JP2008264883A - Machining device - Google Patents

Machining device Download PDF

Info

Publication number
JP2008264883A
JP2008264883A JP2007106907A JP2007106907A JP2008264883A JP 2008264883 A JP2008264883 A JP 2008264883A JP 2007106907 A JP2007106907 A JP 2007106907A JP 2007106907 A JP2007106907 A JP 2007106907A JP 2008264883 A JP2008264883 A JP 2008264883A
Authority
JP
Japan
Prior art keywords
machining
spindle
amount
tool
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007106907A
Other languages
Japanese (ja)
Other versions
JP4720774B2 (en
Inventor
Yoshihiko Yamada
良彦 山田
Makoto Hiromura
誠 廣村
Takashi Otani
尚 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2007106907A priority Critical patent/JP4720774B2/en
Publication of JP2008264883A publication Critical patent/JP2008264883A/en
Application granted granted Critical
Publication of JP4720774B2 publication Critical patent/JP4720774B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a machining device capable of presuming accurately the distal end position of a machining tool even if the change amount or change rate of the position has a certain magnitude, suppressing the error resulting from a thermal displacement during machining irrespective of the material of the machining tool, its length, rotating speed of a spindle, etc., and shortening the time of warmup operation. <P>SOLUTION: Before machining is started, the spindle is rotated at a rotating speed used in the machining, and the distal end position G1 of the machining tool is obtained on the basis of the signal given by a tool distal end position measuring means, and the thermal displacement amount G2 of the spindle is obtained on the basis of the signal given by a spindle displacement measuring means, and further the correction factor G3 as the ratio of the distal end position G1 to the thermal displacement amount G2 as obtained above is obtained, and after the start of machining, the machining is executed while the control amount of a cut-in motion means is corrected using G3 obtained and the signal given by the spindle displacement measuring means. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主軸の熱変位に伴う誤差を補正可能な加工装置に関する。   The present invention relates to a machining apparatus capable of correcting an error associated with a thermal displacement of a main shaft.

従来より、モータ等の回転駆動手段にて回転する主軸の先端に加工工具を備えた加工装置では、回転駆動手段の発熱や、主軸の軸受け部の発熱等による主軸の熱変位によって、加工工具の先端の位置が変位し、誤差が発生することが知られている。
しかし、加工工具の先端で加工する加工装置では、加工中に加工工具の先端位置の変位量を測定することはできない。
また、主軸の回転を開始した直後の暖機運転中は温度の変化量が大きく、熱変位量の変化も大きい。従って、一定時間の暖機運転を行って熱変位量が安定した後に加工を開始している。暖機運転を行う一定時間は、熱変位量が安定するまでの充分な時間が経験的に設定されており、必要以上に長い時間となって加工効率を低下させる場合がある。更に、加工工具はワークの材質や加工工程(粗加工工程、精加工工程、仕上げ加工工程等)毎に交換される場合もあり、暖機運転は頻繁に行われている。
また、ワークの材質や加工工程毎に主軸の回転速度が異なる場合があり、主軸の回転速度による発熱量の違いから変位量も変化する。
2. Description of the Related Art Conventionally, in a processing apparatus provided with a processing tool at the tip of a main shaft that is rotated by a rotation driving means such as a motor, the processing tool is moved by heat generated by the rotation driving means or heat generated by a bearing portion of the main shaft. It is known that the position of the tip is displaced and an error occurs.
However, in a processing apparatus that processes at the tip of the processing tool, the amount of displacement of the tip position of the processing tool cannot be measured during processing.
Further, during the warm-up operation immediately after starting the rotation of the spindle, the amount of change in temperature is large and the change in amount of thermal displacement is also large. Therefore, the machining is started after the warm-up operation for a certain time is performed and the amount of thermal displacement is stabilized. The predetermined time for performing the warm-up operation is set empirically as a sufficient time until the amount of thermal displacement is stabilized, which may be longer than necessary and may reduce the machining efficiency. Furthermore, the machining tool may be replaced for each workpiece material or machining process (rough machining process, precision machining process, finishing machining process, etc.), and warm-up operation is frequently performed.
Further, the rotational speed of the main spindle may differ depending on the material of the workpiece and the machining process, and the amount of displacement also changes due to the difference in the amount of heat generated by the rotational speed of the main spindle.

そこで、特許文献1に記載された従来技術では、主軸の後端部に主軸の熱変位量を測定可能な測定手段を設け、主軸の回転速度に応じた、この測定手段による変位量に対する主軸の前端部の熱変位量を予め実測等して記憶手段に記憶している。そして、加工中は、測定手段にて測定した主軸の後端部の熱変位量から主軸の先端部の熱変位量を求める(主軸の回転速度に応じて求め、後端部の熱変位量に補正係数を乗じて先端部の熱変位量を求める)ことで加工工具の先端位置を補正し、加工中の加工工具の先端位置を測定できなくても主軸の回転速度に応じた熱変位量による誤差を抑制できる、工作機械の主軸熱変位補正装置が提案されている。   Therefore, in the prior art described in Patent Document 1, a measuring unit capable of measuring the amount of thermal displacement of the main shaft is provided at the rear end portion of the main shaft, and the amount of the main shaft relative to the amount of displacement by the measuring unit according to the rotational speed of the main shaft is determined. The amount of thermal displacement at the front end is previously measured and stored in the storage means. During machining, the amount of thermal displacement at the front end of the main shaft is determined from the amount of thermal displacement at the rear end of the main shaft measured by the measuring means (determined according to the rotational speed of the main shaft, and the amount of thermal displacement at the rear end is calculated. The tip position of the machining tool is corrected by multiplying the correction coefficient to obtain the thermal displacement amount at the tip, and even if the tip position of the machining tool being machined cannot be measured, it depends on the amount of thermal displacement corresponding to the spindle rotation speed. A spindle thermal displacement correction apparatus for machine tools that can suppress errors has been proposed.

また、特許文献2に記載された従来技術では、加工を行う前の暖機運転中に加工工具の先端の位置を測定し、前記加工工具の先端の位置の変化量または変化率が、予め設定された範囲内になり、加工工具の先端の位置が安定した場合に暖機運転が終了したと判定し、必要以上に長い暖機運転を避けることができる工作機械が提案されている。
特開平1−274951号公報 特開2004−261934号公報
In the prior art described in Patent Document 2, the position of the tip of the machining tool is measured during the warm-up operation before machining, and the amount of change or rate of change of the position of the tip of the machining tool is set in advance. A machine tool has been proposed in which it is determined that the warm-up operation has been completed when the position of the tip of the machining tool is stable and the warm-up operation is longer than necessary.
JP-A-1-274951 JP 2004-261934 A

