) A ventilation system for a room
JPH08210690A (en) Ventilating and air-conditioning device
US20220178576A1 (en) Air conditioning system
KR102104054B1 (en) Air conditioning system for adaptive air volume control according to indoor environment
JPH05164381A (en) Multi-chamber system air-conditioner equipped with outside air intaking amount controller
JP2692257B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946976

Country of ref document: EP

Kind code of ref document: A1