JP2004148443A - Method for correcting thermal displacement of tool - Google Patents

Method for correcting thermal displacement of tool Download PDF

Info

Publication number
JP2004148443A
JP2004148443A JP2002316598A JP2002316598A JP2004148443A JP 2004148443 A JP2004148443 A JP 2004148443A JP 2002316598 A JP2002316598 A JP 2002316598A JP 2002316598 A JP2002316598 A JP 2002316598A JP 2004148443 A JP2004148443 A JP 2004148443A
Authority
JP
Japan
Prior art keywords
tool
temperature
thermal displacement
temperature sensor
machine tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002316598A
Other languages
Japanese (ja)
Inventor
Tadahiro Oki
忠洋 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2002316598A priority Critical patent/JP2004148443A/en
Publication of JP2004148443A publication Critical patent/JP2004148443A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for correcting thermal displacement of a tool which highly accurately estimates thermal displacement of the tool without providing the tool with a temperature sensor and excellently corrects thermal displacement, even just after replacing the tool. <P>SOLUTION: A first temperature sensor 1 is provided in the vicinity of a bearing of a main shaft 11 in the vicinity of the tool. A second temperature sensor 2 is provided on a bed 10. Correction amount is calculated by a prescribed calculation formula based on temperature data of both the sensors 1 and 2 and is added to a command value of a NC device 6. The calculation formula of the correction amount is set by a function of a temperature gradient fixed by each tool and a tool holder and a time constant, and is taken as a prescribed primary delay expression based on a difference of detected temperatures of the first temperature sensor 1 and the second temperature sensor 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、工作機械に装着した工具の熱変位を補正する工具の熱変位補正方法に関する。
【0002】
【従来の技術】
工作機械の加工精度に大きく影響を与える要因としては、環境温度の変化や機械各部の発熱による熱変形が主に挙げられる。そのうち、機械各部の発熱による熱変形は、主に主軸が高速回転することによって生じる工具の熱変形が大きく作用し、加工精度維持を困難にしている。
そのため、工具の熱変形を主軸ノーズの温度変化と室温の変化に対する即時応答要素として主軸軸線方向の熱変位を求めて補正する方法(特許文献1参照)や、工具の温度を測定する温度センサを設けて、その温度情報より加工データの補正を行う方法(特許文献2参照)のように、主軸温度、主軸回転数、工具温度などの情報を用いて熱変位量を推定し、補正を行う方法が実施されている。
【0003】
【特許文献1】
特公平6−22779号公報
【特許文献2】
特開昭63−2645号公報
【0004】
【発明が解決しようとする課題】
しかし、このように熱変位量を推定して補正し、加工を行った場合でも、仕上げ加工中に工具交換を行ってすぐに加工を再開すると、主軸と工具との間で温度差があるため、工具に熱変形が生じて加工精度に影響を与えていた。例えば、工具交換を行ってすぐに穴加工やタップ加工等を行うと、工具の熱変形が飽和する前と後で加工されたものでは加工誤差が生じていた。
また、上記特許文献1ではノーズ部の温度変化を室温の変化の即時応答要素としているため、補正間隔を短くすると補正誤差を生ずる問題を有していたし、特許文献2では、工具の温度を測定するための温度センサが別途必要であり、コスト高となっていた。
そこで、本発明は上記問題点に鑑み、工具に温度センサを設けることなく工具の熱変位を高精度で推定でき、工具を交換した直後でも良好な熱変位補正が可能な工具の熱変位補正方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するため、請求項1の発明に係る工具の熱変位補正方法は、主軸の軸受近傍の第1工作機械温度と工作機械の熱安定性の高い部位の第2工作機械温度を測定して、工具の熱変位量を前記第1工作機械温度と前記第2工作機械温度との差を基に所定の一次遅れ式から推定し、推定した補正量により工具位置を補正することを特徴とする。
尚、ここで言う工作機械の熱安定性の高い部位とは、工作機械の構造体の中でも比較的大きくて熱容量が大きいこと、主軸回転や主軸又はワークの移動を行うためのモータ及びモータの駆動伝達部位に用いられる軸受や工具がワークを加工する場所などの発熱源から離れていること、加工により生じた熱を帯びた切り子や切削液等の影響を受けないこと、などを基準に決めた部位であり、例えばベッド等の部位を言う。
【0006】
請求項2の発明は、請求項1の発明において、一次遅れ式は、工具や工具ホルダの種類によって変化する係数を有することを特徴とする。
【0007】
請求項3の発明は、請求項1又は2の発明において、工作機械がNC工作機械であって、推定した補正量をNC装置の指令値に加え、補正量を加えたデータでNC工作機械を制御することを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明を具体化した実施の形態を、図面に基づいて詳細に説明する。図1は本発明に係る工具の熱変位補正方法を実行するNC工作機械の1つであるマシニングセンタの説明図であり、10はマシニングセンタのベッド、11は主軸を示し、第1温度センサ1が工具近傍である主軸11の軸受付近に取付けられて第1工作機械温度を測定し、第2温度センサ2がベッド10に取付けられて第2工作機械温度を測定している。
この第1温度センサ1及び第2温度センサ2からの情報は温度を演算する温度演算装置3に送られ、演算した温度情報は温度記憶メモリ4に記憶される。また、5は温度情報から補正量を算出する補正量算出装置、6は算出された補正量を工作機械に軸移動指令として指示するNC装置である。尚、矢印はデータの流れを示している。
【0009】
第1温度センサ1及び第2温度センサ2より得られたデータは温度演算装置3により温度情報に換算された後、温度記憶メモリ4へデータが格納されると共に格納された値を用いて予め設定された計算式に則って補正量演算装置5にて補正量が算出される。この工具の熱変位量を推定するのに用いる計算式は、次の数1で表される。
【0010】
【数1】