特許文献1では、予め算出しておいた「主軸回転数に応じた主軸先端部の熱変位量と主軸後端部の熱変位量の比(=補正係数)」を用いている。このデータが予め記憶しておいた固定値であるため、加工装置の使用環境(例えば、室温、加工工具の種類)が「主軸回転数に応じた主軸先端部の熱変位量と主軸後端部の熱変位量の比(=補正係数)」のサンプル時と異なる場合、誤差が生じる。更に、この点に関して特許文献1では、主軸の前端部に設けられる加工工具の熱変位量を補正することまでは記載されていない。主軸が熱変位するのと同様に、加工工具も熱変位し、その材質や長さで熱変位量も変化する。従って、より正確に誤差を補正するためには、加工工具の材質や長さ毎の特性(グラフ等)を予め記憶手段に記憶しておかなければならず、非常に手間がかかる。また、熱変位量が安定するまでの暖機運転の終了を適切に判定していないため、暖機運転時間が必要以上に長くなる可能性がある。
また、特許文献2に記載された従来技術では、加工工具の先端位置が安定した場合(変化量または変化率が所定範囲内に収まった場合)に暖機運転が終了したと判定して加工を開始しているが、加工工具の先端位置が安定するまでは、やはり長い時間を要する。
本発明は、このような点に鑑みて創案されたものであり、加工工具の先端位置の変化量または変化率が、ある程度の大きさを有している場合であっても、その先端位置をより正確に推定することが可能であり、加工工具の材質や長さ、及び主軸の回転速度等にかかわらず加工中の熱変位による誤差をより抑制することが可能であり、暖機運転時間をより短くすることが可能な加工装置を提供することを課題とする。
Patent Document 1 uses “a ratio (= correction coefficient) between the amount of thermal displacement at the front end of the main shaft and the amount of thermal displacement at the rear end of the main shaft in accordance with the number of rotations of the main shaft”. Since this data is a fixed value stored in advance, the working environment of the machining apparatus (for example, room temperature, type of machining tool) is “the amount of thermal displacement of the spindle tip according to the spindle rotation speed and the spindle rear end. If the ratio of the thermal displacement amount (= correction coefficient) is different from that at the time of sampling, an error occurs. Further, in this regard, Patent Document 1 does not describe correction of the amount of thermal displacement of the machining tool provided at the front end portion of the main shaft. In the same way as the main shaft is thermally displaced, the machining tool is also thermally displaced, and the amount of thermal displacement changes depending on the material and length. Therefore, in order to correct the error more accurately, it is necessary to store the characteristics (graph and the like) of the material and length of the processing tool in advance in the storage means, which is very laborious. Further, since the end of the warm-up operation until the amount of thermal displacement is stabilized is not properly determined, the warm-up operation time may be longer than necessary.
Further, in the prior art described in Patent Document 2, when the tip position of the machining tool is stable (when the change amount or change rate is within a predetermined range), it is determined that the warm-up operation has ended and machining is performed. Although it has started, it still takes a long time to stabilize the tip position of the processing tool.
The present invention has been devised in view of such points, and even when the amount of change or rate of change of the tip position of the processing tool has a certain amount of magnitude, the tip position is determined. It is possible to estimate more accurately, and it is possible to further suppress errors due to thermal displacement during machining regardless of the material and length of the machining tool, the rotation speed of the spindle, etc. It is an object of the present invention to provide a processing apparatus that can be made shorter.

上記課題を解決するための手段として、本発明の第1発明は、請求項1に記載されたとおりの加工装置である。
請求項1に記載の加工装置は、回転駆動手段によって回転する主軸と、前記主軸の回転軸に対して同軸上に設けられて回転するとともに先端でワークを加工する加工工具と、前記回転軸方向に沿って前記加工工具の先端に対するワークの位置を相対的に進退可能な切込み移動手段と、非加工時において前記加工工具における前記回転軸方向の先端位置を直接的に検出可能な工具先端位置測定手段と、加工時において前記加工工具とワークに干渉することなく前記主軸における前記回転軸方向の熱変位量を検出可能な主軸変位量測定手段と、前記回転駆動手段と前記切込み移動手段を制御する制御手段と、を備え、前記制御手段にて、前記主軸変位量測定手段からの信号に基づいて、加工中における前記切込み移動手段の制御量を補正する加工装置である。
前記制御手段は、加工を開始する前に、前記回転駆動手段を制御して加工で用いる回転速度で前記主軸を回転させ、前記工具先端位置測定手段からの信号に基づいて前記加工工具の先端位置を求めるとともに、前記主軸変位量測定手段からの信号に基づいて前記主軸の熱変位量を求め、求めた前記熱変位量に対する前記先端位置の比である補正係数を求め、加工を開始後は、求めた前記補正係数と前記主軸変位量測定手段からの信号を用いて、前記切込み移動手段の制御量を補正しながら加工する。
As means for solving the above-mentioned problems, the first invention of the present invention is a processing apparatus as described in claim 1.
The processing apparatus according to claim 1, a main shaft that is rotated by a rotation driving unit, a processing tool that is provided coaxially with the rotation axis of the main shaft, rotates, and processes a workpiece at the tip, and the direction of the rotation axis A cutting movement means capable of moving the position of the workpiece relative to the tip of the machining tool along the cutting edge, and a tool tip position measurement capable of directly detecting the tip position of the machining tool in the rotational axis direction when not machining A spindle displacement amount measuring means capable of detecting a thermal displacement amount of the spindle in the direction of the rotation axis without interfering with the machining tool and a workpiece during machining, and controlling the rotation driving means and the cutting movement means. And a control means for correcting a control amount of the incision moving means during the machining based on a signal from the spindle displacement measuring means. It is the location.
Before starting machining, the control means controls the rotation driving means to rotate the spindle at a rotational speed used for machining, and based on a signal from the tool tip position measuring means, the tip position of the machining tool And obtaining a thermal displacement amount of the spindle based on a signal from the spindle displacement measuring means, obtaining a correction coefficient that is a ratio of the tip position to the obtained thermal displacement amount, and after starting machining, Using the obtained correction coefficient and the signal from the spindle displacement measuring means, machining is performed while correcting the control amount of the cutting movement means.

また、本発明の第2発明は、請求項2に記載されたとおりの加工装置である。
請求項2に記載の加工装置は、請求項1に記載の加工装置であって、前記制御手段は、加工を開始する前は、所定タイミング毎に前記補正係数を求め、前記補正係数の変化量または変化率が許容値未満になった場合に暖機運転が終了したと判断し、前記暖機運転の終了の判断後に加工を開始する。
The second invention of the present invention is a processing apparatus as set forth in claim 2.
The processing apparatus according to claim 2 is the processing apparatus according to claim 1, wherein the control unit obtains the correction coefficient at every predetermined timing before starting the processing, and changes in the correction coefficient. Alternatively, when the rate of change becomes less than the allowable value, it is determined that the warm-up operation has ended, and the machining is started after determining the end of the warm-up operation.

また、本発明の第3発明は、請求項3に記載されたとおりの加工装置である。
請求項3に記載の加工装置は、請求項1に記載の加工装置であって、前記制御手段は、加工を開始する前は、所定タイミング毎に前記補正係数を求め、前記補正係数が許容範囲内になった場合に暖機運転が終了したと判断し、前記暖機運転の終了の判断後に加工を開始する。
A third aspect of the present invention is a processing apparatus as set forth in the third aspect.
A processing apparatus according to a third aspect is the processing apparatus according to the first aspect, wherein the control means obtains the correction coefficient at every predetermined timing before starting the processing, and the correction coefficient is within an allowable range. When the warming-up operation is finished, it is determined that the warm-up operation has been completed, and the machining is started after determining the end of the warm-up operation.

また、本発明の第4発明は、請求項4に記載されたとおりの加工装置である。
請求項4に記載の加工装置は、請求項2または3に記載の加工装置であって、前記制御手段は、前記補正係数の変化量または変化率の許容値、あるいは前記補正係数の許容範囲を、粗加工工程、精加工工程、仕上げ加工工程、の各工程で切り替える。
The fourth invention of the present invention is a processing apparatus as set forth in claim 4.
A processing apparatus according to a fourth aspect is the processing apparatus according to the second or third aspect, wherein the control means determines a change amount or a change rate allowable value of the correction coefficient or an allowable range of the correction coefficient. , Roughing process, fine machining process, finishing process, and switching.

請求項1に記載の加工装置では、主軸の熱変位量に対する加工工具の先端位置(変位量)である「比」を補正係数として、加工中はこの補正係数と主軸の熱変位量(主軸変位量測定手段からの信号から求める量)を用いて切込み移動手段の制御量を補正する。
これにより、加工工具の材質や長さ、及び主軸の回転速度等にかかわらず加工中の熱変位による誤差をより抑制することが可能である。また、加工工具の材質や長さ、及び主軸の回転速度等に応じた種々の補正係数を予め用意する必要がなく、実機で最適な補正係数を求めることができるので便利である。
In the machining apparatus according to claim 1, a “ratio” which is the tip position (displacement amount) of the machining tool with respect to the thermal displacement amount of the spindle is used as a correction coefficient, and the correction coefficient and the thermal displacement amount (spindle displacement) of the spindle during machining. The amount of control of the incision moving means is corrected using the quantity obtained from the signal from the quantity measuring means.
Thereby, it is possible to further suppress errors due to thermal displacement during processing regardless of the material and length of the processing tool, the rotation speed of the spindle, and the like. Further, it is not necessary to prepare various correction coefficients in advance according to the material and length of the processing tool, the rotation speed of the spindle, and the like, which is convenient because an optimum correction coefficient can be obtained with an actual machine.

また、請求項2に記載の加工装置では、加工工具の材質や長さ、及び主軸の回転速度等に応じて種々の補正係数(比)が存在したとしても、所定タイミング毎に求めた補正係数(比)の変化量または変化率が許容値以下となって安定した場合に暖機運転が終了したと判定する。この場合、加工工具の先端位置の変化量または変化率が、ある程度の大きさを有している場合(加工工具の先端位置が安定する前の場合)であっても、補正係数(比)の値が先に安定する傾向にあるため、暖機運転時間をより短く且つ適切に判定することができる(補正係数(比)が安定していれば、加工工具の先端位置をより正確に推定することができるので、加工を開始することができる)。   Further, in the machining apparatus according to claim 2, even if various correction coefficients (ratio) exist according to the material and length of the machining tool, the rotation speed of the spindle, and the like, the correction coefficient obtained at every predetermined timing It is determined that the warm-up operation has been completed when the amount of change or rate of change in the (ratio) is below the allowable value and is stable. In this case, even when the amount of change or rate of change of the tip position of the machining tool has a certain level (before the tip position of the machining tool becomes stable), the correction coefficient (ratio) Since the value tends to stabilize first, the warm-up operation time can be shortened and appropriately determined (if the correction coefficient (ratio) is stable, the tip position of the machining tool is estimated more accurately) Can start processing).

また、請求項3に記載の加工装置では、所定タイミング毎に求めた補正係数(比)が許容範囲内となった場合に暖機運転が終了したと判定する。この場合、加工工具の先端位置の変化量または変化率が、ある程度の大きさを有している場合(加工工具の先端位置が安定する前の場合)であっても、補正係数(比)の値が先に安定する傾向にあるため、暖機運転時間をより短く且つ適切に判定することができる(補正係数(比)が安定していれば、加工工具の先端位置をより正確に推定することができるので、加工を開始することができる)。   In the processing apparatus according to the third aspect, when the correction coefficient (ratio) obtained at every predetermined timing is within the allowable range, it is determined that the warm-up operation is finished. In this case, even when the amount of change or rate of change of the tip position of the machining tool has a certain level (before the tip position of the machining tool becomes stable), the correction coefficient (ratio) Since the value tends to stabilize first, the warm-up operation time can be shortened and appropriately determined (if the correction coefficient (ratio) is stable, the tip position of the machining tool is estimated more accurately) Can start processing).

また、請求項4に記載の加工装置では、加工工程に応じた加工精度を満足できるように(要求精度が高い工程では比較的長い暖機時間、要求精度が低い工程では比較的短い暖機時間等)暖機運転の終了を適切に判定することができ、加工効率を更に向上させることができる。   Further, in the processing apparatus according to claim 4, in order to satisfy the processing accuracy corresponding to the processing step (a relatively long warm-up time in a process with high required accuracy and a relatively short warm-up time in a process with low required accuracy). Etc.) The end of the warm-up operation can be properly determined, and the processing efficiency can be further improved.

以下に本発明を実施するための最良の形態を図面を用いて説明する。図1は、本発明の加工装置1の一実施の形態における概略外観図(斜視図)を示しており、図2は当該加工装置1の概略接続図(側面図)の例を示している。なお、全ての図において、Z軸は加工工具TがワークWに切込む方向を示し、Y軸は鉛直方向(上向き)を示し、X軸は、Z軸とY軸の双方に直交する方向を示している。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic external view (perspective view) in an embodiment of a processing apparatus 1 of the present invention, and FIG. 2 shows an example of a schematic connection diagram (side view) of the processing apparatus 1. In all the drawings, the Z axis indicates the direction in which the machining tool T cuts into the workpiece W, the Y axis indicates the vertical direction (upward), and the X axis indicates a direction orthogonal to both the Z axis and the Y axis. Show.

●[加工装置1の外観と接続(図1、図2)]
図1の例に示す加工装置1は、基台2上に載置したコラム14に主軸ハウジング12が固定されており、主軸ハウジング12内には、モータ等の回転駆動手段によって回転する主軸10が設けられている(図3参照)。また、主軸10の先端には、主軸10の回転軸(Z軸方向に平行)と同軸上に、先端部TSでワークWを加工する加工工具Tが設けられている。
ワークWはテーブル20に固定されており、テーブル20にはボールネジNZに嵌合されたナット部22が接続されている(図2参照)。Z軸移動手段MZ(モータ等で構成され、切込み移動手段に相当する)はボールネジNZを回転させて、テーブル20をZ軸方向に沿って移動させることが可能であり、Z軸方向に沿って、加工工具Tの先端部TSに対するワークWの位置を相対的に進退移動が可能である。
● [Appearance and connection of processing equipment 1 (Figs. 1 and 2)]
In the processing apparatus 1 shown in the example of FIG. 1, a spindle housing 12 is fixed to a column 14 placed on a base 2, and a spindle 10 that is rotated by a rotation driving means such as a motor is placed in the spindle housing 12. Provided (see FIG. 3). Further, a processing tool T for processing the workpiece W at the tip portion TS is provided at the tip of the main shaft 10 coaxially with the rotation axis (parallel to the Z-axis direction) of the main shaft 10.
The workpiece W is fixed to the table 20, and a nut portion 22 fitted to the ball screw NZ is connected to the table 20 (see FIG. 2). The Z-axis moving means MZ (which is composed of a motor or the like and corresponds to the cutting movement means) can rotate the ball screw NZ to move the table 20 along the Z-axis direction. The position of the workpiece W relative to the tip portion TS of the processing tool T can be moved forward and backward.