Figure 2004148443
【0011】
数1において、δは補正量、αは温度勾配、Tは時定数、tは経過時間であるが、図4に示す異なる長さの2種類(X1,X2)の工具の熱変位測定データから明らかなように、工具長が異なると熱変位の挙動も異なる。そのため、温度勾配α、時定数Tは、工具長さ、工具径、工具材質、更には工具ホルダ等によって個々に設定される。
このように、工具種類、工具ホルダ種類によって決められた温度勾配、時定数を用いた補正量算出式は数2に示すように温度の関数として決定される。
【0012】
【数2】
Figure 2004148443
【0013】
こうして算出された補正値をNC装置6に送り、NC装置6はその補正量をオフセット量として軸移動量に加える。
【0014】
次に、補正量算出の手順を図2のフローチャートを基に具体的に説明する。工具交換を行った際に、NC装置6に設けた工具の熱変位補正スイッチ(図示せず)が有効になるとS1からS2に進み、S2で工具、工具ホルダ等によって異なる温度勾配、時定数を適用した補正量算出式として上記数2をセットする。続いて、S3で設置された第1温度センサ1及び第2温度センサ2より工具近傍の温度Tとベッド温度T0の温度データを取得する。そして、S4でこの取得した温度データを数2に適用して補正量δを算出し、S5で算出した補正量δをNC装置6の軸指令にオフセット値として加え、工具の熱変位を補正する。
その後、引続き工具の熱変位補正を行う場合は、S3からS5までの処理を繰り返して行い、補正を終了する場合はS6からS7に進み処理を終了させる。
こうして補正処理を行い、実際に変位を推定して補正を行った結果を図3に示す。図3において、Y1は実際の変位、Y2は推定変位、ΔYは誤差を示し、図に示すように、計算による熱変位推定値は実際の工具の熱変位にほぼ等しく、誤差の発生は僅かとなる。
【0015】
このように、工具近傍の温度から工具の熱変位量を推定して補正するので、工具を交換しても工具の熱変形が飽和するまで待つ必要なく加工精度を維持でき、工具に温度センサを設ける必要がない。
また、工具の長さや径或いは工具ホルダの形状が変わっても、一次遅れ式の係数を変更するだけで良好に補正量の推定を実施することが可能であるし、計算した補正量をNC装置の指令値に加えることで、NC工作機械を別途温度補正操作することなく自動で熱変位補正動作でき、簡易な操作で高精度な加工が実施できる。
尚、上記実施形態は、マシニングセンタについて説明したが、数値制御する他のNC工作機械に対しても上記工具の熱変位補正方法は容易に適用できる。また、ベッドに第2温度センサが取り付けられた形態について説明したが、第2温度センサの位置は工作機械の構造体の中でも比較的大きくて熱容量の大きいこと、主軸回転や主軸又はワークの移動を行うためのモータ及びモータの駆動伝達部位に用いられる軸受や工具がワークを加工する場所などの発熱源から離れていること、等を基準に各種工作機械各々に応じて決められるものである。
【0016】
【発明の効果】
以上詳述したように、請求項1の発明によれば、工具近傍の温度から工具の熱変位量を推定して補正するので、工具を交換しても工具の熱変形が飽和するまで待つ必要なく加工精度を維持でき、工具に温度センサを設ける必要がない。
【0017】
請求項2の発明によれば、請求項1の効果に加えて、工具の長さや径或いは工具ホルダの形状が変わっても、一次遅れ式に係数を変更するだけで良好に補正量の推定を実施できる。
また、請求項3の発明によれば、請求項1又は2の効果に加えて、NC工作機械を別途温度補正操作することなく自動で熱変位補正動作でき、簡易な操作で高精度な加工が実施できる。
【図面の簡単な説明】
【図1】本発明に係る工具の熱変位補正方法をマシニングセンタに適用した説明図である。
【図2】本発明の工具の熱変位補正方法のフローチャートである。
【図3】図2のフローチャートに従い補正動作させたマシニングセンタの変位量時間変化、及び実際の工具変位と推定変位を示すグラフである。
【図4】工具長さが異なる2種類の工具の変位量時間変化を示すグラフである。
【符号の説明】
1・・第1温度センサ、2・・第2温度センサ、3・・温度演算装置、4・・温度記憶メモリ、5・・補正量算出装置、6・・NC装置、10・・ベッド、11・・主軸。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal displacement correction method for a tool for correcting a thermal displacement of a tool mounted on a machine tool.
[0002]
[Prior art]
Factors that greatly affect the processing accuracy of a machine tool include mainly changes in the environmental temperature and thermal deformation due to heat generation of each part of the machine. Among them, the thermal deformation due to the heat generated by each part of the machine is largely caused by the thermal deformation of the tool, which is mainly caused by the high speed rotation of the main shaft, making it difficult to maintain the processing accuracy.
For this reason, a method for determining and correcting thermal deformation of a tool as an immediate response element to a change in the temperature of a spindle nose and a change in room temperature by calculating a thermal displacement in a spindle axis direction (see Patent Document 1), and a temperature sensor for measuring the temperature of a tool are provided. A method of estimating and correcting the amount of thermal displacement using information such as the spindle temperature, the spindle rotation speed, and the tool temperature as in a method of providing machining data based on the temperature information (see Patent Document 2). Has been implemented.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 6-22779 [Patent Document 2]
JP-A-63-2645
[Problems to be solved by the invention]
However, even when the amount of thermal displacement is estimated and corrected in this way, even if machining is performed, if the tool is changed during finishing processing and machining is resumed immediately, there is a temperature difference between the spindle and the tool. In this case, thermal deformation occurs in the tool, which affects machining accuracy. For example, if hole drilling or tapping is performed immediately after a tool change, a processing error occurs before and after the thermal deformation of the tool is saturated.
Further, in Patent Document 1, since the temperature change of the nose portion is used as an immediate response element of the change of room temperature, there is a problem that a correction error occurs when the correction interval is shortened. In Patent Document 2, the temperature of the tool is measured. A separate temperature sensor is required, which increases the cost.
Accordingly, the present invention has been made in view of the above-described problems, and has been made in consideration of the above-described problem. The task is to provide