次に図2を用いて制御手段40(数値制御装置等)の入出力及び制御の例について説明する。
制御手段40は、Z軸移動手段MZに設けられたエンコーダEZからの信号SA2に基づいて、加工装置1上におけるテーブル20の位置を検出可能であり、Z軸移動手段MZに駆動信号SA1を出力してテーブル20の位置を制御することでワークWに対する工具の切込み量を制御する。
また、制御手段40は、主軸10を回転させる回転駆動手段に駆動信号SB1を出力して主軸10の回転を制御する。なお、図示省略するが、制御手段40はエンコーダ等を用いて回転駆動手段の回転速度を取り込み、主軸10の回転速度を制御する。
また、制御手段40は、主軸10に設けられた主軸変位量測定手段SH(図3参照)からの信号SB2に基づいて、主軸変位量測定手段SHの測定個所における主軸10の変位量(Z軸方向の変位量)を求めることが可能である。
また、制御手段40は、テーブル20における加工工具側に設けられた工具先端検出ユニット30に制御信号SC1を出力して、工具先端検出ユニット30の上面の蓋部を開口して工具先端位置測定手段32(図4参照)を上昇させ、工具先端位置測定手段32からの信号SC2に基づいて、加工工具Tの先端部TSの位置(Z軸方向の位置)を直接的に求めることができる。
なお、図1及び図2の例では、加工工具Tに対するワークWのX軸方向の相対位置、及びY軸方向の相対位置を移動させる移動手段を省略しているが、テーブル20または主軸10をX軸方向に相対的に移動させるX軸移動手段、及びテーブル20または主軸10をY軸方向に相対的に移動させるY軸移動手段を備えてもよい。
Next, an example of input / output and control of the control means 40 (numerical control device or the like) will be described with reference to FIG.
The control means 40 can detect the position of the table 20 on the processing apparatus 1 based on the signal SA2 from the encoder EZ provided in the Z-axis moving means MZ, and outputs a drive signal SA1 to the Z-axis moving means MZ. Then, the cutting depth of the tool with respect to the workpiece W is controlled by controlling the position of the table 20.
Further, the control means 40 controls the rotation of the main shaft 10 by outputting a drive signal SB1 to the rotation driving means for rotating the main shaft 10. Although not shown, the control means 40 takes in the rotation speed of the rotation drive means using an encoder or the like and controls the rotation speed of the main shaft 10.
Further, the control means 40, based on the signal SB2 from the spindle displacement measuring means SH (see FIG. 3) provided on the spindle 10, the displacement (Z axis) of the spindle 10 at the measurement location of the spindle displacement measuring means SH. Direction displacement amount).
Further, the control means 40 outputs a control signal SC1 to the tool tip detection unit 30 provided on the machining tool side in the table 20, and opens the lid on the upper surface of the tool tip detection unit 30 to thereby measure the tool tip position. 32 (see FIG. 4) is raised, and the position (position in the Z-axis direction) of the tip portion TS of the machining tool T can be directly obtained based on the signal SC2 from the tool tip position measuring means 32.
1 and 2, the moving means for moving the relative position in the X-axis direction and the relative position in the Y-axis direction of the workpiece W with respect to the machining tool T is omitted, but the table 20 or the spindle 10 is not used. X-axis moving means for relatively moving in the X-axis direction and Y-axis moving means for relatively moving the table 20 or the main shaft 10 in the Y-axis direction may be provided.

●[主軸10の構成と主軸10の熱変位量の測定方法(図3)]
図3は、主軸ハウジング12の内部構造を示す断面図(主軸10の回転軸を通るYZ平面による断面)である。
主軸10は、軸受け16(ベアリング等)を介して主軸ハウジング12内に固定されており、例えばコイル15に通電されると回転する。
主軸ハウジング12はコラム14に固定されており、コラム14には、主軸ハウジング12と別体で構成されたアーム18が固定されている。そしてアーム18の先端には、主軸変位量測定手段SH(ギャップセンサ等)が設けられており、主軸変位量測定手段SHは、主軸10に形成された検出面Mまでの間隔ΔD(ギャップ)に応じた検出信号を制御手段40に出力する。
なお、主軸変位量測定手段SHは、加工工具TがワークWを加工中であっても測定可能な位置であれば、図3の例に示す位置に限定されず、主軸10の任意の位置に設けることができる。
● [Configuration of spindle 10 and measuring method of thermal displacement of spindle 10 (FIG. 3)]
FIG. 3 is a sectional view showing the internal structure of the spindle housing 12 (a section taken along the YZ plane passing through the rotation axis of the spindle 10).
The main shaft 10 is fixed in the main shaft housing 12 via a bearing 16 (bearing or the like), and rotates when, for example, the coil 15 is energized.
The main shaft housing 12 is fixed to a column 14, and an arm 18 that is formed separately from the main shaft housing 12 is fixed to the column 14. The tip of the arm 18 is provided with a spindle displacement measuring means SH (gap sensor or the like), and the spindle displacement measuring means SH is spaced at a distance ΔD (gap) from the detection surface M formed on the spindle 10. A corresponding detection signal is output to the control means 40.
The spindle displacement measuring means SH is not limited to the position shown in the example of FIG. 3 as long as it can be measured even when the machining tool T is machining the workpiece W. Can be provided.

●[加工工具Tの先端部TSの直接的な測定方法(図4)]
図4は、制御手段40からの制御信号SC1によって工具先端検出ユニット30の上面の蓋部が開口されて(図示省略)工具先端位置測定手段32が加工工具Tの位置まで上昇した図を示している。なお、工具先端位置測定手段32は、例えばレーザ光LAの遮光によって加工工具Tの先端部TSの位置を直接的に高精度に検出可能な測定手段であるが、加工工具TがワークWを加工中には使用することができない。なお、後述する図7の説明(ステップS14、ステップS24の説明)に記載するように、工具先端位置測定手段32にて先端部TSの位置を検出する際は、加工で用いる回転速度(ステップS11)にて加工工具Tが回転中である。
工具先端位置測定手段32を用いるメリットとしては、工具先端位置測定手段32で加工工具Tの先端位置(先端部TSの位置)を、実機上で直接検出して加工開始点を設定するので、機械原点を加工開始点として用いる場合に比べて、ベッドやコラム等の熱変位誤差をキャンセルすることができる点、また、工具先端位置測定手段32がワークWに近い程(実際の被加工個所に近い程)ワークWと工具先端位置測定手段32の間の熱変位誤差を小さくすることができる点、及びこれらが実機の使用環境(室温、加工工具の種類等)で実施可能な点、が挙げられる。
● [Direct measurement method of the tip TS of the processing tool T (Fig. 4)]
FIG. 4 shows a view in which the upper end of the tool tip detection unit 30 is opened by the control signal SC1 from the control means 40 (not shown) and the tool tip position measuring means 32 is raised to the position of the machining tool T. Yes. The tool tip position measuring means 32 is a measuring means that can directly and accurately detect the position of the tip portion TS of the processing tool T by shielding the laser beam LA, for example, but the processing tool T processes the workpiece W. Cannot be used inside. As described in the description of FIG. 7 (steps S14 and S24), which will be described later, when the position of the tip TS is detected by the tool tip position measuring means 32, the rotational speed used in machining (step S11). ), The machining tool T is rotating.
The advantage of using the tool tip position measuring means 32 is that the tool tip position measuring means 32 directly detects the tip position of the machining tool T (position of the tip portion TS) on the actual machine and sets the machining start point. Compared to the case where the origin is used as the machining start point, the thermal displacement error of the bed or column can be canceled, and the closer the tool tip position measuring means 32 is to the workpiece W (closer to the actual machining location) The fact that the thermal displacement error between the workpiece W and the tool tip position measuring means 32 can be reduced, and that these can be implemented in the actual machine usage environment (room temperature, type of processing tool, etc.). .

●[加工工具Tの先端部TSの位置と、主軸10の熱変位量との関係(図5)]
図5に示すグラフは、横軸を時間軸、縦軸を変位量(グラフG1、グラフG2)または補正係数(グラフG3)としたものであり、タイミングTaにて主軸10の回転を開始(加工で用いる回転速度に設定)した場合の実測値の例である。グラフG1は工具先端位置測定手段32からの信号に基づいて測定した加工工具Tの先端部TSの位置を示しており、グラフG2は主軸変位量測定手段SHからの信号に基づいて測定した主軸10の検出面Mの変位量を示しており、グラフG3は「グラフG1の値/グラフG2の値」(=主軸10の検出面Mの変位量に対する加工工具Tの先端部TSの位置)を示している。
なお、加工工具Tの先端部TSでワークWを加工中は、工具先端位置測定手段32を使用できないため(グラフG1)を得ることはできないが、主軸変位量測定手段SHは加工中であっても使用することができるため(グラフG2)を得ることは可能である。
[Relationship between the position of the tip TS of the processing tool T and the amount of thermal displacement of the spindle 10 (FIG. 5)]
In the graph shown in FIG. 5, the horizontal axis is the time axis, and the vertical axis is the displacement amount (graph G1, graph G2) or the correction coefficient (graph G3). This is an example of an actual measurement value when the rotation speed used in the above is set. The graph G1 shows the position of the tip TS of the machining tool T measured based on the signal from the tool tip position measuring means 32, and the graph G2 shows the spindle 10 measured based on the signal from the spindle displacement measuring means SH. The graph G3 indicates “the value of the graph G1 / the value of the graph G2” (= the position of the tip TS of the machining tool T with respect to the displacement of the detection surface M of the spindle 10). ing.
Note that the tool tip position measuring means 32 cannot be used (graph G1) during machining of the workpiece W with the tip portion TS of the machining tool T, but the spindle displacement measuring means SH is being machined. (Graph G2) can be obtained.

図5のグラフからわかるように、加工工具Tの先端部TSの位置(変位量)の値(グラフG1)は、主軸10の回転を開始(タイミングTa)した後、徐々に大きくなるが、その傾きは一定でない。同様に、主軸10の検出面Mの変位量(グラフG2)も主軸10の回転を開始した後、徐々に大きくなるが、その傾きは一定でない。
しかし、主軸10の検出面Mの変位量に対する加工工具Tの先端部TSの位置(グラフG3)は、主軸10の回転を開始して期間T1が経過後には、その値がほぼ一定となっていることがわかる。このグラフG3の値を熱変位量の補正係数として用いる。すなわち、期間T1を経過後は、「主軸10の検出面Mの変位量」×「補正係数」から、より正確な加工工具Tの先端部TSの位置を求める(推定する)ことができる。
As can be seen from the graph of FIG. 5, the value (graph G1) of the position (displacement) of the tip TS of the machining tool T gradually increases after the rotation of the spindle 10 is started (timing Ta). The slope is not constant. Similarly, the displacement amount (graph G2) of the detection surface M of the main shaft 10 gradually increases after the rotation of the main shaft 10, but the inclination thereof is not constant.
However, the position (graph G3) of the tip portion TS of the machining tool T with respect to the displacement amount of the detection surface M of the main spindle 10 becomes substantially constant after a period T1 has elapsed since the rotation of the main spindle 10 has started. I understand that. The value of this graph G3 is used as a thermal displacement correction coefficient. That is, after the period T1 has elapsed, the more accurate position of the tip TS of the machining tool T can be obtained (estimated) from “the amount of displacement of the detection surface M of the spindle 10” × “correction coefficient”.

先端部TSの位置は、主軸10の材質(熱膨張係数)と長さと回転速度、加工工具Tの材質(熱膨張係数)と長さ、等による熱変位量で決まり、その傾きも一定ではない。しかも、加工工具TはワークWの種類や加工工程によって種々のものに交換され、同一のワークWであっても、粗加工工程と仕上げ加工工程で異なる加工工具Tに交換され、主軸10の回転速度がそれぞれの工程で異なる場合もある。
また、検出面Mの変位量も、主軸10の材質(熱膨張係数)と長さと回転速度、及び主軸10における検出面Mの位置、アーム18の材質(熱膨張係数)と長さ、等による熱変位量で決まり、その傾きも一定ではない。
しかし、上述したように、期間T1を経過後は補正係数が安定するため、「主軸10の検出面Mの変位量」×「補正係数」から、先端部TSの位置をより正確に求めることができる。
本実施の形態にて説明する加工装置1では、加工で用いる回転速度で主軸10を回転させて、この暖機運転中にこの補正係数を求め、主軸10の材質と長さと回転速度、及び加工工具Tの材質と長さ等にかかわらず、主軸10を含む加工工具Tに固有の補正係数を自動的に求めることができるので手間もなく、非常に高精度な加工を行うことができる。
The position of the tip TS is determined by the amount of thermal displacement due to the material (thermal expansion coefficient), length and rotational speed of the main shaft 10, the material (thermal expansion coefficient) and length of the processing tool T, and the inclination thereof is not constant. . In addition, the machining tool T is exchanged for various types depending on the type and machining process of the workpiece W, and even the same workpiece W is exchanged for a machining tool T that is different in the rough machining process and the finishing machining process, and the spindle 10 rotates. The speed may be different for each process.
Further, the amount of displacement of the detection surface M also depends on the material (thermal expansion coefficient), length and rotational speed of the main shaft 10, the position of the detection surface M on the main shaft 10, the material (thermal expansion coefficient) and length of the arm 18, and the like. It is determined by the amount of thermal displacement, and its slope is not constant.
However, as described above, since the correction coefficient is stable after the period T1, the position of the tip TS can be obtained more accurately from “the amount of displacement of the detection surface M of the spindle 10” × “correction coefficient”. it can.
In the processing apparatus 1 described in the present embodiment, the main shaft 10 is rotated at the rotational speed used for processing, the correction coefficient is obtained during the warm-up operation, and the material, length, rotational speed, and processing of the main shaft 10 are determined. Regardless of the material and length of the tool T, the correction coefficient specific to the machining tool T including the spindle 10 can be automatically obtained, so that very high-precision machining can be performed without any trouble.

時間Tb以降では、安定した補正係数を用いて先端部TSの位置を求めて(推定して)加工を行うことが可能であるため、この「期間T1」を「暖機運転期間」とみなすことができ、時間Tbにて暖機運転が終了したと判定することができる。
従来技術による暖機運転の終了の判定は、加工工具Tの先端部TSの位置の変化量または変化率が所定範囲内になった場合に暖機運転の終了を判定していたため、例えば図5におけるグラフG1の変化量または変化率が所定範囲となった時間Tc以降で暖機運転の終了を判定していた。従って、従来技術では、期間T2が暖機運転期間と判定されていた。
これに対して本実施の形態にて説明した加工装置1では、加工時において加工工具TとワークWに干渉することなく主軸10の回転軸方向の変位量を検出可能な主軸変位量測定手段SHを備えている。そして、主軸10の回転を開始してからの暖機運転中は、工具先端位置検出手段32からの信号に基づいた先端部TSの位置(A)と、主軸変位量測定手段SHからの信号に基づいた主軸10の熱変位量(C)と、主軸10の熱変位量に対する先端部TSの位置(=A/C)を補正係数として求め、この補正係数の変化量が許容値未満となった場合(つまり、グラフG3の変化量が許容値未満となった場合)に暖機運転が終了したと判定する。
本実施の形態による加工装置1では、暖機運転の終了判定を「先端部TSの位置(絶対位置)の安定」でなく、「主軸10の変位に対する先端部TSの変位(=相対的な比)の安定」とすることで、先端部TSの変位の変化量がある程度の大きさを有して従来では暖機運転中と判断された期間(図5の例では時間Tbから時間Tcの期間)であっても補正係数が安定していることより暖機運転の終了を判定して当該補正係数を用いた高精度な加工を開始することが可能である。すなわち、加工精度の確保と暖機運転時間の短縮とを両立することができる。
After time Tb, it is possible to perform processing by obtaining (estimating) the position of the tip TS using a stable correction coefficient. Therefore, this “period T1” is regarded as a “warm-up operation period”. It can be determined that the warm-up operation has been completed at time Tb.
The determination of the end of the warm-up operation according to the prior art determines the end of the warm-up operation when the change amount or change rate of the position of the tip portion TS of the machining tool T falls within a predetermined range. The end of the warm-up operation is determined after time Tc when the amount of change or rate of change in the graph G1 is within a predetermined range. Therefore, in the prior art, the period T2 is determined as the warm-up operation period.
On the other hand, in the machining apparatus 1 described in the present embodiment, the spindle displacement measuring means SH capable of detecting the displacement of the spindle 10 in the rotation axis direction without interfering with the machining tool T and the workpiece W during machining. It has. During the warm-up operation after starting the rotation of the spindle 10, the position (A) of the tip TS based on the signal from the tool tip position detecting means 32 and the signal from the spindle displacement measuring means SH are used. Based on the thermal displacement amount (C) of the main spindle 10 and the position (= A / C) of the tip portion TS with respect to the thermal displacement amount of the main spindle 10 as a correction coefficient, the change amount of the correction coefficient is less than the allowable value. In this case (that is, when the amount of change in the graph G3 is less than the allowable value), it is determined that the warm-up operation has ended.
In the processing apparatus 1 according to the present embodiment, the end determination of the warm-up operation is not “stabilization of the position (absolute position) of the tip portion TS” but “displacement of the tip portion TS with respect to the displacement of the main shaft 10 (= relative ratio). ) Stability ”, a period in which the amount of change in the displacement of the tip TS has a certain magnitude and is conventionally determined to be during the warm-up operation (in the example of FIG. 5, the period from time Tb to time Tc). ), It is possible to determine the end of the warm-up operation from the fact that the correction coefficient is stable, and to start highly accurate machining using the correction coefficient. That is, it is possible to achieve both ensuring of machining accuracy and shortening of the warm-up operation time.