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a method for correcting thermal displacement of a tool according to the invention of claim 1 measures a first machine tool temperature near a bearing of a main shaft and a second machine tool temperature of a portion of the machine tool having high thermal stability. And estimating a thermal displacement amount of the tool from a predetermined first-order lag equation based on a difference between the first machine tool temperature and the second machine tool temperature, and correcting the tool position by the estimated correction amount. And
In addition, the part having high thermal stability of the machine tool referred to herein means that it is relatively large and has a large heat capacity in the structure of the machine tool, a motor for rotating the spindle, moving the spindle or the work, and driving the motor. The bearings and tools used for the transmission part are separated from heat sources such as the place where the work is processed, and they are not affected by the hot chips or cutting fluid generated by the processing. A part, for example, a part such as a bed.
[0006]
According to a second aspect of the present invention, in the first aspect of the present invention, the first-order lag expression has a coefficient that varies depending on the type of tool or tool holder.
[0007]
According to a third aspect of the present invention, in the first or second aspect of the invention, the machine tool is an NC machine tool, and the estimated amount of correction is added to the command value of the NC device, and the NC machine tool is controlled by data obtained by adding the amount of correction. It is characterized by controlling.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view of a machining center which is one of the NC machine tools for executing the tool thermal displacement correcting method according to the present invention, wherein reference numeral 10 denotes a bed of the machining center, 11 denotes a spindle, and a first temperature sensor 1 denotes a tool. The temperature of the first machine tool is measured by being mounted near the bearing of the main shaft 11, which is nearby, and the second temperature sensor 2 is mounted on the bed 10 to measure the temperature of the second machine tool.
Information from the first temperature sensor 1 and the second temperature sensor 2 is sent to a temperature calculating device 3 for calculating a temperature, and the calculated temperature information is stored in a temperature storage memory 4. Reference numeral 5 denotes a correction amount calculation device that calculates a correction amount from temperature information, and reference numeral 6 denotes an NC device that instructs the calculated correction amount to a machine tool as an axis movement command. Note that arrows indicate the flow of data.
[0009]
The data obtained from the first temperature sensor 1 and the second temperature sensor 2 are converted into temperature information by a temperature calculation device 3 and then stored in a temperature storage memory 4 and set in advance using the stored values. The correction amount is calculated by the correction amount calculation device 5 according to the calculated formula. The calculation formula used to estimate the thermal displacement of the tool is represented by the following equation (1).
[0010]
(Equation 1)
Figure 2004148443
[0011]
In equation (1), δ is the correction amount, α is the temperature gradient, T is the time constant, and t is the elapsed time. From the data of the thermal displacement measurement data of two types (X1, X2) of different lengths shown in FIG. As can be seen, different tool lengths result in different thermal displacement behavior. Therefore, the temperature gradient α and the time constant T are individually set according to the tool length, the tool diameter, the tool material, the tool holder, and the like.
As described above, the correction amount calculation formula using the temperature gradient and the time constant determined by the tool type and the tool holder type is determined as a function of the temperature as shown in Expression 2.
[0012]
(Equation 2)
Figure 2004148443
[0013]
The correction value thus calculated is sent to the NC device 6, and the NC device 6 adds the correction amount as an offset amount to the axial movement amount.
[0014]
Next, the procedure of calculating the correction amount will be specifically described based on the flowchart of FIG. When a tool change is performed, when a thermal displacement correction switch (not shown) of the tool provided in the NC device 6 is activated, the process proceeds from S1 to S2. In S2, a temperature gradient and a time constant different depending on a tool, a tool holder, and the like are set. Equation 2 is set as the applied correction amount calculation formula. Subsequently, temperature data of the temperature T near the tool and the bed temperature T0 are acquired from the first temperature sensor 1 and the second temperature sensor 2 installed in S3. Then, in S4, the acquired temperature data is applied to Equation 2 to calculate a correction amount δ, and the correction amount δ calculated in S5 is added to the axis command of the NC device 6 as an offset value to correct the thermal displacement of the tool. .