●[制御手段40による熱変位量の補正方法(図6)]
図6は、制御手段40によるワークWの加工中の熱変位補正制御の制御ブロック図の例を示している。
主軸変位量測定手段SHからの信号(アナログ信号)は、増幅器C10にて所定倍率に増幅され、1次遅れ変換器C20を介してA/D変換器C30に入力されてデジタル値に変換される。
そして、デジタル値に変換された主軸変位量測定手段SHからの信号は、乗算器C40にて補正係数が乗算され、先端部TSの変位量が求められる。求められた先端部TSの変位量は補正ブロックC50から加工装置原点オフセットとして出力され、Z軸移動手段MZの切込み制御量が補正される。なお、C50fは、補正ブロックC50から乗算器C40に出力される所定時間間隔の演算タイミング指示である。
● [Method for correcting thermal displacement by control means 40 (FIG. 6)]
FIG. 6 shows an example of a control block diagram of thermal displacement correction control during machining of the workpiece W by the control means 40.
A signal (analog signal) from the spindle displacement measuring means SH is amplified to a predetermined magnification by the amplifier C10, is input to the A / D converter C30 via the first-order lag converter C20, and is converted into a digital value. .
Then, the signal from the spindle displacement measuring means SH converted into a digital value is multiplied by a correction coefficient by a multiplier C40, and the amount of displacement of the tip TS is obtained. The obtained displacement amount of the tip TS is output from the correction block C50 as the machining device origin offset, and the cutting control amount of the Z-axis moving means MZ is corrected. C50f is a calculation timing instruction for a predetermined time interval output from the correction block C50 to the multiplier C40.

●[暖機運転の終了判定と補正係数を求める処理手順(図7)]
次に図7に示すフローチャートを用いて、暖機運転の終了判定と、熱変位に伴う先端部TSの位置を補正する補正係数を求める処理手順について説明する。制御手段40は、図7のフローチャートに示す処理を行って補正係数を求めた後、図6の例に示した制御ブロック図に従った制御を行い、Z軸移動手段MZの切込み制御量を補正しながらワークWを加工する。
● [Processing procedure for determining the end of warm-up operation and obtaining the correction coefficient (Fig. 7)]
Next, with reference to the flowchart shown in FIG. 7, the procedure for determining the end of the warm-up operation and determining the correction coefficient for correcting the position of the tip TS accompanying the thermal displacement will be described. The control means 40 performs the processing shown in the flowchart of FIG. 7 to obtain the correction coefficient, and then performs control according to the control block diagram shown in the example of FIG. 6 to correct the cutting control amount of the Z-axis moving means MZ. While processing the workpiece W.

ステップS10では、工具交換を行う。なお、工具交換は、加工装置1が行ってもよいし、作業者が行ってもよい。
ステップS11では、制御手段40は、回転駆動手段を制御して加工で用いる回転速度で主軸10の回転を開始させ、ステップS12に進む。
ステップS12では、サンプリング数(n)を初期値(1)に設定し、ステップS14に進む。
ステップS14では、工具先端位置測定手段32からの信号に基づいて加工工具Tの先端部TSの位置An(この場合、A1)を求め、ステップS16に進む。
ステップS16では、主軸変位量測定手段SHからの信号に基づいて主軸10の検出面Mの変位量Cn(この場合、C1)を求め、ステップS18に進む。
ステップS18では、求めた先端部TSの位置A1と検出面Mの変位量C1を用いて補正係数α1(=A1/C1)を求め、ステップS20に進む。
In step S10, tool change is performed. The tool change may be performed by the processing apparatus 1 or an operator.
In step S11, the control means 40 controls the rotation driving means to start the rotation of the main spindle 10 at the rotation speed used for machining, and proceeds to step S12.
In step S12, the sampling number (n) is set to the initial value (1), and the process proceeds to step S14.
In step S14, the position An (in this case, A 1 ) of the tip portion TS of the machining tool T is obtained based on the signal from the tool tip position measuring means 32, and the process proceeds to step S16.
In step S16, the displacement amount C n (C 1 in this case) of the detection surface M of the spindle 10 is obtained based on the signal from the spindle displacement measuring means SH, and the process proceeds to step S18.
In step S18, the correction coefficient α 1 (= A 1 / C 1 ) is obtained using the obtained position A 1 of the tip TS and the displacement amount C 1 of the detection surface M, and the process proceeds to step S20.

ステップS20では、予め設定されたサンプリング時間(Ts)が経過するまで待機し、待機が終了したらステップS22に進む。
ステップS22では、サンプリング数(n)を更新(n=n+1)し、ステップS24に進む。
ステップS24では、工具先端位置測定手段32からの信号に基づいて加工工具Tの先端部TSの位置Anを求め、ステップS26に進む。
ステップS26では、主軸変位量測定手段SHからの信号に基づいて主軸10の検出面Mの変位量Cnを求め、ステップS28に進む。
ステップS28では、求めた先端部TSの位置Anと検出面Mの変位量Cnを用いて補正係数αn(=An/Cn)を求め、ステップS30に進む。
In step S20, the process waits until a preset sampling time (Ts) elapses. When the standby is completed, the process proceeds to step S22.
In step S22, the sampling number (n) is updated (n = n + 1), and the process proceeds to step S24.
In step S24, obtains a position A n of the tip portion TS of the working tool T on the basis of a signal from the tool tip position measuring means 32, the process proceeds to step S26.
In step S26, the displacement amount C n of the detection surface M of the spindle 10 is obtained based on the signal from the spindle displacement measuring means SH, and the process proceeds to step S28.
At step S28, obtains a correction coefficient α n (= A n / C n) by using the displacement amount C n positions A n and the detection plane M of the calculated tip TS, the process proceeds to step S30.

ステップS30では、今回求めた補正係数αnと前回求めた補正係数αn-1との差から、補正係数の変化量(Δα)を求め、求めた変化量が許容値未満であるか否かを判定する。なお、許容値の値は適宜設定され、今回求めた補正係数αnと前回求めた補正係数αn-1との差の絶対値を変化量(Δα=|αn−αn-1|)としてもよい。変化量が許容値以上である場合(No)は、補正係数がまだ安定していないため暖機運転期間中であると判断し、ステップS20に戻る。変化量が許容値未満である場合(Yes)は、補正係数が安定して暖機運転期間が終了したと判断し、ステップS32に進む。
ステップS32では、図6に示す制御ブロック図における乗算器C40で用いる補正係数(H)に、求めた補正係数αnの値を設定し、ステップS34に進む。
ステップS34では、工具先端位置測定手段32による測定を終了させ、工具先端位置測定手段32を工具先端検出ユニット30内に収容し、ワークWの加工の準備を行い、ステップS40に進む。
ステップS40では、主軸熱変位の補正を行いながらワークWの加工を開始する(図6の制御ブロック図による制御を開始する)。
In step S30, a change amount (Δα) of the correction coefficient is obtained from the difference between the correction coefficient α n obtained this time and the correction coefficient α n-1 obtained last time, and whether or not the obtained change amount is less than an allowable value. Determine. The allowable value is set as appropriate, and the absolute value of the difference between the correction coefficient α n obtained this time and the correction coefficient α n-1 obtained last time is changed (Δα = | α n −α n-1 |). It is good. When the amount of change is equal to or greater than the allowable value (No), it is determined that the warm-up operation period is in progress because the correction coefficient is not yet stable, and the process returns to step S20. When the amount of change is less than the allowable value (Yes), it is determined that the correction coefficient is stable and the warm-up operation period has ended, and the process proceeds to step S32.
In step S32, the value of the obtained correction coefficient α n is set in the correction coefficient (H) used in the multiplier C40 in the control block diagram shown in FIG. 6, and the process proceeds to step S34.
In step S34, the measurement by the tool tip position measuring unit 32 is terminated, the tool tip position measuring unit 32 is accommodated in the tool tip detection unit 30, preparation for machining the workpiece W is performed, and the process proceeds to step S40.
In step S40, machining of the workpiece W is started while correcting the spindle thermal displacement (control according to the control block diagram of FIG. 6 is started).