Thereafter, when the thermal displacement of the tool is to be continuously corrected, the processes from S3 to S5 are repeated, and when the correction is to be ended, the process proceeds from S6 to S7 to end the process.
FIG. 3 shows a result of performing the correction process in this way and actually estimating the displacement and performing the correction. In FIG. 3, Y1 represents the actual displacement, Y2 represents the estimated displacement, and ΔY represents the error. As shown in the figure, the calculated thermal displacement estimated value is almost equal to the actual thermal displacement of the tool, and the occurrence of the error is slight. Become.
[0015]
In this way, since the thermal displacement of the tool is estimated and corrected from the temperature near the tool, the machining accuracy can be maintained without having to wait until the thermal deformation of the tool is saturated even if the tool is replaced, and the temperature sensor is attached to the tool. There is no need to provide.
Further, even if the length or diameter of the tool or the shape of the tool holder changes, it is possible to satisfactorily estimate the correction amount only by changing the coefficient of the first-order lag equation. , The thermal displacement correction operation can be automatically performed without separately performing a temperature correction operation on the NC machine tool, and high-precision machining can be performed by a simple operation.
Although the above embodiment has been described with respect to a machining center, the method for correcting the thermal displacement of the tool can be easily applied to other NC machine tools which are numerically controlled. Further, the embodiment in which the second temperature sensor is attached to the bed has been described. However, the position of the second temperature sensor is relatively large in the structure of the machine tool and has a large heat capacity, and the rotation of the spindle and the movement of the spindle or the work are controlled. It is determined for each of the various machine tools based on the fact that a motor for performing the operation and a bearing or a tool used for a drive transmission portion of the motor are separated from a heat source such as a place where a work is processed.
[0016]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, since the thermal displacement of the tool is estimated and corrected from the temperature near the tool, it is necessary to wait until the thermal deformation of the tool is saturated even if the tool is replaced. Machining accuracy can be maintained without the need for providing a temperature sensor on the tool.
[0017]
According to the invention of claim 2, in addition to the effect of claim 1, even if the length or diameter of the tool or the shape of the tool holder changes, the correction amount can be satisfactorily estimated only by changing the coefficient in a first-order lag equation. Can be implemented.
According to the third aspect of the present invention, in addition to the effects of the first or second aspect, a thermal displacement correction operation can be automatically performed without separately performing a temperature correction operation on the NC machine tool, and high-precision machining can be performed with a simple operation. Can be implemented.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram in which a tool thermal displacement correction method according to the present invention is applied to a machining center.
FIG. 2 is a flowchart of a thermal displacement correction method for a tool according to the present invention.
FIG. 3 is a graph showing a change over time of a displacement amount of a machining center subjected to a correcting operation according to the flowchart of FIG. 2, and an actual tool displacement and an estimated displacement.
FIG. 4 is a graph showing a change over time of a displacement amount of two types of tools having different tool lengths.
[Explanation of symbols]
1. first temperature sensor, 2. second temperature sensor, 3. temperature calculation device, 4. temperature storage memory, 5. correction amount calculation device, 6. NC device, 10 bed, 11 ..Spindle.