以上の説明では、補正係数の変化量が許容値未満になった場合に暖機運転期間が終了したと判断して加工を開始する例を説明したが、補正係数の変化量の代わりに補正係数の変化率を用いてもよいし、予め加工工具T毎に補正係数の許容範囲を設定しておき、補正係数が当該許容範囲内となった場合に暖機運転期間が終了したと判断して加工を開始するようにしてもよい。
いずれの場合も、暖機運転期間の終了を適切に判断することが可能であるため、必要以上に暖機運転時間が長くなることを防止することができる。
また、補正係数の変化量または変化率の許容値、あるいは補正係数の許容範囲は、粗加工工程、精加工工程、仕上げ加工工程、と順次行う加工工程の工程毎に切り替えるようにしてもよい。この場合、粗加工工程から仕上げ加工工程へと研削量が少なくなるに従って許容値(あるいは許容範囲)が徐々に小さくなるように設定することで、要求加工精度が比較的低い粗加工工程等では暖機運転期間をより短くすることが可能となり、最終的なワークの加工精度を確保しながら加工効率をより向上させることができる。
In the above description, an example has been described in which it is determined that the warm-up operation period has ended when the amount of change in the correction coefficient is less than the allowable value, and machining is started, but the correction coefficient is used instead of the amount of change in the correction coefficient. May be used, or an allowable range of the correction coefficient is set in advance for each machining tool T, and it is determined that the warm-up operation period has ended when the correction coefficient falls within the allowable range. Processing may be started.
In any case, since it is possible to appropriately determine the end of the warm-up operation period, it is possible to prevent the warm-up operation time from becoming longer than necessary.
Further, the change amount or change rate allowable value of the correction coefficient, or the allowable range of the correction coefficient may be switched for each step of the roughing process, the fine processing process, and the finishing process, which are sequentially performed. In this case, by setting the allowable value (or allowable range) to gradually decrease as the grinding amount decreases from the roughing process to the finishing process, it is warm in the roughing process where the required machining accuracy is relatively low. The machine operation period can be shortened, and the machining efficiency can be further improved while ensuring the final workpiece machining accuracy.

本発明の加工装置1は、本実施の形態で説明した外観、構成、処理等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
また、以上(≧)、以下(≦)、より大きい(>)、未満(<)等は、等号を含んでも含まなくてもよい。
The processing apparatus 1 of the present invention is not limited to the appearance, configuration, processing, and the like described in the present embodiment, and various modifications, additions, and deletions can be made without changing the gist of the present invention.
Further, the above (≧), the following (≦), the greater (>), the less (<), etc. may or may not include an equal sign.

本発明の加工装置1の一実施の形態(概略外観図(斜視図))を説明する図である。It is a figure explaining one embodiment (schematic appearance figure (perspective view)) of processing device 1 of the present invention. 本発明の加工装置1の一実施の形態(概略接続図(側面図))を説明する図である。It is a figure explaining one embodiment (schematic connection diagram (side view)) of processing device 1 of the present invention. 主軸10の構成と主軸10の熱変位量の測定方法を説明する図である。It is a figure explaining the measuring method of the structure of the main axis | shaft 10, and the thermal displacement amount of the main axis | shaft 10. FIG. 加工工具Tの先端部TSの直接的な測定方法を説明する図である。It is a figure explaining the direct measuring method of front-end | tip part TS of the processing tool T. FIG. 加工工具Tの先端部TSの位置と、主軸10の熱変位量との関係を説明する図である。3 is a diagram for explaining the relationship between the position of a tip portion TS of a machining tool T and the amount of thermal displacement of a main shaft 10. FIG. 制御手段40による熱変位量の補正方法を説明する制御ブロック図である。4 is a control block diagram for explaining a method of correcting a thermal displacement amount by a control means 40. FIG. 暖機運転の終了判定と補正係数を求める処理手順を説明するフローチャートである。It is a flowchart explaining the process sequence which calculates | requires completion | finish determination and a correction coefficient of warm-up operation.

符号の説明Explanation of symbols

1 加工装置
2 基台
10 主軸
12 主軸ハウジング
14 コラム
15 コイル
16 軸受け
18 アーム
20 テーブル
30 工具先端検出ユニット
32 工具先端位置測定手段
40 制御手段
MZ Z軸移動手段
EZ エンコーダ
LA レーザ光
M 検出面
SH 主軸変位量測定手段
T 加工工具
TS 先端部
W ワーク
αn、H 補正係数

DESCRIPTION OF SYMBOLS 1 Processing apparatus 2 Base 10 Spindle 12 Spindle housing 14 Column 15 Coil 16 Bearing 18 Arm 20 Table 30 Tool tip detection unit 32 Tool tip position measurement means 40 Control means MZ Z axis movement means EZ Encoder LA Laser light M Detection surface SH Spindle Displacement measuring means T Machining tool TS Tip W Work α n , H Correction coefficient

Claims (4)

回転駆動手段によって回転する主軸と、
前記主軸の回転軸に対して同軸上に設けられて回転するとともに先端でワークを加工する加工工具と、
前記回転軸方向に沿って前記加工工具の先端に対するワークの位置を相対的に進退可能な切込み移動手段と、
非加工時において前記加工工具における前記回転軸方向の先端位置を直接的に検出可能な工具先端位置測定手段と、
加工時において前記加工工具とワークに干渉することなく前記主軸における前記回転軸方向の熱変位量を検出可能な主軸変位量測定手段と、
前記回転駆動手段と前記切込み移動手段を制御する制御手段と、を備え、
前記制御手段にて、前記主軸変位量測定手段からの信号に基づいて、加工中における前記切込み移動手段の制御量を補正する加工装置において、
前記制御手段は、
加工を開始する前に、前記回転駆動手段を制御して加工で用いる回転速度で前記主軸を回転させ、前記工具先端位置測定手段からの信号に基づいて前記加工工具の先端位置を求めるとともに、前記主軸変位量測定手段からの信号に基づいて前記主軸の熱変位量を求め、求めた前記熱変位量に対する前記先端位置の比である補正係数を求め、
加工を開始後は、求めた前記補正係数と前記主軸変位量測定手段からの信号を用いて、前記切込み移動手段の制御量を補正しながら加工する、
加工装置。
A spindle that is rotated by a rotation drive means;
A machining tool that is provided coaxially with the rotation axis of the main shaft and rotates and works a workpiece at the tip;
A cutting movement means capable of moving forward and backward relative to the tip of the processing tool along the rotational axis direction;
Tool tip position measuring means capable of directly detecting the tip position in the rotational axis direction of the machining tool at the time of non-machining;
Spindle displacement measuring means capable of detecting the amount of thermal displacement of the spindle in the direction of the rotation axis without interfering with the machining tool and a workpiece during machining;
Control means for controlling the rotation driving means and the cutting movement means,
In the processing device for correcting the control amount of the incision moving means during processing based on the signal from the spindle displacement amount measuring means in the control means,
The control means includes
Before starting machining, the spindle is rotated at a rotational speed used in machining by controlling the rotation driving means, and the tip position of the machining tool is obtained based on a signal from the tool tip position measuring means, and Obtaining a thermal displacement amount of the spindle based on a signal from the spindle displacement measuring means, obtaining a correction coefficient which is a ratio of the tip position to the obtained thermal displacement amount;
After starting processing, using the obtained correction coefficient and the signal from the spindle displacement measuring means, processing while correcting the control amount of the cutting movement means,
Processing equipment.
請求項1に記載の加工装置であって、
前記制御手段は、
加工を開始する前は、所定タイミング毎に前記補正係数を求め、前記補正係数の変化量または変化率が許容値未満になった場合に暖機運転が終了したと判断し、
前記暖機運転の終了の判断後に加工を開始する、
加工装置。
The processing apparatus according to claim 1,
The control means includes
Before starting the processing, the correction coefficient is obtained at every predetermined timing, and when the change amount or change rate of the correction coefficient is less than the allowable value, it is determined that the warm-up operation is finished,
Start processing after determining the end of the warm-up operation,
Processing equipment.
請求項1に記載の加工装置であって、
前記制御手段は、
加工を開始する前は、所定タイミング毎に前記補正係数を求め、前記補正係数が許容範囲内になった場合に暖機運転が終了したと判断し、
前記暖機運転の終了の判断後に加工を開始する、
加工装置。
The processing apparatus according to claim 1,
The control means includes
Before starting machining, determine the correction coefficient at every predetermined timing, and determine that the warm-up operation has ended when the correction coefficient falls within an allowable range,
Start processing after determining the end of the warm-up operation,
Processing equipment.
請求項2または3に記載の加工装置であって、
前記制御手段は、
前記補正係数の変化量または変化率の許容値、あるいは前記補正係数の許容範囲を、粗加工工程、精加工工程、仕上げ加工工程、の各工程で切り替える、
加工装置。