Claims (3)

主軸の軸受近傍の第1工作機械温度と工作機械の熱安定性の高い部位の第2工作機械温度を測定して、工具の熱変位量を前記第1工作機械温度と前記第2工作機械温度との差を基に所定の一次遅れ式から推定し、推定した補正量により工具位置を補正することを特徴とする工具の熱変位補正方法。The temperature of the first machine tool near the bearing of the main spindle and the temperature of the second machine tool at a site where the machine tool has high thermal stability are measured, and the amount of thermal displacement of the tool is determined by the first machine tool temperature and the second machine tool temperature. And estimating the tool position with the estimated amount of correction based on a first-order lag equation based on a difference between the tool and the tool. 一次遅れ式は、工具や工具ホルダの種類によって変化する係数を有する請求項1記載の工具の熱変位補正方法。2. The method according to claim 1, wherein the first-order lag equation has a coefficient that varies depending on the type of tool or tool holder. 工作機械がNC工作機械であって、推定した補正量をNC装置の指令値に加え、補正量を加えたデータでNC工作機械を制御する請求項1又は2記載の工具の熱変位補正方法。3. The method according to claim 1, wherein the machine tool is an NC machine tool, and the estimated amount of correction is added to a command value of the NC device, and the NC machine tool is controlled with data obtained by adding the amount of correction.
JP2002316598A 2002-10-30 2002-10-30 Method for correcting thermal displacement of tool Pending JP2004148443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316598A JP2004148443A (en) 2002-10-30 2002-10-30 Method for correcting thermal displacement of tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316598A JP2004148443A (en) 2002-10-30 2002-10-30 Method for correcting thermal displacement of tool

Publications (1)

Publication Number Publication Date
JP2004148443A true JP2004148443A (en) 2004-05-27

Family

ID=32460257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316598A Pending JP2004148443A (en) 2002-10-30 2002-10-30 Method for correcting thermal displacement of tool

Country Status (1)

Country Link
JP (1) JP2004148443A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354386B2 (en) * 2005-11-04 2008-04-08 Mori Seiki Co., Ltd. Thermal displacement correcting device
JP2016087777A (en) * 2014-10-29 2016-05-23 オークマ株式会社 Temperature adjustment system control method in machine tool
JP2016175167A (en) * 2015-03-22 2016-10-06 三井精機工業株式会社 Machine tool, tool slewing gear, and main shaft thermal displacement correction method
CN107939591A (en) * 2017-12-21 2018-04-20 四川大唐国际甘孜水电开发有限公司 A kind of large and medium hydro-generator bearing bush temperature guard method
DE102020200610A1 (en) 2019-01-21 2020-07-23 Okuma Corporation Thermal displacement correction method and thermal displacement correction device of a machine tool
US11714007B2 (en) 2019-03-15 2023-08-01 Fanuc Corporation Temperature interpolation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354386B2 (en) * 2005-11-04 2008-04-08 Mori Seiki Co., Ltd. Thermal displacement correcting device
JP2016087777A (en) * 2014-10-29 2016-05-23 オークマ株式会社 Temperature adjustment system control method in machine tool
JP2016175167A (en) * 2015-03-22 2016-10-06 三井精機工業株式会社 Machine tool, tool slewing gear, and main shaft thermal displacement correction method
CN107939591A (en) * 2017-12-21 2018-04-20 四川大唐国际甘孜水电开发有限公司 A kind of large and medium hydro-generator bearing bush temperature guard method
DE102020200610A1 (en) 2019-01-21 2020-07-23 Okuma Corporation Thermal displacement correction method and thermal displacement correction device of a machine tool
JP2020116660A (en) * 2019-01-21 2020-08-06 オークマ株式会社 Thermal displacement correction method of machine tool and thermal displacement correction device
JP7098544B2 (en) 2019-01-21 2022-07-11 オークマ株式会社 Machine tool thermal displacement correction method and thermal displacement compensation device
US11666999B2 (en) 2019-01-21 2023-06-06 Okuma Corporation Thermal displacement correction method and thermal displacement correction apparatus of machine tool
US11714007B2 (en) 2019-03-15 2023-08-01 Fanuc Corporation Temperature interpolation device

Similar Documents

Publication Publication Date Title
US6651019B2 (en) Method and apparatus for calculating correction value for thermal displacement in machine tool
JP4469325B2 (en) Thermal displacement correction device
JP3792266B2 (en) Method and apparatus for correcting thermal displacement of machine tool
JP4959508B2 (en) Work processing method and behavior measuring device of machine tool
JP5870143B2 (en) Wire electrical discharge machine with thermal displacement compensation function for upper and lower guides
JP3136464B2 (en) Thermal displacement compensation method for machine tools
JP2008183653A (en) Thermal displacement estimating method for machine tool
JP2010120150A (en) Estimation method for thermal deformation compensation of machine tool
JP2004148443A (en) Method for correcting thermal displacement of tool
JP2008264883A (en) Machining device
JP2004042260A (en) Thermal displacement correcting method for machine tool, and device thereof
JP2007007752A (en) Displacement correcting method of spindle tool tip
JP6561003B2 (en) Machine tool thermal displacement correction method, machine tool
JP5127603B2 (en) Processing method and processing apparatus
JP2006116654A (en) Thermal deformation correction method and thermal deformation correcting device of nc machine tool
JP6656945B2 (en) Compensation method for thermal displacement of machine tools
JP2009248209A (en) Method of estimating thermal displacement of machine tool
JP2006055919A (en) Method of correcting machining error of machine tool
JP7098544B2 (en) Machine tool thermal displacement correction method and thermal displacement compensation device
JP2002052439A (en) Thermal displacement correcting method for lathe
JP3495255B2 (en) Estimation method of thermal displacement of machine tool
JP2005088126A (en) Displacement correction method of rotary main shaft
JP3805932B2 (en) Thermal displacement estimation method for machine tools
JP4516807B2 (en) Turret lathe with rotating tool turret
JP2006055918A (en) Method of correcting thermal deformation error of machine tool