It is a processing apparatus of Claim 2 or 3, Comprising:
The control means includes
The permissible value of the change amount or rate of change of the correction coefficient, or the permissible range of the correction coefficient is switched in each step of the roughing process, the fine machining process, and the finishing process.
Processing equipment.

JP2007106907A 2007-04-16 2007-04-16 Processing equipment Expired - Fee Related JP4720774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106907A JP4720774B2 (en) 2007-04-16 2007-04-16 Processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106907A JP4720774B2 (en) 2007-04-16 2007-04-16 Processing equipment

Publications (2)

Publication Number Publication Date
JP2008264883A true JP2008264883A (en) 2008-11-06
JP4720774B2 JP4720774B2 (en) 2011-07-13

Family

ID=40045120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106907A Expired - Fee Related JP4720774B2 (en) 2007-04-16 2007-04-16 Processing equipment

Country Status (1)

Country Link
JP (1) JP4720774B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232385A (en) * 2011-05-06 2012-11-29 Jtekt Corp Numerical control device and machining method
JP2013233638A (en) * 2012-05-10 2013-11-21 Mitsubishi Electric Corp Machine tool and thermal displacement correction method of the same
JP2013255978A (en) * 2012-06-14 2013-12-26 Jtekt Corp Thermal displacement compensation device
DE102017008570A1 (en) 2016-09-16 2018-03-22 Fanuc Corporation Machine tool and method for smoothing a workpiece
JP2018180725A (en) * 2017-04-06 2018-11-15 ファナック株式会社 Warm-up planning system and warm-up planning method
CN113341878A (en) * 2021-06-23 2021-09-03 重庆理工大学 Thermal error measuring method of five-axis numerical control machine tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274951A (en) * 1988-04-26 1989-11-02 Toyoda Mach Works Ltd Thermal displacement correcting device for machine tool spindle
JPH0847842A (en) * 1994-08-04 1996-02-20 Canon Inc Machine tool and method of work
JP2001300836A (en) * 2000-04-19 2001-10-30 Canon Inc Tool positional displacement correcting machining method
JP2004261934A (en) * 2003-03-03 2004-09-24 Makino Milling Mach Co Ltd Control method of machine tool, and machine tool
JP2007007752A (en) * 2005-06-29 2007-01-18 Okuma Corp Displacement correcting method of spindle tool tip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274951A (en) * 1988-04-26 1989-11-02 Toyoda Mach Works Ltd Thermal displacement correcting device for machine tool spindle
JPH0847842A (en) * 1994-08-04 1996-02-20 Canon Inc Machine tool and method of work
JP2001300836A (en) * 2000-04-19 2001-10-30 Canon Inc Tool positional displacement correcting machining method
JP2004261934A (en) * 2003-03-03 2004-09-24 Makino Milling Mach Co Ltd Control method of machine tool, and machine tool
JP2007007752A (en) * 2005-06-29 2007-01-18 Okuma Corp Displacement correcting method of spindle tool tip

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232385A (en) * 2011-05-06 2012-11-29 Jtekt Corp Numerical control device and machining method
JP2013233638A (en) * 2012-05-10 2013-11-21 Mitsubishi Electric Corp Machine tool and thermal displacement correction method of the same
JP2013255978A (en) * 2012-06-14 2013-12-26 Jtekt Corp Thermal displacement compensation device
DE102017008570A1 (en) 2016-09-16 2018-03-22 Fanuc Corporation Machine tool and method for smoothing a workpiece
JP2018043333A (en) * 2016-09-16 2018-03-22 ファナック株式会社 Machine tool and workpiece plane processing method
US10118227B2 (en) 2016-09-16 2018-11-06 Fanuc Corporation Machine tool and workpiece flattening method
JP2018180725A (en) * 2017-04-06 2018-11-15 ファナック株式会社 Warm-up planning system and warm-up planning method
US10509389B2 (en) 2017-04-06 2019-12-17 Fanuc Corporation Warm up operation planning device and warm up operation planning method
CN113341878A (en) * 2021-06-23 2021-09-03 重庆理工大学 Thermal error measuring method of five-axis numerical control machine tool

Also Published As

Publication number Publication date
JP4720774B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US7245983B2 (en) Method and apparatus for correcting thermal displacement of machine tool
JP4720774B2 (en) Processing equipment
US7778725B2 (en) Method for estimating thermal displacement in machine tool
WO2011052442A1 (en) Machine tool
JP5870143B2 (en) Wire electrical discharge machine with thermal displacement compensation function for upper and lower guides
JP5393598B2 (en) Galvano device and laser processing device
JP5851436B2 (en) Processing apparatus and processing method
JP2015006721A (en) Machine tool including measuring apparatus
JP2006281420A (en) Heat displacement compensating method of nc machine tool
JP4245375B2 (en) Machine tool control method and machine tool
JP5734213B2 (en) High precision machining method and high precision machining apparatus
JP6561003B2 (en) Machine tool thermal displacement correction method, machine tool
JP2008246620A (en) Machine tool, control program for correcting thermal expansion, and storage medium
JP5334932B2 (en) Parameter setting method and parameter setting device
JP2003039278A (en) Thermal displacement correcting device for machine tool
JP2006116654A (en) Thermal deformation correction method and thermal deformation correcting device of nc machine tool
WO2011024838A1 (en) Method for thermal displacement correction in machine tool and thermal displacement correction device
KR100970557B1 (en) The Main Axis Heat Displacement Correction Unit of CND and Method Thereof
JP2010099753A (en) Pitch error correction method and pitch error correction device of machine tool
JP2017144527A (en) Correction method of thermal displacement of machine tool
JP2004148443A (en) Method for correcting thermal displacement of tool
JP2001277073A (en) Tool position correcting method for machining device
JP4877012B2 (en) Machine tool, thermal expansion correction control program, and storage medium
JP2002036068A (en) Method and device for correcting tool position of machine tool
JP2006231420A (en) Automatic lathe and rear face machining method by the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees